JP2021086121A - 撮像装置及び表面検査装置 - Google Patents

撮像装置及び表面検査装置 Download PDF

Info

Publication number
JP2021086121A
JP2021086121A JP2019217367A JP2019217367A JP2021086121A JP 2021086121 A JP2021086121 A JP 2021086121A JP 2019217367 A JP2019217367 A JP 2019217367A JP 2019217367 A JP2019217367 A JP 2019217367A JP 2021086121 A JP2021086121 A JP 2021086121A
Authority
JP
Japan
Prior art keywords
light source
unit
imaging
illumination
source unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019217367A
Other languages
English (en)
Other versions
JP7266514B2 (ja
Inventor
杉本 雅彦
Masahiko Sugimoto
雅彦 杉本
米山 一也
Kazuya Yoneyama
一也 米山
直人 藤原
Naoto Fujiwara
直人 藤原
林 健吉
Kenkichi Hayashi
健吉 林
神谷 毅
Takeshi Kamiya
毅 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2019217367A priority Critical patent/JP7266514B2/ja
Publication of JP2021086121A publication Critical patent/JP2021086121A/ja
Application granted granted Critical
Publication of JP7266514B2 publication Critical patent/JP7266514B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Studio Devices (AREA)

Abstract

【課題】表面の検査に適した高品質な画像を撮像できる撮像装置及び表面検査装置を提供する。【解決手段】撮像装置10は、被写体を撮像するカメラ30及び被写体に照明光を照射する照明装置40を備える。カメラ30は、画像取得面が合焦面である光学系を備え、撮像範囲内の被写体を被写界深度内に収めて斜めから撮像して画像データを取得する。照明装置40は、光源部の位置が可変であり、被写体に対する照明光の当て方を変更できる。【選択図】 図1

