JP2021089063A - Two-stage solenoid valve - Google Patents

Two-stage solenoid valve Download PDF

Info

Publication number
JP2021089063A
JP2021089063A JP2020173084A JP2020173084A JP2021089063A JP 2021089063 A JP2021089063 A JP 2021089063A JP 2020173084 A JP2020173084 A JP 2020173084A JP 2020173084 A JP2020173084 A JP 2020173084A JP 2021089063 A JP2021089063 A JP 2021089063A
Authority
JP
Japan
Prior art keywords
stage
closing element
valve
magnetic armature
solenoid valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020173084A
Other languages
Japanese (ja)
Inventor
ガルト,アンドレイ
Gardt Andrej
シュービットシェフ,バレンティン
Schubitschew Valentin
エーデルマン,フォルカー
Edelmann Volker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2021089063A publication Critical patent/JP2021089063A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/36Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor
    • F16K31/40Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor with electrically-actuated member in the discharge of the motor
    • F16K31/406Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor with electrically-actuated member in the discharge of the motor acting on a piston
    • F16K31/408Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor with electrically-actuated member in the discharge of the motor acting on a piston the discharge being effected through the piston and being blockable by an electrically-actuated member making contact with the piston
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/36Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including a pilot valve responding to an electromagnetic force
    • B60T8/3615Electromagnetic valves specially adapted for anti-lock brake and traction control systems
    • B60T8/3655Continuously controlled electromagnetic valves
    • B60T8/366Valve details
    • B60T8/3665Sliding valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/38Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including valve means of the relay or driver controlled type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/36Valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/42Valve seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members
    • F16K15/025Check valves with guided rigid valve members the valve being loaded by a spring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • F16K17/04Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0655Lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0675Electromagnet aspects, e.g. electric supply therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0686Braking, pressure equilibration, shock absorbing
    • F16K31/0693Pressure equilibration of the armature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0686Braking, pressure equilibration, shock absorbing
    • F16K31/0696Shock absorbing, e.g. using a dash-pot
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/36Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor
    • F16K31/40Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor with electrically-actuated member in the discharge of the motor
    • F16K31/406Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor with electrically-actuated member in the discharge of the motor acting on a piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/02Means in valves for absorbing fluid energy for preventing water-hammer or noise
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/81Braking systems

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Transportation (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

To reduce the whole stroke of a magnetic armature without restricting functions of a solenoid valve.SOLUTION: A valve cartridge 10 comprises a pole core 14, a magnetic armature 16 which can move axially between a closing position and an opening position against force of a return spring 17 with magnetic force generated by a magnet assembly 3 inside a valve sleeve 12, a front stage 20 which has a first valve seat 24 and a first closing element 26, and a main stage 30 which has a larger second valve seat 34 and a second closing element 36. The magnetic armature 16 is connected to the first closing element 26, and also coupled to the second closing element 36 through a spring element 28 to enable relative motion, restricted with an adjustable front-stage stroke hV, between the first closing element 26 and second closing element 36 against elastic force of the spring element 28, and an adjustable operation gap 18 between the magnetic armature 16 and pole core 14 sets the whole stroke hG of the magnetic armature 16 in advance.SELECTED DRAWING: Figure 1

Description

2段電磁弁を出発点とする。 The starting point is the two-stage solenoid valve.

ESP機能性(ESP:エレクトロニックスタビリティープログラム)、ASR機能(ASR:トラクションコントロールシステム)、および/またはABS機能性(ABS:アンチロックブレーキシステム)を有する車両の液圧ブレーキシステムにおいて、異なった機能に対して流体の流れを調整する電磁弁として形成された弁が走行ダイナミクス制御のために使用される。この電磁弁は、流体の吸入または吐出をコントロールするか、あるいは、流動方向および/または流体量を開ループ制御および/または閉ループ制御するための技術部品として用いられる。このような車両の液圧ブレーキシステムの分野から、前段と主段とを備え、無電流閉弁型2段電磁弁(stromlos geschlossenes zweistufiges Magnetventil)として形成された高圧切換弁を介して流体ユニットもしくは液圧ユニットにおけるアクティブな、または部分アクティブな増圧が実現される様々なシステムが知られている。2段電磁弁は、殊に低圧のときに高体積流量または高圧に切り替えられなければならない場合に用いられる。2段電磁弁は、作動もしくは動作した場合に、例えばマスタブレーキシリンダもしくは1次回路とポンプ要素もしくは2次回路との間の流路を解放する。2段に形成することにより、差圧が大きい場合でも電磁弁の開放もしくは流路の解放が可能になる。その際、1次回路は2段電磁弁の第1流体開口に接続され、2次回路は第2流体開口に接続され、これらの流体開口間に前段の第1閉鎖要素と主段の第2閉鎖要素とが配置されている。 Different functions in vehicle hydraulic braking systems with ESP functionality (ESP: Electronic Stability Program), ASR function (ASR: Traction Control System), and / or ABS functionality (ABS: Antilock Braking System) On the other hand, a valve formed as an electromagnetic valve that regulates the flow of fluid is used for traction control. This solenoid valve is used as a technical component for controlling the suction or discharge of a fluid, or for controlling the flow direction and / or the amount of fluid in an open loop control and / or a closed loop control. From the field of hydraulic braking system of such a vehicle, a fluid unit or a liquid is provided through a high-pressure switching valve having a front stage and a main stage and formed as a non-current closed valve type two-stage solenoid valve (stromlos gesthessenes zweistiffies Magnetventil). Various systems are known that provide active or partially active boosting in the compression unit. Two-stage solenoid valves are used when a high volume flow rate or high pressure must be switched, especially at low pressures. The two-stage solenoid valve, when actuated or operated, opens, for example, the flow path between the master brake cylinder or primary circuit and the pump element or secondary circuit. By forming in two stages, it is possible to open the solenoid valve or open the flow path even when the differential pressure is large. At that time, the primary circuit is connected to the first fluid opening of the two-stage solenoid valve, the secondary circuit is connected to the second fluid opening, and the first closing element of the previous stage and the second of the main stage are connected between these fluid openings. A closing element is placed.

