JP2021070592A - Silica particle, resin composition, resin film, and metal-clad laminate - Google Patents

Silica particle, resin composition, resin film, and metal-clad laminate Download PDF

Info

Publication number
JP2021070592A
JP2021070592A JP2019196674A JP2019196674A JP2021070592A JP 2021070592 A JP2021070592 A JP 2021070592A JP 2019196674 A JP2019196674 A JP 2019196674A JP 2019196674 A JP2019196674 A JP 2019196674A JP 2021070592 A JP2021070592 A JP 2021070592A
Authority
JP
Japan
Prior art keywords
resin film
layer
silica particles
polyimide
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019196674A
Other languages
Japanese (ja)
Inventor
王 宏遠
Hongyuan Wang
宏遠 王
麻織人 藤
Maoto Fuji
麻織人 藤
平石 克文
Katsufumi Hiraishi
克文 平石
睦人 田中
Mutsuto Tanaka
睦人 田中
博之 出合
Hiroyuki Deai
博之 出合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical and Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical and Materials Co Ltd filed Critical Nippon Steel Chemical and Materials Co Ltd
Priority to JP2019196674A priority Critical patent/JP2021070592A/en
Priority to KR1020200138924A priority patent/KR20210052282A/en
Priority to TW109137478A priority patent/TW202124280A/en
Priority to CN202011172087.2A priority patent/CN112745529A/en
Publication of JP2021070592A publication Critical patent/JP2021070592A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Abstract

To provide silica particles which can improve dielectric characteristics without impairing mechanical characteristics such as bending properties, and a resin composition and a resin film which improve dielectric characteristics by addition of the silica particles.SOLUTION: Silica particles are used in a frequency region of 3-20 GHz, and have an average particle diameter D50 here the cumulative value in a frequency distribution curve obtained by particle size distribution measurement based on volume by a laser diffraction scattering method is 50% of 0.3-3 μm, have a specific surface area of more than 5 m2/g and 20 m2/g or less, and have a dielectric loss tangent measured by a cavity resonator perturbation method of 0.004 or less. The resin composition contains the above silica particles, a polyamide acid or polyimide, and a content of the silica particles is within a range of 30-70 vol.% with respect to the polyamide acid or the polyimide.SELECTED DRAWING: None

Description

本発明は、高周波領域で使用される電気・電子機器に好ましく用いることが可能なシリカ粒子、該シリカ粒子を含有する樹脂組成物、それを用いる樹脂フィルム及び金属張積層板に関する。 The present invention relates to silica particles that can be preferably used in electrical and electronic equipment used in a high frequency region, a resin composition containing the silica particles, a resin film using the silica particles, and a metal-clad laminate.

近年、携帯電話、LED照明器具、自動車エンジン周り関連部品に代表されるように電子機器の小型化、軽量化に対する要求が高まってきている。それに伴い、機器の小型化、軽量化に有利なフレキシブル回路基板が電子技術分野において広く使用されるようになってきている。そして、その中でもポリイミドを絶縁層とするフレキシブル回路基板は、その耐熱性、耐薬品性などが良好なことから、広く用いられている。 In recent years, there has been an increasing demand for miniaturization and weight reduction of electronic devices as represented by mobile phones, LED lighting fixtures, and related parts around automobile engines. Along with this, flexible circuit boards, which are advantageous for miniaturization and weight reduction of equipment, have come to be widely used in the field of electronic technology. Among them, a flexible circuit board having polyimide as an insulating layer is widely used because of its good heat resistance and chemical resistance.

一方、電気・電子機器の高性能化や高機能化に伴い、情報の高速伝送化が進展している。そのため、電気・電子機器に使用される部品や部材にも高速伝送への対応が求められている。そのような用途に使用される樹脂材料について、高速伝送化に対応した電気特性を有するように、低誘電率化、低誘電正接化を図る試みがなされている。例えば、ポリイミドに、粒径1μm以下のシリカなどのフィラーを全固形分の5〜70重量%となる量で配合した低誘電樹脂組成物が提案されている(特許文献1)。また、低誘電正接化を図るべく、ビスマレイミド化合物由来の構造単位を有するポリイミド中にシリカなどの無機充填剤を60質量%以上配合した熱硬化性樹脂組成物も提案されている(特許文献2)。 On the other hand, high-speed transmission of information is progressing along with higher performance and higher functionality of electric and electronic devices. Therefore, parts and components used in electrical and electronic devices are also required to support high-speed transmission. Attempts have been made to reduce the dielectric constant and the low dielectric loss tangent so that the resin material used for such applications has electrical characteristics corresponding to high-speed transmission. For example, a low-dielectric resin composition in which a filler such as silica having a particle size of 1 μm or less is blended with polyimide in an amount of 5 to 70% by weight of the total solid content has been proposed (Patent Document 1). Further, in order to achieve low dielectric loss tangent, a thermosetting resin composition in which 60% by mass or more of an inorganic filler such as silica is blended in polyimide having a structural unit derived from a bismaleimide compound has also been proposed (Patent Document 2). ).

特許第3660501号公報Japanese Patent No. 3660501 特開2018−012747号公報Japanese Unexamined Patent Publication No. 2018-012747

シリカ粒子は、その粒子径が大きいものほど誘電正接が低い傾向があり、ポリイミドなどの樹脂中に配合する場合でも、樹脂フィルムの誘電正接を下げる効果が大きい。その一方で、粒子径の大きなシリカ粒子の添加は、樹脂フィルムの折り曲げ性を低下させる、という問題があった。 The larger the particle size of the silica particles, the lower the dielectric loss tangent tends to be, and even when the silica particles are blended in a resin such as polyimide, the effect of lowering the dielectric loss tangent of the resin film is large. On the other hand, the addition of silica particles having a large particle size has a problem that the bendability of the resin film is lowered.

本発明の目的は、折り曲げ性などの機械的特性を損なうことなく、誘電特性の改善を図ることが可能なシリカ粒子を提供することであり、さらには、該シリカ粒子の添加によって、誘電特性が改善された樹脂組成物及び樹脂フィルムを提供することにある。 An object of the present invention is to provide silica particles capable of improving the dielectric properties without impairing mechanical properties such as bendability, and further, by adding the silica particles, the dielectric properties can be improved. It is an object of the present invention to provide an improved resin composition and a resin film.

本発明のシリカ粒子は、3〜20GHzの周波数領域で用いられるシリカ粒子であって、レーザ回折散乱法による体積基準の粒度分布測定によって得られる頻度分布曲線における累積値が50%となる平均粒子径D50が0.3〜3μmの範囲内、比表面積が5m/gを超え20m/g以下の範囲内であり、空洞共振器摂動法によって測定される誘電正接が0.004以下である。 The silica particles of the present invention are silica particles used in the frequency range of 3 to 20 GHz, and the average particle diameter at which the cumulative value in the frequency distribution curve obtained by volume-based particle size distribution measurement by the laser diffraction / scattering method is 50%. D 50 is in the range of 0.3 to 3 μm, the specific surface area is in the range of more than 5 m 2 / g and 20 m 2 / g or less, and the dielectric tangent measured by the cavity resonator perturbation method is 0.004 or less. ..

本発明の樹脂組成物は、上記シリカ粒子と、ポリアミド酸又はポリイミドと、を含有する樹脂組成物であって、前記シリカ粒子の含有量が、前記ポリアミド酸又はポリイミドに対し、30〜70体積%の範囲内である。 The resin composition of the present invention is a resin composition containing the above silica particles and the polyamic acid or polyimide, and the content of the silica particles is 30 to 70% by volume with respect to the polyamic acid or the polyimide. Is within the range of.

本発明の樹脂フィルムは、単層又は複数層のポリイミド層を有する樹脂フィルムであって、前記ポリイミド層の少なくとも1層が、上記の樹脂組成物の硬化物からなるシリカ含有ポリイミド層であり、該シリカ含有ポリイミド層の厚みが10〜200μmの範囲内である。 The resin film of the present invention is a resin film having a single layer or a plurality of polyimide layers, and at least one of the polyimide layers is a silica-containing polyimide layer made of a cured product of the above resin composition. The thickness of the silica-containing polyimide layer is in the range of 10 to 200 μm.

本発明の樹脂フィルムは、樹脂フィルムの全体の厚みが10〜200μmの範囲内であり、前記シリカ含有ポリイミド層の厚みの割合が50%以上であってもよい。 In the resin film of the present invention, the total thickness of the resin film is in the range of 10 to 200 μm, and the ratio of the thickness of the silica-containing polyimide layer may be 50% or more.

本発明の金属張積層板は、絶縁樹脂層と、前記絶縁樹脂層の少なくとも一方の面に積層された金属層と、を備えた金属張積層板であって、前記絶縁樹脂層が上記樹脂フィルムからなるものである。 The metal-clad laminate of the present invention is a metal-clad laminate comprising an insulating resin layer and a metal layer laminated on at least one surface of the insulating resin layer, and the insulating resin layer is the resin film. It consists of.

本発明のシリカ粒子は、平均粒子径D50が0.3〜3μmの範囲内と小さいにもかかわらず、比表面積が制御されていることによって誘電正接が低いため、高周波向けの絶縁材料として有用である。また、本発明の樹脂組成物は、上記シリカ粒子を含有することによって、折り曲げ性などの機械的特性を低下させずに誘電特性を改善することが可能となる。そのため、本発明の樹脂組成物を使用した電気・電子機器や電子部品において、高速伝送化への対応が可能になるとともに信頼性を確保できる。 Although the silica particles of the present invention have an average particle diameter D 50 as small as 0.3 to 3 μm, they have a low dielectric loss tangent due to the controlled specific surface area, and are therefore useful as an insulating material for high frequencies. Is. Further, by containing the silica particles, the resin composition of the present invention can improve the dielectric properties without deteriorating the mechanical properties such as bendability. Therefore, in electric / electronic devices and electronic parts using the resin composition of the present invention, it is possible to support high-speed transmission and ensure reliability.

以下、本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described.

[シリカ粒子]
本発明の一実施の形態のシリカ粒子は、3〜20GHzの周波数領域で用いられる。より具体的には、3〜20GHzの周波数領域で用いられる電気・電子機器における部品や部材の材料として用いられるシリカ粒子である。本実施の形態のシリカ粒子の形状は、球状であることが好ましい。なお、「球状」とは、形状が真球状に近い粒子で、平均長径と平均短径の比が1又は1に近いものをいう。
[Silica particles]
The silica particles of one embodiment of the present invention are used in the frequency range of 3 to 20 GHz. More specifically, it is silica particles used as a material for parts and members in electrical and electronic equipment used in the frequency range of 3 to 20 GHz. The shape of the silica particles of the present embodiment is preferably spherical. The term "spherical" means particles having a shape close to a true sphere, and the ratio of the average major axis to the average minor axis is close to 1 or 1.

本実施の形態のシリカ粒子は、レーザ回折散乱法による体積基準の粒度分布測定によって得られる頻度分布曲線における累積値が50%となる平均粒子径D50が0.3〜3μmの範囲内であり、0.5〜2.5μmの範囲内であることが好ましい。この範囲内であれば、例えば樹脂フィルムに配合したときの折り曲げ性の低下を抑制しつつ、誘電特性を向上させることができる。シリカ粒子の平均粒子径D50が0.3未満であると、誘電正接を低下させる効果が十分に得られない。一方、平均粒子径D50が3μmを超えると、樹脂フィルムに配合したときに折り曲げ性が低下するなど機械的特性の維持が困難になる。 The silica particles of the present embodiment have an average particle diameter D 50 of 0.3 to 3 μm, which is a cumulative value of 50% in the frequency distribution curve obtained by volume-based particle size distribution measurement by the laser diffraction / scattering method. , It is preferably in the range of 0.5 to 2.5 μm. Within this range, for example, it is possible to improve the dielectric properties while suppressing a decrease in bendability when blended in a resin film. If the average particle size D 50 of the silica particles is less than 0.3, the effect of lowering the dielectric loss tangent cannot be sufficiently obtained. On the other hand, if the average particle size D 50 exceeds 3 μm, it becomes difficult to maintain mechanical properties such as a decrease in bendability when blended in a resin film.