Description

本発明は、撮像装置及び表面検査装置に関する。
ワークの表面をカメラで撮像し、撮像された画像を用いて、ワークの表面を検査する装置が知られている。
特許文献1には、検査用の画像を撮像する方法として、ワークを斜めから撮像する方法が提案されている。ワークを斜めに撮像すると、画像に歪み(射影歪み)が生じる。特許文献1では、撮像された画像を透視変換することで、歪みを解消している。
また、ワークを斜めに撮像すると、画像内で分解能に差が生じる。特許文献2には、各カメラの撮像領域を重複させて、複数のカメラでワークを斜めから撮像する方法が提案されている。
特開2014−167456号公報 特開2018−146442号公報
本開示の技術に係る1つの実施形態は、表面の検査に適した高品質な画像を撮像できる撮像装置及び表面検査装置を提供する。
(1)画像取得面が合焦面である結像光学系を備え、撮像範囲内の被写体を被写界深度内に収めて斜めから撮像して画像データを取得する撮像部と、被写体に照射する照明光の主光線の向き及び/又は照明光の光源部の位置が可変である照明部と、を備えた撮像装置。
(2)画像データに画像処理を施す画像処理部を更に備え、画像処理部は、照明光の主光線の向き及び/又は照明光の光源部の位置を変えることで生じる画像データの差異を強調する処理を行う、(1)の撮像装置。
(3)照明部は、光源部と、光源部の移動機構と、を備え、移動機構で光源部を移動させて、照明光の光源部の位置を変える、(1)又は(2)の撮像装置。
(4)照明部は、光源部の首振り機構を更に備え、首振り機構で光源部の向きを変えて、照明光の主光線の向きを変える、(3)の撮像装置。
(5)照明部は、光源部と、光源部の首振り機構と、を備え、首振り機構で光源部の向きを変えて、照明光の主光線の向きを変える、(1)又は(2)の撮像装置。
(6)照明部は、複数の光源部を備え、点灯させる光源部を変えて、照明光の光源部の位置を変える、(1)又は(2)の撮像装置。
(7)照明部は、光源部の首振り機構を更に備え、首振り機構で光源部の向きを変えて、照明光の主光線の向きを変える、(6)の撮像装置。
(8)複数の光源部がマトリクス状に配置される、(6)又は(7)の撮像装置。
(9)複数の光源部が円弧状に配置される、(6)から(8)のいずれか一の撮像装置。
(10)撮像範囲が重複して設定された複数の撮像部を備えた、(1)から(9)のいずれか一の撮像装置。
(11)被写体を保持する保持部と、保持部の回転機構と、を更に備えた(1)から(10)のいずれか一の撮像装置。
(12)画像取得面が合焦面である結像光学系を備え、撮像範囲内の被写体を被写界深度内に収めて斜めから撮像して画像データを取得する撮像部と、被写体に照明光を照射する照明部と、被写体を保持する保持部と、撮像部及び保持部を連動して移動又は傾斜させる駆動部と、を備えた撮像装置。
(13)画像データに画像処理を施す画像処理部を更に備え、画像処理部は、照明光の主光線の向き及び/又は照明光の光源部の位置を変えることで生じる画像データの差異を強調する処理を行う、(12)の撮像装置。
(14)撮像部の結像光学系は、物体側から順に、正のパワーを有する1つのミラーと、複数のレンズからなり正のパワーを有する光学系と、を有し、ミラーと光学系との間に中間像を結像する、(1)から(13)のいずれか一の撮像装置。
(15) ミラー及び光学系は、共通の光軸を有し、かつ、光軸を回転軸とする回転対称な形状を有する、(14)の撮像装置。
(16)(1)から(15)のいずれか一の撮像装置と、撮像部で取得される画像データを用いて、ワークの表面を検査する検査部と、を備えた表面検査装置。
表面検査装置の概略構成を示す図 撮像装置の概略構成を示す図 カメラの概略構成を示す断面図 結像光学系の構成を示す断面図 結像光学系の構成を示す断面図 照明装置の平面図 検査装置本体のハードウェア構成の一例を示すブロック図 検査装置本体が実現する機能のブロック図 照明光の当て方を変えて撮像して得られる画像の一例を示す図 最適な照明位置を決定する処理の手順を示すフローチャート 照明装置の側面図 照明装置の平面図 照明装置の変形例を示す側面図 照明装置の平面図 照明装置の側面図 照明装置の平面図 照明装置の側面図 表面検査装置の概略構成を示す図 表面検査装置の概略構成を示す図 カメラの配置を示す斜視図 表面検査装置の変形例を示す図 撮像装置の構成を示す概略図 帯状のワークを検査する場合の撮像装置の構成の一例を示す図
以下、添付図面に従って本発明の好ましい実施の形態について詳説する。
[第1の実施の形態]
平面若しくは緩やかな曲面に存在する微小な溝、キズ、気泡、膜のムラなどの微小な凹凸は、通常の撮像手法(通常のカメラを用いて、被写体に正対して撮像する手法)で撮像しても写らない。若しくは、写ったとしても、うっすらと写る程度である。
斜めから撮像することで、これらの微小な凹凸を見つけ易くできる。人間が平面内の微小な凹凸を確認する際、目を近づけて斜めから見る行動を行うことからも、この方法が直感的に有用であることが分かる。
しかし、通常のカメラで斜めから撮像すると、画像に歪み(射影歪み)が生じたり、画像内で分解能に差が生じたりする。
本実施の形態の表面検査装置は、斜めから撮像しても焦点の合う範囲が広い特殊なカメラを使用することで、検査に適した高品質な画像を撮像する。更に、本実施の形態の表面検査装置は、照明光の当て方を変えられる照明装置(照明光の当て方が可変である照明装置)を使用することで、最適な照明環境を作り出して撮像する。
以下においては、シート状のワークの表面を検査する場合を例に説明する。
[表面検査装置の構成]
図1は、本実施の形態の表面検査装置の概略構成を示す図である。
同図に示すように、本実施の形態の表面検査装置1は、ワークWの表面を撮像する撮像装置10、及び、撮像装置10を制御し、かつ、撮像装置10で撮像された画像を用いて、ワークWの表面を検査する検査装置本体100を備える。検査装置本体100は、ワーク表面の欠陥、特に、微小な溝、キズ、気泡、膜のムラなどの微小な凹凸等の有無を検査する。
[撮像装置]
図2は、撮像装置の概略構成を示す図である。
撮像装置10は、ワークWを載置するステージ20、ステージ20に載置されたワークWを撮像するカメラ30、及び、ステージ20に載置されたワークWに照明光を照射する照明装置40を備える。
[ステージ]
ステージ20は、平坦なワーク載置面20aを有する。ワークWは、ワーク載置面20aの上に載置される。本実施の形態では、ステージ20が水平に設置される。したがって、ワークWは水平に保持される。ステージ20には、必要に応じてワークWを吸着保持する機構等を備えることが好ましい。ステージ20は、保持部の一例である。
ステージ20は、そのワーク載置面20aをカメラ30の撮像範囲内に収めて設置される。したがって、ワーク載置面20aに載置されたワークWの全体(全面)を撮像できる。
[カメラ]
カメラ30は、いわゆる斜視型カメラであり、撮像範囲内の被写体(ワークW)を被写界深度内に収めて斜めから撮像し、その画像データを取得する。この種のカメラは、結像光学系の光軸を含まない領域に撮像範囲を設定することで実現できる。すなわち、結像光学系の光軸を含まない領域に撮像範囲を設定することにより、撮像範囲内の被写体(主要被写体)をすべて被写界深度内に収めて、被写体に正対する画像を斜めから撮像できる。本実施の形態のカメラ30は、ワーク載置面20aの上に水平に載置されたワークWを、ワークWの斜め上方から撮像する。カメラ30は、撮像部の一例である。ワークWは、その表面が主要被写体となる。
図3は、カメラの概略構成を示す断面図である。
同図に示すように、カメラ30は、筐体31の内部に結像光学系32及び撮像素子33を備える。筐体31は、角柱形状を有し、水平面上に載置して自立可能に構成される。筐体31は、正面に撮像窓31aを有する。カメラ30は、撮像窓31aから被写体(ワークW)を斜め下側に臨んで撮像する。
結像光学系32は、物体側から順に、正のパワーを有する1つのミラーM1と、複数のレンズからなり正のパワーを有する光学系ROと、有する。
図4及び図5は、結像光学系の構成を示す断面図である。図4及び図5では、光束として、光軸Zの近傍の光束A及び最大画角の光束Bを併せて記入している。また、図4では、光軸Zに沿って、ミラーM1側を物体側、結像面Sim側を像側として記載している。また、図5は、図4における結像光学系部分を拡大して示したものである。なお、図4及び図5に示す中間像I及び開口絞りStは、形状を示しているのではなく、光軸上の位置を示している。
同図に示すように、本実施の形態のカメラ30の結像光学系32は、物体側から順に、正のパワーを有する1つのミラーM1と、複数のレンズからなり正のパワーを有する光学系ROと、を有し、ミラーM1と光学系ROとの間に中間像Iを結像する。このように、結像光学系内で中間像Iを形成することにより、結像光学系内で光束が拡大するのを抑制できる。これにより、小型かつ広角の結像光学系を構成できる。
一例として、本実施の形態の光学系ROは、物体側から順に、4枚のレンズL1〜L4(第1レンズL1、第2レンズL2、第3レンズL3及び第4レンズL4)からなる前群GFと、開口絞りStと、3枚のレンズL5〜L7(第5レンズL5、第6レンズL6及び第7レンズL7)からなる後群GRと、を有する。
