JP2021099227A - コリメート光による分析を行う分析装置及び分析方法 - Google Patents

コリメート光による分析を行う分析装置及び分析方法 Download PDF

Info

Publication number
JP2021099227A
JP2021099227A JP2019230087A JP2019230087A JP2021099227A JP 2021099227 A JP2021099227 A JP 2021099227A JP 2019230087 A JP2019230087 A JP 2019230087A JP 2019230087 A JP2019230087 A JP 2019230087A JP 2021099227 A JP2021099227 A JP 2021099227A
Authority
JP
Japan
Prior art keywords
light
analysis target
analysis
analyzer
collimating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019230087A
Other languages
English (en)
Other versions
JP7371905B2 (ja
Inventor
昇 藤井
Noboru Fujii
昇 藤井
壮一 羽柴
Soichi Hashiba
壮一 羽柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micro Control Systems Ltd
Original Assignee
Micro Control Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micro Control Systems Ltd filed Critical Micro Control Systems Ltd
Priority to JP2019230087A priority Critical patent/JP7371905B2/ja
Publication of JP2021099227A publication Critical patent/JP2021099227A/ja
Application granted granted Critical
Publication of JP7371905B2 publication Critical patent/JP7371905B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】できるだけ計測すべき光のみを、より安定して捉えることの可能な分析装置を提供する。【解決手段】本分析装置は、少なくとも1つの光源と、光源から放射された光をコリメート光にするコリメート部であって、分析対象に対しコリメート光を照射可能なように設けられた少なくとも1つのコリメート部と、このコリメート部から出射し分析対象に照射されて分析対象内を概ね直進する光を受け取らないように設けられた、当析対象からの光を受け取って分析を行う少なくとも1つの分析部とを有する。ここで、コリメート部は、コリメート光の出射する少なくとも1つの出射面が、分析対象を取り囲むことができるように設けられていることも好ましい。また、コリメート部は、分析対象の表面部分であって分析部の受光部分に対向した表面部分の周りを囲む、分析対象の周囲表面に対し、コリメート光を照射可能なように設けられていることも好ましい。【選択図】図1