特許文献1から、ケーシングジャケット内に配置されたコイル巻線を包囲する磁石アセンブリと弁カートリッジとを備える属性的に対応する2段電磁弁が知られており、弁カートリッジは、ポールコアと、弁スリーブ内で閉位置と開位置との間を軸方向に移動可能な磁気アーマチュアと、少なくとも1つの第1流体開口と、少なくとも1つの第2流体開口と、第1弁座および第1閉鎖要素を有する前段と、より大きい第2弁座および第2閉鎖要素を有する主段と、を備えている。磁気アーマチュアは第1閉鎖要素と接続されており、スプリング要素を介して第2閉鎖要素と連結されている。第1閉鎖要素と第2閉鎖要素との間では、調整可能な前段ストローク(Vorstufenhub)によって制限される相対運動がスプリング要素の弾撥力(Federkraft)に抗して可能であり、磁気アーマチュアとポールコアとの間の調整可能な動作空隙(Arbeitsluftspalt)が磁気アーマチュアの全ストローク(Gesamthub)を予め設定する。弁カートリッジは、ポールコア側の端部が少なくとも部分的に磁石アセンブリ内に挿入され、磁石アセンブリの上端部はポールコアに当接し、磁石アセンブリの下端部は弁スリーブに当接する。磁石アセンブリはコイル巻線の通電によって磁界を生じ、磁界は復帰用スプリングの力に抗して磁気アーマチュアを移動させる。典型的には、電磁弁が開く際にまず、少なくとも1つの第1流体開口と少なくとも1つの第2流体開口との間の現在圧力差によってもたらされる流体力がスプリング要素の弾撥力より大きい場合に磁気アーマチュアが第1閉鎖要素をポールコアの方向に前段ストローク分だけ第1弁座から持ち上げることによって、シート直径が小さい前段が開かれる。続いて、磁気アーマチュアが第2閉鎖要素を残りストローク分だけ第2弁座からストッパまで持ち上げ、それと同時に第1閉鎖要素を残りストローク分だけ引き続きポールコアの方向にストッパまで移動させることにより主段が開かれる。少なくとも1つの第1流体開口と少なくとも1つの第2流体開口との間の圧力補償後に、スプリング要素の弾撥力が第1弁座を有する第2閉鎖要素を前段ストローク分だけポールコアの方向に第1弁座まで移動させるか、または前段が閉じて、かつ第2弁座もしくは主段が完全に開いている。すなわち、磁気アーマチュアの全ストロークは前段ストロークと残りストロークとから構成され、したがって大きい。少なくとも1つの第1流体開口と少なくとも1つの第2流体開口との間の現在圧力差によってもたらされる流体力がスプリング要素の弾撥力より小さい場合には前段が閉じたままであり、磁気アーマチュアが第1閉鎖要素を第2閉鎖要素と同時に全ストローク分だけポールコアの方向にストッパまで移動させることにより主段が直接開かれる。 From Patent Document 1, an attributeably corresponding two-stage solenoid valve including a magnet assembly surrounding a coil winding arranged in a casing jacket and a valve cartridge is known, and the valve cartridge includes a pole core and a valve sleeve. It has a magnetic armature that is axially movable between closed and open positions within, at least one first fluid opening, at least one second fluid opening, a first valve seat and a first closing element. It includes a front stage and a main stage with a larger second valve seat and a second closing element. The magnetic armature is connected to the first closing element and is connected to the second closing element via a spring element. Between the first closing element and the second closing element, the relative motion limited by the adjustable front stroke (Vorstufenhub) is possible against the repulsive force (Federkraft) of the spring element, the magnetic armature and the pole core. An adjustable operating gap between the and the magnetic armature presets the total stroke of the magnetic armature. The valve cartridge has an end on the pole core side that is at least partially inserted into the magnet assembly, an upper end of the magnet assembly that abuts the pole core, and a lower end of the magnet assembly that abuts the valve sleeve. The magnet assembly creates a magnetic field when the coil windings are energized, which moves the magnetic armature against the force of the return spring. Typically, when the solenoid valve opens, the fluid force provided by the current pressure difference between at least one first fluid opening and at least one second fluid opening is greater than the resilience of the spring element. The magnetic armature lifts the first closing element from the first valve seat in the direction of the pole core by the amount of the front stroke, so that the front stage having a small seat diameter is opened. Subsequently, the magnetic armature lifts the second closing element from the second valve seat to the stopper by the remaining stroke, and at the same time, continuously moves the first closing element by the remaining stroke to the stopper in the direction of the pole core to open the main stage. Is done. After pressure compensation between the at least one first fluid opening and the at least one second fluid opening, the repulsive force of the spring element causes the second closing element having the first valve seat to move toward the pole core by the amount of the previous stroke. It is moved to the 1st valve seat, or the front stage is closed and the 2nd valve seat or the main stage is completely open. That is, the total stroke of the magnetic armature is composed of the pre-stage stroke and the remaining stroke, and is therefore large. If the fluid force provided by the current pressure difference between the at least one first fluid opening and the at least one second fluid opening is less than the repulsive force of the spring element, the pre-stage remains closed and the magnetic armature is in the first position. The main stage is directly opened by moving the 1 closing element to the stopper in the direction of the pole core by the entire stroke at the same time as the 2nd closing element.

独国特許出願公開第102008001864号明細書German Patent Application Publication No. 102008001864

独立請求項1の特徴を有する2段電磁弁には、電磁弁の機能が制約されることなしに磁気アーマチュアの全ストロークが低減されるという利点がある。全ストロークが低減されることによって、有利にも、動作空隙がより小さく調整され、それにより電磁弁を開くために必要な磁流が小さくなる。さらに2段電磁弁の構造高さを低くすることができる。 The two-stage solenoid valve having the feature of the independent claim 1 has an advantage that the total stroke of the magnetic armature is reduced without restricting the function of the solenoid valve. By reducing the total stroke, the operating gap is advantageously adjusted to be smaller, which reduces the magnetic flow required to open the solenoid valve. Further, the structural height of the two-stage solenoid valve can be lowered.

本発明の実施形態は、磁石アセンブリと弁カートリッジとを有する第2電磁弁を提供し、弁カートリッジがポールコアと、弁スリーブ内で磁石アセンブリによって生成される磁力によって復帰用スプリングの力に抗して閉位置と開位置との間を軸方向に移動可能な磁気アーマチュアと、少なくとも1つの第1流体開口と、少なくとも1つの第2流体開口と、第1弁座および第1閉鎖要素を有する前段と、より大きい第2弁座および第2閉鎖要素を有する主段と、を具備する。磁気アーマチュアは第1閉鎖要素と接続されており、スプリング要素を介して第2閉鎖要素と連結されている。第1閉鎖要素と第2閉鎖要素との間で調整可能な前段ストロークによって制限される相対運動がスプリング要素の弾撥力に抗して可能であり、磁気アーマチュアとポールコアとの間の調整可能な動作空隙が磁気アーマチュアの全ストロークを予め設定する。この場合、磁気アーマチュアは、その開運動中に前段または主段をそれぞれ同じ全ストロークで開き、前段ストロークは磁気アーマチュアの全ストロークより大きく調整されている。 An embodiment of the present invention provides a second solenoid valve having a magnet assembly and a valve cartridge, the valve cartridge resisting the force of a return spring by the pole core and the magnetic force generated by the magnet assembly within the valve sleeve. A magnetic armature that is axially movable between closed and open positions, and a pre-stage with at least one first fluid opening, at least one second fluid opening, and a first valve seat and first closing element. , A main stage with a larger second valve seat and a second closing element. The magnetic armature is connected to the first closing element and is connected to the second closing element via a spring element. The relative motion limited by the adjustable pre-stroke between the first and second closure elements is possible against the resilience of the spring element and is adjustable between the magnetic armature and the pole core. The operating gap presets the entire stroke of the magnetic armature. In this case, the magnetic armature opens the front stage or the main stage with the same total stroke during its opening motion, and the front stage stroke is adjusted to be larger than the total stroke of the magnetic armature.