本実施の形態のミラーM1及び光学系ROは、共通の光軸Zを有し、かつ、光軸Zを回転軸とする回転対称な形状を有する。このように構成することにより、結像光学系32の設計が容易となる。また、結像光学系32を構成する光学素子の加工性及び組立性を向上できる。これにより、結像光学系のコストを抑えつつ、性能を向上できる。なお、本実施の形態の結像光学系32では、ミラーM1及び光学系ROについて、結像に利用しない領域を部分的に切断している。このように結像に利用しない領域を部分的に切断した形状についても、光軸Zを回転軸とする回転対称な形状に含まれるものとする。
本実施の形態のミラーM1は、非球面形状を有する。このように、最も物体側に配置され、かつ、有効径の大きいミラーM1を非球面形状とすることにより、像面湾曲、コマ収差、非点収差及び歪曲収差の補正に有利となる。
本実施の形態の光学系ROは、第1レンズL1(光学系ROの最も物体側のレンズ)が、物体側に凹面を向けた正レンズで構成される。このように、第1レンズL1の物体側を凹面とすることにより、第1レンズL1の径を抑えつつ、画角を広く取ることができる。また、第1レンズL1を正レンズとすることにより、ミラーM1から入射した光束が収束して出射する。このため、次の第2レンズL2の径を小さくでき、また、光学系ROの全長の短縮化につながる。そのため、結像光学系32を小型化できる。
このように、本実施形態の結像光学系32は、小型かつ広角の結像光学系を構成できる。したがって、本実施の形態の結像光学系32を備えたカメラ30も、小型で、かつ、広範囲を撮像できるカメラとして構成できる。
上記構成の結像光学系32は、ミラーM1の反射面から結像面Simまでの光軸Z上の距離をTTL、ミラーM1の反射面から物体面Obj(画像取得面)までの光軸Z上の距離をZOB、第1レンズL1の物体側の面から結像面Simまでの光軸Z上の距離をLL0、最大像高をYmaxとした場合、下記の条件式(1)及び(2)を満足することが好ましい。なお 、最大像高Ymaxとは、光軸Zから最も離れた像点と光軸Zとの距離を意味する。
0.8<TTL/ZOB<1 …(1)
6<LL0/Ymax<15 …(2)
たとえば、カメラ30をステージ20のワーク載置面20aと同じ高さの面(物体面Obj)に設置するには、入射光の光束を折り曲げるミラーM1が必要となる。条件式(1)の下限以下とならないようにすることにより、結像光学系32の全長が短くなり過ぎず、収差の補正に有利となる。条件式(1)の上限以上とならないようにすることにより、装置の小型化に有利となる。
条件式(2)の下限以下とならないようにすることにより、最大像高Ymaxに対して光学系ROの全長が短くなり過ぎず、収差の補正に有利となる。条件式(2)の上限以上とならないようにすることにより、装置の小型化に有利となる
なお、条件式(1)及び(2)を満足した上で、下記の条件式(1−1)及び(2−1)の少なくとも一方を満足するものとすれば、より良好な特性とすることができる。
0.85<TTL/ZOB<0.95 …(1−1)
7<LL0/Ymax<13 …(2−1)
また、第1レンズの焦点距離をfL1、光学系ROの焦点距離をfL0とした場合、下記の条件式(3)を満足することが好ましい。
3<fL1/fL0<50 …(3)
第1レンズL1の有効径を大きくしつつ、光学系ROを小型化させるためには、第1レンズL1に適切な正のパワーが必要である。ただし、第2レンズL2も有効径が大きい方が収差補正に有利であるため、第1レンズL1の正のパワーは大きくし過ぎない必要がある。条件式(3)の下限以下とならないようにすることにより、第1レンズL1の正のパワーが大きくなり過ぎないようにできる。下記の条件式(3)の上限以上とならないようにすることにより、第1レンズL1に適切な正のパワーを確保することができる。
なお、下記の条件式(3−1)を満足するものとすれば、より良好な特性とすることができる。
4<fL1/fL0<25 …(3−1)
また、光学系ROは、物体側から順に、正のパワーを有する前群GFと、開口絞りStと、正のパワーを有する後群GRと、を有する構成とし、かつ、前群GFは、物体側から順に、第1レンズL1と、負のパワーを有する第2レンズL2と、正のパワーを有する第3レンズL3と、を有する構成とすることが好ましい。このように、第2レンズL2のパワーを負とすることにより、光線が急に収束することを避け、更に、比較的有効径の大きな第1レンズL1、第2レンズL2及び第3レンズL3の3枚のレンズのパワー配置を正負正の構成として、正、負の作用を分散することにより、コマ収差及び像面湾曲の補正に有利となる。
また、後群GRは、次の構成の接合レンズC1を最も像側に備えることが好ましい 。すなわち、正レンズと負レンズとからなり、全体として正のパワーを有する接合レンズであって、正レンズのアッベ数が50以上であり、かつ、負レンズのアッベ数が40以下である接合レンズである。本実施形態の結像光学系32では、正レンズである第6レンズL6及び負レンズである第7レンズL7により、この接合レンズC1が構成される。このように、開口絞りStより像側で、かつ、軸外主光線の高さが高くなる位置に、上記構成の接合レンズC1を配置することにより、倍率色収差の補正に有利となる。また、前群GFが正レンズと負レンズとを備える場合、開口絞りStより像側の後群GRにも正レンズと負レンズとを備えることにより、像面湾曲及び歪曲収差の補正に有利となる。
なお 、接合レンズC1を構成する正レンズ及び負レンズのアッベ数が、上記条件を満足した上で、接合レンズC1を構成する正レンズのアッベ数が55以上、及び、接合レンズC1を構成する負レンズのアッベ数が30以下の少なくとも一方を満足するものとすれば、より良好な特性とすることができる。
また、光学系ROは、第1レンズL1を非球面レンズで構成する一方、第1レンズL1以外のレンズは、球面レンズで構成することが好ましい。このように、光学系ROの最も物体側に位置し、有効径が大きく、かつ、異なる像高に対する光束の重なりが小さい第1レンズL1を非球面形状とすることにより、収差を効果的に補正できる。また、光学系ROの残りのレンズを全て球面レンズとすることにより、結像光学系を構成する光学素子の加工性及び組立性の向上に有利となる。その結果、結像光学系32のコストを抑えつつ、性能向上に有利となる。
撮像素子33は、結像光学系32の結像面に配置される。上記のように、本実施の形態のカメラ30は、結像光学系の光軸を含まない領域に撮像範囲が設定される。このため、撮像素子33は、結像光学系32のイメージサークル内において、結像光学系32の光軸Zを含まない領域に配置される。すなわち、その受光領域内に結像光学系32の光軸Zが含まれないように配置される。これにより、結像光学系の光軸を含まない領域に撮像範囲が設定される。
なお、結像光学系32の光軸上に撮像素子33を配置し、撮像により得られる画像の一部を切り出して、必要な領域の画像データを取得する構成とすることも可能である。
撮像素子33には、CCD(Charge Coupled Device)、CMOS(Complementary Metal Oxide Semiconductor)等の公知のエリアイメージセンサを使用できる。
以上の構成のカメラ30によれば、結像光学系32は、画像取得面が合焦面となり、撮像範囲内の被写体(ワークW)をすべて被写界深度内に収めて斜めから撮像できる。また、被写体に正対する画像を斜めから撮像できる。
なお、本実施の形態の撮像装置10では、ステージ20のワーク載置面20aが画像取得面に設定される。したがって、ワーク載置面20aが合焦面とされる。また、本実施の形態の撮像装置10では、ステージ20のワーク載置面20aが撮像範囲内に設定される。したがって、ワーク載置面20aの上にシート状のワークWを載置して撮像することにより、ワークWの全体を被写界深度内に収めて撮像できる。ワーク載置面20aは、少なくともカメラ30の撮像範囲内に設定されていればよい。本実施の形態では、ワーク載置面20aとほぼ同じ範囲にカメラ30の撮像範囲が設定される。
[照明装置]
図6は、照明装置の平面図である。図6に示すように、照明装置40は、光源ユニット42と、その光源ユニット42の移動機構44と、を有する。照明装置40は、照明部の一例である。
光源ユニット42は、ワークWに向けて照明光を照射する。光源ユニット42は、光源部の一例である。光源ユニット42は、ステージ20の上方に設置され、ワークWに対して上方から照明光を照射する。光源ユニット42は、主光線の向きがワーク載置面20aに対して垂直に設定され、ワークWに対して垂直に照明光を照射する。
光源ユニット42は、ライン状の光源43を有する。本実施の形態では、複数の発光素子43a(たとえば、発光ダイオード(Light Emitting Diode;LED)等)をライン状に配置して、ライン状の光源43が構成される。光源ユニット42は、必要に応じてリフレクタ、レンズ及び拡散板等が使用され、照射角及び配光特性等が調節される。
光源ユニット42は、ライン状の光源43がワーク載置面20aと平行に配置される。また、光源ユニット42は、ライン状の光源43が、x軸に沿って配置される。x軸はワーク載置面20aと平行な軸である。
移動機構44は、光源ユニット42をワーク載置面20aに沿って水平に移動させる。本実施の形態では、図2に示すように、光源ユニット42をy軸に沿って移動させる。y軸は、ワーク載置面20aと平行、かつ、x軸と直交する軸である。
移動機構44は、光源ユニット42の移動をガイドするガイド部、及び、光源ユニット42を移動させるスライド駆動部を有する。