また、本実施の形態のシリカ粒子は、比表面積が5m/gを超え20m/g以下の範囲内であり、好ましくは6〜15m/gの範囲内である。シリカ粒子の比表面積を上記範囲内にすることによって、シリカ粒子としての嵩密度を向上させることが可能となることから、平均粒子径D50が0.3〜3μmの範囲内と小さくても低い誘電正接が得られる。具体的には、空洞共振器摂動法によって測定されるシリカ粒子の誘電正接を0.004以下にすることができる。比表面積が5m/g以下である場合、又は20m/gを超える場合には、シリカ粒子の誘電正接が十分に低くならず、配合の効果が得られない。シリカ粒子の比表面席は、BET比表面積測定法により求めることができる。 Further, the silica particles of the present embodiment is in the range the specific surface area is less than 5 m 2 / g, greater 20 m 2 / g, preferably in the range of 6~15m 2 / g. By setting the specific surface area of the silica particles within the above range, it is possible to improve the bulk density of the silica particles. Therefore, the average particle diameter D 50 is as low as 0.3 to 3 μm, even if it is small. A dielectric loss tangent is obtained. Specifically, the dielectric loss tangent of the silica particles measured by the cavity resonator perturbation method can be 0.004 or less. When the specific surface area is 5 m 2 / g or less, or when it exceeds 20 m 2 / g, the dielectric loss tangent of the silica particles is not sufficiently low, and the effect of blending cannot be obtained. The specific surface area of the silica particles can be determined by the BET specific surface area measurement method.

なお、シリカ粒子は、市販品を適宜選定して用いることができる。例えば、球状非晶質シリカ粉末(日鉄ケミカル&マテリアル社製、商品名;SP40−10)、球状非晶質シリカ粉末(日鉄ケミカル&マテリアル社製、商品名;SPH507)、球状非晶質シリカ粉末(日鉄ケミカル&マテリアル社製、商品名;SPH516M)などを好ましく使用できる。これらは2種以上を併用できる。 As the silica particles, commercially available products can be appropriately selected and used. For example, spherical amorphous silica powder (manufactured by Nittetsu Chemical & Materials, trade name; SP40-10), spherical amorphous silica powder (manufactured by Nittetsu Chemical & Materials, trade name; SPH507), spherical amorphous Silica powder (manufactured by Nittetsu Chemical & Materials Co., Ltd., trade name; SPH516M) or the like can be preferably used. These can be used in combination of two or more.

[樹脂組成物]
本発明の一実施の形態に係る樹脂組成物は、ポリアミド酸又はポリイミドと、無機フィラーである上記シリカ粒子と、を含有する樹脂組成物である。樹脂組成物は、ポリアミド酸を含有するワニス(樹脂溶液)であってもよく、溶剤可溶性のポリイミドを含有するポリイミド溶液であってもよい。
[Resin composition]
The resin composition according to the embodiment of the present invention is a resin composition containing a polyamic acid or polyimide and the silica particles which are inorganic fillers. The resin composition may be a varnish (resin solution) containing a polyamic acid, or a polyimide solution containing a solvent-soluble polyimide.

<ポリアミド酸又はポリイミド>
ポリイミドは、一般的に下記一般式(1)で表される。このようなポリイミドは、ジアミン成分と酸二無水物成分とを実質的に等モル使用し、有機極性溶媒中で重合させる公知の方法によって製造することができる。この場合、粘度を所望の範囲とするために、ジアミン成分に対する酸二無水物成分のモル比を調整してもよく、その範囲は、例えば0.980〜1.03のモル比の範囲内とすることが好ましい。
<Polyamic acid or polyimide>
Polyimide is generally represented by the following general formula (1). Such a polyimide can be produced by a known method in which a diamine component and an acid dianhydride component are substantially equimolarized and polymerized in an organic polar solvent. In this case, the molar ratio of the acid dianhydride component to the diamine component may be adjusted in order to keep the viscosity in a desired range, and the range is, for example, within the range of the molar ratio of 0.980 to 1.03. It is preferable to do so.

Figure 2021070592
Figure 2021070592

ここで、Arは芳香族環を1個以上有する4価の有機基であり、Arは芳香族環を1個以上有する2価の有機基である。そして、Arは酸二無水物の残基ということができ、Arはジアミンの残基ということができる。また、nは、一般式(1)の構成単位の繰返し数を表し、200以上、好ましくは300〜1000の数である。 Here, Ar 1 is a tetravalent organic group having one or more aromatic rings, and Ar 2 is a divalent organic group having one or more aromatic rings. And Ar 1 can be said to be a residue of acid dianhydride, and Ar 2 can be said to be a residue of diamine. Further, n represents the number of repetitions of the structural unit of the general formula (1), and is a number of 200 or more, preferably 300 to 1000.

酸二無水物としては、例えば、O(OC)−Ar−(CO)Oによって表される芳香族テトラカルボン酸二無水物が好ましく、下記芳香族酸無水物残基をArとして与えるものが例示される。 As the acid dianhydride, for example, an aromatic tetracarboxylic dianhydride represented by O (OC) 2- Ar 1- (CO) 2 O is preferable, and the following aromatic acid anhydride residue is designated as Ar 1. What is given is exemplified.

Figure 2021070592
Figure 2021070592

酸二無水物は、単独で又は2種以上混合して用いることができる。これらの中でも、ピロメリット酸二無水物(PMDA)、3,3',4,4'-ビフェニルテトラカルボン酸二無水物(BPDA)、3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物(DSDA)、及び4,4'-オキシジフタル酸二無水物(ODPA)から選ばれるものを使用することが好ましい。 The acid dianhydride can be used alone or in combination of two or more. Among these, pyromellitic dianhydride (PMDA), 3,3', 4,4'-biphenyltetracarboxylic dianhydride (BPDA), 3,3', 4,4'-benzophenonetetracarboxylic dianhydride Use one selected from anhydrides (BTDA), 3,3', 4,4'-diphenylsulfonetetracarboxylic dianhydrides (DSDA), and 4,4'-oxydiphthalic acid dianhydrides (ODPA). Is preferable.

ジアミンとしては、例えば、HN−Ar−NHによって表される芳香族ジアミンが好ましく、下記芳香族ジアミン残基をArとして与える芳香族ジアミンが例示される。 As the diamine, for example, an aromatic diamine represented by H 2 N-Ar 2- NH 2 is preferable, and an aromatic diamine that gives the following aromatic diamine residue as Ar 2 is exemplified.

Figure 2021070592
Figure 2021070592

これらのジアミンの中でも、ジアミノジフェニルエーテル(DAPE)、2,2'−ジメチル−4,4'−ジアミノビフェニル(m-TB)、パラフェニレンジアミン(p−PDA)、1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)、1,3-ビス(3-アミノフェノキシ)ベンゼン(APB)、1,4-ビス(4-アミノフェノキシ)ベンゼン(TPE-Q)、及び2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)、及び2,2−ビス(トリフルオロメチル)ベンジジン(TFMB)が好適なものとして例示される。 Among these diamines, diaminodiphenyl ether (DAPE), 2,2'-dimethyl-4,4'-diaminobiphenyl (m-TB), para-phenylenediamine (p-PDA), 1,3-bis (4-amino) Phenoxy) Benzene (TPE-R), 1,3-bis (3-aminophenoxy) benzene (APB), 1,4-bis (4-aminophenoxy) benzene (TPE-Q), and 2,2-bis [ 4- (4-Aminophenoxy) phenyl] propane (BAPP) and 2,2-bis (trifluoromethyl) benzidine (TFMB) are exemplified as suitable.

ポリイミドは、酸二無水物とジアミン化合物を溶媒中で反応させ、前駆体であるポリアミド酸を生成したのち加熱閉環(イミド化)させることにより製造できる。例えば、酸二無水物とジアミン化合物をほぼ等モルで有機溶媒中に溶解させて、0〜100℃の範囲内の温度で30分〜72時間撹拌し重合反応させることでポリアミド酸が得られる。反応にあたっては、生成する前駆体が有機溶媒中に5〜30重量%の範囲内、好ましくは10〜20重量%の範囲内となるように反応成分を溶解する。重合反応に用いる有機溶媒としては、例えば、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、N,N−ジエチルアセトアミド、N−メチル−2−ピロリドン(NMP)、2−ブタノン、ジメチルスルホキシド(DMSO)、ヘキサメチルホスホルアミド、N−メチルカプロラクタム、硫酸ジメチル、シクロヘキサノン、ジオキサン、テトラヒドロフラン、ジグライム、トリグライム、クレゾール等が挙げられる。これらの溶媒を2種以上併用することもでき、更にはキシレン、トルエンのような芳香族炭化水素の併用も可能である。また、このような有機溶媒の使用量としては特に制限されるものではないが、重合反応によって得られるポリアミド酸溶液の濃度が5〜30重量%程度になるような使用量に調整して用いることが好ましい。 Polyimide can be produced by reacting an acid dianhydride with a diamine compound in a solvent to produce a polyamic acid as a precursor, and then heating and ring-closing (imidizing). For example, a polyamic acid can be obtained by dissolving an acid dianhydride and a diamine compound in an organic solvent in approximately equimolar amounts, stirring at a temperature in the range of 0 to 100 ° C. for 30 minutes to 72 hours, and carrying out a polymerization reaction. In the reaction, the reaction components are dissolved in an organic solvent so that the precursor produced is in the range of 5 to 30% by weight, preferably in the range of 10 to 20% by weight. Examples of the organic solvent used in the polymerization reaction include N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N, N-diethylacetamide, N-methyl-2-pyrrolidone (NMP), 2 -Butanone, dimethyl sulfoxide (DMSO), hexamethylphosphoramide, N-methylcaprolactam, dimethylsulfate, cyclohexanone, dioxane, tetrahydrofuran, diglime, triglime, cresol and the like can be mentioned. Two or more of these solvents can be used in combination, and aromatic hydrocarbons such as xylene and toluene can be used in combination. The amount of such an organic solvent used is not particularly limited, but it should be adjusted so that the concentration of the polyamic acid solution obtained by the polymerization reaction is about 5 to 30% by weight. Is preferable.

合成されたポリアミド酸は、通常、反応溶媒溶液として使用することが有利であるが、必要により濃縮、希釈又は他の有機溶媒に置換して樹脂組成物を形成することができる。ポリアミド酸をイミド化させる方法は、特に制限されず、例えば前記溶媒中で、80〜400℃の範囲内の温度条件で1〜24時間かけて加熱するといった熱処理が好適に採用される。 The synthesized polyamic acid is usually advantageous to be used as a reaction solvent solution, but if necessary, it can be concentrated, diluted or replaced with another organic solvent to form a resin composition. The method for imidizing the polyamic acid is not particularly limited, and for example, a heat treatment such as heating in the solvent under a temperature condition in the range of 80 to 400 ° C. for 1 to 24 hours is preferably adopted.