本発明の核心は、前段または主段がそれぞれ同じ全ストロークで開かれるということにある。それによって電磁弁の無通電状態において、有利にも磁気アーマチュアの全ストロークがより小さくなるとともに、ポールコアと磁気アーマチュアとの間の動作空隙がより小さくなる。この場合、電磁弁の両段を閉じることができるようにするために、起こり得る前段ストロークが全ストロークより最小限に大きく調整される。殊に動作空隙は、通電状態において磁気アーマチュアがポールコアに直接当接するように調整されてもよい。それによって通電状態での保持電流がより小さくなる。これに加えて、同じ形態の磁石アセンブリで動作空隙がより小さいことによって、磁気アーマチュアを動かすためにより大きい磁力が利用可能になり、それによって、より短い切替時間と切替可能なより大きい圧力差とをより少ない必要エネルギー量で実現することができる。これに加えて、加速距離がより短いことにより電磁弁切替時の騒音がより小さくなる。スプリング要素の特性により、主段を開くための差圧の閾値をより小さく設定することができるので、副段(Nebenstufe)が開いている場合の圧力補償時に、主段を開くときの圧力補償衝撃がより小さくなる。 The core of the present invention is that the front stage or the main stage is opened with the same full stroke. As a result, in the non-energized state of the solenoid valve, the total stroke of the magnetic armature is advantageously reduced, and the operating gap between the pole core and the magnetic armature is further reduced. In this case, the possible pre-stage stroke is adjusted to be minimally larger than the total stroke so that both stages of the solenoid valve can be closed. In particular, the operating gap may be adjusted so that the magnetic armature is in direct contact with the pole core in the energized state. As a result, the holding current in the energized state becomes smaller. In addition to this, the smaller working voids in the same form of magnet assembly allow greater magnetic force to move the magnetic armature, thereby providing shorter switching times and larger switchable pressure differences. This can be achieved with a smaller amount of energy required. In addition to this, the shorter acceleration distance reduces the noise when switching the solenoid valve. Due to the characteristics of the spring element, the threshold of the differential pressure for opening the main stage can be set smaller, so that the pressure compensation impact when the main stage is opened during the pressure compensation when the sub stage (Nevenstude) is open. Becomes smaller.

本発明による2段電磁弁の実施形態では、前段ストロークを大まかに調整するだけでよく、それにより前段ストロークを全ストロークより少なくともごくわずかに大きく調整するのに、固定の事前押込み量(Voreinpressmass)で十分である。それによって製造ラインでの手間のかかる調整プロセスを省略することができる。液圧ブレーキシステムにおいてマスタブレーキシリンダとポンプ要素との間に本発明による2段電磁弁を使用した場合、第2閉鎖要素を閉じる場合に流量に応じて異なった流れ断面とならず、より良いペダル感覚が得られる。 In the embodiment of the two-stage solenoid valve according to the present invention, it is only necessary to roughly adjust the pre-stage stroke, whereby the pre-stage stroke is adjusted to be at least slightly larger than the total stroke with a fixed pre-pressing amount (Voreinpress mass). It is enough. As a result, the time-consuming adjustment process on the production line can be omitted. When a two-stage solenoid valve according to the present invention is used between the master brake cylinder and the pump element in a hydraulic braking system, a better pedal does not have a different flow cross section depending on the flow rate when the second closing element is closed. You can get a feeling.

従属請求項に記載された措置および展開形態によって、独立請求項1に記載の2段電磁弁の有利な改良が可能である。 The measures and deployments described in the dependent claims allow for the advantageous modification of the two-stage solenoid valve according to the independent claim 1.

磁気アーマチュアは、少なくとも1つの第1流体開口と少なくとも1つの第2流体開口との間の現在圧力差に依存して第1閉鎖要素を介して第1弁座を開くか、または第2閉鎖要素を介して第2弁座を開くことができることが特に有利である。したがって、少なくとも1つの第1流体開口と少なくとも1つの第2流体開口との間の現在圧力差が閾値より大きい場合に、磁気アーマチュアは第1閉鎖要素を第1弁座から移動させることができる。この場合、少なくとも1つの第1流体開口と少なくとも1つの第2流体開口との間の圧力補償の後に、スプリング要素が第2閉鎖要素を第2弁座から移動させて主段を開き、前段を閉じてもよい。さらに、少なくとも1つの第1流体開口と少なくとも1つの第2流体開口との間の現在圧力差が閾値以下である場合、磁気アーマチュアは、前段を閉じたままで、第2閉鎖要素を第2弁座から移動させて主段を開いてもよい。閾値は、殊に使用されるスプリング要素の特性に関連して予め設定および調整されてもよい。 The magnetic armature either opens the first valve seat through the first closure element or the second closure element depending on the current pressure difference between at least one first fluid opening and at least one second fluid opening. It is particularly advantageous to be able to open the second valve seat via. Thus, the magnetic armature can move the first closure element from the first valve seat if the current pressure difference between at least one first fluid opening and at least one second fluid opening is greater than the threshold. In this case, after pressure compensation between at least one first fluid opening and at least one second fluid opening, the spring element moves the second closing element from the second valve seat to open the main stage and open the front stage. It may be closed. Further, if the current pressure difference between at least one first fluid opening and at least one second fluid opening is less than or equal to the threshold, the magnetic armature will leave the pre-stage closed and the second closing element in the second valve seat. You may move from to open the main stage. The threshold may be preset and adjusted specifically in relation to the characteristics of the spring element used.

電磁弁の有利な実施形態では、スプリング要素の弾撥力は、第2弁座を通って流れる場合に対応する流体力より閉方向に大きく、かつ主段を開状態に保持できるように予め設定されてもよい。 In an advantageous embodiment of the solenoid valve, the repulsive force of the spring element is preset to be greater in the closing direction than the corresponding fluid force when flowing through the second valve seat and to keep the main stage open. May be done.

電磁弁のさらに有利な実施形態では、第1弁座は、例えば第2閉鎖要素の第1の軸方向貫通開口に配置されていてもよい。第2閉鎖体は少なくとも部分的に前段カプセルに配置されてもよく、第1弁座は前段カプセル内に配置されている。この場合、前段カプセルは、その開端部で磁気アーマチュアの接続領域に堅固に結合されてもよい。それにより第2閉鎖要素は、例えば磁気アーマチュアから離反した端部が前段カプセルの軸方向開口を貫通し、かつスプリング要素を介して前段カプセルにおける開口の縁部で支持されてもよい。これに加えて、第2閉鎖要素にストッパが形成されてもよい。この場合、第2閉鎖要素のストッパと前段カプセルにおける開口の縁部との間の距離が前段ストロークを決定し得る。このことは、前段カプセルが磁気アーマチュアの接続領域に押し付けられるか、もしくは磁気アーマチュアが前段カプセルに押し込まれる事前調整押し込みストロークを予め設定することにより前段ストロークの簡単な調整を可能にする。 In a more advantageous embodiment of the solenoid valve, the first valve seat may be located, for example, in the first axial through opening of the second closing element. The second closure may be at least partially located in the pre-stage capsule and the first valve seat is located within the pre-stage capsule. In this case, the pre-stage capsule may be tightly coupled to the contiguous zone of the magnetic armature at its open end. Thereby, the second closing element may be supported, for example, by an end separated from the magnetic armature penetrating the axial opening of the pre-stage capsule and via a spring element at the edge of the opening in the pre-stage capsule. In addition to this, a stopper may be formed on the second closing element. In this case, the distance between the stopper of the second closing element and the edge of the opening in the pre-stage capsule may determine the pre-stage stroke. This allows for easy adjustment of the pre-adjustment stroke by presetting the pre-adjustment indentation stroke at which the pre-stage capsule is pressed against the contiguous zone of the magnetic armature or the magnetic armature is pressed into the pre-stage capsule.