ガイド部は、ガイドレール46aを有する。ガイドレール46aは、y軸に沿って配置される。光源ユニット42は、スライダ46bを介して、ガイドレール46aにスライド自在に支持される。
スライド駆動部は、主として、送りネジ48a及びモータ48bで構成される。送りネジ48aは、y軸に沿って配置され、その両端を軸受で回転自在に支持される。モータ48bは、送りネジ48aに連結され、送りネジ48aを回転駆動する。光源ユニット42は、送りネジ48aに備えられたナット48cに接続される。これにより、モータ48bで送りネジ48aを回転させると、光源ユニット42がガイドレール46aに沿ってスライド移動する。すなわち、y軸に沿ってスライド移動する。
以上の構成の照明装置40によれば、移動機構44によって光源ユニット42を移動させると、ワークWに対する光源ユニット42の相対的な位置が変化する。これにより、ワークWに対する照明光の当たり方が切り替わる。
[検査装置本体]
図7は、検査装置本体のハードウェア構成の一例を示すブロック図である。
同図に示すように、検査装置本体100は、CPU(Central Processing Unit)101、ROM(Read Only Memory)102、RAM(Random Access Memory)103、HDD(Hard Disk Drive)104、操作部(たとえば、キーボード及びマウス等)105、表示部(たとえば、液晶ディスプレイ(Liquid Crystal Display;LCD)、有機エレクトロルミネッセンスディスプレイ(Organic Electro-Luminescence Display;OELD)等)106、入出力インターフェース(interface;I/F)107及び通信部108等を備えたコンピューターで構成される。撮像装置10を構成するカメラ30及び照明装置40は、入出力インターフェース107を介して検査装置本体100と接続される。
図8は、検査装置本体が実現する機能のブロック図である。
同図に示すように、検査装置本体100は、カメラ制御部111、照明制御部112、画像入力部113、画像処理部114、照明条件決定部115、検査部116、表示制御部117、記録制御部118及び通信制御部119の機能を実現する。これらの機能は、プロセッサであるCPU101が所定のプログラムを実行することにより実現される。プログラムは、たとえば、ROM103又はHDD104に記憶される。
カメラ制御部111は、カメラ30を制御して、カメラ30による撮像を制御する。撮像は、照明光の当て方の変更に連動して行われる。撮像により、カメラ30から画像データが出力される。
照明制御部112は、照明装置40を制御して、照明光の発光を制御する。発光の制御には、照明光の当て方の制御も含まれる。本実施の形態では、光源ユニット42の移動を制御して、照明光の当て方を制御する。すなわち、ワークWに対する光源ユニット42の位置を制御して、照明光の当て方を制御する。
画像入力部113は、カメラ30から出力される画像データを入力する。画像データは、入出力インターフェース107を介して検査装置本体100に入力される。
画像処理部114は、入力された画像データに画像処理を施す。画像処理部114は、照明光の当て方を変えることで生じる画像データの差異を強調する処理を行う。本実施の形態では、この処理として、画像のコントラストを強調する処理を行う。コントラストを強調することにより、欠陥の影を強調でき、欠陥を見つけ易くできる。画像のコントラストを強調する処理については、公知の手法を用いてもよい。したがって、ここでは、その詳細についての説明は省略する。たとえば、フィルタ処理によって、画像のコントラストを強調する方法等が採用される。
照明条件決定部115は、撮影により得られた画像データに基づいて、最適な照明条件を決定する。本実施の形態では、最適な照明位置(光源ユニット42の位置)を決定する。照明条件決定部115は、照明光の当て方を変えて撮像した複数の画像データに基づいて、最適な照明位置を決定する。具体的には、照明光の当て方を変えて撮像した複数の画像データから欠陥の影のコントラストが最もはっきりと現れる光源ユニット42の位置を特定する。
図9は、照明光の当て方を変えて撮像して得られる画像の一例を示す図である。同図(A)〜(D)は、それぞれ異なる照明位置で得られるワークWの撮像画像WI1〜WI4を示している。また、同図において、符号SI1〜SI3は、ワーク表面の欠陥(微小な凹凸)を示している。より正確には、照明によって現れる欠陥の影を示している。同図に示すように、照明位置が変わることにより、欠陥の影の出方(コントラスト)が変化する。
照明条件決定部115は、欠陥の影のコントラストが最もはっきりと現れる画像データを特定し、その画像データを撮像した際の光源ユニット42の位置を最適な照明位置として決定する。照明条件決定部115は、画像処理部114による画像処理後の画像データに基づいて、最適な照明条件を決定する。これにより、最適な照明条件を特定し易くできる。
検査部116は、画像処理後の画像データを用いて、欠陥の有無を検査する。本実施の形態では、微小な溝、キズ、気泡、膜のムラなどの微小な凹凸等の有無を検査する。これらの微小な凹凸等(欠陥)の検出には、公知の手法をはじめ、いかなるアルゴリズムを用いてもよい。したがって、ここでは、その詳細についての説明は省略する。一例として、機械学習、深層学習等により生成した画像認識モデルを用いて、微小な凹凸等を認識(検出)する手法等を採用できる。検査部116は、欠陥の位置及びサイズを特定して、欠陥を検出する。
表示制御部117は、検査結果の表示を制御する。検査結果は、あらかじめ定められた形式で表示部106に表示される。
記録制御部118は、検査結果の記録を制御する。検査結果は、あらかじめ定められた形式でHDD104に記録される。
通信制御部119は、外部機器への検査結果の送信を制御する。検査結果は、通信部108を介して、外部機器に送信される。通信の形態は、特に限定されない。
[表面検査装置の作用]
[最適な照明位置の決定]
まず、最適な照明位置が決定される。
図10は、最適な照明位置を決定する処理の手順を示すフローチャートである。
まず、照明位置決定用のワークをステージ20にセットする(ステップS11)。このワークは、表面に既知の欠陥(微小な凹凸)を有するワークである。ワークは、ワーク載置面20aに載置することで、ステージ20にセットされる。ワークをワーク載置面20aに載置することにより、カメラ30の撮像範囲内にワークがセットされる。
ワークのセットが完了すると、次に、光源ユニット42がオンされ、照明光が点灯される(ステップS12)。なお、前提として、この時点で光源ユニット42は、あらかじめ定められた始点位置に位置しているものとする。
次に、カメラ30が駆動され、撮像が行われる(ステップS13)。撮像により得られた画像データは、検査装置本体100に出力される。画像データは、検査装置本体100に取り込まれて、RAM102に格納される。
次に、光源ユニット42の移動機構44が駆動され、光源ユニット42が、1ステップ分移動する(ステップS14)。この移動力(1ステップ分の移動距離)は、あらかじめ定められた距離である。
次に、光源ユニット42が終端位置に到達したか否かが判定される(ステップS15)。終端位置は、光源ユニット42の可動範囲内で設定される。
光源ユニット42が、終端位置に到達していないと判定されると、ステップS13に戻り、再度、撮像が行われる。撮像は、光源ユニット42が終端位置に到達するまで繰り返し行われる。このように、光源ユニット42を移動させながら、複数回撮像が行われる。これにより、照明の当たり方が変わりながら、ワークWが複数回撮像される。
光源ユニット42が、終端位置に到達したと判定されると、光源ユニット42がオフされ、照明光が消灯される(ステップS16)。
以上一連の工程でワークWの撮像が終了する。次いで、撮像により得られた画像データを用いて、光源ユニット42を最適な位置に設定する処理が行われる。
まず、撮像により得られた複数の画像データに対し、画像処理が施される(ステップS17)。画像処理は、照明光の当て方を変えることで生じる画像データの差異を強調する処理が行われる。具体的には、コントラストを強調する処理が行われる。
次に、画像処理された複数の画像データに基づいて、最適な照明位置が決定される(ステップS18)。具体的には、欠陥の影のコントラストが最もはっきりと現れる画像データを特定し、その画像データを撮像した際の光源ユニット42の位置を最適な照明位置として決定する。
次に、光源ユニット42の移動機構44が駆動され、決定した最適な照明位置に光源ユニット42が移動する。
以上一連の工程で最適な照明条件に設定される。すなわち、欠陥を検出するのに最適な位置(欠陥の影のコントラストが最もはっきりと現れる位置)に光源ユニット42が設定される。この後、実際の検査が行われる。
実際の検査は、次の手順で行われる。まず、検査対象のワークWをステージ20にセットする。次いで、光源ユニット42をオンして、ワークWに照明光を照射する。次に、カメラ30でワークWを撮像する。撮像により得られた画像データを用いて、欠陥の有無を検査する。なお、光源ユニット42は、常にオンした状態であってもよい。