<配合組成>
樹脂組成物におけるシリカ粒子の含有量は、ポリアミド酸又はポリイミドに対し30〜70体積%の範囲内であり、好ましくは30〜60体積%の範囲内である。シリカ粒子の含有割合が30体積%に満たないと、誘電正接を低下させる効果が十分に得られなくなる。また、シリカ粒子の含有割合が70体積%を超えると、樹脂フィルムを形成したときに脆くなり、折り曲げ性が低下するとともに、樹脂フィルムを形成しようとする場合、樹脂組成物の粘度が高くなり、作業性も低下する。
<Mixed composition>
The content of silica particles in the resin composition is in the range of 30 to 70% by volume, preferably in the range of 30 to 60% by volume, based on the polyamic acid or polyimide. If the content ratio of the silica particles is less than 30% by volume, the effect of lowering the dielectric loss tangent cannot be sufficiently obtained. Further, when the content ratio of the silica particles exceeds 70% by volume, the resin film becomes brittle when formed, the bendability decreases, and when the resin film is to be formed, the viscosity of the resin composition increases. Workability is also reduced.

本実施の形態の樹脂組成物は、有機溶媒を含有することができる。有機溶媒としては、例えば、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、N,N−ジエチルアセトアミド、N−メチル−2−ピロリドン(NMP)、2−ブタノン、ジメチルスルホキシド(DMSO)、ヘキサメチルホスホルアミド、N−メチルカプロラクタム、硫酸ジメチル、シクロヘキサノン、ジオキサン、テトラヒドロフラン、ジグライム、トリグライム、クレゾール等が挙げられる。これらの溶媒を2種以上併用することもでき、更にはキシレン、トルエンのような芳香族炭化水素の併用も可能である。有機溶媒の含有量としては特に制限されるものではないが、ポリアミド酸又はポリイミドの濃度が5〜30重量%程度になるような使用量に調整して用いることが好ましい。 The resin composition of the present embodiment can contain an organic solvent. Examples of the organic solvent include N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N, N-diethylacetamide, N-methyl-2-pyrrolidone (NMP), 2-butanone, and dimethyl. Examples thereof include sulfoxide (DMSO), hexamethylphosphoramide, N-methylcaprolactam, dimethylformamide, cyclohexanone, dioxane, tetrahydrofuran, diglime, triglime, cresol and the like. Two or more of these solvents can be used in combination, and aromatic hydrocarbons such as xylene and toluene can be used in combination. The content of the organic solvent is not particularly limited, but it is preferable to adjust the content so that the concentration of polyamic acid or polyimide is about 5 to 30% by weight.

さらに、本実施の形態の樹脂組成物は、必要に応じて、発明の効果を損なわない範囲で、上記シリカ粒子以外の無機フィラーや、有機フィラーを含有してもよい。具体的には、例えば、上記条件を具備しないシリカ粒子や、酸化アルミニウム、酸化マグネシウム、酸化ベリリウム、窒化ホウ素、窒化アルミニウム、窒化ケイ素、フッ化アルミニウム、フッ化カルシウム等の無機フィラー、フッ素系ポリマー粒子や液晶ポリマー粒子等の有機フィラーが挙げられる。これらは1種又は2種以上を混合して用いることができる。さらに必要に応じて、他の任意成分として可塑剤、硬化促進剤、カップリング剤、充填剤、顔料、難燃剤などを適宜配合することができる。 Further, the resin composition of the present embodiment may contain an inorganic filler other than the silica particles or an organic filler, if necessary, as long as the effects of the invention are not impaired. Specifically, for example, silica particles that do not meet the above conditions, inorganic fillers such as aluminum oxide, magnesium oxide, beryllium oxide, boron nitride, aluminum nitride, silicon nitride, aluminum fluoride, and calcium fluoride, and fluorine-based polymer particles. And organic fillers such as liquid crystal polymer particles. These can be used alone or in admixture of two or more. Further, if necessary, a plasticizer, a curing accelerator, a coupling agent, a filler, a pigment, a flame retardant and the like can be appropriately blended as other optional components.

<粘度>
樹脂組成物の粘度は、樹脂組成粒を塗工する際のハンドリング性を高め、均一な厚みの塗膜を形成しやすい粘度範囲として、例えば3000cps〜100000cpsの範囲内とすることが好ましく、5000cps〜50000cpsの範囲内とすることがより好ましい。上記の粘度範囲を外れると、コーター等による塗工作業の際にフィルムに厚みムラ、スジ等の不良が発生し易くなる。
<Viscosity>
The viscosity of the resin composition is preferably in the range of, for example, 3000 cps to 100,000 cps, and is preferably in the range of 5000 cps to 100,000 cps as the viscosity range in which the handleability when coating the resin composition granules is enhanced and a coating film having a uniform thickness is easily formed. It is more preferably within the range of 50,000 cps. If it is out of the above viscosity range, defects such as thickness unevenness and streaks are likely to occur in the film during coating work by a coater or the like.

<樹脂組成物の調製>
樹脂組成物の調製に際しては、例えばポリアミド酸の樹脂溶液にシリカ粒子を直接配合してもよい。あるいは、フィラーの分散性を考慮し、ポリアミド酸の原料である酸二無水物成分及びジアミン成分のいずれか片方を投入した反応溶媒に予めシリカ粒子を配合した後、攪拌下にもう片方の原料を投入して重合を進行させてもよい。いずれの方法においても、一回でシリカ粒子を全量投入してもよいし、数回分けて少しずつ添加してもよい。また、原料も一括で入れてもよいし、数回に分けて少しずつ混合してもよい。
<Preparation of resin composition>
When preparing the resin composition, for example, silica particles may be directly blended with a resin solution of polyamic acid. Alternatively, in consideration of the dispersibility of the filler, silica particles are previously mixed in a reaction solvent containing either one of the acid dianhydride component and the diamine component, which are the raw materials of the polyamic acid, and then the other raw material is added under stirring. It may be charged to allow the polymerization to proceed. In either method, the entire amount of silica particles may be added at one time, or may be added little by little in several portions. In addition, the raw materials may be added all at once, or may be divided into several times and mixed little by little.

[樹脂フィルム]
本実施の形態の樹脂フィルムは、単層又は複数層のポリイミド層を有する樹脂フィルムであって、ポリイミド層の少なくとも1層が、上記樹脂組成物の硬化物からなるシリカ含有ポリイミド層であればよい。
[Resin film]
The resin film of the present embodiment is a resin film having a single layer or a plurality of polyimide layers, and at least one of the polyimide layers may be a silica-containing polyimide layer made of a cured product of the above resin composition. ..

樹脂フィルム中で、樹脂組成物によって形成されるシリカ含有ポリイミド層の厚みは、例えば10〜200μmの範囲内であることが好ましく、25〜100μmの範囲内であることがより好ましい。シリカ含有ポリイミド層の厚みが10μmに満たないと、樹脂フィルムが脆くなり、また樹脂フィルムの誘電特性を改善する効果が十分に得られない。反対に、シリカ含有ポリイミド層の厚みが200μmを超えると樹脂フィルムの折り曲げ性が低下するなどの点で不利になる傾向となる。 In the resin film, the thickness of the silica-containing polyimide layer formed by the resin composition is preferably in the range of, for example, 10 to 200 μm, and more preferably in the range of 25 to 100 μm. If the thickness of the silica-containing polyimide layer is less than 10 μm, the resin film becomes brittle and the effect of improving the dielectric properties of the resin film cannot be sufficiently obtained. On the contrary, if the thickness of the silica-containing polyimide layer exceeds 200 μm, the bendability of the resin film is lowered, which tends to be disadvantageous.

樹脂フィルム全体の厚さは、例えば10〜200μmの範囲内であることが好ましく、25〜100μmμmの範囲内がより好ましい。樹脂フィルムの厚みが10μmに満たないと、金属張積層板の製造時の搬送工程で金属箔にシワが入り、また樹脂フィルムが破れるなどの不具合が生じやすくなる。反対に、樹脂フィルムの厚みが200μmを超えると樹脂フィルムの折り曲げ性が低下するなどの点で不利になる傾向となる。 The thickness of the entire resin film is preferably in the range of, for example, 10 to 200 μm, and more preferably in the range of 25 to 100 μm μm. If the thickness of the resin film is less than 10 μm, problems such as wrinkles in the metal foil and tearing of the resin film are likely to occur in the transport process during the production of the metal-clad laminate. On the contrary, if the thickness of the resin film exceeds 200 μm, the bendability of the resin film is lowered, which tends to be disadvantageous.

また、樹脂フィルムの全体の厚みに対するシリカ含有ポリイミド層の厚みの割合は、50%以上であることが好ましい。樹脂フィルムの全体の厚みに対するシリカ含有ポリイミド層の厚みの割合が50%未満では、誘電特性の改善効果が十分に得られない。 The ratio of the thickness of the silica-containing polyimide layer to the total thickness of the resin film is preferably 50% or more. If the ratio of the thickness of the silica-containing polyimide layer to the total thickness of the resin film is less than 50%, the effect of improving the dielectric properties cannot be sufficiently obtained.

シリカ含有ポリイミド層を形成する方法は、特に限定されるものではなく公知の手法を採用することができる。ここでは、その最も代表的な例を示す。
まず、樹脂組成物を任意の支持基材上に直接流延塗布して塗布膜を形成する。次に、塗布膜を150℃以下の温度である程度溶媒を乾燥除去する。樹脂組成物がポリアミド酸を含有する場合は、その後、塗布膜に対し、更にイミド化のために100〜400℃、好ましくは130〜360℃の温度範囲で5〜30分間程度の熱処理を行う。このようにして支持基材上にシリカ含有ポリイミド層を形成することができる。2層以上のポリイミド層とする場合、第一のポリアミド酸の樹脂溶液を塗布、乾燥したのち、第二のポリアミド酸の樹脂溶液を塗布、乾燥する。それ以降は、同様にして第三のポリアミド酸の樹脂溶液、次に、第4のポリアミド酸の樹脂溶液、・・・というように、ポリアミド酸の樹脂溶液を、必要な回数だけ、順次塗布し、乾燥する。その後、まとめて100〜400℃の温度範囲で5〜30分間程度の熱処理を行って、イミド化を行うことがよい。熱処理の温度が100℃より低いとポリイミドの脱水閉環反応が十分に進行せず、反対に400℃を超えると、ポリイミド層が劣化するおそれがある。
The method for forming the silica-containing polyimide layer is not particularly limited, and a known method can be adopted. Here, the most typical example is shown.
First, the resin composition is cast and applied directly onto an arbitrary supporting base material to form a coating film. Next, the solvent is dried and removed from the coating film at a temperature of 150 ° C. or lower to some extent. When the resin composition contains a polyamic acid, the coating film is then further heat-treated for imidization in a temperature range of 100 to 400 ° C., preferably 130 to 360 ° C. for about 5 to 30 minutes. In this way, the silica-containing polyimide layer can be formed on the supporting base material. When forming two or more polyimide layers, a resin solution of the first polyamic acid is applied and dried, and then a resin solution of the second polyamic acid is applied and dried. After that, in the same manner, the resin solution of the third polyamic acid, then the resin solution of the fourth polyamic acid, and so on, the resin solution of the polyamic acid is sequentially applied as many times as necessary. ,dry. After that, it is preferable to carry out heat treatment for about 5 to 30 minutes in a temperature range of 100 to 400 ° C. for imidization. If the heat treatment temperature is lower than 100 ° C., the dehydration ring closure reaction of the polyimide does not proceed sufficiently, and conversely, if it exceeds 400 ° C., the polyimide layer may be deteriorated.

また、シリカ含有ポリイミド層を形成する別の例を挙げる。
まず、任意の支持基材上に、樹脂組成物を流延塗布してフィルム状成型する。このフィルム状成型物を、支持基材上で加熱乾燥することにより自己支持性を有するゲルフィルムとする。ゲルフィルムを支持基材より剥離した後、樹脂組成物がポリアミド酸を含有する場合は、更に高温で熱処理し、イミド化させてポリイミドの樹脂フィルムとする。
Another example of forming a silica-containing polyimide layer will be given.
First, the resin composition is cast-coated on an arbitrary supporting base material and molded into a film. This film-like molded product is heat-dried on a supporting base material to obtain a gel film having self-supporting properties. After the gel film is peeled off from the supporting base material, if the resin composition contains a polyamic acid, it is further heat-treated at a high temperature and imidized to obtain a polyimide resin film.

