JP2021066709A - Method for producing multi-element nanoparticles and multi-element nanoparticles - Google Patents

Method for producing multi-element nanoparticles and multi-element nanoparticles Download PDF

Info

Publication number
JP2021066709A
JP2021066709A JP2019194937A JP2019194937A JP2021066709A JP 2021066709 A JP2021066709 A JP 2021066709A JP 2019194937 A JP2019194937 A JP 2019194937A JP 2019194937 A JP2019194937 A JP 2019194937A JP 2021066709 A JP2021066709 A JP 2021066709A
Authority
JP
Japan
Prior art keywords
dendrimer
metal salt
group
nanoparticles
phenylazomethine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019194937A
Other languages
Japanese (ja)
Inventor
孝政 塚本
Takamasa TSUKAMOTO
孝政 塚本
達也 森合
Tatsuya Moriai
達也 森合
希生 吉田
Nozomi Yoshida
希生 吉田
山元 公寿
Kimihisa Yamamoto
公寿 山元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2019194937A priority Critical patent/JP2021066709A/en
Publication of JP2021066709A publication Critical patent/JP2021066709A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a method for producing nanoscale fine particles which can be used as a catalyst and the like.SOLUTION: Provided is a method for producing multi-element nanoparticles, comprising: a step of making a dendrimer of a concentration of 10 μM or more, having at least one selected from a phenylazomethine skeleton and a carbazole skeleton as a structural unit of a dendritic branch structure and many kinds of different metal salt compounds containing mutually different metal species exist in a solvent to generate integrated bodies in which the different metal salt compounds are integrated with the phenylazomethine-type dendrimer and accelerating coagulation of the integrated bodies; and a step of reducing the integrated bodies in the presence of a reducing agent.SELECTED DRAWING: Figure 3

Description

本発明は、多元素ナノ粒子の製造方法および多元素ナノ粒子に関する。 The present invention relates to a method for producing multi-element nanoparticles and multi-element nanoparticles.

従来、触媒等として使用し得るナノスケールの微粒子の製造方法として、本発明者らによる独自の方法であるフェニルアゾメチンデンドリマーを鋳型として用いる方法が精力的に探索、開発されてきている(特許文献1)。本発明者らにより開発され、その検討が続けられているフェニルアゾメチンデンドリマーは、骨格に高い配位性を示すイミン部位を多数有していることからルイス酸と錯形成が可能である。フェニルアゾメチンデンドリマーは、イミンからの電子供与が末端から中心に向けて連続的に加算されることで、末端のイミンから中心に向かってイミンの電子密度が増加するという電子密度勾配を有している。この電子密度勾配によって、フェニルアゾメチンデンドリマーに金属塩が錯形成する際、最内層イミンから優先的に金属塩と錯形成していく段階的錯形成が起こる。フェニルアゾメチンデンドリマーの段階的錯形成能を利用することで、白金塩等の1種単独の一元系をはじめとして、各層にそれぞれ異なる金属種を集積する、2種金属塩を用いた二元系や、更には3種、4種、5種等の多元系の精密へテロ金属集積も可能となり、金属塩の個数および組成を規定したデンドリマー錯体を調製できる。この金属塩が配位したデンドリマー錯体を還元することで、粒径分布が極めて小さい精密に制御された金属サブナノ粒子の形成が可能となる(特許文献2〜5)。 Conventionally, as a method for producing nanoscale fine particles that can be used as a catalyst or the like, a method using a phenylazomethine dendrimer as a template, which is a unique method by the present inventors, has been vigorously searched for and developed (Patent Document 1). ). The phenylazomethine dendrimer, which was developed by the present inventors and is being studied, has a large number of imine sites showing high coordination in the skeleton, and thus can be complexed with Lewis acid. The phenylazomethine dendrimer has an electron density gradient in which the electron density of imine increases from the terminal imine toward the center by continuously adding the electron donation from the imine from the terminal to the center. .. Due to this electron density gradient, when a metal salt is complexed with the phenylazomethine dendrimer, a stepwise complex formation occurs in which the innermost imine is preferentially complexed with the metal salt. By utilizing the stepwise complex-forming ability of the phenylazomethine dendrimer, a binary system using two metal salts that accumulates different metal species in each layer, including a single one system such as platinum salt, etc. Furthermore, it is possible to accumulate precision heterometals of multiple types such as 3 types, 4 types, and 5 types, and it is possible to prepare a dendrimer complex in which the number and composition of metal salts are specified. By reducing the dendrimer complex coordinated with this metal salt, it becomes possible to form precisely controlled metal sub-nanoparticles having an extremely small particle size distribution (Patent Documents 2 to 5).