Description

本発明は、分析対象を、可視光や近赤外光といった光を用いて分析する技術に関する。
近年、農産物の品質、その中でも特に各種果菜類の品質が非常に向上している。そのため我が国の果実や野菜は、海外でも高い人気を博し、重要な輸出品目としても大いに注目されている。
しかしながら、果菜類の生産は非常に手間がかかり、また高品質化のためには長年の勘や経験が必要とされ、新規参入することが容易ではない状況にある。例えば実際に、新規就農者では、収穫の目安となるような果実の糖度、酸度や熟度を的確に捉えることが難しい場合も少なくないのである。
このような問題に対し、果菜類の糖度、酸度や熟度を収穫前に非破壊で測定できる測定器が利用できれば、新規就農者でも、その測定結果から収穫時期を適切に決定したり、良質な果菜類を選別して出荷したりすることが可能となる。
このような測定器として、例えば特許文献1には、700nm〜1.2μmの近赤外領域の光源としての発光ダイオードあるいはハロゲンランプと、当該光源からの発光光が斜め方向に投射された果実の表皮近くから透過光又は散乱光を得て、それを4つの波長に分光する光学グレーティングと、分光後の4つの波長の光の強度を検出するフォトセンサーと、それらの2つずつのスペクトルの光強度の比を2組求め、これらの光強度の比から果実の糖度と酸度を算出するマイクロコンピュータと、算出された糖度と酸度を数値表示する表示装置とから構成される果実の糖酸度非破壊計測装置が開示されている。
この特許文献1では、この糖酸度非破壊計測装置によって、果実、たとえばミカンの実際の糖度と酸度に対応した糖度と酸度を、近赤外光の透過・散乱により簡便且つ正確に表示し得るとしているのである。
特開2002−022657号公報
ここで、特許文献1に開示された糖酸度非破壊計測装置は、果実が近赤外光を吸収する比率が、当該果実の糖度や酸度に依存した値を示すという現象を利用して測定を行っており、その測定精度は、その吸収比率における極微小の変化を如何に確実に計測できるかにかかっている。
しかしながら、特許文献1の上記装置では、発光ダイオード又はハロゲンランプの発光光を果実へ直接照射し、その透過光及び散乱光を捉えて糖度や酸度を測定しているので、実際に吸収比率の変化の情報を最も多く含む散乱光以外の光も計測してしまい、結果的に測定精度を押し下げてしまう懸念がある。
さらに、発光ダイオード又はハロゲンランプの発光光は、放射向きに関し広がりをもっているので、果実への発光光の当て方次第では、吸収比率の測定結果自体が変動し、やはり測定精度の低下をもたらしかねない。
ちなみに、以上に説明した課題は勿論、果菜類における糖度や酸度の測定に限定されるものではなく、分析対象に対し、可視光や近赤外光といった光を照射して分析を行う多くの場合において、解決すべき課題となっているのである。
そこで、本発明は、できるだけ計測すべき光のみを、より安定して捉えることの可能な分析装置及び分析方法を提供することを目的とする。
本発明によれば、分析対象を光によって分析する分析装置であって、
少なくとも1つの光源と、
当該光源から放射された光をコリメート光にするコリメート部であって、当該分析対象に対し当該コリメート光を照射可能なように設けられた少なくとも1つのコリメート部と、
当該コリメート部から出射し当該分析対象に照射されて当該分析対象内を概ね直進する光を受け取らないように設けられた、当該分析対象からの光を受け取って分析を行う少なくとも1つの分析部と
を有する分析装置が提供される。
この本発明による分析装置の一実施形態として、当該コリメート部は、当該コリメート光の出射する少なくとも1つの出射面が、当該分析対象を取り囲むことができるように設けられていることも好ましい。
また、本発明による分析装置において、当該コリメート部は、当該分析対象の表面部分であって当該分析部の受光部分に対向した表面部分の周りを囲む、当該分析対象の周囲表面に対し、当該コリメート光を照射可能なように設けられていることも好ましい。
さらに、本発明による分析装置の他の実施形態として、当該コリメート部は略筒状又は中空の略錐台状の導光体を含み、当該導光体の一端部における当該分析対象に対向する側に、当該コリメート光の出射する出射面が設けられていることも好ましい。
また、上記の略筒状又は中空の略錐台状の導光体を備えた実施形態において、当該導光体は、当該一端部に又は当該一端部の近傍に、内部を伝播する光の少なくとも一部を反射させて当該出射面へ向ける反射内面を有していることも好ましい。
さらに、本発明による分析装置の更なる他の実施形態として、当該導光体の当該一端部は、当該分析対象に向かって突出した突出部となっていることも好ましい。
また、本発明による分析装置の更なる他の実施形態として、当該コリメート部は光ファイバを含み、当該コリメート光の出射する出射面が当該光ファイバの一端となっていることも好ましい。
さらに、本発明による分析装置において、当該コリメート部は、当該光源から放射された光を受け取る端部に、コリメートレンズ部分を有することも好ましい。
また、本発明による分析装置は、当該分析対象における当該コリメート光の照射される表面部分へ入射し得るノイズ光の入射経路を遮る位置に設けられた遮光部を更に有することも好ましい。
さらに、本発明による分析装置において、当該コリメート部及び当該分析部は、当該コリメート部から出射する光の向きと、当該分析部の受光窓に垂直に入射する光の向きとのなす角度が、略90度以上となるように設置されていることも好ましい。
また、本発明による分析装置における当該分析対象は、具体的に、農作物、農作物の成分を含む液体若しくは液状物、水産物、水産物の成分を含む液体若しくは液状物、動物の部位、動物の成分を含む液体若しくは液状物、植物の部位、植物の成分を含む液体若しくは液状物、食品、及び食品の成分を含む液体若しくは液状物のうちの1つであり、当該分析部は、当該分析対象の内部に含まれる所定成分の有無又は含有の程度に係る量を決定することも好ましい。
本発明によれば、また、分析対象を光によって分析する分析方法であって、
少なくとも1つの光源から放射された光をコリメート光とし、
当該コリメート光を当該分析対象へ照射し、
当該分析対象へ照射された光であって当該分析対象内を概ね直進する光を受け取らない位置において、当該分析対象からの光を受け取り、
当該受け取った光によって分析を行う
ことを特徴とする分析方法が提供される。
本発明の分析装置及び分析方法によれば、できるだけ計測すべき光のみを、より安定して捉えることが可能となる。
本発明による分析装置の一実施形態を説明するための模式図である。 本発明による分析装置の他の実施形態を説明するための模式的な断面図である。 本発明の分析装置における出射面からの出射光と、分析対象からの分析対象光との関係を概略的に示す模式図である。 本発明による分析装置の更なる他の実施形態を説明するための模式的な断面図である。 本発明による分析装置の更なる他の実施形態を説明するための模式的な断面図である。 本発明による分析装置の更なる他の実施形態を説明するための模式的な断面図である。 本発明による分析装置の更なる他の実施形態を説明するための模式的な断面図である。 本発明による分析装置の更なる他の実施形態を説明するための模式的な断面図である。
以下に、本発明を実施するための形態について、添付図面を参照しながら詳細に説明する。なお、図面中の構成要素内及び構成要素間の寸法比は、図面の見易さのため、それぞれ任意となっている。
[導光体を用いた分析装置1]
図1は、本発明による分析装置の一実施形態を説明するための模式図である。ここで、図1(A)は、分析装置1におけるzx面による模式的な断面図となっており、図1(B)は、特に導光体12及び分光器13と分析対象(果実)との位置関係を概略的に示す模式図となっている。なお、この図1を含め、以下に示す図面中には装置等の向きの指標となるxyz座標系が適宜、示されている。
図1(A)及び(B)に示した本実施形態の分析装置1は、分析対象であるブドウ等の果実に対して光を照射し、当該果実からの光を捉えて分光分析を行う装置である。
具体的に本実施形態の分析装置1は、光源として白色LED(Light Emitting Diode)11を用いて、果実(分析対象)に照射する光として可視光(白色光)を採用し、
(a)この白色光を果実(分析対象)に照射し、
(b)果実(分析対象)が放射した散乱光を、分析部である分光器13に取り込み、
(c)分光器13における分光分析によって可視光スペクトルを取得し、
(d)微分等の処理を施した当該スペクトルデータから、予め作成しておいた果実(分析対象)における目的成分の度数(例えば糖度や酸度)の検量式に基づいて、当該度数(例えば糖度や酸度)を決定し、出力するのである。
このような分光分析を行う分析装置1であるが、その具体的特徴として、
(A)少なくとも1つの光源(本実施形態では複数の白色LED11)と、
(B)当該光源から放射された光をコリメート光にするコリメート部であって、分析対象(果実)に対しこのコリメート光を照射可能なように設けられた少なくとも1つのコリメート部(本実施形態では導光体12)と、
