JP2021080157A - Manufacturing method of structure having super water repellent surface - Google Patents

Manufacturing method of structure having super water repellent surface Download PDF

Info

Publication number
JP2021080157A
JP2021080157A JP2020162549A JP2020162549A JP2021080157A JP 2021080157 A JP2021080157 A JP 2021080157A JP 2020162549 A JP2020162549 A JP 2020162549A JP 2020162549 A JP2020162549 A JP 2020162549A JP 2021080157 A JP2021080157 A JP 2021080157A
Authority
JP
Japan
Prior art keywords
sio
nanoparticles
producing
powder
superhydrophobic surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020162549A
Other languages
Japanese (ja)
Inventor
李岩康
Yankang Li
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Yanji Technology Co Ltd
Original Assignee
Zhejiang Yanji Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Yanji Technology Co Ltd filed Critical Zhejiang Yanji Technology Co Ltd
Publication of JP2021080157A publication Critical patent/JP2021080157A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1687Use of special additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/18Fireproof paints including high temperature resistant paints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances

Abstract

To provide a manufacturing method of powder with super water repellency having extended service life.SOLUTION: Super water repellent powder contains powder obtained from modified SiO2 nanoparticles and SiO2 alcosol. Using SiO2 nanoparticles as a raw material, modified SiO2 nanoparticles and SiO2 alcosol are prepared; the modified SiO2 nanoparticles include SiO2 nanoparticles as a modifier and a gain gain agent called as diphenyl ketone ketone and hexahydrophthalic anhydride; and the SiO2 alkazole contains a photocatalyst.EFFECT: The super water repellent surface of the powder has a contact angle of 158° or larger and a rolling angle of 5° or smaller.SELECTED DRAWING: Figure 1

Description

本発明は材料技術分野に属し、具体的には超撥水性表面を有する構造体の製造方法に関する。 The present invention belongs to the field of materials technology, and specifically relates to a method for producing a structure having a superhydrophobic surface.

超撥水は極端な湿潤現象である。一般に、超撥水とは、濡れ現象において高度な撥水性によって面に対して150°を超える接触角で水滴が接する現象のことである。また、表面での水滴の転動(摺動)角が10°以下の場合、表面が自動清掃されると考えられる。一般に、撥水性は表面張力の低い分子残基で表面を覆うことにより表現され、表面張力の低い分子残基だけでは表現されにくい。超撥水性表面は、その独特の湿潤特性がため、凍結防止、セルフクリーニング、抵抗低減、防曇、耐腐食等の機能に応用でき、建築、紡織、通信、航海、航空等の分野で、応用価値が高い。周知のように、蓮の葉等の表面のマイクロ・ナノ構造とワックス材との共同作用は、超撥水を形成する要因である。 Superhydrophobicity is an extreme wetting phenomenon. In general, superhydrophobicity is a phenomenon in which water droplets come into contact with a surface at a contact angle of more than 150 ° due to a high degree of water repellency in a wetting phenomenon. Further, when the rolling (sliding) angle of water droplets on the surface is 10 ° or less, it is considered that the surface is automatically cleaned. In general, water repellency is expressed by covering the surface with molecular residues having a low surface tension, and is difficult to express only by molecular residues having a low surface tension. Due to its unique moisturizing properties, the superhydrophobic surface can be applied to functions such as anti-freezing, self-cleaning, resistance reduction, anti-fog, and corrosion resistance, and is applied in the fields of architecture, textiles, communications, navigation, aviation, etc. High value. As is well known, the joint action between the micro / nanostructure on the surface of lotus leaves and the like and the wax material is a factor forming superhydrophobicity.

現在の超撥水性材料は、比較的温和な条件で超撥水性を達成することができるが、超撥水性表面の特殊なマイクロ・ナノ構造は、外部環境への適応性が悪く、強酸、強塩基、高濃度塩、高温、有機溶媒、気体、粒子、細菌汚染、紫外光照射、機械的摩耗等の複雑な作業条件では、表面構造が汚染されまたは破壊される。例えば、埃や塩の堆積による水分蒸発の過程で、粒子が分離して表面に堆積することによって、超撥水性が失われてしまう。従来の技術では、高温、酸性環境、塩基性環境、紫外線、埃などの汚染物、粒子や細菌の溜まり、による表面へのダメージを防止することができず、超撥水性表面の実用化が著しく制限されていた。多くの文献では、超撥水性膜及びその製造方法を開示したが、表面処理加工が複雑になりやすく、コストも高い。また、有機ポリマーをベースとした超撥水性表面の場合、低コストであるが、得られる超撥水性表面の耐溶剤性、耐食性が低いため、実用上の問題がある。 Current super-water-repellent materials can achieve super-water repellency under relatively mild conditions, but the special micro-nano structure of the super-water-repellent surface is poorly adaptable to the external environment, and is strong acid and strong. Complex working conditions such as bases, high concentrations of salts, high temperatures, organic solvents, gases, particles, bacterial contamination, ultraviolet light irradiation, mechanical wear and the like contaminate or destroy the surface structure. For example, in the process of water evaporation due to the accumulation of dust and salt, particles are separated and deposited on the surface, so that superhydrophobicity is lost. Conventional technology cannot prevent damage to the surface due to high temperature, acidic environment, basic environment, contaminants such as ultraviolet rays and dust, and accumulation of particles and bacteria, and the practical use of superhydrophobic surfaces is remarkable. It was restricted. Although many documents have disclosed a superhydrophobic film and a method for producing the superhydrophobic film, the surface treatment process tends to be complicated and the cost is high. Further, in the case of a superhydrophobic surface based on an organic polymer, the cost is low, but there is a practical problem because the obtained superhydrophobic surface has low solvent resistance and corrosion resistance.

中国特許出願公開第102849962号明細書Chinese Patent Application Publication No. 1028499662

本発明の目的は、表面粗さ構造及び表面粗さを増加させ、水接触角を大きくし、転動角及び水に対する粘性力を低減し、耐摩耗性及び高温安定性を向上させ、耐紫外線性を向上させて紫外線による接触角の損失率を低減し、使用寿命を延ばし、防水防汚効果に優れた、超撥水性表面を有する構造体の製造方法を提供することである。 An object of the present invention is to increase the surface roughness structure and surface roughness, increase the water contact angle, reduce the rolling angle and viscous force against water, improve wear resistance and high temperature stability, and resist ultraviolet rays. It is an object of the present invention to provide a method for producing a structure having a superhydrophobic surface, which improves the property, reduces the loss rate of the contact angle due to ultraviolet rays, extends the service life, and has an excellent waterproof and antifouling effect.

本発明の技術プランを説明する。 The technical plan of the present invention will be described.

超撥水性を有する粉体の製造方法であって、SiOナノ粒子を原料としてそれぞれ改質SiOナノ粒子とSiOアルコゾールとを製造し、前記SiOアルコゾールは光触媒を含み、前記改質SiOナノ粒子が、SiOナノ粒子を改質剤とゲインゲイン剤によって製造され、前記ゲイン剤がジフェニルケトンケトンとヘキサヒドロフタル酸無水物であり、前記粉体製の超撥水性表面は158°以上の接触角と5°以下の転動角を有する。この方法によれば、粉体からなる超撥水性表面の粗さが向上し、接触角が大きくなり、超撥水性表面の耐摩耗性及び高温安定性が向上し、超撥水性表面又は超撥水性表面を有する構造体の耐熱性、耐摩耗性、及び長寿命化に有利となり、超撥水性及び低粘性力を有する膜又は表面被覆層の製造に用いることができる。 A method of manufacturing a powder having a superhydrophobic, the SiO 2 nanoparticles are manufactured and modified SiO 2 nanoparticles and SiO 2 Arukozoru as the raw material, the SiO 2 Arukozoru includes a photocatalyst, wherein the modified SiO 2 nanoparticles are made of SiO 2 nanoparticles with a modifier and a gain gain agent, the gain agents are diphenylketone ketone and hexahydrophthalic acid anhydride, and the powdered superwater repellent surface is 158 ° C. It has the above contact angle and the rolling angle of 5 ° or less. According to this method, the roughness of the superhydrophobic surface made of powder is improved, the contact angle is increased, the wear resistance and high temperature stability of the superhydrophobic surface are improved, and the superhydrophobic surface or superhydrophobic surface is improved. It is advantageous in heat resistance, abrasion resistance, and long life of a structure having a water-based surface, and can be used for producing a film or a surface coating layer having superhydrophobicity and low viscous force.