無電流で閉じた状態の本発明による2段電磁弁の一実施例の模式的断面図である。It is a schematic cross-sectional view of one Example of the two-stage solenoid valve by this invention in the state closed by no current. 前段が開いたときの図1の本発明による2段電磁弁の模式的断面図である。It is a schematic cross-sectional view of the two-stage solenoid valve according to the present invention of FIG. 1 when the front stage is opened. 主段が開き、前段が閉じたときの図1および図2の本発明による2段電磁弁の模式的断面図である。2 is a schematic cross-sectional view of the two-stage solenoid valve according to the present invention of FIGS. 1 and 2 when the main stage is opened and the front stage is closed.

本発明の実施例を図面に示し、以下の記載で詳しく説明する。図面において同じ参照符号は同じか、もしくは類似の機能を実行する部品もしくは要素を示す。 Examples of the present invention are shown in the drawings and will be described in detail below. In the drawings, the same reference numerals indicate parts or elements that perform the same or similar functions.

図1〜図3からわかるように、本発明による電磁弁1の図示された実施例は、磁石アセンブリ3と弁カートリッジ10とを備えている。弁カートリッジ10は、ポールコア14と、弁スリーブ12内で磁石アセンブリ3によって生成される磁力によって復帰用スプリング17の力に抗して閉位置と開位置との間を軸方向に移動可能な磁気アーマチュア16と、少なくとも1つの第1流体開口19.1と、少なくとも1つの第2流体開口19.2と、第1弁座24および第1閉鎖要素26を有する前段20と、より大きい第2弁座34および第2閉鎖要素36を有する主段30と、を具備する。磁気アーマチュア16は第1閉鎖要素26と接続されており、かつスプリング要素28を介して第2閉鎖要素36と連結されている。第1閉鎖要素26と第2閉鎖要素36との間で調整可能な前段ストロークhVによって制限される相対運動がスプリング要素28の弾撥力に抗して可能であり、磁気アーマチュア16とポールコア14との間の調整可能な動作空隙18が磁気アーマチュア16の全ストロークhBを予め設定する。この場合、磁気アーマチュア16は、その開放運動中に前段20または主段30をそれぞれ同じ全ストロークhGで開き、前段ストロークhVは、磁気アーマチュア16の全ストロークhGより大きく調整されている。 As can be seen from FIGS. 1 to 3, the illustrated embodiment of the solenoid valve 1 according to the present invention includes a magnet assembly 3 and a valve cartridge 10. The valve cartridge 10 is a magnetic armature capable of axially moving between the closed and open positions against the force of the return spring 17 by the magnetic force generated by the magnet assembly 3 within the pole core 14 and the valve sleeve 12. 16 and at least one first fluid opening 19.1, at least one second fluid opening 19.2, a pre-stage 20 having a first valve seat 24 and a first closing element 26, and a larger second valve seat. A main stage 30 having a 34 and a second closing element 36 is provided. The magnetic armature 16 is connected to the first closing element 26 and is connected to the second closing element 36 via a spring element 28. Relative motion limited by the adjustable front stroke hV between the first closing element 26 and the second closing element 36 is possible against the repulsive force of the spring element 28, with the magnetic armature 16 and the pole core 14. The adjustable operating gap 18 between is preset for the full stroke hB of the magnetic armature 16. In this case, the magnetic armature 16 opens the front stage 20 or the main stage 30 with the same total stroke hG during its opening motion, and the front stage stroke hV is adjusted to be larger than the total stroke hG of the magnetic armature 16.

図2からさらにわかるように、これは磁気アーマチュア16が少なくとも1つの第1流体開口19.1と少なくとも1つの第2流体開口19.2との間の現在圧力差P1−P2に依存して第1閉鎖要素26を介して第1弁座24を開くか、または第2閉鎖要素36を介して第2弁座34を開くということを意味する。この場合、磁気アーマチュア16は、少なくとも1つの第1流体開口19.1と少なくとも1つの第2流体開口19.2との間の現在圧力差P1−P2が閾値より大きい場合に第1閉鎖要素26を第1弁座24から移動させる。図3からさらにわかるように、少なくとも1つの第1流体開口19.1と少なくとも1つの第2流体開口19.2との間の圧力補償の後に、スプリング要素28が第2閉鎖要素36を第2弁座34から移動させて主段30を開き、前段20を閉じる。図3からわかるように、磁気アーマチュア16は、少なくとも1つの第1流体開口19.1と少なくとも1つの第2流体開口19.2との間の現在圧力差P1−P2が閾値以下である場合、前段20を閉じたままで、第2閉鎖要素36を第2弁座34から移動させて主段30を開く。この場合、第1閉鎖要素26はこれが磁気アーマチュア16と接続していることにより共に動かされるが、その際、第1閉鎖要素26が第1弁座24から持ち上げられることはない。図示された実施例では、閾値は、使用されるスプリング要素28の特性に関連して予め設定および調整されてもよい。この場合、スプリング要素28の弾撥力は、第2弁座34を通って流れる場合に、対応する流体力より閉方向に、すなわち少なくとも1つの第1流体開口19.1から少なくとも1つの第2流体開口19.2の方向に、大きく、かつ主段30を開状態に保持できるように予め設定される。 As can be further seen from FIG. 2, this depends on the current pressure difference P1-P2 between the magnetic armature 16 at least one first fluid opening 19.1 and at least one second fluid opening 19.2. It means that the first valve seat 24 is opened through the one closing element 26, or the second valve seat 34 is opened through the second closing element 36. In this case, the magnetic armature 16 is the first closing element 26 when the current pressure difference P1-P2 between at least one first fluid opening 19.1 and at least one second fluid opening 19.2 is greater than the threshold. Is moved from the first valve seat 24. As can be further seen from FIG. 3, after pressure compensation between at least one first fluid opening 19.1 and at least one second fluid opening 19.2, the spring element 28 secondly closes the second closing element 36. The main stage 30 is opened by moving from the valve seat 34, and the front stage 20 is closed. As can be seen from FIG. 3, the magnetic armature 16 is used when the current pressure difference P1-P2 between at least one first fluid opening 19.1 and at least one second fluid opening 19.2 is less than or equal to the threshold. With the front stage 20 closed, the second closing element 36 is moved from the second valve seat 34 to open the main stage 30. In this case, the first closing element 26 is moved together by connecting it to the magnetic armature 16, but the first closing element 26 is not lifted from the first valve seat 24. In the illustrated embodiment, the threshold may be preset and adjusted in relation to the properties of the spring element 28 used. In this case, the repulsive force of the spring element 28, when flowing through the second valve seat 34, is more closed than the corresponding fluid force, i.e. from at least one first fluid opening 19.1. It is set in advance in the direction of the fluid opening 19.2 so as to be large and to hold the main stage 30 in the open state.