(C)コリメート部(導光体12)から出射し分析対象(果実)に照射されて分析対象(果実)内を概ね直進する光を受け取らないように設けられた、分析対象(果実)からの光を受け取って分析を行う少なくとも1つの分析部(本実施形態では1つの分光器13)と
を有している。
このように分析装置1は、上記(C)に説明したような、コリメート部と、分析対象と、分析部(に光を伝える受光部)との特別な位置関係を実現しているので、分析部(分光器13)は、「目的成分の度数(例えば糖度や酸度)の情報を実際に最も多く含む散乱光」以外の光を極力受け取らずに済む。すなわち、概ね計測すべき光のみに対し分光分析を実施することになるので、結果的に、目的成分の度数(例えば糖度や酸度)の測定精度をより向上させることが可能となるのである。
ここで、上記の「散乱光」は、分析対象(果実)内において吸収・反射等の反応を経ることにより散乱して、外部へ出て来た光のことである。
また、分析装置1は、上記(B)のコリメート部(導光体12)を有しているので、分析対象(果実)に対し、コリメート光を照射することができる。その結果、分析対象(果実)の設置位置の多少の変動があったとしても、当該分析対象に対し概ね一定の設計された光量を、安定した入射態様をもって入射させることが可能となる。これにより、計測すべき散乱光をより安定して捉えることができ、解析・測定結果自体が安定するので、測定精度を安定的に向上させることも可能となるのである。
ここで、コリメート光は、本発明によるコリメート部のようなコリメート光学素子を経ることによって概ね平行となった光であり、放射向きのばらつきが(当該素子の形態等で決定される)所定範囲内に抑えられた略平行光のことである。
ちなみに変更態様として、白色LED11に代えて、放射光の波長が互いに異なる複数のLEDを光源に用い、本発明に係る上記構成(B)及び(C)をもって分光分析を実施することも可能である。この場合、目的成分の度数(例えば糖度や酸度)との関連性の高い波長が選択されることも好ましい。しかしながら本実施形態のように、白色LED11による白色光を用いることによって、後に説明するようにより安定した解析・測定結果を実現することが可能となるのである。
また、さらなる変更態様として、可視光を放射する光源としてLED以外のハロゲンランプ等の光源を用いることも可能である。さらに、近赤外光、赤外光又は紫外光を放射するLEDやハロゲンランプ等の光源を用いて、近赤外光、赤外光又は紫外光による分析対象の分光分析を実施してもよい。
いずれにしても、本実施形態の分析装置1は、分析対象に対し前処理を施さず、栽培・生産等のされている状態のままで、若しくは生そのままの非破壊の状態で、分光分析を迅速に実施することができる。また、光源としてLEDを採用することによって、例えば外部電源を使用せず電池駆動とし、装置の小型化・携帯化を図ることも容易になるのである。
さらに、本発明に係る分析対象も当然、果実に限定されるものではない。例えば、
(ア)各種の農作物や、農作物の成分を含む液体若しくは液状物、
(イ)各種の水産物や、水産物の成分を含む液体若しくは液状物、
(ウ)各種の動物の部位や、動物の成分を含む液体若しくは液状物、
(エ)各種の植物の部位や、植物の成分を含む液体若しくは液状物、又は
(オ)各種の食品や、食品の成分を含む液体若しくは液状物
を分析対象とすることができる。またこの場合、分析部(分光器13)は、このような分析対象の内部に含まれる所定成分の有無又は含有の程度に係る量を決定することになるのである。
ここで分析装置1の具体的な適用例として、分析対象をブドウ(の果実)とした例を説明する。従来、ブドウの品種によっては、成熟期に果皮が着色せず、新規就農者では、収穫の目安となるようなブドウの糖度や酸度を的確に捉えることが難しい場合も少なくなかった。実際、適当な収穫時期が定まらずに、結果として収穫したブドウの味にばらつきの生じることが問題となっていた。
これに対し、このような品種のブドウ園の棚下で収穫前のブドウに対し、以上に説明した分析装置1を直接適用すれば(例えば直接果実に押し当てることによって)、新規就農者でも、果粒を潰すことなく、より正確な糖度や酸度の情報を直ちに取得することができる。またその結果、好適なブドウの収穫を行うことも可能となる。言い換えれば、本分析装置1を使用することによって、熟練就農者の有する勘や経験といった暗黙知を明示的な知識に変換することも叶うのである。
また、上記の分析対象(ウ)の典型例として、被験者(人間)の指等の部位、又は採取した血液(の入った透明容器)を分析対象とし、血液中の成分の濃度、例えば血糖値を測定することもできる。この場合、例えば検診、健診や往診等の現場で即時に、血液検査の結果を出力することも可能となるのである。
さらに、上記の分析対象(オ)の一実施例として、各種の酒や酢等の醸造物の入った透明容器を分析対象とすることもできる。また果実そのものではなく、果実ジュースの入った透明容器とすることも可能である。この場合、例えば醸造の進行具合(例えば発酵アルコールの濃度)やジュースの品質を、例えば製造現場で即時に把握することもできるのである。
以下、本実施形態における照明装置1の具体的な機能構成について説明を行う。図1(A)及び(B)によれば、照明装置1は、光源である複数の白色LED11と、コリメートレンズ部121及び出射用全反射内面122を備えた、コリメート部をなす導光体12と、受光部12eと、分析部である分光器13と、制御部14と、タッチパネル・ティスプレイ151と、通信インタフェース152と、遮光部161と、遮光リング162とを備えている。ここで、制御部14は、電子回路によって構成されていてもよく、また、ワンチップマイコン等のマイクロコンピュータを用い、プログラムによって動作制御を行うものであってもよい。
同じく図1(A)及び(B)において、白色LED11は、分光分析用の光源である。本実施形態においては、果実(分析対象)の周囲360度の範囲に光を照射するべく、導光体12の下端の下方に複数の(図1(B)では12個の)白色LED11が、環状に並べて設置されている。
このように複数の白色LED11を使用することによって、分析光の強度を確保するとともに、複数の伝播経路を経た光が混合することになるので、分析光の強度や波長特性の平均化を図ることもできる。またその結果、分光分析結果の安定化にも資するのである。ちなみに、白色LED11は、例えば市販されている種々のタイプのものが使用可能であるが、分析波長に関し過不足の少ない、演色性の高いものを使用することも好ましい。
同じく図1(A)及び(B)において、導光体12は、複数の白色LED11から放射された光をコリメート光にするコリメート部であって、本実施形態では、z軸方向に伸長した略筒状をなし、空気よりも屈折率の高い透光性プラスチック材料、又は石英ガラス等のガラス材料で形成されている。また、導光体12は、白色LED11から放射された光を受け取る下方端部(−z側の端部)に、凸レンズ状のコリメートレンズ部分であるコリメートレンズ部121を備えている。
このような導光体12の構成によって、白色LED11から放射された光は、凸レンズ作用で概ね平行光となって導光体12内に進入し、さらに、導光体12内を伝播する中で一部が導光体内面で全反射して進むことによって、より高い平行度を有するコリメート光になっていくのである。
さらに、導光体12は、果実(分析対象)に対しこのコリメート光を照射可能な位置に設けられており、具体的には、導光体12の上方端部(+z側の端部)における果実(分析対象)に対向する側に、コリメート光の出射する出射面123を備えている。ここで、この出射面123は、本実施形態において(遮光部161で仕切られることにより)環状の帯の内側面のような形状をなし、装置1に設置された(又は装置1を押し当てた)果実(分析対象)を取り囲むことができるように配置されている。
またさらに、導光体12は、上方端部(+z側の端部)近傍に出射用全反射内面122を備えており、導光体12内を伝播する少なくとも一部の(本実施形態では概ね全ての)コリメート光を、この出射用全反射内面122で全反射させて、コリメート状態のままで出射面123から出射させる。
以上説明したように、導光体12は本実施形態において、果実(分析対象)の周囲360度の範囲に満遍なくコリメート光を照射することができ、その結果、果実(分析対象)全体における偏りの少ない目的成分の度数(例えば糖度や酸度)を測定することも可能となるのである。
なお本実施形態において、導光体12は、図1(A)に示したように、コリメートレンズ部及び出射面123以外の表面を、遮光材料で形成された遮光部161で覆われており、装置外部からの分析対象外の光である外乱光の侵入を阻止している。ここで、遮光部161は少なくとも、果実(分析対象)におけるコリメート光の照射される表面部分へ入射し得るノイズ光の入射経路を遮る位置、例えば図1(A)における出射用全反射内面122の外側、に設けられることも好ましいのである。