本発明において、改質剤の添加量はSiOナノ粒子重量の3‐15%であり、ゲイン剤の添加量はSiOナノ粒子重量の0.03‐0.15%であり、ジフェニルケトンケトンとヘキサヒドロフタル酸無水物の重量比は1:0.5‐1.5(例えば1:0.65又は1:0.8又は1:1.15又は1:1.2等)である。前記ゲイン剤は、フェニル基中の共役π結合をSiOナノ粒子と結合することで安定なSi‐C結合を形成するとともに、改質剤とともに多ユニット構造の凝集体を形成し、この凝集体は分子間力により空間形状が不規則になり、超撥水表面の粗さが増加して超撥水表面の接触角が大きくなり、超撥水表面の耐摩耗性能も向上し、またSi‐C結合が高温環境で安定し、超撥水表面が480℃のときに超撥水特性が失われ始め、24hの450℃高温熱処理を経た後にも、155°以上の接触角の超撥水特性が維持され、超撥水表面を有する構造体の高温安定性と耐久性が向上する。 In the present invention, the addition amount of the modifying agent is 3-15% of SiO 2 nanoparticles by weight, the amount of gain agent is 0.03-0.15% of SiO 2 nanoparticles by weight, diphenyl ketone ketone The weight ratio of hexahydrophthalic anhydride to is 1: 0.5-1.5 (eg 1: 0.65 or 1: 0.8 or 1: 1.15 or 1: 1.2, etc.). The gain agent forms a stable SiC bond by binding the conjugated π bond in the phenyl group to the SiO 2 nanoparticles, and also forms an aggregate having a multi-unit structure together with the modifier. Due to the intermolecular force, the spatial shape becomes irregular, the roughness of the superhydrophobic surface increases, the contact angle of the superhydrophobic surface increases, the wear resistance performance of the superhydrophobic surface improves, and Si- The C bond is stable in a high temperature environment, and when the superhydrophobic surface is 480 ° C, the superhydrophobic property begins to be lost, and even after undergoing a high temperature heat treatment at 450 ° C for 24 hours, the superhydrophobic property with a contact angle of 155 ° or more Is maintained, and the high temperature stability and durability of the structure having a superhydrophobic surface are improved.

本発明において、改質剤としては、例えば、n‐オクチルトリエトキシシラン、ポリジメチルシロキサン、メチルトリエトキシシラン、フェニルトリメトキシシラン等を用いることができ、好ましくは、改質剤がフェニルトリメトキシシランである。 In the present invention, for example, n-octyltriethoxysilane, polydimethylsiloxane, methyltriethoxysilane, phenyltrimethoxysilane and the like can be used as the modifier, and the modifier is preferably phenyltrimethoxysilane. Is.

本発明において、SiOナノ粒子の製造条件は、原料の重量比が、ケイ素源:水:アンモニア水:アルコール=1:4‐6:1‐3:10‐13であり、反応温度が40‐50℃であり、時間が4‐6hである。 In the present invention, the conditions for producing SiO 2 nanoparticles are that the weight ratio of the raw materials is silicon source: water: ammonia water: alcohol = 1: 4-6: 1-3: 10-13, and the reaction temperature is 40-. It is 50 ° C. and the time is 4-6 h.

ルコールは無水エタノールであり、アンモニア水の重量分率は20‐30%であり、ケイ素源は、オルトケイ酸メチル類、オルトケイ酸エチル類から選ばれる一種または複数種であり、オルトケイ酸メチル、オルトケイ酸エチルに限定されず、好ましくは、ケイ素源はオルトケイ酸テトラエチルである。 Lucor is absolute ethanol, the weight fraction of aqueous ammonia is 20-30%, and the silicon source is one or more selected from methyl orthosilicates and ethyl orthosilicates, methyl orthosilicate, orthosilicate. The silicon source is preferably tetraethyl orthosilicate, not limited to ethyl.

本発明では、アルコールゾル中の光触媒の量が15‐35wt%であり、光触媒の例は、Bi‐TiO、Co‐TiO、Fe‐TiO、V‐TiOに限定されず、好ましくは、光触媒がTiOである。光触媒は、光照射や紫外線でフリーラジカルを発生させて紫外保護の効果を達成でき、さらに超撥水表面の熱凝集を低減し、構造体の耐熱性を向上させ、マイナスイオンを外に放出し、環境に有益な影響を与える。 In the present invention, the amount of photocatalyst in the alcohol sol is 15-35 wt%, and examples of photocatalysts are Bi 2 O 3- TIO 2 , Co- TIO 2 , Fe 2 O 3- TI O 2 , V 2 O 5-. The photocatalyst is preferably TiO 2 , not limited to TiO 2 . The photocatalyst can achieve the effect of UV protection by generating free radicals by light irradiation or ultraviolet rays, further reduces thermal aggregation on the superhydrophobic surface, improves the heat resistance of the structure, and releases negative ions to the outside. , Has a beneficial impact on the environment.

本発明において、SiOアルコゾールは、SiOナノ粒子をエタノールに入れ、さらに濃度が4‐8wt%の塩酸と光触媒を加えて均一に撹拌分散した後、35‐60℃環境下で24‐48h熟成させることによって、得られる。SiOアルコゾールは、熟成及び硬化した後、超撥水性表面構造の内部に多孔質ゲルを形成し、表面が摩耗した後、内部における多孔質ゲルは多孔質構造が露出し、表面は新たな粗面構造及び粗さを有し、超撥水性を維持し、超撥水性表面の耐摩耗性を向上させ、使用寿命を延ばす。 In the present invention, SiO 2 alkozole is aged in an environment of 35-60 ° C. for 24-48 hours after the SiO 2 nanoparticles are placed in ethanol, hydrochloric acid having a concentration of 4-8 wt% and a photocatalyst are added, and the mixture is uniformly stirred and dispersed. It is obtained by letting it. After aging and curing of SiO 2 arcozole, a porous gel is formed inside the superhydrophobic surface structure, and after the surface is worn, the porous gel inside exposes the porous structure and the surface is newly roughened. It has a surface structure and roughness, maintains superhydrophobicity, improves wear resistance of the superhydrophobic surface, and extends the service life.

本発明では、超撥水性を有する粉体は、超撥水性及び低粘性力を有する膜や表面被覆層に用いることができる。具体的には、建築物、車体、船舶体、容器、流体配管等の構造体の保護膜に用いることができ、冷蔵庫、電子レンジ、洗濯機等の家電製品や、コンピュータ、テレビ、携帯電話等の通信用電子製品の表面被覆に用いることもできる。 In the present invention, the powder having superhydrophobicity can be used for a film or surface coating layer having superhydrophobicity and low viscous force. Specifically, it can be used as a protective film for structures such as buildings, car bodies, ships, containers, and fluid pipes, and can be used for home appliances such as refrigerators, microwave ovens, and washing machines, computers, televisions, mobile phones, etc. It can also be used for the surface coating of electronic products for communication.

本発明はまた、超撥水性表面を有する構造体の製造方法を提供し、超撥水性表面を有する構造体の製造方法は、前記プレポリマー溶液を清潔な基体構造に塗りつける工程と、前記プレポリマー溶液を前記基体構造で硬化させて、安定した超撥水性表面を有する構造体を形成する工程と、を含み、前記プレポリマー溶液の溶質が、超撥水性を有する粉体である。この方法により製造された構造体は、超撥水性表面が水の連続膜の形成を阻止しつつ、表面に水流を形成させて埃を除去することができ、優れた防水防汚効果を有し、流体移動用容器の製造に用いることができ、耐紫外線性能に優れ、使用寿命が長い。 The present invention also provides a method for producing a structure having a super-water-repellent surface, wherein the method for producing a structure having a super-water-repellent surface includes a step of applying the prepolymer solution to a clean substrate structure and the prepolymer. The solute of the prepolymer solution is a powder having super water repellency, which comprises a step of curing the solution with the substrate structure to form a structure having a stable super water repellent surface. The structure produced by this method has an excellent waterproof and antifouling effect because the superhydrophobic surface prevents the formation of a continuous film of water while forming a water stream on the surface to remove dust. , Can be used in the manufacture of fluid transfer containers, has excellent UV resistance, and has a long service life.

本発明において、基体構造は任意の形状の誘電体、半導体、絶縁体又は導体構造であり、ポリマー、セラミックス、金属、金属化合物、繊維、皮革、ガラス、プラスチック、及び木材等を含むが、これらに限定されるものではない。 In the present invention, the substrate structure is a dielectric, semiconductor, insulator or conductor structure of any shape, including polymers, ceramics, metals, metal compounds, fibers, leather, glass, plastics, wood and the like. It is not limited.