図1〜図3からさらにわかるように、図示された実施例では2段電磁弁1が無電流閉弁型2段切換弁(zweistufiges stromlos geschlossenes Schaltventil)として形成されており、例えば車両の液圧ブレーキシステムにおける高圧切換弁として用いられてもよい。ESP装置(ESP:エレクトロニックスタビリティープログラム)ではABS装置(ABS:アンチロックブレーキシステム)と比較して2つの特別な弁が使用される。2つの弁のうちの1つはこのような高圧切換弁である。第1の事例では、この高圧切換弁は運転者要求なしにブレーキシステムへの介入を可能にする。このために、ポンプのための吸込通路が開放されなければならず、それによりポンプは運転者に代わって制御のために必要とされる圧力を提供することができる。第2の事例では、運転者要求(ブレーキ)と車両を安定させるためのESP制御との間にかち合い(Ueberschneidung)が生じ得る。その場合、このために、運転者によってもたらされる圧力(高圧)に抗してこの通路を開放できなければならない。 As can be further seen from FIGS. 1 to 3, in the illustrated embodiment, the two-stage solenoid valve 1 is formed as a non-current closed valve type two-stage switching valve (zweistography stromlos gestenses Schaltentel), for example, a hydraulic brake of a vehicle. It may be used as a high pressure switching valve in the system. The ESP device (ESP: Electronic Stability Program) uses two special valves compared to the ABS device (ABS: Antilock Braking System). One of the two valves is such a high pressure switching valve. In the first case, this high pressure switching valve allows intervention in the braking system without the driver's request. For this, the suction passage for the pump must be opened so that the pump can provide the pressure required for control on behalf of the operator. In the second case, there may be a conflict (Ueberschneidung) between the driver's request (brake) and the ESP control to stabilize the vehicle. In that case, for this reason, it must be possible to open this passage against the pressure (high pressure) exerted by the driver.

上記の2つの事例には、図示された無電流閉弁型2段電磁弁1が用いられてもよく、用途(無圧、大密封座)もしくは運転者要求(高圧、小密封座、および高圧の低下とともに再び大密封座)に応じて磁石アセンブリ3のコイル巻線3.3に通電することによって可動の磁気アーマチュア16を介して電磁弁の弁座24、34を開くことができる。 In the above two cases, the illustrated non-current closed type two-stage solenoid valve 1 may be used, and the application (no pressure, large sealed seat) or driver's request (high pressure, small sealed seat, and high pressure) may be used. The valve seats 24 and 34 of the solenoid valve can be opened via the movable magnetic armature 16 by energizing the coil winding 3.3 of the magnet assembly 3 again according to the decrease in the large sealed seat.

図1〜図3からさらにわかるように、図示された実施例では、ポールコア14と磁気アーマチュア16との間に復帰用スプリング17が配置されている。この場合、磁気アーマチュア16は、中心の有底孔として形成されたスプリング収容部を有しており、このスプリング収容部は、復帰用スプリング17を少なくとも部分的に収容および案内する。 As can be further seen from FIGS. 1 to 3, in the illustrated embodiment, the return spring 17 is arranged between the pole core 14 and the magnetic armature 16. In this case, the magnetic armature 16 has a spring accommodating portion formed as a central bottomed hole, which accommodating and guiding the return spring 17 at least partially.

図1〜図3からさらにわかるように、本発明による2段電磁弁1の図示された実施例では、弁カートリッジ10は、弁スリーブ12と接続された弁下部19を備え、この弁下部は、リング状弁体32が押し込まれるスリーブとして形成されている。2段電磁弁1の図示された実施例では、第2閉鎖要素34はシールブッシュ36Aとして形成されており、第1弁座24は、第2閉鎖要素36の第1の軸方向貫通開口38に配置されている。これに加えて第2閉鎖要素36は、少なくとも部分的に前段カプセル22に配置されており、第1弁座34は前段カプセル22内に配置されている。前段カプセル22は、その開端部で磁気アーマチュア16の接続領域16.1に堅固に結合されている。少なくとも1つの第1流体開口19.1から前段20への流路は、前段カプセル22における少なくとも1つの流入開口39を通り抜ける。これに加えて、磁気アーマチュア16と前段カプセル22との間に軸方向隙間42が形成されている。図示された実施例では、前段カプセル22への径方向孔として複数の流入開口39が作製されており、取り囲む軸方向隙間42に通じている。 As can be further seen from FIGS. 1 to 3, in the illustrated embodiment of the two-stage solenoid valve 1 according to the present invention, the valve cartridge 10 includes a valve lower portion 19 connected to a valve sleeve 12. The ring-shaped valve body 32 is formed as a sleeve into which the valve body 32 is pushed. In the illustrated embodiment of the two-stage solenoid valve 1, the second closing element 34 is formed as a seal bush 36A, and the first valve seat 24 is formed in the first axial through opening 38 of the second closing element 36. Have been placed. In addition to this, the second closing element 36 is at least partially located in the pre-stage capsule 22 and the first valve seat 34 is located in the pre-stage capsule 22. The pre-stage capsule 22 is tightly coupled to the contiguous zone 16.1 of the magnetic armature 16 at its open end. The flow path from at least one first fluid opening 19.1 to the pre-stage 20 passes through at least one inflow opening 39 in the pre-stage capsule 22. In addition to this, an axial gap 42 is formed between the magnetic armature 16 and the pre-stage capsule 22. In the illustrated embodiment, a plurality of inflow openings 39 are formed as radial holes to the pre-stage capsule 22 and lead to an axial gap 42 surrounding the capsules 22.

図1〜図3からさらにわかるように、第2閉鎖要素36は、前段カプセル22内を軸方向に可動に配置されている。ここには前段カプセル22と第2閉鎖要素36との間にスプリング要素28が配置されており、図示された実施例では圧縮コイルばねとして形成され、この圧縮コイルばねは、第2閉鎖要素36を磁気アーマチュア16の方向に押し、それにより第1閉鎖要素26は、電磁弁1の図1に示された無電流状態で、軸方向の第1貫通開口38に配置された第1弁座24を密封することができる。図1〜図3からさらにわかるように、図示された実施例では、第1閉鎖要素26は閉鎖ボール26Aとして形成されており、磁気アーマチュア16と堅固に接続されている。第2閉鎖要素36は、磁気アーマチュア16から離反した端部が前段カプセル22の軸方向の端面側開口23を貫通し、スプリング要素28を介して前段カプセル22における開口23の縁部23.1で支持されている。第2閉鎖要素36Aにストッパ36.2が形成されており、図示された実施例では、このストッパはストッパショルダ36.2Aとして形成されている。この場合、第2閉鎖要素36のストッパ36.2と前段カプセル22における開口23の縁部23.1との間の距離が前段ストロークhVを決定する。 As can be further seen from FIGS. 1 to 3, the second closing element 36 is movably arranged in the front-stage capsule 22 in the axial direction. Here, a spring element 28 is arranged between the pre-stage capsule 22 and the second closing element 36, and is formed as a compression coil spring in the illustrated embodiment, and the compression coil spring has the second closing element 36. Pushing in the direction of the magnetic armature 16, the first closing element 26 thereby pushes the first valve seat 24 located in the axial first through opening 38 in the no-current state shown in FIG. 1 of the solenoid valve 1. Can be sealed. As can be further seen from FIGS. 1 to 3, in the illustrated embodiment, the first closing element 26 is formed as a closing ball 26A and is tightly connected to the magnetic armature 16. In the second closing element 36, the end portion separated from the magnetic armature 16 penetrates the axial end face side opening 23 of the front stage capsule 22, and the edge portion 23.1 of the opening 23 in the front stage capsule 22 passes through the spring element 28. It is supported. A stopper 36.2 is formed on the second closing element 36A, and in the illustrated embodiment, the stopper is formed as a stopper shoulder 36.2A. In this case, the distance between the stopper 36.2 of the second closing element 36 and the edge 23.1 of the opening 23 in the front capsule 22 determines the front stroke hV.