特許第4511125号公報Japanese Patent No. 4511125 特開2010−18610号公報Japanese Unexamined Patent Publication No. 2010-18610 特開2013−159588号公報Japanese Unexamined Patent Publication No. 2013-159588 特開2007−23166号公報Japanese Unexamined Patent Publication No. 2007-23166 特開2018−145172号公報JP-A-2018-145172

本発明者らは、以上の技術的背景に基づき、これまでにない多数種の元素からなる多元素ナノ粒子の合成を検討した。周期表の金属(半金属を含む。)の多くを網羅する多元素ナノ粒子は従来得られていない。上記の手法を適用した場合、1分子のフェニルアゾメチンデンドリマーに錯形成し得る金属塩の個数に制約があることや、金属塩の種類に応じてフェニルアゾメチンデンドリマーの錯形成部位への配位力が異なることが要因である。 Based on the above technical background, the present inventors have investigated the synthesis of multi-element nanoparticles composed of a large number of elements that have never been seen before. Multi-element nanoparticles covering most of the metals (including metalloids) in the periodic table have not been obtained so far. When the above method is applied, there is a limit to the number of metal salts that can be complex-formed in one molecule of phenylazomethine dendrimer, and the coordination force of the phenylazomethine dendrimer to the complex-forming site depends on the type of metal salt. The difference is the factor.

従来、粒径分布が極めて小さい精密に制御された金属サブナノ粒子を得ることを目的として、デンドリマーの濃度は例えば3μM程度としていたが、多元素ナノ粒子の合成を目的とする観点より、デンドリマーを凝集させる効果に着目し、濃度を例えばその10倍程度の高濃度とすることで、56種類の元素からなる多元素ナノ粒子の合成を達成した。高濃度の効果は大きく分けて2つあり、還元前の錯体デンドリマーを凝集させる効果と、合成後のクラスターを凝集させる効果である。錯形成反応は平衡反応であるため、高濃度であると錯形成しやすくなる。もともと配位力の強い金属は多座配位しやすくなり、デンドリマー同士の凝集に寄与する。クラスターは、通常濃度でのクラスター合成の経験則から、上記のように10倍程度の高濃度にするとより凝集体が増えると推測される。
本発明の多元素ナノ粒子の製造方法は、以下の工程を含む:
Conventionally, the concentration of the dendrimer was set to, for example, about 3 μM for the purpose of obtaining precisely controlled metal sub-nanoparticles having an extremely small particle size distribution, but from the viewpoint of synthesizing multi-element nanoparticles, the dendrimer is aggregated. By paying attention to the effect of causing the particles to be concentrated and setting the concentration to a high concentration of, for example, about 10 times that, the synthesis of multi-element nanoparticles composed of 56 kinds of elements was achieved. The effect of high concentration is roughly divided into two, the effect of aggregating the complex dendrimer before reduction and the effect of aggregating the cluster after synthesis. Since the complex formation reaction is an equilibrium reaction, complex formation is likely to occur at a high concentration. A metal with a strong coordinating force is easy to coordinate in multiple loci and contributes to agglutination between dendrimers. From the empirical rule of cluster synthesis at a normal concentration, it is estimated that the number of clusters increases when the concentration is increased to about 10 times as described above.
The method for producing multi-element nanoparticles of the present invention includes the following steps:

10μM以上の濃度の、フェニルアゾメチン骨格およびカルバゾール骨格から選ばれる少なくとも1種を樹状分岐構造の構成単位とするデンドリマーと、互いに金属種が異なる多数種の異種金属塩化合物とを溶媒中に存在させることにより、前記フェニルアゾメチン型デンドリマーに前記異種金属塩化合物を集積した集積体を生成し、かつ前記集積体の凝集を促進させる工程;および
還元剤の存在下に前記集積体を還元する工程。
本発明の多元素ナノ粒子は、9種類以上の元素からなる。
A dendrimer having a concentration of 10 μM or more and having at least one selected from a phenylazomethine skeleton and a carbazole skeleton as a constituent unit of a dendritic branched structure and a large number of dissimilar metal salt compounds having different metal species from each other are present in a solvent. Thereby, a step of producing an aggregate in which the dissimilar metal salt compound is accumulated in the phenylazomethine type dendrimer and promoting aggregation of the aggregate; and a step of reducing the aggregate in the presence of a reducing agent.
The multi-element nanoparticles of the present invention are composed of nine or more kinds of elements.