本発明では、塗付けの具体的手段は、ディップコート、スピンコート、スプレーコート、エナメル塗工、スキージングに限定されるものではない。 In the present invention, the specific means of coating is not limited to dip coating, spin coating, spray coating, enamel coating, and squeezing.

本発明において、プレポリマー溶液の硬化操作条件は、温度が100‐120℃であり、時間が2‐6hである。 In the present invention, the curing operation conditions of the prepolymer solution are a temperature of 100-120 ° C. and a time of 2-6 hours.

一、本発明の超撥水性を有する構造体の製造方法で製造される粉体は、接触角が大きく、耐摩耗性に優れ、使用寿命が長く、超撥水性及び低粘性力を有する膜や表面被覆層に用いることができる。
二、本発明の超撥水性を有する構造体の製造方法は、粉体から作られた超撥水表面の高温安定性を上げられ、超撥水表面が480℃のときに超撥水特性が失われ始め、24hの450℃高温熱処理を経た後にも、155°以上の接触角の超撥水特性が維持される。
三、本発明の超撥水性を有する構造体の製造方法で製造される構造体は、安定の超撥水性表面を有し、優れた防水防汚効果を有し、流体移動用容器の製造に用いることができ、耐紫外線性能に優れ、使用寿命が長く、基体構造は材料や形状における制限がなく、高温、紫外光照射、及び機械的摩耗等の複雑な作業条件に制限されない。
本発明の超撥水性を有する構造体の製造方法は、従来技術における不足を補い、設計が合理的で、操作が簡便である。
1. The powder produced by the method for producing a structure having superhydrophobicity of the present invention has a large contact angle, excellent wear resistance, a long service life, and a film having superhydrophobicity and low viscosity. It can be used as a surface coating layer.
2. The method for producing a superhydrophobic structure of the present invention can improve the high temperature stability of a superhydrophobic surface made from powder, and has superhydrophobic properties when the superhydrophobic surface is 480 ° C. Even after it begins to be lost and undergoes a high temperature heat treatment at 450 ° C. for 24 hours, the superhydrophobic property having a contact angle of 155 ° or more is maintained.
3. The structure manufactured by the method for manufacturing a structure having superhydrophobicity of the present invention has a stable superhydrophobic surface, has an excellent waterproof and antifouling effect, and is suitable for manufacturing a fluid transfer container. It can be used, has excellent UV resistance, has a long service life, has no restrictions on the material or shape of the substrate structure, and is not limited to complicated working conditions such as high temperature, ultraviolet light irradiation, and mechanical wear.
The method for producing a structure having superhydrophobicity of the present invention makes up for the deficiency in the prior art, has a rational design, and is easy to operate.

異なる超撥水性表面の水接触角が摩耗試験における変化図Changes in water contact angles on different superhydrophobic surfaces in wear tests 異なる超撥水性表面の接触角と熱処理温度との関係を示す図The figure which shows the relationship between the contact angle of different superhydrophobic surfaces and the heat treatment temperature. 異なる超撥水性表面の接触角が450℃の高温における耐久性を示す図Figure showing durability at high temperature of 450 ℃ with contact angle of different superhydrophobic surfaces 異なる超撥水性表面の接触角と紫外線劣化処理時間との関係を示す図The figure which shows the relationship between the contact angle of different superhydrophobic surfaces and the ultraviolet deterioration treatment time.

以下に図面と合わせて本発明の技術プランを説明する。 The technical plan of the present invention will be described below together with the drawings.

超撥水性を有する粉体の製造方法であって、SiOナノ粒子を原料としてそれぞれ改質SiOナノ粒子とSiOアルコゾールとを製造し、前記SiOアルコゾールは光触媒を含み、前記改質SiOナノ粒子が、SiOナノ粒子を改質剤とゲインゲイン剤によって製造され、前記ゲイン剤がジフェニルケトンケトンとヘキサヒドロフタル酸無水物であり、前記粉体製の超撥水性表面は158°以上の接触角と5°以下の転動角を有する。この方法によれば、粉体からなる超撥水性表面の粗さが向上し、接触角が大きくなり、超撥水性表面の耐摩耗性及び高温安定性が向上し、超撥水性表面又は超撥水性表面を有する構造体の耐熱性、耐摩耗性、及び長寿命化に有利となり、超撥水性及び低粘性力を有する膜又は表面被覆層の製造に用いることができる。 A method of manufacturing a powder having a superhydrophobic, the SiO 2 nanoparticles are manufactured and modified SiO 2 nanoparticles and SiO 2 Arukozoru as the raw material, the SiO 2 Arukozoru includes a photocatalyst, wherein the modified SiO 2 nanoparticles are made of SiO 2 nanoparticles with a modifier and a gain gain agent, the gain agents are diphenylketone ketone and hexahydrophthalic acid anhydride, and the powdered superwater repellent surface is 158 ° C. It has the above contact angle and the rolling angle of 5 ° or less. According to this method, the roughness of the superhydrophobic surface made of powder is improved, the contact angle is increased, the wear resistance and high temperature stability of the superhydrophobic surface are improved, and the superhydrophobic surface or superhydrophobic surface is improved. It is advantageous in heat resistance, abrasion resistance, and long life of a structure having a water-based surface, and can be used for producing a film or a surface coating layer having superhydrophobicity and low viscous force.

本発明において、改質剤の添加量はSiOナノ粒子重量の3‐15%であり、ゲイン剤の添加量はSiOナノ粒子重量の0.03‐0.15%であり、ジフェニルケトンケトンとヘキサヒドロフタル酸無水物の重量比は1:0.5‐1.5(例えば1:0.65又は1:0.8又は1:1.15又は1:1.2等)である。前記ゲイン剤は、フェニル基中の共役π結合をSiOナノ粒子と結合することで安定なSi‐C結合を形成するとともに、改質剤とともに多ユニット構造の凝集体を形成し、この凝集体は分子間力により空間形状が不規則になり、超撥水表面の粗さが増加して超撥水表面の接触角が大きくなり、超撥水表面の耐摩耗性能も向上し、またSi‐C結合が高温環境で安定し、超撥水表面が480℃のときに超撥水特性が失われ始め、24hの450℃高温熱処理を経た後にも、155°以上の接触角の超撥水特性が維持され、超撥水表面を有する構造体の高温安定性と耐久性が向上する。
本発明において、改質剤としては、例えば、n‐オクチルトリエトキシシラン、ポリジメチルシロキサン、メチルトリエトキシシラン、フェニルトリメトキシシラン等を用いることができ、好ましくは、改質剤がフェニルトリメトキシシランである。
In the present invention, the addition amount of the modifying agent is 3-15% of SiO 2 nanoparticles by weight, the amount of gain agent is 0.03-0.15% of SiO 2 nanoparticles by weight, diphenyl ketone ketone The weight ratio of hexahydrophthalic anhydride to is 1: 0.5-1.5 (eg 1: 0.65 or 1: 0.8 or 1: 1.15 or 1: 1.2, etc.). The gain agent forms a stable SiC bond by binding the conjugated π bond in the phenyl group to the SiO 2 nanoparticles, and also forms an aggregate having a multi-unit structure together with the modifier. Due to the intermolecular force, the spatial shape becomes irregular, the roughness of the superhydrophobic surface increases, the contact angle of the superhydrophobic surface increases, the wear resistance performance of the superhydrophobic surface improves, and Si- The C bond is stable in a high temperature environment, and when the superhydrophobic surface is 480 ° C, the superhydrophobic property begins to be lost, and even after undergoing a high temperature heat treatment at 450 ° C for 24 hours, the superhydrophobic property with a contact angle of 155 ° or more Is maintained, and the high temperature stability and durability of the structure having a superhydrophobic surface are improved.
In the present invention, for example, n-octyltriethoxysilane, polydimethylsiloxane, methyltriethoxysilane, phenyltrimethoxysilane and the like can be used as the modifier, and the modifier is preferably phenyltrimethoxysilane. Is.

本発明において、SiOナノ粒子の製造条件は、原料の重量比が、ケイ素源:水:アンモニア水:アルコール=1:4‐6:1‐3:10‐13(例えば、1:4.5:1.5:11または1:5:2.5:12.5または1:5.5:3:11.5など)であり、反応温度が40‐50℃であり、時間が4‐6hである。 In the present invention, the manufacturing conditions of SiO 2 nanoparticles are such that the weight ratio of the raw material is silicon source: water: ammonia water: alcohol = 1: 4-6: 1-3: 10-13 (for example, 1: 4.5). : 1.5: 11 or 1: 5: 2.5: 12.5 or 1: 5.5: 3: 11.5, etc.), the reaction temperature is 40-50 ° C, and the time is 4-6 h. Is.