同じく図1(A)及び(B)において、分光器13は、果実(分析対象)からの光を受光窓で受け取って分光分析を行う分析部であり、具体的には受け取った光の波長スペクトルを測定して波長スペクトルデータを出力するデバイスとなっている。本実施形態では、この分光器13として、例えば波長350〜850nmに対応した市販の可視光(白色光)分光器であれば種々のものが採用可能である。勿論、分析装置1の小型化・携帯化を図る場合、小型の分光器であることが好ましい。
また、分光器13は、導光体12から出射し果実(分析対象)に照射されてこの果実(分析対象)内を概ね直進する光を受け取らないように設けられており、具体的には本実施形態において、果実(分析対象)の直下(−z側)に配置された受光部22eのさらに直下(−z側)に配置されている。その結果、分光器13は、
(a)導光体12から(光軸がxy面内となる)出射光を受け取った果実(分析対象)から、概ね下方(−z向き,xy面に垂直な向き)に放射される、又は大きな下向きの成分を有する「散乱光」を受け取り、一方、
(b)果実(分析対象)内を単に透過しただけの光である透過光を受け取らない
ことが可能となっている。
このように分光器13は、「果実(分析対象)の糖度や酸度(目的成分の度数)の情報を実際に最も多く含む散乱光」以外の光を極力受け取らずに済む。すなわち、概ね計測すべき光のみに対し分光分析を実施することになるので、結果的に、糖度や酸度(目的成分の度数)の測定精度をより向上させることが可能となるのである。
ここで、白色LED11は複数、環状に配置されているので、(それらの放射光を受け取った)導光体12から出射した出射光は、あらゆる向きから果実(分析対象)へ入射してその内部の中心を含む範囲に集中し、これにより、果実(分析対象)内部の広い範囲を十分な距離だけ伝播することができる。その結果、分光器13は、より高い強度の「散乱光」を確保することが可能となるのである。
また本実施形態では、果実(分析対象)からの「散乱光」は一先ず、果実(分析対象)の下部表面が接する位置に設けられた受光部12eに進入し、この受光部12eを介して、分光器13に到達する。ここで、受光部12eは、例えば導光体12と同様の透光材料で形成された導光部であり、果実(分析対象)の下部表面と接面可能な入射面と、分光器13の受光窓に対向した出射面とを有している。
さらに、果実(分析対象)の下には、当該果実の下部表面が接するように、且つ受光部12eを環内に置く形で、遮光リング162が設けられている。この遮光リング162は、不透明なプラスチック、ゴム又はスポンジ等の遮光材料で形成されており、果実(分析対象)の下部表面と分光器13の受光窓とに挟まれた空間を遮蔽している。
これにより、装置外部からの分析対象外の光である外乱光や、導光体12からの出射光が果実(分析対象)の表面で反射した結果である反射光、さらには白色LED11から放射されたままの光である直接光が、分光器13の受光窓や受光部12eへ進入するのを阻止することができ、最終的に、分光分析結果の精度を向上させることも可能となるのである。
また、以上に説明したような導光体12、受光部12e(分光器13)、及び遮光リング162の特別の配置によって、分析装置1は非常に扱いやすい、すなわち果実(分析対象)に当て易いものとなっている。例えば、栽培されている状態のブドウ等の果実に対し直接、分析装置1を押し当てて、より精度の高い糖度・酸度測定を実施することも可能となるのである。
同じく図1(A)において、制御部14は、分光器13から取得した波長スペクトルデータに対し、微分等の所定の処理を施した上で、当該データから、予め作成しておいた果実(分析対象)における糖度や酸度(目的成分の度数)の検量式に基づいて、現在の分析対象の糖度や酸度(目的成分の度数)を決定し、出力する。
ここで、上記の検量式は、微分等の処理を施した当該波長スペクトルルデータを目的変数として多変量解析を実施し、実際に果実(分析対象)を破壊して糖度や酸度(目的成分の度数)の定量分析を行った結果との比較を行うことによって予め作成しておくことができる。
また、受光部12eの近傍、又は分光器13の受光窓の近傍に(図示されていないが)温度センサが設けられていて、制御部14は、この温度センサから、果実(分析対象)における「散乱光」生成の際の温度に係る情報を取得し、取得した波長スペクトルデータに対する温度補正を行った上で解析処理を実施することも好ましい。
実際、「散乱光」スペクトルは温度依存性を有しており、一例としてブドウ果実の分光分析による糖度が、低温であるほどより低く計測されてしまうことが従来知られている。そこで、例えば実験によって当該温度依存性を測定して温度補正テーブルを予め作成しておき、制御部14は、この温度補正テーブルを読み込んで上記の温度補正を行うことも好ましいのである。なお変更態様として、分光器13がこのような温度補正を実施し、補正された波長スペクトルデータを制御部14へ出力してもよい。
また、制御部14は、例えば外部のパーソナルコンピュータ(PC)やスマートフォン等から無線(若しくは有線)の通信インタフェース152を介し、又は、本装置1に搭載されたタッチパネル・ディスプレイ151やボタン等を介し、糖度や酸度(目的成分の度数)の測定開始の指示を受け取って、白色LED11及び分光器13を起動させ、分光・解析処理を開始させてもよい。
さらに、制御部14は、解析・測定結果としての決定した糖度や酸度(目的成分の度数)を、例えば装置1内部のメモリに(測定した果実に付与された対象IDや測定日時と紐づけて)保存したり、また、タッチパネル・ティスプレイ151に表示させたりしてもよく、さらに、無線(又は有線)の通信インタフェース152を用いて、外部のパーソナルコンピュータ(PC)やスマートフォン等へ送信したりしてもよい。
なお変更態様として、以上に述べた導光体12を複数の、例えば白色LED11と同数の導光体部に分割し、例えば各白色LED11の直上に、1つの当該導光体部を配置し、果実(分析対象)には、各導光体部の出射面からの出射光が照射されるといった態様をとることも可能である。この態様においても、コリメート光を、果実(分析対象)の周囲360度の範囲に満遍なく照射することができ、その結果、果実(分析対象)全体における偏りの少ない目的成分の度数(例えば糖度や酸度)を測定することが可能となるのである。
[導光体を用いた分析装置2]
図2は、本発明による分析装置の他の実施形態を説明するための模式的な(zx面による)断面図である。
図2に示した実施形態の分析装置2も、分析対象であるブドウ等の果実に対して光を照射し、当該果実からの光を捉えて分光分析を行う装置である。この分析装置2は、具体的に、複数の白色LED21と、コリメートレンズ部221及び出射用全反射内面222を備えた、コリメート部をなす導光体22と、受光部22eと、分光器23と、遮光部261と、遮光リング262と、(以下、図示していないが)制御部24と、タッチパネル・ティスプレイ251と、通信インタフェース252とを備えている。
ここで、上述した分析装置2の各機能部は、分析装置1(図1(A))における同名の機能部と同様の構造・機能を有し同様の作用を果たすが、このうち導光体22は、導光体12(図1(A))とは異なった形状を有している。
具体的に導光体22は、全体としてz軸方向に伸長した略筒状となっているが、その上方端部(+z側の端部)が、果実(分析対象)の位置に向かって突出した突出部をなしている。また、出射用全反射内面222の傾き等を適切に設定することによって、この突出部の端面である出射面223から、この出射面223に概ね直交する光軸を有する出射光(コリメート光)を出射させ、果実(分析対象)に照射することができるようになっている。
このように、果実(分析対象)の位置に向かって突出した突出部を設けることによって、例えば栽培中のブドウのように互いに隣接して存在している個々の果実に対し、装置2を容易に当てて測定を実施することができる。例えば図2に示した装置2では、果実(分析対象)の突出した下半分に対し、装置2の上部を当て込むだけで糖度・酸度測定を実施可能となっているのである。
さらに、突出部から出射する出射光(照射光)は、出射面223に概ね直交する光軸を有しているので、出射面223近傍や果実(分析対象)表面における不要な反射や散乱を抑制し、それによる減光や分光器23への不要な入光を極力回避することも可能となっている。
図3は、本発明の分析装置における出射面からの出射光と、分析対象からの分析対象光との関係を概略的に示す模式図である。
図3には、果実(分析対象)の表面部分であって分光器(13,23)の受光部分に対向した表面部分の周りを囲む、この果実(分析対象)の「周囲表面」が、グレー領域として示されている。分析装置(1,2)の導光体(12,22)は、この「周囲表面」に対し、出射光(コリメート光)を照射可能となっている。