シリカ含有ポリイミド層の形成に用いる支持基材は、特に限定されるものではなく、任意の材質の基材を用いることができる。また、樹脂フィルムの形成にあたっては、基材上で完全にイミド化を完了させた樹脂フィルムを形成する必要はない。例えば、半硬化状態のポリイミド前駆体状態での樹脂フィルムを支持基材から剥離等の手段で分離し、分離後イミド化を完了させて樹脂フィルムとすることもできる。 The supporting base material used for forming the silica-containing polyimide layer is not particularly limited, and a base material of any material can be used. Further, in forming the resin film, it is not necessary to form the resin film that has been completely imidized on the base material. For example, the resin film in the semi-cured polyimide precursor state can be separated from the supporting base material by means such as peeling, and imidization is completed after the separation to obtain a resin film.

樹脂フィルムは、無機フィラーを含有するポリイミド層(上記シリカ含有ポリイミド層を含む)のみからなっていてもよく、無機フィラーを含有しないポリイミド層を有してもよい。樹脂フィルムを複数層の積層構造とする場合、誘電特性の改善を考慮するとすべての層に無機フィラーを含有させることが好ましい。ただし、無機フィラーを含有するポリイミド層の隣接層を、無機フィラーを含有しない層とするか、あるいはその含有量が低い層とすることにより、加工時等の無機フィラーの滑落が防止できるという有利な効果をもたせることができる。無機フィラーを含有しないポリイミド層を有する場合、その厚みは、例えば、無機フィラーを含有するポリイミド層の1/100〜1/2の範囲内、好ましくは1/20〜1/3の範囲内とすることがよい。無機フィラーを含有しないポリイミド層を有する場合、そのポリイミド層が金属層に接するようにすれば、金属層と絶縁樹脂層の接着性が向上する。 The resin film may consist of only a polyimide layer containing an inorganic filler (including the silica-containing polyimide layer), or may have a polyimide layer not containing an inorganic filler. When the resin film has a laminated structure of a plurality of layers, it is preferable that all the layers contain an inorganic filler in consideration of improvement in dielectric properties. However, by setting the adjacent layer of the polyimide layer containing the inorganic filler to a layer not containing the inorganic filler or a layer having a low content thereof, it is advantageous that the inorganic filler can be prevented from slipping off during processing or the like. It can be effective. When the polyimide layer containing no inorganic filler is provided, the thickness thereof is, for example, within the range of 1/100 to 1/2, preferably 1/20 to 1/3 of the polyimide layer containing the inorganic filler. That is good. When the polyimide layer containing no inorganic filler is provided, if the polyimide layer is brought into contact with the metal layer, the adhesiveness between the metal layer and the insulating resin layer is improved.

樹脂フィルムの熱膨張係数(CTE)は、特に限定されないが、例えば10×10−6〜60×10−6/K(10〜60ppm/K)の範囲内にあることが好ましく、20×10−6〜50×10−6/K(20〜50ppm/K)の範囲内がより好ましい。樹脂フィルムの熱膨張係数が10×10−6/Kより小さいと、金属張積層板とした後でカールが生じやすくハンドリング性に劣る。一方、樹脂フィルムの熱膨張係数が60×10−6/Kを超えると、フレキシブル基板など電子材料としての寸法安定性に劣り、また耐熱性も低下する傾向にある。 The coefficient of thermal expansion (CTE) of the resin film is not particularly limited , but is preferably in the range of, for example, 10 × 10 -6 to 60 × 10 -6 / K (10 to 60 ppm / K), and is preferably 20 × 10 −. More preferably, it is in the range of 6 to 50 × 10-6 / K (20 to 50 ppm / K). If the coefficient of thermal expansion of the resin film is smaller than 10 × 10 -6 / K, curling is likely to occur after the metal-clad laminate is formed, and the handleability is poor. On the other hand, when the coefficient of thermal expansion of the resin film exceeds 60 × 10-6 / K, the dimensional stability as an electronic material such as a flexible substrate is inferior, and the heat resistance tends to be lowered.

<誘電正接>
樹脂フィルムは、例えば、回路基板の絶縁樹脂層として適用する場合において、高周波信号の伝送時における誘電損失を低減するために、フィルム全体として、スプリットポスト誘電体共振器(SPDR)により測定したときの3〜20GHzにおける誘電正接(Tanδ)が、0.006以下であることが好ましく、0.004以下であることがより好ましい。回路基板の伝送損失を改善するためには、特に絶縁樹脂層の誘電正接を制御することが重要であり、誘電正接を上記範囲内とすることで、伝送損失を下げる効果が増大する。従って、樹脂フィルムを、例えば高周波回路基板の絶縁樹脂層として適用する場合、伝送損失を効率よく低減できる。3〜20GHzにおける誘電正接が0.006を超えると、樹脂フィルムを回路基板の絶縁樹脂層として適用した際に、高周波信号の伝送経路上で電気信号のロスが大きくなるなどの不都合が生じやすくなる。3〜20GHzにおける誘電正接の下限値は特に制限されないが、樹脂フィルムを回路基板の絶縁樹脂層として適用する場合の物性制御を考慮する必要がある。
<Dissipation factor>
When the resin film is applied as an insulating resin layer of a circuit board, for example, when the film as a whole is measured by a split post dielectric resonator (SPDR) in order to reduce the dielectric loss during transmission of a high frequency signal. The dielectric loss tangent (Tanδ) at 3 to 20 GHz is preferably 0.006 or less, and more preferably 0.004 or less. In order to improve the transmission loss of the circuit board, it is particularly important to control the dielectric loss tangent of the insulating resin layer, and by setting the dielectric loss tangent within the above range, the effect of reducing the transmission loss is increased. Therefore, when the resin film is applied as, for example, an insulating resin layer of a high-frequency circuit board, the transmission loss can be efficiently reduced. If the dielectric loss tangent at 3 to 20 GHz exceeds 0.006, inconveniences such as a large loss of electrical signals on the high-frequency signal transmission path are likely to occur when the resin film is applied as the insulating resin layer of the circuit board. .. The lower limit of the dielectric loss tangent at 3 to 20 GHz is not particularly limited, but it is necessary to consider the physical property control when the resin film is applied as the insulating resin layer of the circuit board.

<比誘電率>
樹脂フィルムは、例えば回路基板の絶縁樹脂層として適用する場合において、インピーダンス整合性を確保するために、フィルム全体として、3〜20GHzにおける比誘電率が4.0以下であることが好ましい。3〜20GHzにおける比誘電率が4.0を超えると、樹脂フィルムを回路基板の絶縁樹脂層として適用した際に、誘電損失の悪化に繋がり、高周波信号の伝送経路上で電気信号のロスが大きくなるなどの不都合が生じやすくなる。
<Relative permittivity>
When the resin film is applied as an insulating resin layer of a circuit board, for example, the relative permittivity of the film as a whole at 3 to 20 GHz is preferably 4.0 or less in order to ensure impedance matching. If the relative permittivity at 3 to 20 GHz exceeds 4.0, when the resin film is applied as the insulating resin layer of the circuit board, the dielectric loss is deteriorated, and the loss of the electric signal is large on the transmission path of the high frequency signal. Inconveniences such as

<金属張積層板>
本実施の形態の金属張積層板は、絶縁樹脂層と、この絶縁樹脂層の少なくとも一方の面に積層された金属層と、を備えた金属張積層板であり、絶縁樹脂層の少なくとも1層が上記樹脂フィルムからなる。金属張積層板は、絶縁樹脂層の片面側のみに金属層を有する片面金属張積層板であってもよいし、絶縁樹脂層の両面に金属層を有する両面金属張積層板であってもよい。
<Metal-clad laminate>
The metal-clad laminate of the present embodiment is a metal-clad laminate comprising an insulating resin layer and a metal layer laminated on at least one surface of the insulating resin layer, and is at least one layer of the insulating resin layer. Is made of the above resin film. The metal-clad laminate may be a single-sided metal-clad laminate having a metal layer only on one side of the insulating resin layer, or a double-sided metal-clad laminate having metal layers on both sides of the insulating resin layer. ..

本実施の形態の金属張積層板は、無機フィラーを含有するポリイミド層と金属箔とを接着するための接着剤を用いることを除外するものではない。ただし、絶縁樹脂層の両面に金属層を有する両面金属張積層板において接着層を介在させる場合には、接着層の厚みは、誘電特性を損なわないように、全絶縁樹脂層の厚みの30%未満とすることが好ましく、20%未満とすることがより好ましい。また、絶縁樹脂層の片面のみに金属層を有する片面金属張積層板において接着層を介在させる場合には、接着層の厚みは、誘電特性を損なわないように、全絶縁樹脂層の厚みの15%未満とすることが好ましく、10%未満とすることがより好ましい。また、接着層は絶縁樹脂層の一部を構成するので、ポリイミド層であることが好ましい。絶縁樹脂層の主たる材質であるシリカ含有ポリイミドのガラス転移温度は、耐熱性を付与する観点から300℃以上とすることが好ましい。ガラス転移温度を300℃以上とするには、ポリイミドを構成する上記の酸二無水物やジアミン成分を適宜選択することで可能となる。 The metal-clad laminate of the present embodiment does not exclude the use of an adhesive for adhering the polyimide layer containing the inorganic filler and the metal foil. However, when the adhesive layer is interposed in the double-sided metal-clad laminate having metal layers on both sides of the insulating resin layer, the thickness of the adhesive layer is 30% of the thickness of the total insulating resin layer so as not to impair the dielectric properties. It is preferably less than, more preferably less than 20%. Further, when the adhesive layer is interposed in the single-sided metal-clad laminate having the metal layer on only one side of the insulating resin layer, the thickness of the adhesive layer is 15 of the thickness of the total insulating resin layer so as not to impair the dielectric properties. It is preferably less than%, and more preferably less than 10%. Further, since the adhesive layer constitutes a part of the insulating resin layer, it is preferably a polyimide layer. The glass transition temperature of the silica-containing polyimide, which is the main material of the insulating resin layer, is preferably 300 ° C. or higher from the viewpoint of imparting heat resistance. The glass transition temperature can be set to 300 ° C. or higher by appropriately selecting the above-mentioned acid dianhydride and diamine components constituting the polyimide.

樹脂フィルムを絶縁樹脂層とする金属張積層板を製造する方法としては、例えば、樹脂フィルムに直接、又は任意の接着剤を介して金属箔を加熱圧着する方法や、金属蒸着等の手法によって樹脂フィルムに金属層を形成する方法などを挙げることができる。なお、両面金属張積層板は、例えば、片面金属張積層板を形成した後、互いにポリイミド層を向き合わせて熱プレスによって圧着し形成する方法や、片面金属張積層板のポリイミド層に金属箔を圧着し形成する方法等により得ることができる。 As a method for producing a metal-clad laminate having a resin film as an insulating resin layer, for example, a method of heat-bonding a metal foil directly to a resin film or via an arbitrary adhesive, a method of heat-pressing a metal foil, or a method such as metal deposition of a resin is used. Examples thereof include a method of forming a metal layer on a film. The double-sided metal-clad laminate can be formed, for example, by forming a single-sided metal-clad laminate and then pressing the polyimide layers facing each other by heat pressing, or by applying a metal foil to the polyimide layer of the single-sided metal-clad laminate. It can be obtained by a method of crimping and forming.