本実施の形態の表面検査装置1によれば、ワークWを斜めから撮像するので、微小な凹凸等の欠陥を良好に検出できる。また、照明光の当て方を変えられる(可変である)ことにより、最適な照明環境下で検査用の画像を撮像できる。また、本実施の形態の表面検査装置1によれば、撮像装置10において、ワークWの全体を被写界深度内に収めて1回で撮像できるので、効率よく検査できる。更に、本実施の形態の表面検査装置1によれば、撮像装置10において、ワークWに正対した画像を撮像できるので、画像の歪みを解消する処理等を行うことなく検査できる。
[変形例]
本実施の形態では、光源ユニット42を直線状に移動させているが、円弧状に移動させてもよい。これにより、主光線の向きも変えることができる。
また、照明光の光源部(光源ユニット42)の位置を変える場合、連続的に変える構成とすることもできるし、断続的に変える構成とすることもできる。被写体に照射する照明光の主光線の向きを変える場合も同様であり、連続的に変える構成とすることもできるし、断続的に変える構成とすることもできる。
光源ユニット42は、発光する照明光の強度を変えられるように構成してもよい。
また、上記実施の形態では、事前に照明位置を最適化して、ワークを検査する構成としているが、照明位置を変えながら連続的にワークを撮像し、得られた画像データを利用して、ワークを検査する構成とすることもできる。
[第2の実施の形態]
上記実施の形態の表面検査装置では、光源部(光源ユニット42)を移動させることにより、ワークに対する光源部の相対的な位置を変えて、照明光の当て方を変えている。
本実施の形態の表面検査装置では、光源部を複数配置し、点灯させる光源部を変えることにより、照明光の当て方を変える。
なお、照明装置以外の構成は、上記実施の形態の表面検査装置と同じなので、ここでは、照明装置の構成についてのみ説明する。
図11は、本実施の形態の照明装置の側面図である。図12は、照明装置の平面図である。
照明装置40は、複数の光源ユニット42a〜42jを有する。各光源ユニット42a〜42jの構成は、上記第1の実施の形態の照明装置40の光源ユニット42と同じである。すなわち、複数の発光素子43aをライン状に配置したライン状の光源43を有する。
光源ユニット42a〜42jは、ステージ20の上方に配置され、かつ、y軸に沿って一定の間隔で配置される。各光源ユニット42a〜42jは、主光線の向きがワーク載置面20aに対して垂直に設定される。したがって、ワークWに対して垂直に照明光を照射する。
各光源ユニット42a〜42jは、その光源43の発光が個別に制御される。発光の制御は、表面検査装置本体で行われる。すなわち、照明制御部112によって、その光源43の発光が個別に制御される。
以上の構成の照明装置40によれば、点灯させる光源ユニット42a〜42jを変えることにより、ステージ20に載置されたワークWに対して、照明光の当て方を変えることができる。
最適な照明条件を決定する場合は、次の手順で行われる。まず、順番に光源ユニット42a〜42jを点灯させて照明位置決定用のワークを撮像する。得られた画像データの中から欠陥の影のコントラストが最もはっきりと現れる画像データを特定する。その画像データを撮像した際に点灯した光源ユニット42a〜42jの位置を最適な照明位置として決定する。
なお、複数の光源ユニット42a〜42jは、組み合わせて点灯させてもよい。すなわち、光源ユニット42a〜42jは、必ずしも1つだけを点灯させるのではなく、一度に複数の光源ユニット42a〜42jを点灯さて使用する構成としてもよい。欠陥の影のコントラストが最もはっきりと現れる条件を特定して、点灯させることが好ましい。
また、本実施の形態においても、撮像により得られた画像データに対し、適宜画像処理を行って、最適な照明条件を決定することが好ましい。
[変形例]
図13は、本実施の形態の照明装置の変形例を示す側面図である。
同図に示すように、本例の照明装置40は、複数の光源ユニット42a〜42jが円弧状に配置される。このように、複数の光源ユニット42a〜42jを円弧状に配置することにより、照明光の光源部の位置を変えると同時に、照明光の主光線の向きを変えて、照明光を照射できる。
[第3の実施の形態]
本実施の形態の表面検査装置も照明装置の構成が、上記第1の実施の形態の表面検査装置と相違する。本実施の形態の照明装置は、点状又は面状の光源部をマトリクス状に配置し、点灯させる光源部を変えることにより、ワークに対する光源部の相対的な位置を変えて、照明光の当て方を変える。
なお、照明装置以外の構成は、上記実施の形態の表面検査装置と同じなので、ここでは、照明装置の構成についてのみ説明する。
図14は、本実施の形態の照明装置の平面図である。
照明装置40は、複数の光源ユニット42[ij](i=1、2、…、j=1、2、…)を有する。各光源ユニット42[ij]は、点状の光源を有する。本実施の形態では、複数の発光素子43aが集合的に配置されて、点状の光源43が構成される。
複数の光源ユニット42[ij]は、ワーク載置面20aと平行な面(xy平面)に沿って、マトリクス状に配置される。各光源ユニット42[ij]は、それぞれ主光線の向きがワーク載置面20aに対して垂直に設定される。したがって、各光源ユニット42[ij]は、ワークWに対して垂直に照明光を照射する。
各光源ユニット42[ij]は、その光源43の発光が個別に制御される。発光の制御は、表面検査装置本体で行われる。すなわち、照明制御部112によって、その光源43の発光が個別に制御される。
最適な照明条件を決定する場合は、次の手順で行われる。まず、順番に光源ユニット42[ij]を点灯させて照明位置決定用のワークを撮像する。得られた画像データの中から欠陥の影のコントラストが最もはっきりと現れる画像データを特定する。その画像データを撮像した際に点灯した光源ユニット42[ij]の位置を最適な照明位置として決定する。
なお、複数の光源ユニット42[ij]は、組み合わせて点灯させてもよい。たとえば、列単位又は行単位で光源ユニット42aを点灯させて使用してもよい。
[変形例]
本実施の形態の照明装置についても、複数の光源ユニットを円弧状に配置した構成を採用できる。特に、本実施の形態の照明装置については、ドーム状に配置した構成を採用できる。すなわち、半球状の面に複数の光源ユニットをマトリクス状に配置した構成を採用できる。
[第4の実施の形態]
本実施の形態の表面検査装置も照明装置の構成が、上記第1の実施の形態の表面検査装置と相違する。本実施の形態の照明装置は、光源部の主光線の向きを変えて、ワークに対する照明光の当て方を変える。
なお、照明装置以外の構成は、上記実施の形態の表面検査装置と同じなので、ここでは、照明装置の構成についてのみ説明する。
図15は、本実施の形態の照明装置の側面図である。図16は、本実施の形態の照明装置の平面図である。
本実施の形態の照明装置40は、光源ユニット42が、首振り可能に設けられ、光源ユニット42の向きを変えることにより、主光線の向きを変えて、照明光の当て方を変える。
本実施の形態の照明装置40は、光源ユニット42と、その光源ユニット42の首振り機構50と、を有する。
光源ユニット42の構成は、上記第1の実施の形態の照明装置40の光源ユニット42と同じである。すなわち、複数の発光素子43aをライン状に配置したライン状の光源43を有する。
首振り機構50は、光源ユニット42を揺動自在(首振り自在)に支持する支持部と、光源ユニット42を揺動させる揺動駆動部と、を有する。支持部は、光源ユニット42の両端に備えられた軸52と、その軸52を支持する軸受54と、で構成される。揺動駆動部は、軸52を回転駆動するモータ56で構成される。モータ56は、正逆回転可能に構成される。モータ56で軸52を回転させると、その回転量に応じて光源ユニット42が傾斜する。これにより、光源ユニット42から照射される照明光の向き(主光線の向き)が切り替わる。
以上の構成の照明装置40によれば、光源ユニット42の角度を変えることにより、光源ユニット42から照射される照明光の向き(主光線の向き)が変わり、ワークに対する照明光の当たり方が変わる。
最適な照明条件を決定する場合は、次の手順で行われる。まず、光源ユニット42の角度を変えながら、角度決定用のワークを撮像する。角度決定用のワークは、照明位置決定用のワークと同じである。得られた画像データの中から欠陥の影のコントラストが最もはっきりと現れる画像データを特定する。その画像データを撮像した際の角度を最適な照明角度(光源ユニット42の角度)として決定する。
[変形例]
本実施の形態では、一定位置からワークに照明光を照射する構成としているが、照射位置を変えられるようにしてもよい。すなわち、上記第1の実施の形態の照明装置のように、光源ユニットの位置を変えられるようにしてもよい。この場合、光源ユニットを直線状に移動させる構成としてもよいし、円弧上に移動させる構成としてもよい。
[第5の実施の形態]
本実施の形態の表面検査装置も照明装置の構成が、上記第1の実施の形態の表面検査装置と相違する。照明装置以外の構成は、上記実施の形態の表面検査装置と同じなので、ここでは、照明装置の構成についてのみ説明する。
図17は、本実施の形態の照明装置の側面図である。
本実施の形態の照明装置は、上記第2の実施の形態の照明装置(図12及び図13参照)において、個々の光源ユニット42a〜42jの向きを変更可能としたものである。個々の光源ユニット42a〜42jは、支持部及び揺動駆動部を首振り可能(揺動可能)に支持される。
本実施の形態の照明装置40によれば、点灯させる光源ユニット42a〜42jを変えることにより、ワークに対する照明光の光源の位置を変えることができる。また、点灯させた光源ユニット42a〜42jの向き(角度)を変えることにより、ワークに照射する照明光の主光線の向きを変えることができる。