ここで、より好適な実施形態として、導光体(12,22)及び分光器(13,23)は、導光体(12,22)からの出射光の向きと、分光器(13,23)の受光窓に垂直に入射する光の向きとのなす角度が、概ね90度、又は90度以上となるように設置されている。例えば、図1に示した分析装置1では、導光体11の出射面123からの出射光Pと、分光器13の受光窓に垂直に入射する光の向きとのなす角度は、約90°(光学系設計誤差を考慮して例えば85°〜95°)となっており、一方、図2に示した分析装置2では、導光体22の出射面223からの出射光Qと、分光器23の受光窓に垂直に入射する光の向きとのなす角度は90°を超え、180°未満の角度となっている。
以上に説明したような光学系の構成によって、分光器(13,23)は、分析対象である散乱光を十分に受け取ることができる一方、散乱光でない光を極力受け取らずに済み、結果的に、目的成分の度数(例えば糖度や酸度)の測定精度をより向上させることが可能となるのである。
また、出射光はコリメート光となっているので、分析対象(果実)の設置位置の多少の変動があったとしても、「周囲表面」に照射されるべきとの条件や、「概ね90度、又は90度以上」との角度条件を確実に満たすことができ、結果的に、高い測定精度を安定して実現することも可能となるのである。なお、このような条件は、以下、図4〜8を用いて説明する実施形態においても確実に満たされる条件となっている。
またさらに言えば、本発明に係る導光体の形状及び光学的構成は、すでに説明した図1及び2の導光体(12,22)や、この後図4及び5を用いて説明する導光体(32,42)のそれに限定されるものではなく、上述したような条件を満たす形状及び光学的構成であるならば種々のものが、本発明に係る導光体に採用可能となるのである。
[導光体を用いた分析装置3]
図4は、本発明による分析装置の更なる他の実施形態を説明するための模式的な(zx面による)断面図である。
図4に示した実施形態の分析装置3も、分析対象であるブドウ等の果実に対して光を照射し、当該果実からの光を捉えて分光分析を行う装置である。この分析装置3は、具体的に、複数の白色LED31と、コリメートレンズ部321を備えた、コリメート部をなす導光体32と、受光部32eと、分光器33と、遮光部361と、遮光リング362と、(以下、図示していないが)制御部34と、タッチパネル・ティスプレイ351と、通信インタフェース352とを備えている。
ここで、上述した分析装置3の各機能部も、分析装置1(図1(A))における同名の機能部と同様の構造・機能を有し同様の作用を果たすが、このうち導光体32は、導光体12(図1(A))とは異なった形状を有している。
具体的に導光体32は、z軸方向に伸長した単純な略筒状となっており、その上方端部(+z側の端部)の端面をなす出射面323はxy面内の面となっている。また、出射光(コリメート光)の光軸もz軸に平行となっており、これにより、導光体32の出射面323からの出射光と、分光器33の受光窓に垂直に入射する光の向きとのなす角度は、約180°となっているのである。
このように、導光体32からの出射光、すなわち果実(分析対象)への照射光の伝播方向を極力、z軸方向内に収めることによって、装置3をより小型化することも可能となる。また、果実(分析対象)に対向させるべき出射面323及び受光部32eの入射面を互いに近接するように配置することもでき、この場合、装置3を、例えば栽培中の果実(分析対象)へより容易に押し当てやすい構造とすることも可能となるのである。
さらに、分析装置3においては、上述したように導光体32が比較的単純な形状であるので、製造コストを抑えることも可能となる。
[導光体を用いた分析装置4]
図5は、本発明による分析装置の更なる他の実施形態を説明するための模式的な(zx面による)断面図である。
図5に示した実施形態の分析装置4も、分析対象であるブドウ等の果実に対して光を照射し、当該果実からの光を捉えて分光分析を行う装置である。この分析装置4は、具体的に、複数の白色LED41と、コリメートレンズ部421を備えた、コリメート部をなす導光体42と、受光部42eと、分光器43と、遮光部461と、遮光リング462と、(以下、図示していないが)制御部44と、タッチパネル・ティスプレイ451と、通信インタフェース452とを備えている。
ここで、上述した分析装置4の各機能部も、分析装置1(図1(A))における同名の機能部と同様の構造・機能を有し同様の作用を果たすが、このうち導光体42は、導光体12(図1(A))とは異なった形状を有しており、また、複数の白色LED41も、白色LED11(図1(A))とは異なった設置態様で設置されている。
具体的に導光体42は、z軸方向の軸を有する単純な中空の錐台状となっており、その上方端部(+z側の端部)の端面をなす出射面423から、この出射面423に概ね直交する光軸を有する出射光(コリメート光)を出射させ、果実(分析対象)に照射することができるようになっている。またその結果、出射面423近傍や果実(分析対象)表面における不要な反射や散乱を抑制し、それによる減光や分光器43への不要な入光を極力、回避可能となっている。
さらに、このような導光体42を採用するによって、特にz軸方向の装置寸法を抑えて、装置3をより小型化することも可能となる。また、果実(分析対象)に対向させるべき出射面423及び受光部42eの入射面を互いに近接するように配置することもでき、この場合、装置4を、例えば栽培中の果実(分析対象)へより容易に押し当てやすい構造とすることも可能となるのである。
さらに、分析装置4においては、上述したように導光体42が比較的単純な形状であるので、製造コストを抑えることも可能となる。
また、複数の白色LED41は、白色LED11(図1(A))とは異なり、放射光の光軸がz軸方向から傾くように、すなわち当該放射光がコリメートレンズ部421へ、そのレンズ部の光軸に平行に入射するように、底面をxy面から傾けた形で設置されている。ここで変更態様として、複数の白色LED41を、白色LED11(図1(A))と同様、放射光の光軸がz軸方向となるように配置した上で、これらの白色LED41とコリメートレンズ部421との間に拡散板を設けてもよい。これにより、減光のデメリットはあるが、白色LED41からの放射光の相当部分をコリメートレンズ部421へ入射させることも可能となる。
[光ファイバを用いた分析装置5]
図6は、本発明による分析装置の更なる他の実施形態を説明するための模式的な(zx面による)断面図である。
図6は、本発明による分析装置の更なる他の実施形態を説明するための模式図である。ここで、図6(A)は、分析装置5におけるzx面による模式的な断面図となっており、図6(B)は、特に光ファイバ52及び受光部52e(分光器53)と分析対象(果実)との位置関係を概略的に示す模式図となっている。
図6(A)に示した実施形態の分析装置5も、分析対象であるブドウ等の果実に対して光を照射し、当該果実からの光を捉えて分光分析を行う装置である。この分析装置5は、具体的に、複数の白色LED51と、複数のコリメートレンズ部521及び本体となる複数の光ファイバを備えた、コリメート部をなす光ファイバ部52と、光ファイバを含む受光部52eと、分光器53と、遮光部561と、遮光リング562と、(以下、図示していないが)制御部54と、タッチパネル・ティスプレイ551と、通信インタフェース552とを備えている。
ここで、上述した分析装置5の各機能部は、分析装置1(図1(A))における同名の機能部と同様の構造・機能を有し同様の作用を果たすが、分析装置5のコリメート部は、分析装置1の導光体12(図1(A))とは異なり、コリメート光を出射可能な光ファイバを用いた光ファイバ部52となっている。
このようにコリメート部を光ファイバ部52とし、さらに受光部52eも光ファイバを用いたものとすることによって、複数の白色LED51の配置の自由度が大幅に向上し(例えば環状に配置する必要もなく)、さらに、これらの白色LED51及び分光器53と、果実(分析対象)との位置関係をフレキシブルなものとすることが可能となる。このような光ファイバならではの特徴から例えば、分析装置5は、図6(A)に示したような、2つの「筐体部」(筐体とその内部)を光ファイバ束で接続した形態の装置とすることができる。
ここで、このような形態では、
(a)一方の「筐体部」は、複数の白色LED51と、コリメートレンズ521を含む光ファイバ部52の一方の端部と、受光部52eの一方の端部と、分光器53と、制御部54と、タッチパネル・ティスプレイ551と、通信インタフェース552とを含んでいて、例えば測定者に携帯され(例えば左手で保持され)、さらに、当該測定者の手元となるタッチパネル・ティスプレイ551に、解析・測定結果を表示することができ、
(b)他方の「筐体部」は、光ファイバ部52の出射面523を含む他方の端部と、受光部52eの他方の端部と、遮光部561と、遮光リング562とを含んでいて、例えば測定者に携帯され(例えば右手で保持され)、さらに相当に軽量であるので、果実(分析対象)に押し当て易いプローブ部として機能する
ことも可能となるのである。
なお勿論、分析装置5を1つの筐体をもって構成し、また、複数の白色LED51も例えば環状に配置し、さらに、受光部52eも、光ファイバではない透光材料で形成することも可能である。