図1〜図3からさらにわかるように、弁下部19はスリーブとして形成されており、このスリーブにリング状弁体32が押し込まれている。弁体32は、第2閉鎖要素36における第1貫通開口38より大きい横断面を有する第2の軸方向貫通開口33を有する。スリーブとして形成された弁下部19内で、第2貫通開口33に沿って第2弁座34が形成されている。これに代えて第2弁座34は、スリーブ状の弁下部19に作製された第2流体開口19.2に沿って形成されていてもよい。第2閉鎖要素36の軸方向の運動により、第2弁座34、したがって主段30が開閉されてもよい。スリーブ状の弁下部19は、殊に多段深絞り部材として作製されていてもよい。前段カプセル22と第2閉鎖要素36とは弁下部19内に突出し、それにより第2閉鎖要素36が第2弁座34と密封協働する(dichtend zusammenwirken)ことができる。弁下部19は、その自由端部に第2流体開口19.2を有する。その際、弁下部19は、図示されない流体ブロックに配置されている。図1〜図3からさらにわかるように、弁下部19の外套面への径方向孔として複数の第1流体開口19.1が作製されている。これに加えて第1流体開口19.1の領域には、比較的大きい汚れ粒子を捕捉することができるラジアルフィルタ5が配置されている。弁1は流体ブロックにおいて、かしめ板7を介してかしめられ得る。 As can be further seen from FIGS. 1 to 3, the valve lower portion 19 is formed as a sleeve, and the ring-shaped valve body 32 is pushed into the sleeve. The valve body 32 has a second axial through opening 33 having a cross section larger than the first through opening 38 in the second closing element 36. In the valve lower portion 19 formed as a sleeve, a second valve seat 34 is formed along the second through opening 33. Instead, the second valve seat 34 may be formed along the second fluid opening 19.2 formed in the sleeve-shaped lower part 19 of the valve. Axial movement of the second closing element 36 may open and close the second valve seat 34, and thus the main stage 30. The sleeve-shaped valve lower portion 19 may be manufactured as a multi-stage deep drawing member in particular. The first-stage capsule 22 and the second closing element 36 project into the valve lower portion 19, whereby the second closing element 36 can cooperate with the second valve seat 34 in a sealed manner (dichtend zusammenwirken). The valve lower portion 19 has a second fluid opening 19.2 at its free end. At that time, the valve lower portion 19 is arranged in a fluid block (not shown). As can be further seen from FIGS. 1 to 3, a plurality of first fluid openings 19.1 are formed as radial holes to the mantle surface of the valve lower portion 19. In addition to this, a radial filter 5 capable of capturing relatively large dirt particles is arranged in the region of the first fluid opening 19.1. The valve 1 can be crimped via the caulking plate 7 in the fluid block.

図示された実施例では、前段カプセル22は、その開端部で磁気アーマチュア16の接続領域16.1に堅固に押し付けられている。これに代えて磁気アーマチュア16の接続領域16.1への前段カプセル22の結合が溶接またはねじ接合(Gewindeverbaund)として形成されてもよい。 In the illustrated embodiment, the pre-stage capsule 22 is firmly pressed against the contiguous zone 16.1 of the magnetic armature 16 at its open end. Alternatively, the coupling of the pre-stage capsule 22 to the contiguous zone 16.1 of the magnetic armature 16 may be formed as a weld or screw bond.

図1〜図3からさらにわかるように、磁石アセンブリ3は、カバー状の(haubenfoermig)ケーシング外套3.1と、コイル巻線3.3が載置された巻線支持体3.2と、ケーシング外套3.1の開放側を閉鎖する覆い板3.4と、を備えている。弁カートリッジ10は、ポールコア側の端部が少なくとも部分的に磁石アセンブリ3に挿入されており、磁石アセンブリ3の上端部はポールコア14に当接し、磁石アセンブリ3の下端部は弁スリーブ12に当接する。磁石アセンブリ3は、コイル巻線3.3の通電によって磁界を発生し、この磁界は復帰用スプリング17の力に抗して磁気アーマチュア16を移動させる。 As can be further seen from FIGS. 1 to 3, the magnet assembly 3 includes a cover-shaped (haubenformig) casing mantle 3.1, a winding support 3.2 on which the coil winding 3.3 is mounted, and a casing. It is provided with a covering plate 3.4 that closes the open side of the cloak 3.1. The end of the valve cartridge 10 on the pole core side is at least partially inserted into the magnet assembly 3, the upper end of the magnet assembly 3 abuts on the pole core 14, and the lower end of the magnet assembly 3 abuts on the valve sleeve 12. .. The magnet assembly 3 generates a magnetic field by energizing the coil winding 3.3, and this magnetic field moves the magnetic armature 16 against the force of the return spring 17.

従来の2段電磁弁でのように、主段30を開くために前段ストロークhVを走破(durchlaufen)しなければならない代わりに、本発明による2段電磁弁1の実施形態では、前段20または主段30を開くために磁気アーマチュア16の全ストロークhGが利用される。したがって従来の電磁弁とは異なり、磁気アーマチュア10の全ストロークhGは格段に小さく調整され得る。それによって磁気アーマチュア16とポールコア14との間の動作空隙18がはるかに小さくなり、そのことが格段に大きい磁力をもたらす。その際、2段電磁弁1を通って流れる場合に、流体力によって第2閉鎖要素36が閉方向で第2弁座34に押し込まれず、かつ主段30が閉じられるようにするために、スプリング要素28の弾撥力は、従来の2段電磁弁の場合よりも大きくなるよう予め設定される。しかし開く場合には、スプリング要素28のより強い弾撥力が克服されなければならない。しかしこの力の追加消費は、磁力が大きくなることにより相殺以上になる。図2および図3からさらにわかるように、図示された実施例では、磁気アーマチュア16は開状態でポールコア14に直接当接し、それにより保持電流が低減され得る。 In the embodiment of the two-stage solenoid valve 1 according to the present invention, the front stage 20 or the main stage 20 or the main stage, instead of having to run through the front stage stroke hV in order to open the main stage 30 as in the conventional two-stage solenoid valve. The full stroke hG of the magnetic armature 16 is used to open the step 30. Therefore, unlike the conventional solenoid valve, the total stroke hG of the magnetic armature 10 can be adjusted to be remarkably small. As a result, the operating gap 18 between the magnetic armature 16 and the pole core 14 becomes much smaller, which results in a much larger magnetic force. At that time, when flowing through the two-stage solenoid valve 1, a spring is provided so that the second closing element 36 is not pushed into the second valve seat 34 in the closing direction by the fluid force and the main stage 30 is closed. The repulsive force of the element 28 is preset so as to be larger than that of the conventional two-stage solenoid valve. However, when opening, the stronger resilience of the spring element 28 must be overcome. However, the additional consumption of this force is more than offset by the increase in magnetic force. As can be further seen from FIGS. 2 and 3, in the illustrated embodiment, the magnetic armature 16 can come into direct contact with the pole core 14 in the open state, thereby reducing the holding current.