<金属層>
金属層の材質としては、特に制限はないが、例えば、銅、ステンレス、鉄、ニッケル、ベリリウム、アルミニウム、亜鉛、インジウム、銀、金、スズ、ジルコニウム、タンタル、チタン、鉛、マグネシウム、マンガン及びこれらの合金等が挙げられる。この中でも、特に銅又は銅合金が好ましい。金属層は、金属箔からなるものであってもよいし、フィルムに金属蒸着したものであってもよい。また、樹脂組成物を直接塗布可能な点から、金属箔でも金属板でも使用可能であり、銅箔若しくは銅板が好ましい。
<Metal layer>
The material of the metal layer is not particularly limited, but for example, copper, stainless steel, iron, nickel, beryllium, aluminum, zinc, indium, silver, gold, tin, zirconium, tantalum, titanium, lead, magnesium, manganese and these. Alloys and the like. Of these, copper or copper alloys are particularly preferable. The metal layer may be made of metal foil or may be metal-deposited on a film. Further, since the resin composition can be directly applied, either a metal foil or a metal plate can be used, and a copper foil or a copper plate is preferable.

金属層の厚みは、金属張積層板の使用目的に応じて適宜設定されるため特に限定されないが、例えば5μm〜3mmの範囲内が好ましく、12μm〜1mmの範囲内がより好ましい。金属層の厚みが5μmに満たないと、金属張積層板の製造等における搬送時にシワが入るなどの不具合が生じるおそれがある。反対に金属層の厚みが3mmを超えると硬くて加工性が悪くなる。金属層の厚みについては、一般的に、車載用回路基板などの用途では厚いものが適し、LED用回路基板などの用途などでは薄い金属層が適する。 The thickness of the metal layer is not particularly limited because it is appropriately set according to the purpose of use of the metal-clad laminate, but is preferably in the range of, for example, 5 μm to 3 mm, and more preferably in the range of 12 μm to 1 mm. If the thickness of the metal layer is less than 5 μm, problems such as wrinkles may occur during transportation in the manufacture of metal-clad laminates. On the contrary, if the thickness of the metal layer exceeds 3 mm, it is hard and the workability is deteriorated. As for the thickness of the metal layer, a thick one is generally suitable for applications such as an in-vehicle circuit board, and a thin metal layer is suitable for an application such as an LED circuit board.

以下、実施例に基づいて本発明の内容を具体的に説明するが、本発明はこれらの実施例の範囲に限定されるものではない。なお、以下の実施例において、特にことわりのない限り各種測定、評価は下記によるものである。 Hereinafter, the contents of the present invention will be specifically described based on Examples, but the present invention is not limited to the scope of these Examples. In the following examples, various measurements and evaluations are as follows unless otherwise specified.

[粒子径の測定]
レーザ回折式粒度分布測定装置(マルバーン社製、商品名;Master Sizer 3000)を用いて、水を分散媒とし粒子屈折率1.54の条件で、レーザ回折・散乱式測定方式による粒子径の測定を行った。
[Measurement of particle size]
Measurement of particle size by laser diffraction / scattering type measurement method using a laser diffraction type particle size distribution measuring device (manufactured by Malvern, trade name; Master Sizer 3000) under the condition of a particle refractive index of 1.54 using water as a dispersion medium. Was done.

[真比重の測定方法]
連続自動粉体真密度測定装置(セイシン企業社製、商品名;AUTO TRUE DENSERMAT‐7000)を用いて、ピクノメーター法(液相置換法)による真比重の測定を行った。
[Measurement method of true specific gravity]
The true specific gravity was measured by the pycnometer method (liquid phase substitution method) using a continuous automatic powder truth density measuring device (manufactured by Seishin Enterprise Co., Ltd., trade name; AUTO TRUE DENSERMAT-7000).

[比表面積の測定]
JIS Z 8830:2013に準拠し、BET比表面積測定法により比表面積測定装置(マウンテック社製、商品名;Macsorb210)を用いて、比表面積を測定した。
[Measurement of specific surface area]
In accordance with JIS Z 8830: 2013, the specific surface area was measured by a BET specific surface area measuring method using a specific surface area measuring device (manufactured by Mountech, trade name; Macsorb210).

[比誘電率及び誘電正接の測定]
<シリカ粒子>
空洞共振器摂動法による関東電子応用開発社製の誘電率測定装置を用い、所定の周波数におけるシリカ粒子の比誘電率(ε1)及び誘電正接(Tanδ1)を測定した。なお、試料管チューブの内径は1.68mm、外径は2.28mm、高さは8cmである。
<樹脂フィルム>
ベクトルネットワークアナライザ(Agilent社製、商品名;ベクトルネットワークアナライザE8363C)およびSPDR共振器を用いて、所定の周波数における樹脂フィルム(硬化後の樹脂フィルム)の比誘電率(ε1)および誘電正接(Tanδ1)を測定した。なお、測定に使用した樹脂フィルムは、温度;24〜26℃、湿度;45〜55%の条件下で、24時間放置したものである。
[Measurement of relative permittivity and dielectric loss tangent]
<Silica particles>
The relative permittivity (ε1) and dielectric loss tangent (Tanδ1) of silica particles at a predetermined frequency were measured using a permittivity measuring device manufactured by Kanto Electronics Applied Development Co., Ltd. by the cavity resonator perturbation method. The inner diameter of the sample tube is 1.68 mm, the outer diameter is 2.28 mm, and the height is 8 cm.
<Resin film>
Relative permittivity (ε1) and dielectric loss tangent (Tanδ1) of a resin film (resin film after curing) at a predetermined frequency using a vector network analyzer (manufactured by Agilent, trade name; vector network analyzer E8633C) and an SPDR resonator. Was measured. The resin film used for the measurement was left to stand for 24 hours under the conditions of temperature: 24-26 ° C. and humidity: 45-55%.

[粘度の測定]
樹脂溶液の粘度はE型粘度計(ブルックフィールド社製、商品名;DV−II+Pro)を用いて、25℃における粘度を測定した。トルクが10%〜90%になるよう回転数を設定し、測定を開始してから2分経過後、粘度が安定した時の値を読み取った。
[Measurement of viscosity]
The viscosity of the resin solution was measured at 25 ° C. using an E-type viscometer (manufactured by Brookfield, trade name; DV-II + Pro). The rotation speed was set so that the torque was 10% to 90%, and 2 minutes after the start of the measurement, the value when the viscosity became stable was read.

[熱膨張係数(CTE)の測定]
3mm×20mmのサイズのポリイミドフィルムを、サーモメカニカルアナライザー(Bruker社製、商品名;4000SA)を用い、5.0gの荷重を加えながら10℃/分の昇温速度で30℃から250℃まで昇温させ、更にその温度で10分保持した後、5℃/分の速度で冷却し、250℃から100℃までの平均熱膨張係数(熱膨張係数、CTE)を求めた。
[Measurement of coefficient of thermal expansion (CTE)]
A polyimide film having a size of 3 mm × 20 mm is raised from 30 ° C. to 250 ° C. at a heating rate of 10 ° C./min while applying a load of 5.0 g using a thermomechanical analyzer (manufactured by Bruker, trade name; 4000SA). After warming and holding at that temperature for 10 minutes, the film was cooled at a rate of 5 ° C./min to determine the average coefficient of thermal expansion (coefficient of thermal expansion, CTE) from 250 ° C. to 100 ° C.

[折り曲げ性の評価]
1)180°折り曲げ性:
JISK5600−1に準拠し、5cm×10cmサイズの樹脂フィルムの長辺の中心を、5mmφの金属棒に巻きつけるように1〜2秒かけて均一に曲げ、樹脂フィルムが180℃折り曲がっても破断又はクラックが入らないものを「良」とし、破断又はクラックが発生するものを「不可」とした。
2)はぜ折り性:
5cm×5cmサイズの樹脂フィルムを、対角線に三角に折りたたんだ後、元に戻して、樹脂フィルムが破断又はクラックが入らないものを「可」とし、破断又はクラックが発生するものを「不可」とした。
[Evaluation of bendability]
1) 180 ° bendability:
In accordance with JIS K5600-1, the center of the long side of a 5 cm x 10 cm size resin film is bent uniformly over 1 to 2 seconds so as to be wrapped around a 5 mmφ metal rod, and even if the resin film is bent at 180 ° C, it breaks. Alternatively, those without cracks were rated as "good", and those with breaks or cracks were rated as "impossible".
2) Foldability:
A 5 cm x 5 cm size resin film is folded diagonally into a triangle and then returned to its original position. If the resin film does not break or crack, it is considered "possible", and if it breaks or cracks occur, it is considered "impossible". did.

実施例等に用いた略号は、以下の化合物を示す。
m‐TB:2,2’‐ジメチル‐4,4’‐ジアミノビフェニル
TPE-R:1,3‐ビス(4‐アミノフェノキシ)ベンゼン
BAPP:2,2‐ビス(4‐アミノフェノキシフェニル)プロパン
TFMB:2,2'‐ビス(トリフルオロメチル)‐4,4'‐ジアミノビフェニル
PMDA:ピロメリット酸二無水物
BPDA:3,3’,4,4’‐ビフェニルテトラカルボン酸二無水物
6FDA:2,2‐ビス(3,4‐ジカルボキシフェニル)‐ヘキサフルオロプロパン二無水物
DMAc:N,N‐ジメチルアセトアミド
フィラー1:日鉄ケミカル&マテリアル社製、商品名;SP40−10(球状非晶質シリカ粉末、真球状、シリカ含有率;99.9重量%、真比重;2.21、比表面積;8.6m/g、D50;2.5μm、D100;30μm)
フィラー2:日鉄ケミカル&マテリアル社製。商品名;SPH507(球状非晶質シリカ粉末、真球状、シリカ含有率;99.99重量%、真比重;2.21、比表面積;6.4m/g、D50;0.83μm、D100;8.7μm)
フィラー3:日鉄ケミカル&マテリアル社製。商品名;SPH516M(球状非晶質シリカ粉末、真球状、シリカ含有率;99.98重量%、真比重;2.21、比表面積;12.7m/g、D50;0.64μm、D100;1.3μm)
フィラー4:アドマテック社製、商品名;SE4050(球状非晶質シリカ粉末、真球状、シリカ含有率;99.99重量%、真比重;2.2、比表面積;4.6m/g、D50;1.5μm、D100;6.0μm)
The abbreviations used in the examples and the like indicate the following compounds.
m-TB: 2,2'-dimethyl-4,4'-diaminobiphenyl TPE-R: 1,3-bis (4-aminophenoxy) benzene BAPP: 2,2-bis (4-aminophenoxyphenyl) propaneTFMB : 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl PMDA: pyromellitic dianhydride BPDA: 3,3', 4,4'-biphenyltetracarboxylic dianhydride 6FDA: 2 , 2-Bis (3,4-dicarboxyphenyl) -hexafluoropropane dianhydride DMAc: N, N-dimethylacetamide filler 1: Nittetsu Chemical & Materials Co., Ltd., trade name; SP40-10 (spherical amorphous) Silica powder, spherical, silica content; 99.9% by weight, true specific gravity; 2.21, specific surface area; 8.6 m 2 / g, D 50 ; 2.5 μm, D 100 ; 30 μm)
Filler 2: Made by Nittetsu Chemical & Materials Co., Ltd. Product Name: SPH507 (Spherical Amorphous Silica Powder, Spherical Spherical, Silica Content: 99.99% by Weight, True Specific Weight: 2.21, Specific Surface Area: 6.4 m 2 / g, D 50 ; 0.83 μm, D 100 ; 8.7 μm)
Filler 3: Made by Nittetsu Chemical & Materials Co., Ltd. Product name: SPH516M (spherical amorphous silica powder, true sphere, silica content; 99.98% by weight, true specific weight; 2.21, specific surface area; 12.7 m 2 / g, D 50 ; 0.64 μm, D 100 ; 1.3 μm)
Filler 4: Made by Admatech, trade name: SE4050 (spherical amorphous silica powder, true sphere, silica content; 99.99% by weight, true specific weight; 2.2, specific surface area: 4.6 m 2 / g, D 50 ; 1.5 μm, D 100 ; 6.0 μm)