また、アルコールは無水エタノールであり、アンモニア水の重量分率は20‐30%であり、ケイ素源は、オルトケイ酸メチル類、オルトケイ酸エチル類から選ばれる一種または複数種であり、オルトケイ酸メチル、オルトケイ酸エチルに限定されず、好ましくは、ケイ素源はオルトケイ酸テトラエチルである。
さらに、得られたSiOナノ粒子は、改質SiOナノ粒子の製造に用い、残りの1/4はSiOアルコゾールの製造に用いる。
The alcohol is absolute ethanol, the weight fraction of aqueous ammonia is 20-30%, and the silicon source is one or more selected from methyl orthosilicates and ethyl orthosilicates, and methyl orthosilicate, The silicon source is preferably tetraethyl orthosilicate, not limited to ethyl orthosilicate.
Further, the obtained SiO 2 nanoparticles are used for producing modified SiO 2 nanoparticles, and the remaining 1/4 is used for producing SiO 2 arcozole.

本発明では、アルコールゾル中の光触媒の量が15‐35wt%であり、光触媒の例は、Bi‐TiO、Co‐TiO、Fe‐TiO、V‐TiOに限定されず、好ましくは、光触媒がTiOである。光触媒は、光照射や紫外線でフリーラジカルを発生させて紫外保護の効果を達成でき、さらに超撥水表面の熱凝集を低減し、構造体の耐熱性を向上させ、マイナスイオンを外に放出し、環境に有益な影響を与える。 In the present invention, the amount of photocatalyst in the alcohol sol is 15-35 wt%, and examples of photocatalysts are Bi 2 O 3- TIO 2 , Co- TIO 2 , Fe 2 O 3- TI O 2 , V 2 O 5-. The photocatalyst is preferably TiO 2 , not limited to TiO 2 . The photocatalyst can achieve the effect of UV protection by generating free radicals by light irradiation or ultraviolet rays, further reduces thermal aggregation on the superhydrophobic surface, improves the heat resistance of the structure, and releases negative ions to the outside. , Has a beneficial impact on the environment.

本発明において、SiOアルコゾールは、SiOナノ粒子をエタノールに入れ、さらに濃度が4‐8wt%の塩酸と光触媒を加えて均一に撹拌分散した後、35‐60℃環境下で24‐48h熟成させ、SiOアルコゾールを得る。SiOアルコゾールは、熟成及び硬化した後、超撥水性表面構造の内部に多孔質ゲルを形成し、表面が摩耗した後、内部における多孔質ゲルは多孔質構造が露出し、表面は新たな粗面構造及び粗さを有し、超撥水性を維持し、超撥水性表面の耐摩耗性を向上させ、使用寿命を延ばす。 In the present invention, SiO 2 alkozole is aged in an environment of 35-60 ° C. for 24-48 hours after the SiO 2 nanoparticles are placed in ethanol, hydrochloric acid having a concentration of 4-8 wt% and a photocatalyst are added, and the mixture is uniformly stirred and dispersed. To obtain SiO 2 alcohol. After aging and curing of SiO 2 arcozole, a porous gel is formed inside the superhydrophobic surface structure, and after the surface is worn, the porous gel inside exposes the porous structure and the surface is newly roughened. It has a surface structure and roughness, maintains superhydrophobicity, improves wear resistance of the superhydrophobic surface, and extends the service life.

本発明では、超撥水性を有する粉体は、超撥水性及び低粘性力を有する膜や表面被覆層に用いることができる。具体的には、建築物、車体、船舶体、容器、流体配管等の構造体の保護膜に用いることができ、冷蔵庫、電子レンジ、洗濯機等の家電製品や、コンピュータ、テレビ、携帯電話等の通信用電子製品の表面被覆に用いることもできる。 In the present invention, the powder having superhydrophobicity can be used for a film or surface coating layer having superhydrophobicity and low viscous force. Specifically, it can be used as a protective film for structures such as buildings, car bodies, ships, containers, and fluid pipes, and can be used for home appliances such as refrigerators, microwave ovens, and washing machines, computers, televisions, mobile phones, etc. It can also be used for the surface coating of electronic products for communication.

本発明はまた、超撥水性表面を有する構造体の製造方法を提供し、超撥水性表面を有する構造体の製造方法は、前記プレポリマー溶液を清潔な基体構造に塗りつける工程と、前記プレポリマー溶液を前記基体構造で硬化させて、安定した超撥水性表面を有する構造体を形成する工程と、を含み、前記プレポリマー溶液の溶質が、超撥水性を有する粉体である。この方法により製造された構造体は、超撥水性表面が水の連続膜の形成を阻止しつつ、表面に水流を形成させて埃を除去することができ、優れた防水防汚効果を有し、流体移動用容器の製造に用いることができ、耐紫外線性能に優れ、使用寿命が長い。 The present invention also provides a method for producing a structure having a super-water-repellent surface, wherein the method for producing a structure having a super-water-repellent surface includes a step of applying the prepolymer solution to a clean substrate structure and the prepolymer. The solute of the prepolymer solution is a powder having super water repellency, which comprises a step of curing the solution with the substrate structure to form a structure having a stable super water repellent surface. The structure produced by this method has an excellent waterproof and antifouling effect because the superhydrophobic surface prevents the formation of a continuous film of water while forming a water flow on the surface to remove dust. , Can be used in the manufacture of fluid transfer containers, has excellent UV resistance, and has a long service life.

本発明において、基体構造は任意の形状の誘電体、半導体、絶縁体又は導体構造であり、ポリマー、セラミックス、金属、金属化合物、繊維、皮革、ガラス、プラスチック、及び木材等を含むが、これらに限定されるものではない。
本発明では、塗付けの具体的手段は、ディップコート、スピンコート、スプレーコート、エナメル塗工、スキージングに限定されるものではない。
In the present invention, the substrate structure is a dielectric, semiconductor, insulator or conductor structure of any shape, including polymers, ceramics, metals, metal compounds, fibers, leather, glass, plastics, wood and the like. It is not limited.
In the present invention, the specific means of coating is not limited to dip coating, spin coating, spray coating, enamel coating, and squeezing.

本発明において、プレポリマー溶液の硬化操作条件は、温度が100‐120℃であり、時間が2‐6hである。 In the present invention, the curing operation conditions of the prepolymer solution are a temperature of 100-120 ° C. and a time of 2-6 hours.

さらに、超撥水性表面を有する構造体の製造方法は、具体的には以下の通りである:
(1)重量比ケイ素源:水:アンモニア水:アルコール=1:4‐6:1‐3:10‐13でケイ素源と水とアンモニア水とアルコールを混合した後、40‐50℃の温度で4‐6h反応させ、分散したSiOナノ粒子を得る。
(2)1/4のSiOナノ粒子を4‐10倍量のエタノールに入れ、さらに濃度4‐8wt%の塩酸と光触媒を加えて均一に撹拌分散した後、35‐60℃環境下に置いて24‐48hエージングし、SiOアルコゾールを得る。
(3)残りの3/4のSiOナノ粒子を5‐10倍量の無水エタノールに溶解し、pHを7‐9に調整した後、改質剤とゲイン剤を添加し、50‐80℃の温度で2‐4h撹拌反応させ、吸引濾過し、エタノールでリンスした後、乾燥し、改質SiOナノ粒子を得る。
(4)基体構造をエタノール中に浸漬し、10‐30min超音波洗浄し、乾燥し、清潔な基体構造を得る。
(5)得られた改質SiOナノ粒子とSiOアルコゾールとを均一に混合し、プレポリマー溶液を形成し、さらにプレポリマー溶液を基体構造上に塗付けた後、100‐120℃の環境下に置いて2‐6h硬化させれば、超撥水表面を有する構造体を得ることができる。
Furthermore, the method for producing a structure having a superhydrophobic surface is specifically as follows:
(1) Weight ratio Silicon source: Water: Ammonia water: Alcohol = 1: 4-6: 1-3: 10-13 After mixing the silicon source, water, ammonia water and alcohol, at a temperature of 40-50 ° C. The reaction is carried out for 4-6 hours to obtain dispersed SiO 2 nanoparticles.
(2) 1/4 of SiO 2 nanoparticles are placed in 4-10 times the amount of ethanol, hydrochloric acid having a concentration of 4-8 wt% and a photocatalyst are added, and the mixture is uniformly stirred and dispersed, and then placed in an environment of 35-60 ° C. Aged for 24-48 hours to obtain SiO 2 alcohol.
(3) The remaining 3/4 SiO 2 nanoparticles were dissolved in 5-10 times the amount of absolute ethanol, the pH was adjusted to 7-9, a modifier and a gain agent were added, and the temperature was 50-80 ° C. The mixture is stirred for 2-4 hours at the same temperature as above, suction-filtered, rinsed with ethanol, and then dried to obtain modified SiO 2 nanoparticles.
(4) The substrate structure is immersed in ethanol, ultrasonically washed for 10 to 30 minutes, and dried to obtain a clean substrate structure.
(5) The obtained modified SiO 2 nanoparticles and SiO 2 arcozole are uniformly mixed to form a prepolymer solution, and the prepolymer solution is further applied onto the substrate structure, and then the environment at 100-120 ° C. If placed underneath and cured for 2-6 hours, a structure having a superhydrophobic surface can be obtained.