1 電磁弁
3 磁石アセンブリ
3.1 ケーシング外套
3.3 コイル巻線
10 弁カートリッジ
12 弁スリーブ
14 ポールコア
16 磁気アーマチュア
16.1 接続領域
17 復帰用スプリング
18 動作空隙
19 弁下部
19.1 第1流体開口
19.2 第2流体開口
20 前段
22 カプセル
23 開口
24 第1弁座
26 第1閉鎖要素
28 スプリング要素
30 主段
32 リング状弁体
34 第2弁座
36、26a 第2閉鎖要素
36.2 ストッパ
36.2A ストッパショルダ
36A シールブッシュ
38 貫通開口
39 流入開口
42 軸方向隙間
hG 全ストローク
hV 前段ストローク
1 Solenoid valve 3 Magnet assembly 3.1 Casing cloak 3.3 Coil winding 10 Valve cartridge 12 Valve sleeve 14 Pole core 16 Magnetic armature 16.1 Connection area 17 Return spring 18 Operating gap 19 Valve lower part 19.1 First fluid opening 19.2 Second fluid opening 20 Front stage 22 Capsule 23 Opening 24 First valve seat 26 First closing element 28 Spring element 30 Main stage 32 Ring-shaped valve body 34 Second valve seat 36, 26a Second closing element 36.2 Stopper 36.2A Stopper shoulder 36A Seal bush 38 Through opening 39 Inflow opening 42 Axial gap hG Full stroke hV Pre-stage stroke

Claims (10)

磁石アセンブリ(3)と弁カートリッジ(10)とを備え、前記弁カートリッジがポールコア(14)と、弁スリーブ(12)内で前記磁石アセンブリ(3)によって生成される磁力によって復帰用スプリング(17)の力に抗して閉位置と開位置との間を軸方向に移動可能な磁気アーマチュア(16)と、少なくとも1つの第1流体開口(19.1)と、少なくとも1つの第2流体開口(19.2)と、第1弁座(24)および第1閉鎖要素(26)を有する前段(20)と、より大きい第2弁座(34)および第2閉鎖要素(36)を有する主段(30)と、を具備し、前記磁気アーマチュア(16)が前記第1閉鎖要素(26)と接続されており、かつスプリング要素(28)を介して前記第2閉鎖要素(36)と連結されており、前記第1閉鎖要素(26)と前記第2閉鎖要素(36)との間で調整可能な前段ストローク(hV)によって制限される相対運動が前記スプリング要素(28)の弾撥力に抗して可能であり、前記磁気アーマチュア(16)と前記ポールコア(14)との間の調整可能な動作空隙(18)が前記磁気アーマチュア(16)の全ストローク(hB)を予め設定する2段電磁弁(1)において、前記磁気アーマチュア(16)は、その開放運動中に前記前段(20)または前記主段(30)をそれぞれ同じ全ストローク(hG)で開き、前記前段ストローク(hV)は、前記磁気アーマチュア(16)の前記全ストローク(hG)より大きく調整されていることを特徴とする、2段電磁弁。 A magnet assembly (3) and a valve cartridge (10) are provided, and the valve cartridge has a pole core (14) and a return spring (17) by the magnetic force generated by the magnet assembly (3) in the valve sleeve (12). A magnetic armature (16) that can move axially between the closed and open positions against the force of, at least one first fluid opening (19.1), and at least one second fluid opening (19.1). 19.2), a front stage (20) with a first valve seat (24) and a first closing element (26), and a main stage with a larger second valve seat (34) and a second closing element (36). (30), the magnetic armature (16) is connected to the first closing element (26), and is connected to the second closing element (36) via a spring element (28). The relative motion limited by the adjustable front stroke (hV) between the first closing element (26) and the second closing element (36) is the resilience of the spring element (28). Two steps, which is possible, where the adjustable operating gap (18) between the magnetic armature (16) and the pole core (14) presets the full stroke (hB) of the magnetic armature (16). In the electromagnetic valve (1), the magnetic armature (16) opens the front stage (20) or the main stage (30) with the same total stroke (hG) during its opening motion, and the front stage stroke (hV) is , A two-stage electromagnetic valve characterized in that it is adjusted to be larger than the total stroke (hG) of the magnetic armature (16). 前記磁気アーマチュア(16)は、前記少なくとも1つの第1流体開口(19.1)と前記少なくとも1つの第2流体開口(19.2)との間の現在圧力差(P1−P2)に依存して前記第1閉鎖要素(26)を介して前記第1弁座(24)を開くか、または前記第2閉鎖要素(36)を介して前記第2弁座(34)を開くことを特徴とする、請求項1に記載の電磁弁(1)。 The magnetic armature (16) depends on the current pressure difference (P1-P2) between the at least one first fluid opening (19.1) and the at least one second fluid opening (19.2). The first valve seat (24) is opened via the first closing element (26), or the second valve seat (34) is opened via the second closing element (36). The solenoid valve (1) according to claim 1. 前記磁気アーマチュア(16)は、前記少なくとも1つの第1流体開口(19.1)と前記少なくとも1つの第2流体開口(19.2)との間の前記現在圧力差(P1−P2)が閾値より大きい場合に、前記第1閉鎖要素(26)を前記第1弁座(24)から移動させ、前記スプリング要素(28)は、前記少なくとも1つの第1流体開口(19.1)と前記少なくとも1つの第2流体開口(19.2)との間の圧力補償の後に前記第2閉鎖要素(36)を前記第2弁座(34)から移動させ、前記主段(30)を開き、かつ前記前段(20)を閉じることを特徴とする、請求項2に記載の電磁弁(1)。 The magnetic armature (16) has a threshold value of the current pressure difference (P1-P2) between the at least one first fluid opening (19.1) and the at least one second fluid opening (19.2). If greater, the first closing element (26) is moved from the first valve seat (24) and the spring element (28) is at least one first fluid opening (19.1) and said at least. After pressure compensation with one second fluid opening (19.2), the second closing element (36) is moved from the second valve seat (34) to open the main stage (30) and The solenoid valve (1) according to claim 2, wherein the front stage (20) is closed. 前記磁気アーマチュア(16)は、前記少なくとも1つの第1流体開口(19.1)と前記少なくとも1つの第2流体開口(19.2)との間の前記現在圧力差(P1−P2)が前記閾値以下である場合、前段(20)を閉じたままで、前記第2閉鎖要素(36)を前記第2弁座(34)から移動させ、かつ前記主段(30)を開くことを特徴とする、請求項2または請求項3に記載の電磁弁(1)。 The magnetic armature (16) has the current pressure difference (P1-P2) between the at least one first fluid opening (19.1) and the at least one second fluid opening (19.2). When it is below the threshold value, the second closing element (36) is moved from the second valve seat (34) and the main stage (30) is opened while the front stage (20) is closed. , The solenoid valve (1) according to claim 2 or 3. 前記スプリング要素(28)の前記弾撥力は、前記第2弁座(34)を通って流れる場合に対応する流体力より閉方向に大きく、かつ前記主段(30)を開状態に保持するように予め設定されていることを特徴とする、請求項3または請求項4に記載の電磁弁(1)。 The elastic repulsive force of the spring element (28) is larger in the closing direction than the corresponding fluid force when flowing through the second valve seat (34), and the main stage (30) is held in the open state. The solenoid valve (1) according to claim 3 or 4, wherein the solenoid valve (1) is set in advance. 前記第1弁座(24)は、前記第2閉鎖要素(36)の第1の軸方向貫通開口(38)に配置されていることを特徴とする、請求項1〜請求項5のいずれか1項に記載の電磁弁(1)。 One of claims 1 to 5, wherein the first valve seat (24) is arranged in a first axial through opening (38) of the second closing element (36). The solenoid valve (1) according to item 1. 前記第2閉鎖要素(36)は、少なくとも部分的に前段カプセル(22)に配置されており、前記第1弁座(34)は、前記前段カプセル(22)内に配置されていることを特徴とする、請求項1〜請求項6のいずれか1項に記載の電磁弁(1)。 The second closure element (36) is at least partially located in the pre-stage capsule (22), and the first valve seat (34) is located in the pre-stage capsule (22). The solenoid valve (1) according to any one of claims 1 to 6. 前記前段カプセル(22)は、その開端部で前記磁気アーマチュア(16)の接続領域(16.1)に堅固に結合されていることを特徴とする、請求項7に記載の電磁弁(1)。 The solenoid valve (1) according to claim 7, wherein the front-stage capsule (22) is firmly coupled to the connection region (16.1) of the magnetic armature (16) at its open end. .. 前記第2閉鎖要素(36)は、前記磁気アーマチュア(16)から離反した端部が前記前段カプセル(22)の軸方向開口(23)を貫通し、かつ前記スプリング要素(28)を介して前記前段カプセル(22)における開口(23)の縁部(23.1)で支持されることを特徴とする、請求項8に記載の電磁弁(1)。 The second closing element (36) has an end portion separated from the magnetic armature (16) penetrating the axial opening (23) of the front capsule (22) and via the spring element (28). The solenoid valve (1) according to claim 8, wherein the solenoid valve (1) is supported by an edge portion (23.1) of an opening (23) in the front-stage capsule (22). 前記第2閉鎖要素(36)にストッパ(36.2)が形成されており、前記第2閉鎖要素(36)の前記ストッパ(36.2)と前記前段カプセル(22)における前記開口(23)の前記縁部(23.1)との間の距離が前記前段ストローク(hV)を決定することを特徴とする、請求項9に記載の電磁弁(1)。
A stopper (36.2) is formed on the second closing element (36), and the stopper (36.2) of the second closing element (36) and the opening (23) in the front capsule (22). The solenoid valve (1) according to claim 9, wherein the distance from the edge portion (23.1) determines the pre-stage stroke (hV).
JP2020173084A 2019-10-30 2020-10-14 Two-stage solenoid valve Pending JP2021089063A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019216715.2 2019-10-30
DE102019216715.2A DE102019216715A1 (en) 2019-10-30 2019-10-30 Two-stage solenoid valve