フィラー1〜4の比誘電率及び誘電正接は、次のとおりであった。
<フィラー1>
1)3GHzにおける比誘電率ε;3.05、誘電正接Tanδ;0.0028
2)5GHzにおける比誘電率ε;2.97、誘電正接Tanδ;0.0028
3)10GHzにおける比誘電率ε;2.78、誘電正接Tanδ;0.003
<フィラー2>
1)3GHzにおける比誘電率ε;2.98、誘電正接Tanδ;0.0025
2)5GHzにおける比誘電率ε;2.99、誘電正接Tanδ;0.0026
3)10GHzにおける比誘電率ε;2.88、誘電正接Tanδ;0.0027
<フィラー3>
1)3GHzにおける比誘電率ε;2.88、誘電正接Tanδ;0.004
2)5GHzにおける比誘電率ε;2.82、誘電正接Tanδ;0.0039
3)10GHzにおける比誘電率ε;2.76、誘電正接Tanδ;0.004
<フィラー4>
1)3GHzにおける比誘電率ε;3.10、誘電正接Tanδ;0.0049
2)5GHzにおける比誘電率ε;3.06、誘電正接Tanδ;0.0049
3)10GHzにおける比誘電率ε;2.92、誘電正接Tanδ;0.0052
The relative permittivity and dielectric loss tangent of fillers 1 to 4 were as follows.
<Filler 1>
1) Relative permittivity at 3 GHz ε 1 ; 3.05, dielectric loss tangent Tan δ 1 ; 0.0028
2) Relative permittivity at 5 GHz ε 1 ; 2.97, dielectric loss tangent Tan δ 1 ; 0.0028
3) Relative permittivity at 10 GHz ε 1 ; 2.78, dielectric loss tangent Tan δ 1 ; 0.003
<Filler 2>
1) Relative permittivity at 3 GHz ε 1 ; 2.98, dielectric loss tangent Tan δ 1 ; 0.0025
2) Relative permittivity at 5 GHz ε 1 ; 2.99, dielectric loss tangent Tan δ 1 ; 0.0026
3) Relative permittivity at 10 GHz ε 1 ; 2.88, dielectric loss tangent Tan δ 1 ; 0.0027
<Filler 3>
1) Relative permittivity at 3 GHz ε 1 ; 2.88, dielectric loss tangent Tan δ 1 ; 0.004
2) Relative permittivity at 5 GHz ε 1 ; 2.82, dielectric loss tangent Tan δ 1 ; 0.0039
3) Relative permittivity at 10 GHz ε 1 ; 2.76, dielectric loss tangent Tan δ 1 ; 0.004
<Filler 4>
1) Relative permittivity at 3 GHz ε 1 ; 3.10, dielectric loss tangent Tan δ 1 ; 0.0049
2) Relative permittivity at 5 GHz ε 1 ; 3.06, dielectric loss tangent Tan δ 1 ; 0.0049
3) Relative permittivity at 10 GHz ε 1 ; 2.92, dielectric loss tangent Tan δ 1 ; 0.0052

(合成例1〜4)
ポリアミド酸の溶液A〜Dを合成するため、窒素気流下で、3000mlのセパラブルフラスコの中に、表1で示した固形分濃度となるように溶剤のDMAcを加え、表1に示したジアミン成分及び酸無水物成分を10分間攪拌しながら室温で溶解させた。その後、溶液を室温で10時間攪拌を続けて重合反応を行い、ポリアミド酸の粘稠な溶液A〜Dを調製した。
(Synthesis Examples 1 to 4)
In order to synthesize the polyamic acid solutions A to D, the solvent DMAc was added to a 3000 ml separable flask under a nitrogen stream so as to have the solid content concentration shown in Table 1, and the diamine shown in Table 1 was added. The components and the acid anhydride component were dissolved at room temperature with stirring for 10 minutes. Then, the solution was stirred at room temperature for 10 hours to carry out a polymerization reaction to prepare viscous solutions A to D of polyamic acid.

Figure 2021070592
Figure 2021070592

[実施例1]
100.24gのポリアミド酸溶液A及び9.37gのフィラー1を混合し、目視にて一様な溶液となるまで攪拌し、ポリアミド酸溶液1(粘度;27,500cps、ポリアミド酸に対するフィラーの含有率;30体積%)を調製した。
銅箔1(電解銅箔、厚み;12μm)の上にポリアミド酸溶液1を塗布し、130℃で3分間乾燥させた。その後、155℃から360℃まで段階的な熱処理を行ってイミド化し、金属張積層板1を調製した。
金属張積層板1の銅箔をエッチング除去し、樹脂フィルム1を調製した。樹脂フィルム1(厚み;40μm)のCTEは33ppm/Kであり、180°折り曲げ性は良、はぜ折り性は可であった。また、樹脂フィルム1の誘電正接は、次のとおりであった。
1)5GHzにおける誘電正接Tanδ;0.0047
2)10GHzにおける誘電正接Tanδ;0.0054
3)20GHzにおける誘電正接Tanδ;0.0056
[Example 1]
100.24 g of polyamic acid solution A and 9.37 g of filler 1 are mixed, and the mixture is visually stirred until a uniform solution is obtained. Polyamic acid solution 1 (viscosity; 27,500 cps, filler content with respect to polyamic acid) 30% by volume) was prepared.
The polyamic acid solution 1 was applied onto the copper foil 1 (electrolytic copper foil, thickness; 12 μm) and dried at 130 ° C. for 3 minutes. Then, a stepwise heat treatment was performed from 155 ° C. to 360 ° C. to imidize the metal-clad laminate 1.
The copper foil of the metal-clad laminate 1 was removed by etching to prepare a resin film 1. The CTE of the resin film 1 (thickness; 40 μm) was 33 ppm / K, and the 180 ° bendability was good and the foldability was possible. The dielectric loss tangent of the resin film 1 was as follows.
1) Dissipation factor Tanδ 1 at 5 GHz; 0.0047
2) Dissipation factor Tanδ 1 at 10 GHz; 0.0054
3) Dissipation factor Tanδ 1 at 20 GHz; 0.0056

[実施例2]
100.36gのポリアミド酸溶液A及び21.88gのフィラー1を混合し、目視にて一様な溶液となるまで攪拌し、ポリアミド酸溶液2(粘度;28,400cps、ポリアミド酸に対するフィラーの含有率;50体積%)を調製した。
実施例1と同様にして、金属張積層板2及び樹脂フィルム2を調製した。樹脂フィルム2(厚み;42μm)のCTEは31ppm/Kであり、180°折り曲げ性は良、はぜ折り性は不可であった。また、樹脂フィルム2の誘電正接は、次のとおりであった。
1)5GHzにおける誘電正接Tanδ;0.0043
2)10GHzにおける誘電正接Tanδ;0.0047
3)20GHzにおける誘電正接Tanδ;0.0049
[Example 2]
100.36 g of polyamic acid solution A and 21.88 g of filler 1 are mixed, and the mixture is visually stirred until a uniform solution is obtained. Polyamic acid solution 2 (viscosity; 28,400 cps, filler content with respect to polyamic acid) (50% by volume) was prepared.
The metal-clad laminate 2 and the resin film 2 were prepared in the same manner as in Example 1. The CTE of the resin film 2 (thickness: 42 μm) was 31 ppm / K, and the 180 ° bendability was good and the foldability was not possible. The dielectric loss tangent of the resin film 2 was as follows.
1) Dissipation factor Tanδ 1 at 5 GHz; 0.0043
2) Dissipation factor Tanδ 1 at 10 GHz; 0.0047
3) Dissipation factor Tanδ 1 at 20 GHz; 0.0049

[実施例3]
99.92gのポリアミド酸溶液B及び9.33gのフィラー1を混合し、目視にて一様な溶液となるまで攪拌し、ポリアミド酸溶液3(粘度;29,000cps、ポリアミド酸に対するフィラーの含有率;30体積%)を調製した。
実施例1と同様にして、金属張積層板3及び樹脂フィルム3を調製した。樹脂フィルム3(厚み;41μm)のCTEは35ppm/Kであり、180°折り曲げ性は良、はぜ折り性は可であった。また、樹脂フィルム3の誘電正接は、次のとおりであった。
1)5GHzにおける誘電正接Tanδ;0.0029
2)10GHzにおける誘電正接Tanδ;0.0033
3)20GHzにおける誘電正接Tanδ;0.0035
[Example 3]
99.92 g of polyamic acid solution B and 9.33 g of filler 1 are mixed, and the mixture is visually stirred until a uniform solution is obtained. Polyamic acid solution 3 (viscosity; 29,000 cps, filler content with respect to polyamic acid) 30% by volume) was prepared.
The metal-clad laminate 3 and the resin film 3 were prepared in the same manner as in Example 1. The CTE of the resin film 3 (thickness; 41 μm) was 35 ppm / K, and the 180 ° bendability was good and the foldability was possible. The dielectric loss tangent of the resin film 3 was as follows.
1) Dissipation factor Tanδ 1 at 5 GHz; 0.0029
2) Dissipation factor Tanδ 1 at 10 GHz; 0.0033
3) Dissipation factor Tanδ 1 at 20 GHz; 0.0035

[実施例4]
100.00gのポリアミド酸溶液B及び21.81gのフィラー1を混合し、目視にて一様な溶液となるまで攪拌し、ポリアミド酸溶液4(粘度;31,000cps、ポリアミド酸に対するフィラーの含有率;50体積%)を調製した。
実施例1と同様にして、金属張積層板4及び樹脂フィルム4を調製した。樹脂フィルム4(厚み;44μm)のCTEは30ppm/Kであり、180°折り曲げ性は可、はぜ折り性は不可であった。また、樹脂フィルム4の誘電正接は、次のとおりであった。
1)5GHzにおける誘電正接Tanδ;0.0028
2)10GHzにおける誘電正接Tanδ;0.0030
3)20GHzにおける誘電正接Tanδ;0.0031
[Example 4]
100.00 g of polyamic acid solution B and 21.81 g of filler 1 are mixed, and the mixture is visually stirred until a uniform solution is obtained, and the polyamic acid solution 4 (viscosity; 31,000 cps, content of filler with respect to polyamic acid) is obtained. (50% by volume) was prepared.
A metal-clad laminate 4 and a resin film 4 were prepared in the same manner as in Example 1. The CTE of the resin film 4 (thickness; 44 μm) was 30 ppm / K, and the 180 ° bendability was possible and the foldability was not possible. The dielectric loss tangent of the resin film 4 was as follows.
1) Dissipation factor Tanδ 1 at 5 GHz; 0.0028
2) Dissipation factor Tanδ 1 at 10 GHz; 0.0030
3) Dissipation factor Tanδ 1 at 20 GHz; 0.0031