このように、本実施の形態の照明装置では、照明光の光源部の位置と主光線の向きの両方を調整できる。これにより、より細やかな照明の設定が可能になる。
[変形例]
点状又は面状の光源ユニットをマトリクス状に配置する場合についても、個々の光源ユニットの角度を変えられるようにしてもよい。すなわち、ここの光源ユニットを首振り可能に構成してもよい。この場合、一方向だけでなく多方向に首振り可能とすることが好ましい。
[第6の実施の形態]
図18は、本実施の形態の表面検査装置の概略構成を示す図である。
本実施の形態の表面検査装置1は、ステージ20の回転機構を備え、ステージ20が回転する。ステージ以外の構成は、上記第1の実施の形態の表面検査装置1と同じである。したがって、以下においては、ステージ20の構成、及び、ステージ20が回転することの作用効果についてのみ説明する。
図18に示すように、ステージ20は、中央に回転軸22を有し、その回転軸22が軸受24を介して、ステージ20の設置部に回転自在に支持される。回転軸22には、モータ26が連結される。このモータ26を駆動することにより、ステージ20が回転する。
本実施の形態の表面検査装置1によれば、複数の方向からワークWを撮像して、ワークWを検査できる。具体的には、まず、第1の方向からワークWを撮像して、1回目の検査を実施する。その後、ステージ20を180°回転させて、第2の方向からワークを撮像し、2回目の検査を実施する。このように、本実施の形態の表面検査装置1によれば、ワークWをステージ20に載せたまま、異なる方向からワークWを複数回撮像して、複数回検査できる。これにより、より正確な検査ができる。
[第7の実施の形態]
図19は、本実施の形態の表面検査装置の概略構成を示す図である。
本実施の形態の表面検査装置1は、ワークWを撮像するカメラ30a、30bを複数台有する。カメラ30a、30bを複数台有する点以外は、上記第1の実施の形態の表面検査装置1と同じである。したがって、以下においては、カメラの配置及びカメラを複数台有することによる作用効果についてのみ説明する。
図20は、カメラの配置を示す斜視図である。
本実施の形態の表面検査装置1は、2台のカメラ30a、30b(第1のカメラ30a及び第2のカメラ30b)を有する。各カメラ30a、30bの構成は、上記第1の実施の形態のカメラ30と同じである。
2台のカメラ30a、30bは、矩形状を有するステージ20の対向する辺に配置される。具体的には、図20に示すように、第1のカメラ30aは、ステージ20の図中右側の辺の中央に配置され、第2のカメラ30bは、図中左側の辺の中央に配置される。第1のカメラ30aは、図19に示すように、右斜め上方向からワークWを撮像する。第2のカメラ30bは、図19に示すように、左斜め上方向からワークWを撮像する。第1のカメラ30a及び第2のカメラ30bは、共に同じ範囲(実質的に同じと認められる範囲を含む)を撮像する。すなわち、第1のカメラ30a及び第2のカメラ30bは、撮像範囲が重複して設定される。本実施の形態では、ワーク載置面20aが撮像範囲として設定される。
以上のように構成される本実施の形態の表面検査装置1によれば、1度に複数の方向からワークWを撮像できる。これにより、効率よくワークWを検査できる。
図21は、本実施の形態の表面検査装置の変形例を示す図である。
本例は、4台のカメラ30a〜30dを使用する例である。各カメラ30a〜30dは、矩形状のステージ20の各辺に配置される。これにより、1度に4方向からワークを撮像できる。更に複数台のカメラを使用することもできる。
[第8の実施の形態]
上記実施の形態では、照明装置側において、光源部の向き(主光線の向き)、及び/又は、光源部の位置を変えることで、照明光の当て方を変える構成としている。
本実施の形態では、照明装置側は一定位置から照明光を照射する構成とし、ステージ及びカメラを連動して動かして、照明光の当て方を変える。
図22は、本実施の形態の撮像装置の構成を示す概略図である。
同図に示すように、ステージ20及びカメラ30は、同じベースフレーム60の上に設置される。ベースフレーム60は、矩形の平板形状を有し、y軸方向の一端にx軸と平行な軸62を有する。ベースフレーム60は、その軸62を介して軸受64に揺動自在に支持される。ベースフレーム60は、y軸方向の他端が、シリンダ66で支持される。ベースフレーム60は、シリンダ66のシャフトを伸縮させることにより、軸62を中心に揺動する。これにより、ステージ20及びカメラ30が連動して傾斜する。すなわち、ステージ20及びカメラ30が一体となって傾斜する。シリンダ66は、駆動部の一例である。なお、本実施の形態のステージ20には、ワークWを吸着保持する機構(真空吸着機構、静電吸着機構等)が備えられる。
照明装置40は、ステージ上のワークに対して、一定位置から照明光を照射する。本実施の形態では、図22に示すように、光源ユニット42が、ステージ20の左斜め上の位置に設置され、左斜め上のから斜めに照明光を照射する。光源ユニット42の構成は、上記第1の実施の形態の照明装置40の光源ユニット42と同じである。
以上のように構成される本実施の形態の表面検査装置1によれば、シリンダ66を駆動して、ベースフレーム60を傾斜させると、ステージ20及びカメラ30が連動して傾斜する。これにより、光源ユニット42から照射される照明光の当たり方が変わる。最適な傾斜角度を特定し、その角度でワークの検査を実施する。
このように、ステージ20及びカメラ30を連動して動かして、照明光の当て方を変える構成とすることもできる。
なお、本実施の形態では、ステージ20及びカメラ30を連動して傾斜させて、照明光の当て方を変える構成としているが、この他、ステージ20及びカメラ30を連動して移動させて、照明光の当て方を変える構成とすることもできる。
また、上記実施の形態では、一方向にのみ傾斜させているが、多方向に傾斜させて、照明光の当て方を変える構成としてもよい。
また、上記実施の形態では、一定位置から照明光を照射する構成としているが、照明装置側も移動又は傾斜できる構成としてもよい。
[その他の実施の形態]
[検査対象]
上記実施の形態では、枚葉のワークを検査する場合を例に説明したが、帯状のワークを検査する場合にも本発明は適用できる。
図23は、帯状のワークを検査する場合の撮像装置の構成の一例を示す図である。
帯状のワークWは、水平な姿勢で一方向に一定の速度で連続的に搬送される(たとえば、ロールツーロール方式で搬送される。)。
カメラ30は、ワークWの表面と同じ高さの位置に設置され、ワークWの表面(画像取得面)が合焦面に設定される。カメラ30の撮像範囲PAは、ワークWの幅方向(搬送方向と直交する方向)の全域が一度に撮像できる範囲に設定されることが好ましい。
検査の際は、照明装置40を最適な照明状態に設定して、ワークWを撮像する。撮像は、ワークWの搬送に同期して行われ、搬送方向の一部をオーバーラップさせながら連続的にワークWを撮像する。
また、上記実施の形態では、シート状のワークの表面を検査する場合を例に説明したが、本発明の表面検査装置は、立体物の表面を検査する場合にも適用できる。この場合、検査対象とする面に合わせて合焦面が設定される。
[カメラ]
カメラについては、焦点調節機構を備えてもよい。この場合、たとえば、結像光学系の全体を光軸Zに沿って全体移動させて、焦点調節を行う。あるいは、撮像素子33を光軸に沿って前後移動させて、焦点調節を行う。
[照明装置]
上記実施の形態では、光源としてLEDを使用する場合を例に説明したが、光源の種類は、これに限定されるものではない。光源は、検査対象等に応じて、適宜選択できる。
1 表面検査装置
10 撮像装置
20 ステージ
20a ワーク載置面
22 回転軸
24 軸受
26 モータ
30 カメラ
30a〜30d カメラ
31 筐体
31a 撮像窓
32 結像光学系
33 撮像素子
40 照明装置
42 光源ユニット
42a〜42j 光源ユニット
42[ij] 光源ユニット
43 光源
43a 発光素子
44 移動機構
46a ガイドレール
46b スライダ
48a 送りネジ
48b モータ
48c ナット
50 首振り機構
52 軸
54 軸受
56 モータ
60 ベースフレーム
62 軸
64 軸受
66 シリンダ
100 検査装置本体
101 CPU
102 RAM
103 ROM
104 HDD
106 表示部
107 入出力インターフェース
108 通信部
111 カメラ制御部
112 照明制御部
113 画像入力部
114 画像処理部
115 照明条件決定部
116 検査部
117 表示制御部
118 記録制御部
119 通信制御部
A 光軸の近傍の光束
B 最大画角の光束
C1 接合レンズ
GF 光学系の前群
GR 光学系の後群
I 中間像
L1 レンズ(第1レンズ)
L2 レンズ(第2レンズ)
L3 レンズ(第3レンズ)
L4 レンズ(第4レンズ)
L5 レンズ(第5レンズ)
L6 レンズ(第6レンズ)
L7 レンズ(第7レンズ)
M1 ミラー
Obj 物体面
PA 撮像範囲
RO 光学系
Sim 結像面
St 開口絞り
SI1〜SI3 ワークの撮像画像に写るワーク表面の欠陥
W ワーク
WI1 ワークの撮像画像
WI2 ワークの撮像画像
WI3 ワークの撮像画像
WI4 ワークの撮像画像
Ymax 最大像高
Z 光軸
S11〜S18 最適な照明位置を決定する処理の手順