Publications (1)

Publication Number Publication Date
JP2021089063A true JP2021089063A (en) 2021-06-10

Family

ID=75485128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020173084A Pending JP2021089063A (en) 2019-10-30 2020-10-14 Two-stage solenoid valve

Country Status (4)

Country Link
JP (1) JP2021089063A (en)
KR (1) KR20210052304A (en)
CN (1) CN112747124B (en)
DE (1) DE102019216715A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114458815B (en) * 2022-02-15 2023-09-05 慕思健康睡眠股份有限公司 Electromagnetic valve control system
CN114593240B (en) * 2022-03-09 2023-12-08 中国人民解放军海军工程大学 Electromagnetic locking type one-way water injection valve

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09508338A (en) * 1994-11-24 1997-08-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electromagnetically controllable valve device
DE19529724A1 (en) * 1995-08-12 1997-02-13 Teves Gmbh Alfred Solenoid valve, in particular for hydraulic motor vehicle brake systems with wheel slip control
DE19530899C2 (en) * 1995-08-23 2003-08-21 Bosch Gmbh Robert Solenoid valve, in particular for a slip-controlled, hydraulic brake system for motor vehicles
DE102008001864A1 (en) * 2008-05-19 2009-11-26 Robert Bosch Gmbh magnetic valve
CN201851753U (en) * 2010-10-25 2011-06-01 浙江万向精工有限公司 Improved ESP (Electronic Stability Program) delivery valve
JP6315678B2 (en) * 2014-03-28 2018-04-25 オートリブ日信ブレーキシステムジャパン株式会社 Brake fluid pressure generator

Also Published As

Publication number Publication date
KR20210052304A (en) 2021-05-10
DE102019216715A1 (en) 2021-05-06
CN112747124B (en) 2023-10-24
CN112747124A (en) 2021-05-04

Similar Documents

Publication Publication Date Title
JP5108945B2 (en) solenoid valve
JP3136429B2 (en) Double-seat valve operated by electromagnet
US8123193B2 (en) Magnetic valve
JP2647181B2 (en) Pilot operated control valve
US5443309A (en) Solenoid valve, in particular for hydraulic brake systems with slip control
JP3786477B2 (en) Solenoid valves for automobiles, especially slip-controlled hydraulic brake devices
US6471305B1 (en) Isolation valve armature configured to reduce bernoulli force during normal braking operation
JP2021089063A (en) Two-stage solenoid valve
JPH094747A (en) Electromagnetic proportional type pressure valve
US8925897B2 (en) Solenoid valve and driver assistance device
JP4158244B2 (en) Solenoid valve for brake control
US8348232B2 (en) Hydraulic device with solenoid valve
CN107023704A (en) Valve cylinder for the valve armature of magnetic valve and for magnetic valve
JPH1163288A (en) Hydraulic pressure control valve device
JP5760961B2 (en) Hydraulic control valve device
JP6916957B2 (en) Valve for regulating fluid flow
JP2003314736A (en) Valve device with electromagnetic actuation
JP2017096491A (en) Solenoid valve having armature including movable step portion
US20190077388A1 (en) Solenoid valve for brake system
KR102372404B1 (en) Solenoid valve for brake apparatus
US20150336553A1 (en) Electromagnetic Valve and Brake Device
JP2013212531A (en) Caulking joint method and caulking joint structure
KR20150092908A (en) Solenoid valve for brake system
US10737676B2 (en) Solenoid valve
JP5380876B2 (en) Parts assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240612