[実施例5]
80.00gのポリアミド酸溶液C及び7.88gのフィラー1を混合し、目視にて一様な溶液となるまで攪拌し、ポリアミド酸溶液5(粘度;24,000cps、ポリアミド酸に対するフィラーの含有率;30体積%)を調製した。
実施例1と同様にして、金属張積層板5及び樹脂フィルム5を調製した。樹脂フィルム5(厚み;46μm)のCTEは41ppm/Kであり、180°折り曲げ性は良、はぜ折り性は可であった。また、樹脂フィルム5の誘電正接は、次のとおりであった。
1)5GHzにおける誘電正接Tanδ;0.0046
2)10GHzにおける誘電正接Tanδ;0.0052
3)20GHzにおける誘電正接Tanδ;0.0055
[Example 5]
80.00 g of polyamic acid solution C and 7.88 g of filler 1 are mixed, and the mixture is visually stirred until a uniform solution is obtained. Polyamic acid solution 5 (viscosity; 24,000 cps, filler content with respect to polyamic acid) 30% by volume) was prepared.
A metal-clad laminate 5 and a resin film 5 were prepared in the same manner as in Example 1. The CTE of the resin film 5 (thickness; 46 μm) was 41 ppm / K, and the 180 ° bendability was good and the foldability was possible. The dielectric loss tangent of the resin film 5 was as follows.
1) Dissipation factor Tanδ 1 at 5 GHz; 0.0046
2) Dissipation factor Tanδ 1 at 10 GHz; 0.0052
3) Dissipation factor Tanδ 1 at 20 GHz; 0.0055

[実施例6]
80.00gのポリアミド酸溶液D及び7.92gのフィラー1を混合し、目視にて一様な溶液となるまで攪拌し、ポリアミド酸溶液6(粘度;23,000cps、ポリアミド酸に対するフィラーの含有率;30体積%)を調製した。
実施例1と同様にして、金属張積層板6及び樹脂フィルム6を調製した。樹脂フィルム6(厚み;45μm)のCTEは46ppm/Kであり、180°折り曲げ性は良、はぜ折り性は可であった。また、樹脂フィルム6の誘電正接は、次のとおりであった。
1)5GHzにおける誘電正接Tanδ;0.0046
2)10GHzにおける誘電正接Tanδ;0.0052
3)20GHzにおける誘電正接Tanδ;0.0055
[Example 6]
80.00 g of polyamic acid solution D and 7.92 g of filler 1 are mixed, and the mixture is visually stirred until a uniform solution is obtained. Polyamic acid solution 6 (viscosity; 23,000 cps, filler content with respect to polyamic acid) 30% by volume) was prepared.
A metal-clad laminate 6 and a resin film 6 were prepared in the same manner as in Example 1. The CTE of the resin film 6 (thickness; 45 μm) was 46 ppm / K, and the 180 ° bendability was good and the foldability was possible. The dielectric loss tangent of the resin film 6 was as follows.
1) Dissipation factor Tanδ 1 at 5 GHz; 0.0046
2) Dissipation factor Tanδ 1 at 10 GHz; 0.0052
3) Dissipation factor Tanδ 1 at 20 GHz; 0.0055

[実施例7]
80.00gのポリアミド酸溶液D及び18.49gのフィラー1を混合し、目視にて一様な溶液となるまで攪拌し、ポリアミド酸溶液7(粘度;31,000cps、ポリアミド酸に対するフィラーの含有率;50体積%)を調製した。
実施例1と同様にして、金属張積層板7及び樹脂フィルム7を調製した。樹脂フィルム7(厚み;48μm)のCTEは28ppm/Kであり、180°折り曲げ性は良、はぜ折り性は可であった。また、樹脂フィルム7の誘電正接は、次のとおりであった。
1)5GHzにおける誘電正接Tanδ;0.0051
2)10GHzにおける誘電正接Tanδ;0.0054
3)20GHzにおける誘電正接Tanδ;0.0055
[Example 7]
80.00 g of polyamic acid solution D and 18.49 g of filler 1 were mixed, and the mixture was visually stirred until a uniform solution was obtained. Polyamic acid solution 7 (viscosity; 31,000 cps, filler content with respect to polyamic acid). (50% by volume) was prepared.
A metal-clad laminate 7 and a resin film 7 were prepared in the same manner as in Example 1. The CTE of the resin film 7 (thickness: 48 μm) was 28 ppm / K, and the 180 ° foldability was good and the foldability was possible. The dielectric loss tangent of the resin film 7 was as follows.
1) Dissipation factor Tanδ 1 at 5 GHz; 0.0051
2) Dissipation factor Tanδ 1 at 10 GHz; 0.0054
3) Dissipation factor Tanδ 1 at 20 GHz; 0.0055

(比較例1)
銅箔1の上にポリアミド酸溶液Aを塗布し、130℃で3分間乾燥させた。その後、155℃から360℃まで段階的な熱処理を行ってイミド化し、金属張積層板8を調製した。
実施例1と同様にして、金属張積層板8及び樹脂フィルム8を調製した。樹脂フィルム8(厚み;42μm)のCTEは17ppm/Kであり、180°折り曲げ性は良、はぜ折り性は可であった。また、樹脂フィルム8の誘電正接は、次のとおりであった。
1)5GHzにおける誘電正接Tanδ;0.0052
2)10GHzにおける誘電正接Tanδ;0.0062
3)20GHzにおける誘電正接Tanδ;0.0065
(Comparative Example 1)
Polyamic acid solution A was applied onto the copper foil 1 and dried at 130 ° C. for 3 minutes. Then, a stepwise heat treatment was performed from 155 ° C. to 360 ° C. to imidize the metal-clad laminate 8.
A metal-clad laminate 8 and a resin film 8 were prepared in the same manner as in Example 1. The CTE of the resin film 8 (thickness; 42 μm) was 17 ppm / K, and the 180 ° foldability was good and the foldability was possible. The dielectric loss tangent of the resin film 8 was as follows.
1) Dissipation factor Tanδ 1 at 5 GHz; 0.0052
2) Dissipation factor Tanδ 1 at 10 GHz; 0.0062
3) Dissipation factor Tanδ 1 at 20 GHz; 0.0065

(比較例2)
銅箔1の上にポリアミド酸溶液Bを塗布し、130℃で3分間乾燥させた。その後、155℃から360℃まで段階的な熱処理を行ってイミド化し、金属張積層板9を調製した。
実施例1と同様にして、金属張積層板9及び樹脂フィルム9を調製した。樹脂フィルム9(厚み;43μm)のCTEは18ppm/Kであり、180°折り曲げ性は良、はぜ折り性は可であった。また、樹脂フィルム9の誘電正接は、次のとおりであった。
1)5GHzにおける誘電正接Tanδ;0.0032
2)10GHzにおける誘電正接Tanδ;0.0037
3)20GHzにおける誘電正接Tanδ;0.0040
(Comparative Example 2)
Polyamic acid solution B was applied onto the copper foil 1 and dried at 130 ° C. for 3 minutes. Then, a stepwise heat treatment was performed from 155 ° C. to 360 ° C. to imidize the metal-clad laminate 9.
A metal-clad laminate 9 and a resin film 9 were prepared in the same manner as in Example 1. The CTE of the resin film 9 (thickness; 43 μm) was 18 ppm / K, and the 180 ° foldability was good and the foldability was possible. The dielectric loss tangent of the resin film 9 was as follows.
1) Dissipation factor Tanδ 1 at 5 GHz; 0.0032
2) Dissipation factor Tanδ 1 at 10 GHz; 0.0037
3) Dissipation factor Tanδ 1 at 20 GHz; 0.0040

(比較例3)
銅箔1の上にポリアミド酸溶液Cを塗布し、130℃で3分間乾燥させた。その後、155℃から360℃まで段階的な熱処理を行ってイミド化し、金属張積層板10を調製した。
実施例1と同様にして、金属張積層板10及び樹脂フィルム10を調製した。樹脂フィルム10(厚み;41μm)のCTEは51ppm/Kであり、180°折り曲げ性は良、はぜ折り性は可であった。また、樹脂フィルム10の誘電正接は、次のとおりであった。
1)5GHzにおける誘電正接Tanδ;0.0055
2)10GHzにおける誘電正接Tanδ;0.0062
3)20GHzにおける誘電正接Tanδ;0.0068
(Comparative Example 3)
Polyamic acid solution C was applied onto the copper foil 1 and dried at 130 ° C. for 3 minutes. Then, a stepwise heat treatment was performed from 155 ° C. to 360 ° C. to imidize the metal-clad laminate 10.
A metal-clad laminate 10 and a resin film 10 were prepared in the same manner as in Example 1. The CTE of the resin film 10 (thickness; 41 μm) was 51 ppm / K, and the 180 ° bendability was good and the foldability was possible. The dielectric loss tangent of the resin film 10 was as follows.
1) Dissipation factor Tanδ 1 at 5 GHz; 0.0055
2) Dissipation factor Tanδ 1 at 10 GHz; 0.0062
3) Dissipation factor Tanδ 1 at 20 GHz; 0.0068

(比較例4)
銅箔1の上にポリアミド酸溶液Dを塗布し、130℃で3分間乾燥させた。その後、155℃から360℃まで段階的な熱処理を行ってイミド化し、金属張積層板11を調製した。
実施例1と同様にして、金属張積層板11及び樹脂フィルム11を調製した。樹脂フィルム11(厚み;42μm)のCTEは71ppm/Kであり、180°折り曲げ性は良、はぜ折り性は可であった。また、樹脂フィルム11の誘電正接は、次のとおりであった。
1)5GHzにおける誘電正接Tanδ;0.0069
2)10GHzにおける誘電正接Tanδ;0.0077
3)20GHzにおける誘電正接Tanδ;0.0079
(Comparative Example 4)
Polyamic acid solution D was applied onto the copper foil 1 and dried at 130 ° C. for 3 minutes. Then, a stepwise heat treatment was performed from 155 ° C. to 360 ° C. to imidize the metal-clad laminate 11.
A metal-clad laminate 11 and a resin film 11 were prepared in the same manner as in Example 1. The CTE of the resin film 11 (thickness; 42 μm) was 71 ppm / K, and the 180 ° bendability was good and the foldability was possible. The dielectric loss tangent of the resin film 11 was as follows.
1) Dissipation factor Tanδ 1 at 5 GHz; 0.0069
2) Dissipation factor Tanδ 1 at 10 GHz; 0.0077
3) Dissipation factor Tanδ 1 at 20 GHz; 0.0079

[比較例5]
100.24gのポリアミド酸溶液A及び9.37gのフィラー4を混合し、目視にて一様な溶液となるまで攪拌し、ポリアミド酸溶液12(粘度;28,000cps、ポリアミド酸に対するフィラーの含有率;30体積%)を調製した。
実施例1と同様にして、金属張積層板12及び樹脂フィルム12を調製した。樹脂フィルム12(厚み;44μm)のCTEは34ppm/Kであり、180°折り曲げ性及びはぜ折り性はいずれも不可であった。また、樹脂フィルム12の誘電正接は、次のとおりであった。
1)5GHzにおける誘電正接Tanδ;0.0051
2)10GHzにおける誘電正接Tanδ;0.0054
3)20GHzにおける誘電正接Tanδ;0.0055
[Comparative Example 5]
Mix 100.24 g of polyamic acid solution A and 9.37 g of filler 4 and stir until a visually uniform solution is obtained. Polyamic acid solution 12 (viscosity; 28,000 cps, filler content with respect to polyamic acid). 30% by volume) was prepared.
A metal-clad laminate 12 and a resin film 12 were prepared in the same manner as in Example 1. The CTE of the resin film 12 (thickness; 44 μm) was 34 ppm / K, and neither 180 ° bendability nor foldability was possible. The dielectric loss tangent of the resin film 12 was as follows.
1) Dissipation factor Tanδ 1 at 5 GHz; 0.0051
2) Dissipation factor Tanδ 1 at 10 GHz; 0.0054
3) Dissipation factor Tanδ 1 at 20 GHz; 0.0055

以上、本発明の実施の形態を例示の目的で詳細に説明したが、本発明は上記実施の形態に制約されることはなく、種々の変形が可能である。

Although the embodiments of the present invention have been described in detail for the purpose of exemplification, the present invention is not limited to the above embodiments and can be modified in various ways.