Claims (16)

  1. 画像取得面が合焦面である結像光学系を備え、撮像範囲内の被写体を被写界深度内に収めて斜めから撮像して画像データを取得する撮像部と、
    前記被写体に照射する照明光の主光線の向き及び/又は前記照明光の光源部の位置が可変である照明部と、
    を備えた撮像装置。
  2. 前記画像データに画像処理を施す画像処理部を更に備え、
    前記画像処理部は、前記照明光の主光線の向き及び/又は前記照明光の光源部の位置を変えることで生じる前記画像データの差異を強調する処理を行う、
    請求項1に記載の撮像装置。
  3. 前記照明部は、
    光源部と、
    前記光源部の移動機構と、
    を備え、前記移動機構で前記光源部を移動させて、前記照明光の前記光源部の位置を変える、
    請求項1又は2に記載の撮像装置。
  4. 前記照明部は、前記光源部の首振り機構を更に備え、前記首振り機構で前記光源部の向きを変えて、前記照明光の主光線の向きを変える、
    請求項3に記載の撮像装置。
  5. 前記照明部は、
    光源部と、
    前記光源部の首振り機構と、
    を備え、前記首振り機構で前記光源部の向きを変えて、前記照明光の主光線の向きを変える、
    請求項1又は2に記載の撮像装置。
  6. 前記照明部は、複数の光源部を備え、点灯させる前記光源部を変えて、前記照明光の前記光源部の位置を変える、
    請求項1又は2に記載の撮像装置。
  7. 前記照明部は、前記光源部の首振り機構を更に備え、前記首振り機構で前記光源部の向きを変えて、前記照明光の主光線の向きを変える、
    請求項6に記載の撮像装置。
  8. 複数の前記光源部がマトリクス状に配置される、
    請求項6又は7に記載の撮像装置。
  9. 複数の前記光源部が円弧状に配置される、
    請求項6から8のいずれか1項に記載の撮像装置。
  10. 前記撮像範囲が重複して設定された複数の前記撮像部を備えた、
    請求項1から9のいずれか1項に記載の撮像装置。
  11. 前記被写体を保持する保持部と、
    前記保持部の回転機構と、
    を更に備えた請求項1から10のいずれか1項に記載の撮像装置。
  12. 画像取得面が合焦面である結像光学系を備え、撮像範囲内の被写体を被写界深度内に収めて斜めから撮像して画像データを取得する撮像部と、
    前記被写体に照明光を照射する照明部と、
    前記被写体を保持する保持部と、
    前記撮像部及び前記保持部を連動して移動又は傾斜させる駆動部と、
    を備えた撮像装置。
  13. 前記画像データに画像処理を施す画像処理部を更に備え、
    前記画像処理部は、前記照明光の主光線の向き及び/又は前記照明光の光源部の位置を変えることで生じる前記画像データの差異を強調する処理を行う、
    請求項12に記載の撮像装置。
  14. 前記撮像部の前記結像光学系は、物体側から順に、正のパワーを有する1つのミラーと、複数のレンズからなり正のパワーを有する光学系と、を有し、前記ミラーと前記光学系との間に中間像を結像する、
    請求項1から13のいずれか1項に記載の撮像装置。
  15. 前記ミラー及び前記光学系は、共通の光軸を有し、かつ、前記光軸を回転軸とする回転対称な形状を有する、
    請求項14に記載の撮像装置。
  16. 請求項1から15のいずれか1項に記載の撮像装置と、
    前記撮像部で取得される前記画像データを用いて、ワークの表面を検査する検査部と、
    を備えた表面検査装置。
JP2019217367A 2019-11-29 2019-11-29 撮像装置及び表面検査装置 Active JP7266514B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019217367A JP7266514B2 (ja) 2019-11-29 2019-11-29 撮像装置及び表面検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019217367A JP7266514B2 (ja) 2019-11-29 2019-11-29 撮像装置及び表面検査装置