また、分析装置5の更なる特徴として、出射光が出射される出射面523は、光ファイバ部52の光ファイバにおける果実(分析対象)位置に向けられた端面となっている。したがって、この出射面523の位置及び向きは、すなわちファイバ端面の位置及び向きであるので容易に調整することができ、その結果、果実(分析対象)に対する照射位置・向きの設定や、当該設定の変更も容易に行うことができるのである。
ここで勿論、出射面523(ファイバ端面)の位置は、受光部52e、したがって分光器53が、果実(分析対象)に照射されて当該果実(分析対象)内を概ね直進する光を受け取らないように設定され、さらに、図3を用いて説明した、果実(分析対象)の「周囲表面」へ照射されるべきとの条件や、「概ね90度、又は90度以上」との角度条件を満たすことも好ましいのである。
またさらに、図6(B)に示すように、光ファイバ部52は、自らの構成要素である複数の光ファイバがxy面内において果実(分析対象)を取り囲むことになるように設けられ、さらに、光ファイバ部52の複数の出射面523は、装置5に設置された(又は装置5を押し当てた)果実(分析対象)を取り囲むことができるように配置されている。
このような配置をとることによって、光ファイバ部52は、コリメート光を、果実(分析対象)の周囲360度の範囲に満遍なく照射することができ、その結果、果実(分析対象)全体における偏りの少ない目的成分の度数(例えば糖度や酸度)を測定することも可能となるのである。
[光ファイバを用いた分析装置6]
図7は、本発明による分析装置の更なる他の実施形態を説明するための模式的な(zx面による)断面図である。
図7(A)に示した実施形態の分析装置6も、分析対象であるブドウ等の果実に対して光を照射し、当該果実からの光を捉えて分光分析を行う装置である。この分析装置6は、具体的に、1つの白色LED61と、1つのコリメートレンズ部621及び本体となる1つの光ファイバを備えた、コリメート部をなす光ファイバ部62と、光ファイバを含む受光部62eと、分光器63と、遮光部661と、遮光リング662と、(以下、図示していないが)制御部64と、タッチパネル・ティスプレイ651と、通信インタフェース652とを備えている。
また、この分析装置6も、分析装置5(図6(A))と同様、解析・測定結果を表示可能な「筐体部」と、相当に軽量であって果実(分析対象)に押し当て易いプローブ部としての「筐体部」とを光ファイバ束で接続した構造とすることが可能である。
ここで、この分析装置6の各機能部は、分析装置5(図6(A))における同名の機能部と同様の構造・機能を有し同様の作用を果たすが、分析装置6の光源及びコリメート部は、分析装置5の白色LED51及び光ファイバ部52(図6(A))とは異なり、それぞれ1つの白色LED61、及び1つの光ファイバを用いた光ファイバ部62となっている。
これにより、光ファイバ部62の装置6内に占める容積が大幅に少なくて済み、特に、果実(分析対象)に押し当てるプローブ部としての「筐体部」を、より小型・軽量化することができる。その結果、測定の際の操作性がより向上するのである。
なお、分析のための光量を確保するため、分析装置6の1つの白色LED61として、個々の白色LED51(図6(A))と比較してより高出力の(より放射光量の多い)LEDを採用することも好ましい。
[光ファイバを用いた分析装置7]
図8は、本発明による分析装置の更なる他の実施形態を説明するための模式的な(zx面による)断面図である。
図8(A)に示した実施形態の分析装置7も、分析対象であるブドウ等の果実に対して光を照射し、当該果実からの光を捉えて分光分析を行う装置である。この分析装置7は、具体的に、複数の白色LED71と、複数のコリメートレンズ部721及び本体となる複数の光ファイバを備えた、コリメート部をなす光ファイバ部72と、光ファイバを含む受光部72eと、分光器73と、遮光部761と、遮光リング762と、(以下、図示していないが)制御部74と、タッチパネル・ティスプレイ751と、通信インタフェース752とを備えている。
また、この分析装置7も、分析装置5(図6(A))と同様、解析・測定結果を表示可能な「筐体部」と、相当に軽量であって果実(分析対象)に押し当て易いプローブ部としての「筐体部」とを光ファイバ束で接続した構造とすることが可能である。
ここで、この分析装置7の各機能部は、分析装置5(図6(A))における同名の機能部と同様の構造・機能を有し同様の作用を果たすが、このうち、光ファイバ部72の複数の光ファイバは、光ファイバ部52(図6(A))の複数の光ファイバと比較して、自身の一端である出射面723が、互いにより近接した位置であって受光部72eの入射面のより近くの位置となるように設けられている。またそれに合わせ、これらの出射面723は、出射面523(図6(A))と比較して、z軸からより大きく傾いており、出射光が果実(分析対象)表面に対し十分に小さな入射角で入射するように設定されている。
このように、光ファイバ部72の複数の出射面723を、より狭い範囲に束ねることによって、特に、装置7における果実(分析対象)に押し当てるプローブ部としての筐体部を、より小型・軽量化することができる。その結果、測定の際の操作性がより向上するのである。また、果実(分析対象)に対向させるべき出射面723及び受光部72eの入射面が互いに近接しているので、例えば栽培中の果実(分析対象)に対し、装置7をより容易に押し当てることもできるのである。
また変更態様として、分析装置7の光ファイバ部72を、光ファイバ部62(図7)と同様に、1つの光ファイバで構成してもよい。この場合、特に、装置7におけるプローブ部としての「筐体部」を、さらに小型・軽量化することも可能となる。
以上、図1〜8を用いて本発明による分析装置における種々の実施形態を説明したが、これらの実施形態のいずれにおいても勿論、果実ではないものを分析対象とすることができる。この場合例えば、筐体や遮光部の一部を、その分析対象の種別に応じて交換可能な、種々の大きさ及び形状の「アダプタ」とし、分析装置自体の汎用性を高めることも好ましい。
例えば、本発明による分析装置の分析対象を、上述したように、被験者(人間)の指とし、血液中の各種成分の度数・濃度、例えば血糖値を測定することもできる。この場合、上記の「アダプタ」として例えば、コリメート部の出射面と受光部の入射面とが露出可能となる孔の空いた底面であって人差し指の腹(及び当該腹のすぐ脇)を押し当て可能なように湾曲した底面を、指先の形の外壁で囲った形のケースを採用することも可能となる。これにより、分析対象である指先と、当該出射面及び当該(受光部の)入射面との適切な位置関係を、確実に且つ安定して実現することも可能となるのである。
以上、本発明によれば、コリメート部と、分析対象と、分析部(に光を伝える受光部)との間に上述したような特別な位置関係が実現されるので、分析部は、「目的成分の度数の情報を実際に最も多く含む散乱光」以外の光を極力受け取らずに済む。すなわち、概ね計測すべき光のみに対し分光分析を実施することになるので、結果的に、目的成分の度数の測定精度をより向上させることが可能となる。
また、本発明によれば、分析対象に対し、コリメート光を照射することができる。その結果、分析対象の設置位置の多少の変動があったとしても、当該分析対象に対し概ね一定の設計された光量を、安定した入射態様をもって入射させることが可能となる。これにより、計測すべき散乱光をより安定して捉えることができ、解析・測定結果自体が安定するので、測定精度を安定的に向上させることも可能となるのである。
さらに、本発明に係る分析対象も、各種の農作物、水産物、動物、植物や、食品、さらには、それらの成分を含有するものに及び、本発明による分析装置や分析方法は、様々な分野で有効に利用可能となっている。
なお、以上に述べた実施形態は全て、本発明を例示的に示すものであって限定的に示すものではなく、本発明は、他の種々の変形態様及び変更態様で実施することができる。従って、本発明の範囲は、特許請求の範囲及びその均等範囲によってのみ規定されるものである。
1、2、3、4、5、6、7 分析装置
11、21、31、41、51、61、71 白色LED(光源)
12、22、32、42 導光体(コリメート部)
121、221、321、421、521、621、721 コリメートレンズ部
122、222 出射用全反射内面
123、223、323、423、523、623、723 出射面
12e、22e、32e、42e、52e、62e、72e 受光部
13、23、33、43、53、63、73 分光器(分析部)
14、24、34、44,54、64、74 制御部
151、251、351、451、551、651、751 タッチパネル・ディスプレイ
152、252、352、452、552、652、752 通信インタフェース
161、261、361、461、561、661、761 遮光部
162、262、362、462、562、662、762 遮光リング
52、62、72 光ファイバ部