実施例1:
超撥水性を有する粉体の製造方法であって、具体的は以下のとおりである:
(1)テトラエチルオルトシリケート:水:アンモニア水:アルコール=1:4.5:2.5:12の重量比で原料を混合した後、50℃の温度で6h反応させ、分散したSiOナノ粒子を得て、前記アルコールは無水エタノールであり、アンモニア水の重量分率は25%である。
(2)1/4のSiOナノ粒子を8倍量のエタノールに入れ、さらに濃度6.5wt%の塩酸とTiOを加えて均一に撹拌分散した後、55℃環境下で35h熟成させ、SiOアルコゾールを得て、前記塩酸の添加量はナノ粒子重量の8%、TiOの量はアルコールゾル重量の20%である。
(3)残りの3/4のSiOナノ粒子を5‐10倍量の無水エタノールに溶解し、pHを8に調整した後、改質剤フェニルトリメトキシシランとゲイン剤を添加し、70℃温度で3.5h撹拌反応させ、吸引濾過し、エタノールでリンスした後、乾燥し、改質SiOナノ粒子を得て、前記フェニルトリメトキシシランの添加量はSiOナノ粒子重量の13.5%であり、ゲイン剤の添加量はSiOナノ粒子重量の0.05%であり、前記ゲイン剤はジフェニルケトンケトンとヘキサヒドロフタル酸無水物であり、その重量比は1:1.5である。
(4)SiOアルコゾールを150℃で乾燥した後、改質SiOナノ粒子と混合し、粉砕して、超撥水性を有する粉体を得る。
Example 1:
A method for producing a powder having superhydrophobicity, the specifics of which are as follows:
(1) Tetraethyl orthosilicate: Water: Ammonia water: Alcohol = 1: 4.5: 2.5: 12 After mixing the raw materials at a weight ratio, they were reacted at a temperature of 50 ° C. for 6 hours to disperse SiO 2 nanoparticles. The alcohol is absolute ethanol, and the weight fraction of aqueous ammonia is 25%.
(2) 1/4 of the SiO 2 nanoparticles were put into 8 times the amount of ethanol, and hydrochloric acid having a concentration of 6.5 wt% and TiO 2 were added, and the mixture was uniformly stirred and dispersed, and then aged for 35 hours in an environment of 55 ° C. Obtaining SiO 2 alkozole, the amount of hydrochloric acid added is 8% of the weight of nanoparticles, and the amount of TiO 2 is 20% of the weight of alcohol sol.
(3) The remaining 3/4 SiO 2 nanoparticles were dissolved in 5-10 times the amount of anhydrous ethanol, the pH was adjusted to 8, and then the modifier phenyltrimethoxysilane and the gain agent were added, and the temperature was 70 ° C. Stirring reaction at temperature for 3.5 hours, suction filtration, rinsing with ethanol, and drying to obtain modified SiO 2 nanoparticles, the amount of phenyltrimethoxysilane added is 13.5 of the weight of SiO 2 nanoparticles. The amount of the gain agent added is 0.05% of the weight of the SiO 2 nanoparticles, and the gain agent is diphenylketone ketone and hexahydrophthalic acid anhydride, and the weight ratio thereof is 1: 1.5. is there.
(4) After drying SiO 2 arcozole at 150 ° C., it is mixed with modified SiO 2 nanoparticles and pulverized to obtain a powder having superhydrophobicity.

実施例2:
超撥水性表面を有する粉体の製造方法は、工程(3)において改質SiOナノ粒子を製造する際に、ゲイン剤ジフェニルケトンケトン及びヘキサヒドロフタル酸無水物を添加しない点で実施例1と異なる。
Example 2:
Example 1 is a method for producing a powder having a super-water-repellent surface in that no gain agent diphenylketone ketone and hexahydrophthalic anhydride are added when the modified SiO 2 nanoparticles are produced in the step (3). Different from.

実施例3:
超撥水性表面を有する構造体の製造方法は、具体的には以下のとおりである:
(1)テトラエチルオルトシリケート:水:アンモニア水:アルコール=1:6:2.5:11.5の重量比で原料を混合した後、50℃の温度で5.5h反応させ、分散したSiOナノ粒子を得て、前記アルコールは無水エタノールであり、アンモニア水の重量分率は28%である。
(2)1/4のSiOナノ粒子を10倍量のエタノールに入れ、さらに濃度7wt%の塩酸とTiOを加えて均一に撹拌分散した後、60℃環境下で30h熟成させ、SiOアルコゾールを得て、前記塩酸の添加量はナノ粒子重量の8%であり、TiOの量はアルコールゾル重量の30%である。
(3)残りの3/4のSiOナノ粒子を5‐10倍量の無水エタノールに溶解し、pHを9に調整した後、フェニルトリメトキシシランとゲイン剤を添加し、80℃の温度で3h撹拌反応させ、吸引濾過し、エタノールでリンスした後、乾燥して改質SiOナノ粒子を得て、前記フェニルトリメトキシシランの添加量はSiOナノ粒子重量の10%であり、ゲイン剤の添加量はSiOナノ粒子重量の0.1%であり、前記ゲイン剤はジフェニルケトンケトンとヘキサヒドロフタル酸無水物であり、その重量比は1:1である。
(4)基体構造をエタノールに浸漬し、30min超音波洗浄し、乾燥し、清潔な基体構造を得る。
(5)得られた改質SiOナノ粒子とSiOアルコゾールとを均一に混合し、プレポリマー溶液を形成し、さらにプレポリマー溶液を基体構造上に塗付けた後、120℃環境下に置いて4.5h硬化させれば、超撥水表面を有する構造体を得ることができる。
Example 3:
Specifically, the method for producing a structure having a superhydrophobic surface is as follows:
(1) Tetraethyl orthosilicate: Water: Ammonia water: Alcohol = 1: 6: 2.5: 11.5 After mixing the raw materials, the reaction was carried out at a temperature of 50 ° C. for 5.5 hours to disperse SiO 2. Obtaining nanoparticles, the alcohol is absolute ethanol and the weight fraction of aqueous ammonia is 28%.
(2) Put 1/4 of the SiO 2 nanoparticles of 10-fold amount of ethanol was homogeneously stirred dispersion further adding concentration 7 wt% of hydrochloric acid and TiO 2, is 30h aged under 60 ° C. environment, SiO 2 After obtaining the alcohol, the amount of the hydrochloric acid added is 8% of the weight of the nanoparticles, and the amount of TiO 2 is 30% of the weight of the alcohol sol.
(3) The remaining 3/4 SiO 2 nanoparticles were dissolved in 5-10 times the amount of anhydrous ethanol, the pH was adjusted to 9, and then phenyltrimethoxysilane and a gain agent were added, and the temperature was 80 ° C. The mixture was stirred for 3 hours, filtered by suction, rinsed with ethanol, and then dried to obtain modified SiO 2 nanoparticles. The amount of the phenyltrimethoxysilane added was 10% of the weight of the SiO 2 nanoparticles, and the gain agent. The addition amount of is 0.1% of the weight of the SiO 2 nanoparticles, the gain agent is diphenylketone ketone and hexahydrophthalic acid anhydride, and the weight ratio thereof is 1: 1.
(4) The substrate structure is immersed in ethanol, ultrasonically washed for 30 minutes, and dried to obtain a clean substrate structure.
(5) The obtained modified SiO 2 nanoparticles and SiO 2 arcozole are uniformly mixed to form a prepolymer solution, and the prepolymer solution is further applied onto the substrate structure and then placed in an environment of 120 ° C. After curing for 4.5 hours, a structure having a superhydrophobic surface can be obtained.