Publications (2)

Publication Number Publication Date
JP2021086121A true JP2021086121A (ja) 2021-06-03
JP7266514B2 JP7266514B2 (ja) 2023-04-28

Family

ID=76087579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019217367A Active JP7266514B2 (ja) 2019-11-29 2019-11-29 撮像装置及び表面検査装置

Country Status (1)

Country Link
JP (1) JP7266514B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7415215B1 (ja) 2023-09-05 2024-01-17 ダイトロン株式会社 外観検査装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11281585A (ja) * 1998-03-26 1999-10-15 Nikon Corp 検査方法及び装置
JP2007240323A (ja) * 2006-03-08 2007-09-20 Toppan Printing Co Ltd 周期性パターンの欠陥検査方法及び欠陥検査装置
JP2007327896A (ja) * 2006-06-09 2007-12-20 Canon Inc 検査装置
JP2014098750A (ja) * 2012-11-13 2014-05-29 Mitsubishi Electric Corp 投写光学系及び投写型表示装置
JP2016161317A (ja) * 2015-02-27 2016-09-05 東レエンジニアリング株式会社 検査装置
JP2019203691A (ja) * 2016-11-11 2019-11-28 オムロン株式会社 照明装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11281585A (ja) * 1998-03-26 1999-10-15 Nikon Corp 検査方法及び装置
JP2007240323A (ja) * 2006-03-08 2007-09-20 Toppan Printing Co Ltd 周期性パターンの欠陥検査方法及び欠陥検査装置
JP2007327896A (ja) * 2006-06-09 2007-12-20 Canon Inc 検査装置
JP2014098750A (ja) * 2012-11-13 2014-05-29 Mitsubishi Electric Corp 投写光学系及び投写型表示装置
JP2016161317A (ja) * 2015-02-27 2016-09-05 東レエンジニアリング株式会社 検査装置
JP2019203691A (ja) * 2016-11-11 2019-11-28 オムロン株式会社 照明装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7415215B1 (ja) 2023-09-05 2024-01-17 ダイトロン株式会社 外観検査装置

Also Published As

Publication number Publication date
JP7266514B2 (ja) 2023-04-28

Similar Documents

Publication Publication Date Title
JP4871264B2 (ja) 顕微鏡画像撮像装置
KR101207198B1 (ko) 기판 검사장치
US7394531B2 (en) Apparatus and method for automatic optical inspection
JP3386269B2 (ja) 光学検査装置
CN108291854B (zh) 光学检查装置、透镜以及光学检查方法
US8681211B2 (en) High speed optical inspection system with adaptive focusing
JP6692660B2 (ja) 撮像装置
TW201100779A (en) System and method for inspecting a wafer (3)
TW200932409A (en) Laser processing device
KR20110010749A (ko) 관찰 장치 및 관찰 방법
JP4234402B2 (ja) 電子回路部品像取得装置
KR20150087538A (ko) 카메라 모듈 초점 조정 장치 및 방법
TW508984B (en) An inspection device for components
JP7266514B2 (ja) 撮像装置及び表面検査装置
JP2018032005A (ja) オートフォーカスシステム、方法及び画像検査装置
JPH05160231A (ja) ボンデイングワイヤ検査装置
KR101653176B1 (ko) 자동초점거리 조절 기능을 갖는 렌즈 검사장치
JP5197712B2 (ja) 撮像装置
WO2009113647A1 (ja) 顕微鏡システム
WO2016111025A1 (ja) 外観検査装置
JP7123403B2 (ja) 画像検査装置
JP2012181341A (ja) 顕微鏡装置
JP2021085815A (ja) 光照射装置、検査システム、及び、光照射方法
JP2862833B2 (ja) 半田付外観検査装置
JP3992182B2 (ja) 顕微鏡装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230418

R150 Certificate of patent or registration of utility model

Ref document number: 7266514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150