Claims (12)

  1. 分析対象を光によって分析する分析装置であって、
    少なくとも1つの光源と、
    当該光源から放射された光をコリメート光にするコリメート部であって、当該分析対象に対し当該コリメート光を照射可能なように設けられた少なくとも1つのコリメート部と、
    当該コリメート部から出射し当該分析対象に照射されて当該分析対象内を概ね直進する光を受け取らないように設けられた、当該分析対象からの光を受け取って分析を行う少なくとも1つの分析部と
    を有することを特徴とする分析装置。
  2. 当該コリメート部は、当該コリメート光の出射する少なくとも1つの出射面が、当該分析対象を取り囲むことができるように設けられていることを特徴とする請求項1に記載の分析装置。
  3. 当該コリメート部は、当該分析対象の表面部分であって当該分析部の受光部分に対向した表面部分の周りを囲む、当該分析対象の周囲表面に対し、当該コリメート光を照射可能なように設けられていることを特徴とする請求項1又は2に記載の分析装置。
  4. 当該コリメート部は略筒状又は中空の略錐台状の導光体を含み、当該導光体の一端部における当該分析対象に対向する側に、当該コリメート光の出射する出射面が設けられていることを特徴とする請求項1から3のいずれか1項に記載の分析装置。
  5. 当該導光体は、当該一端部に又は当該一端部の近傍に、内部を伝播する光の少なくとも一部を反射させて当該出射面へ向ける反射内面を有していることを特徴とする請求項4に記載の分析装置。
  6. 当該導光体の当該一端部は、当該分析対象に向かって突出した突出部となっていることを特徴とする請求項4又は5に記載の分析装置
  7. 当該コリメート部は光ファイバを含み、当該コリメート光の出射する出射面が当該光ファイバの一端となっていることを特徴とする請求項1から3のいずれか1項に記載の分析装置。
  8. 当該コリメート部は、当該光源から放射された光を受け取る端部に、コリメートレンズ部分を有することを特徴とする請求項1から7のいずれか1項に記載の分析装置。
  9. 当該分析対象における当該コリメート光の照射される表面部分へ入射し得るノイズ光の入射経路を遮る位置に設けられた遮光部を更に有することを特徴とする請求項1から8のいずれか1項に記載の分析装置。
  10. 当該コリメート部及び当該分析部は、当該コリメート部から出射する光の向きと、当該分析部の受光窓に垂直に入射する光の向きとのなす角度が、略90度以上となるように設置されていることを特徴とする請求項1から9のいずれか1項に記載の分析装置。
  11. 当該分析対象は、農作物、農作物の成分を含む液体若しくは液状物、水産物、水産物の成分を含む液体若しくは液状物、動物の部位、動物の成分を含む液体若しくは液状物、植物の部位、植物の成分を含む液体若しくは液状物、食品、及び食品の成分を含む液体若しくは液状物のうちの1つであり、当該分析部は、当該分析対象の内部に含まれる所定成分の有無又は含有の程度に係る量を決定することを特徴とする請求項1から10のいずれか1項に記載の分析装置。
  12. 分析対象を光によって分析する分析方法であって、
    少なくとも1つの光源から放射された光をコリメート光とし、
    当該コリメート光を当該分析対象へ照射し、
    当該分析対象へ照射された光であって当該分析対象内を概ね直進する光を受け取らない位置において、当該分析対象からの光を受け取り、
    当該受け取った光によって分析を行う
    ことを特徴とする分析方法。
JP2019230087A 2019-12-20 2019-12-20 コリメート光による分析を行う分析装置 Active JP7371905B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019230087A JP7371905B2 (ja) 2019-12-20 2019-12-20 コリメート光による分析を行う分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019230087A JP7371905B2 (ja) 2019-12-20 2019-12-20 コリメート光による分析を行う分析装置