Claims (5)

3〜20GHzの周波数領域で用いられるシリカ粒子であって、
レーザ回折散乱法による体積基準の粒度分布測定によって得られる頻度分布曲線における累積値が50%となる平均粒子径D50が0.3〜3μmの範囲内、比表面積が5m/gを超え20m/g以下の範囲内であり、空洞共振器摂動法によって測定される誘電正接が0.004以下であることを特徴とするシリカ粒子。
Silica particles used in the frequency range of 3 to 20 GHz.
The average particle diameter D 50, which has a cumulative value of 50% in the frequency distribution curve obtained by volume-based particle size distribution measurement by the laser diffraction / scattering method, is within the range of 0.3 to 3 μm, and the specific surface area exceeds 5 m 2 / g and is 20 m. Silica particles in the range of 2 / g or less and having a dielectric tangent measured by the cavity resonator perturbation method of 0.004 or less.
請求項1に記載のシリカ粒子と、ポリアミド酸又はポリイミドと、を含有する樹脂組成物であって、
前記シリカ粒子の含有量が、前記ポリアミド酸又はポリイミドに対し、30〜70体積%の範囲内であることを特徴とする樹脂組成物。
A resin composition containing the silica particles according to claim 1 and polyamic acid or polyimide.
A resin composition characterized in that the content of the silica particles is in the range of 30 to 70% by volume with respect to the polyamic acid or polyimide.
単層又は複数層のポリイミド層を有する樹脂フィルムであって、
前記ポリイミド層の少なくとも1層が、請求項2に記載の樹脂組成物の硬化物からなるシリカ含有ポリイミド層であり、前記シリカ含有ポリイミド層の厚みが10〜200μmの範囲内であることを特徴とする樹脂フィルム。
A resin film having a single layer or a plurality of polyimide layers.
At least one layer of the polyimide layer is a silica-containing polyimide layer made of a cured product of the resin composition according to claim 2, and the thickness of the silica-containing polyimide layer is in the range of 10 to 200 μm. Resin film.
樹脂フィルムの全体の厚みが10〜200μmの範囲内であり、前記シリカ含有ポリイミド層の厚みの割合が50%以上であることを特徴とする請求項3に記載の樹脂フィルム。 The resin film according to claim 3, wherein the total thickness of the resin film is in the range of 10 to 200 μm, and the ratio of the thickness of the silica-containing polyimide layer is 50% or more. 絶縁樹脂層と、前記絶縁樹脂層の少なくとも一方の面に積層された金属層と、を備えた金属張積層板であって、
前記絶縁樹脂層が請求項3又は4に記載の樹脂フィルムからなることを特徴とする金属張積層板。


A metal-clad laminate comprising an insulating resin layer and a metal layer laminated on at least one surface of the insulating resin layer.
A metal-clad laminate characterized in that the insulating resin layer is made of the resin film according to claim 3 or 4.


JP2019196674A 2019-10-29 2019-10-29 Silica particle, resin composition, resin film, and metal-clad laminate Pending JP2021070592A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019196674A JP2021070592A (en) 2019-10-29 2019-10-29 Silica particle, resin composition, resin film, and metal-clad laminate
KR1020200138924A KR20210052282A (en) 2019-10-29 2020-10-26 Silica particles, resin composition, resin film and metal clad laminate
TW109137478A TW202124280A (en) 2019-10-29 2020-10-28 Silica particle, resin composition, resin film and metal-clad laminate capable of improving dielectric properties without impairing mechanical properties
CN202011172087.2A CN112745529A (en) 2019-10-29 2020-10-28 Silica particles, resin composition, resin film, and metal-clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019196674A JP2021070592A (en) 2019-10-29 2019-10-29 Silica particle, resin composition, resin film, and metal-clad laminate

Publications (1)

Publication Number Publication Date
JP2021070592A true JP2021070592A (en) 2021-05-06

Family

ID=75648786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019196674A Pending JP2021070592A (en) 2019-10-29 2019-10-29 Silica particle, resin composition, resin film, and metal-clad laminate

Country Status (4)

Country Link
JP (1) JP2021070592A (en)
KR (1) KR20210052282A (en)
CN (1) CN112745529A (en)
TW (1) TW202124280A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023140378A1 (en) * 2022-01-21 2023-07-27 花王株式会社 Method for producing hollow silica particles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114702038B (en) 2022-04-25 2023-09-29 江苏联瑞新材料股份有限公司 Preparation method of spherical silicon dioxide micro powder with ultralow dielectric loss

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021068A (en) * 2009-07-14 2011-02-03 Kao Corp Low dielectric resin composition
JP2011225756A (en) * 2010-04-21 2011-11-10 Kao Corp Low dielectric resin composition
JP2012136363A (en) * 2010-12-24 2012-07-19 Kao Corp Hollow silica particle
JP2014070170A (en) * 2012-09-28 2014-04-21 Kaneka Corp Black polyimide film
JP2016131244A (en) * 2015-01-13 2016-07-21 日立化成株式会社 Resin film, resin film with support, prepreg, metal-clad laminated sheet and multilayer printed wiring board
WO2018155418A1 (en) * 2017-02-22 2018-08-30 ナミックス株式会社 Multi-layer wiring substrate and semiconductor device
JP6402827B1 (en) * 2016-12-07 2018-10-10 日立化成株式会社 Thermosetting resin composition and method for producing the same, prepreg, laminate and printed wiring board
JP2018168372A (en) * 2017-03-29 2018-11-01 荒川化学工業株式会社 Adhesive, film-like adhesive, adhesion layer, adhesive sheet, copper foil with resin, copper-clad laminate, printed wiring board, and multilayer wiring board and method for producing the same
JP2019057610A (en) * 2017-09-21 2019-04-11 芝浦メカトロニクス株式会社 Mounting apparatus for electronic component and manufacturing method for display member
WO2019073891A1 (en) * 2017-10-10 2019-04-18 三井金属鉱業株式会社 Resin composition for printed wiring board, copper foil with resin, copper-clad laminate board, and printed wiring board
JP6564517B1 (en) * 2018-12-17 2019-08-21 株式会社アドマテックス Filler for electronic material and method for producing the same, method for producing resin composition for electronic material, high-frequency substrate, and slurry for electronic material
JP2019178304A (en) * 2018-03-30 2019-10-17 太陽インキ製造株式会社 Curable resin composition, dry film, cured product and printed wiring board

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3660501B2 (en) 1998-05-28 2005-06-15 日立建機株式会社 Engine speed control device for construction machinery
EP2455428B1 (en) * 2009-07-14 2019-09-04 Kao Corporation Low-permittivity resin composition
US10544305B2 (en) * 2015-01-16 2020-01-28 Hitachi Chemical Company, Ltd. Thermosetting resin composition, resin film for interlayer insulation, composite film, printed wiring board, and method for producing same
JP2018012747A (en) 2016-07-19 2018-01-25 日立化成株式会社 Thermosetting resin composition, interlayer-insulating resin film, composite film, printed wiring board, and production methods thereof
JP6766087B2 (en) * 2018-03-23 2020-10-07 株式会社タムラ製作所 Method for manufacturing thermosetting flux composition and electronic substrate

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021068A (en) * 2009-07-14 2011-02-03 Kao Corp Low dielectric resin composition
JP2011225756A (en) * 2010-04-21 2011-11-10 Kao Corp Low dielectric resin composition
JP2012136363A (en) * 2010-12-24 2012-07-19 Kao Corp Hollow silica particle
JP2014070170A (en) * 2012-09-28 2014-04-21 Kaneka Corp Black polyimide film
JP2016131244A (en) * 2015-01-13 2016-07-21 日立化成株式会社 Resin film, resin film with support, prepreg, metal-clad laminated sheet and multilayer printed wiring board
JP6402827B1 (en) * 2016-12-07 2018-10-10 日立化成株式会社 Thermosetting resin composition and method for producing the same, prepreg, laminate and printed wiring board
WO2018155418A1 (en) * 2017-02-22 2018-08-30 ナミックス株式会社 Multi-layer wiring substrate and semiconductor device
JP2018168372A (en) * 2017-03-29 2018-11-01 荒川化学工業株式会社 Adhesive, film-like adhesive, adhesion layer, adhesive sheet, copper foil with resin, copper-clad laminate, printed wiring board, and multilayer wiring board and method for producing the same
JP2019057610A (en) * 2017-09-21 2019-04-11 芝浦メカトロニクス株式会社 Mounting apparatus for electronic component and manufacturing method for display member
WO2019073891A1 (en) * 2017-10-10 2019-04-18 三井金属鉱業株式会社 Resin composition for printed wiring board, copper foil with resin, copper-clad laminate board, and printed wiring board
JP2019178304A (en) * 2018-03-30 2019-10-17 太陽インキ製造株式会社 Curable resin composition, dry film, cured product and printed wiring board
JP6564517B1 (en) * 2018-12-17 2019-08-21 株式会社アドマテックス Filler for electronic material and method for producing the same, method for producing resin composition for electronic material, high-frequency substrate, and slurry for electronic material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023140378A1 (en) * 2022-01-21 2023-07-27 花王株式会社 Method for producing hollow silica particles
JP7320692B1 (en) 2022-01-21 2023-08-03 花王株式会社 Method for producing hollow silica particles

Also Published As

Publication number Publication date
TW202124280A (en) 2021-07-01
KR20210052282A (en) 2021-05-10
CN112745529A (en) 2021-05-04

Similar Documents

Publication Publication Date Title
TWI709593B (en) Polyimide film for preparing flexible metal foil clad laminate and method of preparing the same, flexible metal foil clad laminate comprising the same and electronic part comprising the same
KR101501957B1 (en) Highly heat conductive polyimide film, highly heat conductive metal-clad laminate and method for producing same
JP5665846B2 (en) Thermally conductive polyimide film and thermal conductive laminate using the same
TWI682019B (en) Multilayer adhesive film and flexible metal-clad laminate
JP6767759B2 (en) Polyimide, resin film and metal-clad laminate
KR102239605B1 (en) Double-sided flexible metallic laminate and method thereof
TWI765392B (en) Polyimide film, method of producing the same, and multilayer film, flexible metal foil laminate and electronic component containing the same
CN114651035B (en) Polyimide film with high heat resistance and low dielectric property and preparation method thereof
TW202138435A (en) Resin composition, manufacturing method thereof, resin film, and metal-clad laminate wherein the resin composition includes a polyimide and a filler containing a liquid crystal polymer
JP2024061741A (en) Manufacturing method of resin film and manufacturing method of metal-clad laminate
JP7122162B2 (en) Thermoplastic Polyimide Films, Multilayer Polyimide Films, and Flexible Metal-Clad Laminates
JP7405560B2 (en) Resin compositions, resin films, and metal-clad laminates
JP2021070592A (en) Silica particle, resin composition, resin film, and metal-clad laminate
JPWO2020022129A1 (en) Metal-clad laminate and circuit board
JP7441029B2 (en) Resin film and metal clad laminate
KR102383776B1 (en) High Modulus Polyimide Film And Flexible Metal Foil Clad Laminate Comprising the Same
JP2021105149A (en) Method for manufacturing resin film, and method for manufacturing metal-clad laminated plate
WO2014115827A1 (en) Black polyimide film
JP2016047863A (en) Black polyimide film
JP2016047862A (en) Black polyimide film
JP2022155638A (en) Resin composition, resin film, adhesive sheet, metal-clad laminate and circuit board
JP2022101201A (en) Polyamide acid composition, polyimide composition, metal-clad laminate sheet, and circuit board
US20220135836A1 (en) Polyimide film for flexible metal clad laminate and flexible metal clad laminate comprising same
JP2023042337A (en) Silica filler containing polyimide film, multilayer polyimide film, flexible metal-clad laminate, and flexible printed circuit board
JP2023552081A (en) Polyimide film with high dimensional stability and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240322