実施例4:
超撥水性表面を有する構造体の製造方法であって、本実施例が実施例3と異なる点は、工程(5)に接着剤が添加されていることであり、具体的には、得られた改質SiOナノ粒子とSiOアルコゾールを接着剤と均一に混合し、プレポリマー溶液を形成し、さらに基体構造をプレポリマー溶液中で十分に濡らした後、120℃環境下に置いて4.5h硬化させれば、超撥水表面を有する構造体を得ることができ、前記接着剤の添加量はSiOアルコゾール重量の0.08%であり、前記接着剤は重量比が1:0.5であるエピクロロヒドリンとジメチルアミノプロピオニトリルであり、前記接着剤は改質SiOナノ粒子とSiOアルコゾールを活性化させ、凝集体溶液中の活性サイトを増加でき、さらに化学的接続により基体構造と超撥水表面間の密着過程を速め、超撥水表面粗さが付着速度の速まりにより増加することで、超撥水表面の転動角と水に対する粘性力を低下させ、構造体の超撥水表面の耐摩耗性を向上させ、また、両者が相乗作用を生み出し、紫外線環境でフリーラジカル重合防止作用を起こし、超撥水表面の耐紫外線性能を増強し、6000hの紫外線劣化試験後にも、超撥水性が良好に保たれ、接触角損失率が3%以下である。
Example 4:
A method for producing a structure having a superhydrophobic surface, which is different from Example 3 in this example, is that an adhesive is added to step (5), and specifically, it is obtained. The modified SiO 2 nanoparticles and SiO 2 arcozole were uniformly mixed with the adhesive to form a prepolymer solution, and the substrate structure was sufficiently wetted in the prepolymer solution before being placed in an environment of 120 ° C. 4 After curing for .5 hours, a structure having a superhydrophobic surface can be obtained, the amount of the adhesive added is 0.08% of the weight of SiO 2 alkozole, and the weight ratio of the adhesive is 1: 0. .5 Epichlorohydrin and dimethylaminopropionitrile, said adhesive can activate modified SiO 2 nanoparticles and SiO 2 alkozole, increase active sites in the aggregate solution, and be more chemical. The connection accelerates the adhesion process between the substrate structure and the superhydrophobic surface, and the superhydrophobic surface roughness increases as the adhesion rate increases, thus reducing the rolling angle of the superhydrophobic surface and the viscous force against water. , Improves the wear resistance of the superhydrophobic surface of the structure, and both create a synergistic effect, cause free radical polymerization prevention action in the ultraviolet environment, enhance the superhydrophobic performance of the superhydrophobic surface, and for 6000 hours. Even after the ultraviolet deterioration test, the superhydrophobicity is kept good, and the contact angle loss rate is 3% or less.

実施例5:
超撥水性表面を有する構造体の製造方法であって、本実施例が実施例3と異なる点は、工程(5)においてプレポリマー溶液はSiOアルコゾールを含有せず、改質SiOナノ粒子のみを用いて超撥水表面を有する構造体を得ることである。
Example 5:
A method for producing a structure having a superhydrophobic surface, which is different from Example 3 in this example, is that the prepolymer solution does not contain SiO 2 arcozole in step (5), and modified SiO 2 nanoparticles. To obtain a structure with a superhydrophobic surface using only.

実施例6:
超撥水性表面を有する構造体の製造方法は、具体的には以下のとおりである:
(1)基体構造をエタノールに浸漬し、30min超音波洗浄し、乾燥して清潔な基体構造を得る。
(2)実施例1で得られた超撥水性を有する粉体を10倍量のエタノール中に分散させ、プレポリマー溶液を形成し、さらにプレポリマー溶液を基体構造上に塗付けた後、120℃環境下に置いて4.5h硬化させれば、超撥水表面を有する構造体を得ることができる。
Example 6:
Specifically, the method for producing a structure having a superhydrophobic surface is as follows:
(1) The substrate structure is immersed in ethanol, ultrasonically cleaned for 30 minutes, and dried to obtain a clean substrate structure.
(2) The superhydrophobic powder obtained in Example 1 is dispersed in 10 times the amount of ethanol to form a prepolymer solution, and the prepolymer solution is further applied onto the substrate structure, and then 120. A structure having a superhydrophobic surface can be obtained by curing for 4.5 hours in an environment of ° C.

実施例7:
超撥水性表面を有する構造体の製造方法であって、本実施例が実施例6と異なる点は、工程(2)において実施例2で製造された超撥水性を有する粉体を用いる点である。
Example 7:
A method for producing a structure having a superhydrophobic surface, which is different from Example 6 in this example, is that the powder having superhydrophobicity produced in Example 2 is used in step (2). is there.

試験例1:
異なる超撥水性表面の撥水性試験
試験方法:実施例3、4、6、7で得られた構造体サンプルを取り、超撥水表面の水接触角及び転動角を、SL200B型接触角測定器を用いて測定し、微量注射器を制御することにより水滴の大きさを制御し、5μLの小水滴を被覆層の表面に滴下し、表面での水滴の接触パターンをコンピュータで得た後、カーブフィッティングにより接触角を得て、転動角を測定したときに、5μLの水滴を先に表面に滴下した後、試料台の傾斜角度を徐々に調節して、水滴を重力の作用下で転動させ、転動を開始したときの試料台と水平線とのなす角を転動角とし、表面の異なる位置で試験を行い、5組の並列試験を行い、平均値をとり、結果を下記表1に示す。
Test Example 1:
Water repellency test of different super water repellent surface Test method: Take the structure samples obtained in Examples 3, 4, 6 and 7, and measure the water contact angle and rolling angle of the super water repellent surface with SL200B type contact angle. The size of the water droplet is controlled by measuring with a device and controlling the microinjector, 5 μL of small water droplet is dropped on the surface of the coating layer, the contact pattern of the water droplet on the surface is obtained by a computer, and then the curve. When the contact angle was obtained by fitting and the rolling angle was measured, 5 μL of water droplets were first dropped onto the surface, and then the inclination angle of the sample table was gradually adjusted to roll the water droplets under the action of gravity. The angle between the sample table and the horizon at the start of rolling is used as the rolling angle, tests are performed at different positions on the surface, 5 sets of parallel tests are performed, average values are taken, and the results are shown in Table 1 below. Shown in.

Figure 2021080157
Figure 2021080157

表1から明らかなように、実施例3、4、6はいずれも超撥水表面の接触角が158°より大きく、転動角がいずれも5°以下であるのに対し、実施例7は、接触角が158°以下であり、転動角が5°より大きく、即ち実施例7の超撥水表面の撥水性能が低く、表面の水に対する粘性力が高く、なぜなら、他の実施例では製造方法にゲイン剤が添加され、ゲイン剤は超撥水表面の厚さを上げ、接触角を大きくし、撥水性能をよりよくすることができ、実施例3、6において接触角と転動角の差異は明らかではないが、実施例4において、転動角は両者と比べて優れており、水に対する粘性力がより低く、明らかに、実施例4の接着剤の添加により、超撥水表面の粗さが付着速度の速まりにより上がり、これにより超撥水表面の転動角と水への粘性力が低減する。 As is clear from Table 1, in all of Examples 3, 4 and 6, the contact angle of the superhydrophobic surface is larger than 158 ° and the rolling angle is 5 ° or less, whereas in Example 7 The contact angle is 158 ° or less and the rolling angle is larger than 5 °, that is, the superhydrophobic surface of Example 7 has low water repellency and the surface has high viscous force against water, because of other examples. Then, a gain agent is added to the manufacturing method, and the gain agent can increase the thickness of the superhydrophobic surface, increase the contact angle, and improve the water repellency. Although the difference in the moving angle is not clear, in Example 4, the rolling angle is superior to both, and the viscous force to water is lower. Obviously, superhydrophobicity is caused by the addition of the adhesive of Example 4. The roughness of the water surface increases as the adhesion rate increases, which reduces the rolling angle of the superhydrophobic surface and the viscous force to water.