Publications (2)

Publication Number Publication Date
JP2021099227A true JP2021099227A (ja) 2021-07-01
JP7371905B2 JP7371905B2 (ja) 2023-10-31

Family

ID=76541901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019230087A Active JP7371905B2 (ja) 2019-12-20 2019-12-20 コリメート光による分析を行う分析装置

Country Status (1)

Country Link
JP (1) JP7371905B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024101108A1 (ja) * 2022-11-09 2024-05-16 オムロン株式会社 測定装置及び測定方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720048A (ja) * 1993-07-06 1995-01-24 Michimasa Oguri 汚泥濃度計
US20030149544A1 (en) * 2000-03-07 2003-08-07 Brown Peter Gary Spectral assessment of fruit
JP2006098108A (ja) * 2004-09-28 2006-04-13 Mitsui Mining & Smelting Co Ltd 青果物の内部品質評価装置
JP2007263787A (ja) * 2006-03-29 2007-10-11 Nix Inc リング状集中照射器具、および照射角度の調節装置
CN101281122A (zh) * 2008-05-12 2008-10-08 中国农业大学 一种测量光学参数谱的装置及其消除散射影响的定量方法
JP2010249614A (ja) * 2009-04-14 2010-11-04 Canon Inc 記録材表面検出装置及びそれを備える画像形成装置
WO2016137317A1 (en) * 2015-02-23 2016-09-01 Tree Of Knowledge Patents B.V. An infrared sensor unit, a method and a computer program product
JP2018013469A (ja) * 2016-07-08 2018-01-25 大起理化工業株式会社 反射光検出装置
JP2018025495A (ja) * 2016-08-10 2018-02-15 シャープ株式会社 分光測定装置
JPWO2018047366A1 (ja) * 2016-09-06 2019-06-24 株式会社アタゴ 非破壊測定装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6693500B2 (ja) 2017-12-28 2020-05-13 株式会社三洋物産 遊技機

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720048A (ja) * 1993-07-06 1995-01-24 Michimasa Oguri 汚泥濃度計
US20030149544A1 (en) * 2000-03-07 2003-08-07 Brown Peter Gary Spectral assessment of fruit
JP2006098108A (ja) * 2004-09-28 2006-04-13 Mitsui Mining & Smelting Co Ltd 青果物の内部品質評価装置
JP2007263787A (ja) * 2006-03-29 2007-10-11 Nix Inc リング状集中照射器具、および照射角度の調節装置
CN101281122A (zh) * 2008-05-12 2008-10-08 中国农业大学 一种测量光学参数谱的装置及其消除散射影响的定量方法
JP2010249614A (ja) * 2009-04-14 2010-11-04 Canon Inc 記録材表面検出装置及びそれを備える画像形成装置
WO2016137317A1 (en) * 2015-02-23 2016-09-01 Tree Of Knowledge Patents B.V. An infrared sensor unit, a method and a computer program product
JP2018013469A (ja) * 2016-07-08 2018-01-25 大起理化工業株式会社 反射光検出装置
JP2018025495A (ja) * 2016-08-10 2018-02-15 シャープ株式会社 分光測定装置
JPWO2018047366A1 (ja) * 2016-09-06 2019-06-24 株式会社アタゴ 非破壊測定装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024101108A1 (ja) * 2022-11-09 2024-05-16 オムロン株式会社 測定装置及び測定方法

Also Published As

Publication number Publication date
JP7371905B2 (ja) 2023-10-31

Similar Documents

Publication Publication Date Title
Fan et al. Non-destructive evaluation of soluble solids content of apples using a developed portable Vis/NIR device
CN1325015C (zh) 通过组织的光学特性的葡萄糖非侵入性测量
Giovenzana et al. Testing of a simplified LED based vis/NIR system for rapid ripeness evaluation of white grape (Vitis vinifera L.) for Franciacorta wine
Yuan et al. Nondestructive measurement of soluble solids content in apples by a portable fruit analyzer
US20040133086A1 (en) Apparatus and method for non-invasive measurement of blood constituents
KR102477340B1 (ko) 전혈에서 헤모글로빈 파라미터들을 결정하기 위한 분석 시스템 및 방법
US8964180B2 (en) Self-contained and portable optical spectrometer
KR101690073B1 (ko) 컴팩트한 구조를 갖는 분광분석장치
CN101156057B (zh) 用于测定流体性质和/或其组成的装置和方法
Xie et al. Applications of near-infrared systems for quality evaluation of fruits: A review
WO2002088681A1 (fr) Instrument portable pour le controle qualite interne
Abasi et al. Development of an optical smart portable instrument for fruit quality detection
CN1192273A (zh) 血糖监测***
Civelli et al. A simplified, light emitting diode (LED) based, modular system to be used for the rapid evaluation of fruit and vegetable quality: Development and validation on dye solutions
Kanchanomai et al. Non-destructive analysis of Japanese table grape qualities using near-infrared spectroscopy
JPH11183377A (ja) 光学式成分計
WO2013137145A1 (ja) 非破壊測定装置
KR101919229B1 (ko) 생체 정보 측정 및 방법
JP4714822B2 (ja) 光散乱体の非破壊測定装置
JP7371905B2 (ja) コリメート光による分析を行う分析装置
JP6230017B2 (ja) 発光ダイオードを用いた成分濃度分析装置
Pan et al. Detection of chlorophyll content based on optical properties of maize leaves
KR20100082476A (ko) 휴대용 비파괴 과일당도 측정기
KR20090036996A (ko) 복수 개의 단일 파장 광원을 이용한 투과와 반사 병행방식의 무채혈 혈당기
JP3903147B2 (ja) 青果物の非破壊糖度測定装置

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20191225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231012

R150 Certificate of patent or registration of utility model

Ref document number: 7371905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150