試験例2:
異なる超撥水性表面の耐摩耗性能試験
試験方法:実施例3、4、5、6、7で作製した構造体サンプルを取り、1000メッシュのサンドペーパーを一枚取り、超撥水性表面をサンドペーパーの粗面に対向させ、500gの分銅の力を用いてサンドペーパーに押し付け、耐摩耗性試験時にサンプルを同一方向に沿って10cm往復移動させ、二回の移動過程を一つの摩擦試験サイクルと定義する。摩擦試験ごとに、サンプルの接触角を測定する。その結果を図1に示す。
図1は異なる超撥水性表面の水接触角が摩耗試験における変化図である。図1から明らかなように、実施例5は、水接触角の下がりが最も速く、実験終了時接触角が138°のみであり、超撥水性の要求に達せず、明らかに、SiOアルコゾールの添加により表面が異なる粗面構造と粗さを有し、超撥水性能の保持に有利であり、その耐摩耗耐久性及び使用寿命を増加させ、その他のグループでは実施例7が最も速く低下し、実験終了時接触角が148°であり、実施例3及び実施例6は実験終了時接触角がそれぞれ158.2°及び159.1°であり、実施例4の下降が最も遅く、実験終了時接触角が160.1°であり、明らかに、ゲイン剤及び接着剤が超撥水表面粗さに対する補強作用を発揮し、超撥水表面の耐摩耗耐久性能を向上させることができる。
Test Example 2:
Abrasion resistance test of different super-water-repellent surfaces Test method: Take the structure samples prepared in Examples 3, 4, 5, 6 and 7, take a piece of 1000 mesh sandpaper, and sandpaper the super-water-repellent surface. The sample is reciprocated 10 cm along the same direction during the wear resistance test by pressing it against the rough surface of the sandpaper using the force of 500 g of the weight, and the two movement processes are defined as one friction test cycle. To do. The contact angle of the sample is measured for each friction test. The result is shown in FIG.
FIG. 1 is a change diagram of the water contact angles of different superhydrophobic surfaces in the wear test. As apparent from FIG. 1, Example 5 lowered the water contact angle fastest, only at the end of the experiment the contact angle is 138 °, not reach the requirements of ultra-water repellency, clearly, the SiO 2 Arukozoru The addition has a different rough surface structure and roughness, which is advantageous for maintaining superhydrophobic performance, increases its wear resistance and service life, and in the other groups, Example 7 is the fastest to decrease. The contact angle at the end of the experiment was 148 °, and the contact angles at the end of the experiment in Examples 3 and 6 were 158.2 ° and 159.1 °, respectively. The time contact angle is 160.1 °, and it is clear that the gain agent and the adhesive exert a reinforcing action on the superhydrophobic surface roughness, and the wear resistance and durability performance of the superhydrophobic surface can be improved.

試験例3:
異なる超撥水性表面の耐高温性試験
試験方法:実施例6、7で得られた構造体サンプルを取った後、それぞれ80℃、160℃、240℃、320℃、400℃、480℃、560℃、640℃、720℃、800℃の温度で、空気雰囲気中で3h焼成する。また、超撥水表面の高温での耐久性を研究するために、構造体を450℃で異なるタイムスパンに焼成し、静的接触角を用いて被覆の焼成前後での撥水性変化を比べたところ、図2、3に示すとおりである。
図2は異なる超撥水性表面の接触角と熱処理温度との関係を示す図であり、図3は異なる超撥水性表面の接触角が450℃の高温における耐久性を示す図である。図2から明らかなように、実施例6の超撥水表面は、480℃以降ではその接触角が150°以下に小さくなり、超撥水性能が失われ、実施例7の表面は320℃以降ではその接触角が150°以下に小さくなり、超撥水性能が失われ、図3から明らかなように、実施例6の超撥水表面は24hの450℃の高温熱処理を経た後にも、155°以上の接触角を保った超撥水特性を保持することができ、実施例7は18h後に接触角が150°以下に小さくなり、超撥水性能を失われ、図2及び図3を合わせてみれば、明らかに、ゲイン剤の添加は超撥水表面の耐熱性を補強し、超撥水表面を有する構造体の高温安定性と耐久性を向上させることができることはわかる。
Test Example 3:
High temperature resistance test of different superhydrophobic surfaces Test method: After taking the structure samples obtained in Examples 6 and 7, 80 ° C., 160 ° C., 240 ° C., 320 ° C., 400 ° C., 480 ° C., 560, respectively. Bake for 3 hours in an air atmosphere at temperatures of ° C., 640 ° C., 720 ° C., and 800 ° C. In addition, in order to study the durability of the superhydrophobic surface at high temperature, the structure was fired at 450 ° C. for different time spans, and the change in water repellency before and after firing the coating was compared using the static contact angle. However, it is as shown in FIGS.
FIG. 2 is a diagram showing the relationship between the contact angles of different superhydrophobic surfaces and the heat treatment temperature, and FIG. 3 is a diagram showing the durability of different superhydrophobic surfaces at a high temperature of 450 ° C. As is clear from FIG. 2, the contact angle of the superhydrophobic surface of Example 6 becomes smaller than 150 ° after 480 ° C, the superhydrophobic performance is lost, and the surface of Example 7 is 320 ° C or later. Then, the contact angle becomes smaller than 150 °, and the superhydrophobic performance is lost. As is clear from FIG. 3, the superhydrophobic surface of Example 6 is 155 even after undergoing a high temperature heat treatment at 450 ° C. for 24 hours. It is possible to maintain the superhydrophobic property that maintains the contact angle of ° or more, and in Example 7, the contact angle becomes smaller than 150 ° after 18 hours, the superhydrophobic performance is lost, and FIGS. 2 and 3 are combined. Obviously, it can be seen that the addition of the gain agent can reinforce the heat resistance of the superhydrophobic surface and improve the high temperature stability and durability of the structure having the superhydrophobic surface.

試験例4:
異なる超撥水性表面の耐紫外線性能試験
試験方法:実施例3、4で作製した構造体サンプルを取り、紫外線劣化箱に置いて、耐紫外線試験を行う。加速劣化条件は、温度60℃、光強度0.89W/m2である。評価基準はISO11507:2007である。結果を図4に示す。
図4は異なる超撥水性表面の接触角と紫外線劣化処理時間との関係を示す図である。図4から明らかなように、実施例3は、劣化5000h後に接触角が150°以下に小さくなり、超撥水性能が失われ、対して実施例4は、劣化6000h以降は接触角が155.5°であり、超撥水性は良好であり、接触角損失率は3%以下であり、明らかに、実施例4では接着剤の添加は超撥水表面の耐紫外線性能を強くすることができる。
Test Example 4:
UV resistance performance test of different superhydrophobic surfaces Test method: Take the structure sample prepared in Examples 3 and 4 and place it in a UV deterioration box to perform a UV resistance test. The accelerated deterioration conditions are a temperature of 60 ° C. and a light intensity of 0.89 W / m2. The evaluation standard is ISO11507: 2007. The results are shown in FIG.
FIG. 4 is a diagram showing the relationship between the contact angles of different superhydrophobic surfaces and the ultraviolet deterioration treatment time. As is clear from FIG. 4, in Example 3, the contact angle becomes smaller than 150 ° after deterioration of 5000 h, and the superhydrophobicity is lost, whereas in Example 4, the contact angle is 155 after deterioration of 6000 h. It is 5 °, the superhydrophobicity is good, and the contact angle loss rate is 3% or less. Obviously, in Example 4, the addition of the adhesive can enhance the ultraviolet resistance of the superhydrophobic surface. ..

上記実施例における従来技術は当業者に知られている従来技術であるため,ここでは詳細な説明を省略する。 Since the prior art in the above embodiment is a prior art known to those skilled in the art, detailed description thereof will be omitted here.

当業者は、本発明の範囲内で作業方式に応じて様々な変更を行える。 Those skilled in the art can make various changes according to the working method within the scope of the present invention.

Claims (10)

超撥水性を有する粉体の製造方法であって、
SiOナノ粒子を原料としてそれぞれ改質SiOナノ粒子とSiOアルコゾールとを製造し、
前記SiOアルコゾールは光触媒を含み、
前記改質SiOナノ粒子が、SiOナノ粒子を改質剤とゲインゲイン剤によって製造され、
前記ゲイン剤がジフェニルケトンケトンとヘキサヒドロフタル酸無水物であり、
前記粉体製の超撥水性表面は158°以上の接触角と5°以下の転動角を有する、
ことを特徴とする超撥水性表面を有する粉体の製造方法。
A method for producing powder having superhydrophobicity.
Modified SiO 2 nanoparticles and SiO 2 alkozole were produced using SiO 2 nanoparticles as raw materials, respectively.
The SiO 2 arcozole contains a photocatalyst and contains
The modified SiO 2 nanoparticles are produced by using a modifier and a gain gain agent for the SiO 2 nanoparticles.
The gain agents are diphenylketone ketone and hexahydrophthalic anhydride.
The powdered superhydrophobic surface has a contact angle of 158 ° or more and a rolling angle of 5 ° or less.
A method for producing a powder having a superhydrophobic surface.
前記改質剤の添加量はSiOナノ粒子重量の3‐15%であり、
前記ゲイン剤の添加量はSiOナノ粒子重量の0.03‐0.15%であり、
前記ジフェニルケトンケトンと前記ヘキサヒドロフタル酸無水物の重量比は1:0.5‐1.5である、
ことを特徴とする請求項1に記載の超撥水性表面を有する粉体の製造方法。
The amount of the modifier added is 3-15% of the weight of the SiO 2 nanoparticles.
The amount of the gain agent added is 0.03-0.15% of the weight of the SiO 2 nanoparticles.
The weight ratio of the diphenylketone ketone to the hexahydrophthalic anhydride is 1: 0.5-1.5.
The method for producing a powder having a superhydrophobic surface according to claim 1.
前記SiOナノ粒子の製造条件は、
原料の重量比が、ケイ素源:水:アンモニア水:アルコール=1:4‐6:1‐3:10‐13であり、
反応温度が40‐50℃であり、
時間が4‐6hである、
ことを特徴とする請求項1に記載の超撥水性表面を有する粉体の製造方法。
The conditions for producing the SiO 2 nanoparticles are as follows.
The weight ratio of the raw material is silicon source: water: ammonia water: alcohol = 1: 4-6: 1-3: 10-13.
The reaction temperature is 40-50 ° C.
The time is 4-6h,
The method for producing a powder having a superhydrophobic surface according to claim 1.
前記アルコールは無水エタノールであり、
前記アンモニア水の重量分率は20‐30%であり、
前記ケイ素源は、オルトケイ酸メチル類、オルトケイ酸エチル類から選ばれる一種または複数種であり、
好ましくは、ケイ素源はオルトケイ酸テトラエチルである、
ことを特徴とする請求項3に記載の超撥水性表面を有する粉体の製造方法。
The alcohol is absolute ethanol,
The weight fraction of the ammonia water is 20-30%.
The silicon source is one or more selected from methyl orthosilicates and ethyl orthosilicates.
Preferably, the silicon source is tetraethyl orthosilicate,
The method for producing a powder having a superhydrophobic surface according to claim 3.
前記アルコールゾル中の光触媒の量が15‐35wt%である、
ことを特徴とする請求項1に記載の超撥水性表面を有する粉体の製造方法。
The amount of photocatalyst in the alcohol sol is 15-35 wt%.
The method for producing a powder having a superhydrophobic surface according to claim 1.
前記SiOアルコゾールは、SiOナノ粒子をエタノールに入れ、さらに濃度が4‐8wt%の塩酸と光触媒を加えて均一に撹拌分散した後、35‐60℃環境下で24‐48h熟成させることによって、得られる、
ことを特徴とする請求項1に記載の超撥水性表面を有する粉体の製造方法。
The SiO 2 alkozole is prepared by putting SiO 2 nanoparticles in ethanol, further adding hydrochloric acid having a concentration of 4-8 wt% and a photocatalyst, stirring and dispersing uniformly, and then aging in an environment of 35-60 ° C. for 24-48 hours. ,can get,
The method for producing a powder having a superhydrophobic surface according to claim 1.
請求項1又は請求項2又は請求項3又は請求項4又は請求項5又は請求項6に記載の製造方法により製造された超撥水性表面を有する粉体が、超撥水性及び低粘性力を有する膜や表面被覆層の製造に果たす用途。 The powder having a super-water-repellent surface produced by the production method according to claim 1 or 2 or 3 or 4 or 5 or 6 has super water repellency and low viscous force. Applications used to manufacture films and surface coating layers. 超撥水性表面を有する構造体の製造方法は、
前記プレポリマー溶液を清潔な基体構造に塗りつける工程と、
前記プレポリマー溶液を前記基体構造で硬化させて、安定した超撥水性表面を有する構造体を形成する工程と、を含み、
前記プレポリマー溶液の溶質は、請求項1又は請求項2又は請求項3又は請求項4又は請求項5又は請求項6に記載の超撥水性表面を有する粉体の製造方法から製造される、超撥水性を有する粉体である、
ことを特徴とする超撥水性表面を有する構造体の製造方法。
A method for manufacturing a structure having a superhydrophobic surface is as follows.
The step of applying the prepolymer solution to a clean substrate structure and
Including a step of curing the prepolymer solution on the substrate structure to form a structure having a stable superhydrophobic surface.
The solute of the prepolymer solution is produced from the method for producing a powder having a super-water-repellent surface according to claim 1 or 2, claim 3, or claim 4, or claim 5 or 6. A powder with super water repellency,
A method for producing a structure having a superhydrophobic surface.
前記基体構造は任意の形状の誘電体、半導体、絶縁体又は導体構造である、
ことを特徴とする請求項8に記載の超撥水性表面を有する構造体の製造方法。
The substrate structure is a dielectric, semiconductor, insulator or conductor structure of any shape.
The method for producing a structure having a superhydrophobic surface according to claim 8.
前記プレポリマー溶液の硬化操作条件は、
温度が100‐120℃であり、
時間が2‐6hである、
ことを特徴とする請求項8に記載の超撥水性表面を有する構造体の製造方法。
The curing operation conditions of the prepolymer solution are as follows.
The temperature is 100-120 ° C
The time is 2-6h,
The method for producing a structure having a superhydrophobic surface according to claim 8.
JP2020162549A 2019-11-19 2020-09-28 Manufacturing method of structure having super water repellent surface Pending JP2021080157A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911131973.8 2019-11-19
CN201911131973.8A CN111218153A (en) 2019-11-19 2019-11-19 Method for producing structure having superhydrophobic surface

Publications (1)

Publication Number Publication Date
JP2021080157A true JP2021080157A (en) 2021-05-27

Family

ID=70825863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020162549A Pending JP2021080157A (en) 2019-11-19 2020-09-28 Manufacturing method of structure having super water repellent surface

Country Status (2)

Country Link
JP (1) JP2021080157A (en)
CN (1) CN111218153A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112048202A (en) * 2020-09-14 2020-12-08 陈佳 Preparation method of steel-based corrosion-resistant super-hydrophobic coating

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101955728A (en) * 2009-07-17 2011-01-26 黄祥道 Organic-inorganic hybrid wear-resistant transparent coating for reinforcing surface of optical plastics
CN110183880B (en) * 2019-05-21 2021-09-07 东南大学 Photocatalytic super-amphiphobic coating and preparation method and application thereof

Also Published As

Publication number Publication date
CN111218153A (en) 2020-06-02

Similar Documents

Publication Publication Date Title
CN106189832B (en) Organopolysilazane/inorganic nano material super-hydrophobic coat and preparation method thereof
WO2018133469A1 (en) Durable hydrophilic-super-hydrophobic bipolar self-cleaning composite film, and preparation method therefor
US7879449B2 (en) Non-stick ceramic coating composition and process
JP5279507B2 (en) Storage-stable coating composition for wear- and weather-resistant application of easy-clean properties to smooth inorganic surfaces
EP1835002A2 (en) Non-stick ceramic coating composition and process
CN108707420A (en) A kind of cured polysilazane coating of room-temperature plasma and its preparation method and application
KR102301276B1 (en) Hydrophobic article
JP5680900B2 (en) Oil-repellent coated article and method for producing the same
CN103359954A (en) Preparation method of silicon dioxide super-hydrophobic thin film and super-hydrophobic material
CN105419627A (en) Super-oleophobic coating and preparation method thereof
JP2009519362A (en) Storage-stable coating composition for wear- and weather-resistant application of easy-clean properties to smooth inorganic surfaces
EP3312242B1 (en) Protective coating composition with mixed functionalities
JP4812902B1 (en) Antifouling paint composition and method for forming antifouling coating film
CN109439042A (en) A kind of hydrophilic surface layer coating, relevant stainless steel sink and preparation method
CN103102082B (en) Preparation method of super-hydrophobic nano-silica film
CN108276812A (en) High-hard, transparent hydrophobic coating easy to clean for timber, metal and frosting
JP5069243B2 (en) Production of coated substrates
CN105164221A (en) Aqueous hydrophilic coating composition capable of forming coating film having excellent self-cleaning ability against stains adhered thereon, and surface-treated material having formed thereon coating film having excellent self-cleaning ability against stains adhered thereon
JP2021080157A (en) Manufacturing method of structure having super water repellent surface
CN106833043A (en) A kind of transparent durable super-hydrophobic new material coating and preparation method thereof
JP2007161770A (en) Coating fluid for forming hydrophilic film, its manufacturing method, hydrophilic film and method of forming hydrophilic film
KR20150086700A (en) Organic-inorganic hybrid protective coating composition having heat resistance and separation property, and products thereof
CN110564187A (en) Anti-reflection fluorine-free super-hydrophobic self-cleaning nano film and preparation method thereof
WO2018143363A1 (en) Treatment agent for treating particles, water-repellent particles and production method therefor, water-repellent layer, and penetration preventing structure
CN108948803A (en) A kind of super-hydrophobic coat and preparation method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210206

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210320

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210325

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210322