56元素の金属塩を溶解したバイアル瓶の写真である。It is a photograph of a vial in which a metal salt of 56 elements is dissolved. 56元素のSTEM−HAADF像であり、(a)と(b)はスケールを変更している。It is a STEM-HAADF image of 56 elements, and (a) and (b) change the scale. (a)はSTEM−HAADF像、(b)はSTEM−EDXスペクトル、(c)はSTEM-EDXマッピングである。(A) is a STEM-HAADF image, (b) is a STEM-EDX spectrum, and (c) is a STEM-EDX mapping.

以下に、本発明を詳細に説明する。
本発明に使用されるデンドリマーは、フェニルアゾメチン骨格およびカルバゾール骨格から選ばれる少なくとも1種を樹状分岐構造の構成単位としている。
Hereinafter, the present invention will be described in detail.
The dendrimer used in the present invention has at least one selected from a phenylazomethine skeleton and a carbazole skeleton as a constituent unit of a dendritic branched structure.

デンドリマーは、中心から規則的に分枝した構造を持つ樹状高分子であり、コアとなる中心分子と、側鎖部分となるデンドロンとから構成される。また、デンドロン部分の分岐回数は世代とも呼ばれる。デンドリマーの中心分子から一段階分岐した部分を第1世代、二段階分岐した部分を第2世代と呼ぶ。一般にデンドリマーはコアから規則正しく、完全に樹状分岐をしているポリマーであり、中心付近が疎、表面付近が密な球形構造をしており、中心から分岐を繰り返すごとに世代数が増えていく。これに対してハイパーブランチポリマーは、完全な樹状構造を持つデンドリマーとは異なり、不完全な樹状分岐を持つポリマーである。本発明においてデンドリマーは、このような部分的に分岐ユニットの欠陥をもつハイパーブランチ型高分子であってもよい。 A dendrimer is a dendritic polymer having a structure that is regularly branched from the center, and is composed of a central molecule as a core and a dendron as a side chain part. The number of branches of the dendron part is also called a generation. The portion branched from the central molecule of the dendrimer in one step is called the first generation, and the portion branched in two steps is called the second generation. In general, dendrimers are polymers that are regularly and completely dendritic from the core, have a spherical structure with sparse center and dense surface, and the number of generations increases with each branch from the center. .. Hyperbranched polymers, on the other hand, are polymers with incomplete dendritic branches, unlike dendrimers, which have a perfect dendritic structure. In the present invention, the dendrimer may be a hyperbranched polymer having such a partially defective branching unit.

デンドリマーは、ダイバージェント法、コンバージェント法等によって製造することができる。ダイバージェント法は、官能基を複数持つ分子をコアとし、中心から外側に向かって枝を伸ばしていく方法である。コンバージェント法は、外側から内側に枝を伸ばしていき、最後にコアに接着させて球状高分子にする方法であり、デンドリマーの外殻となる部分から内側に向かってデンドロンの合成を進めていき、最後にコアにいくつかのデンドロンを結合させる。
本発明に使用されるデンドリマーとしては、例えば、下記式(1)で表される化合物が挙げられる。
The dendrimer can be manufactured by a divergent method, a convergent method, or the like. The divergent method is a method in which a molecule having a plurality of functional groups is used as a core and branches are extended from the center to the outside. The convergent method is a method in which branches are extended from the outside to the inside and finally adhered to the core to form a spherical polymer, and the synthesis of dendron is promoted inward from the outer shell of the dendrimer. Finally, some dendrons are bound to the core.
Examples of the dendrimer used in the present invention include a compound represented by the following formula (1).

Figure 2021066709
Figure 2021066709

上記式(1)中のAは、デンドリマーのコアとなる中核分子基であり、デンドリマー分子は、この中核分子基を中心として、外側に向かって式(1)中のBで表される単位の連鎖を有する。その結果、デンドリマー分子は、上記Aを中心として、上記Bが連鎖して放射状に成長した構造を有する。Bが連鎖しCに至る回数を「世代」と呼び、中核分子基Aに隣接する世代を第1世代として、外側に向かって世代数が増加していく。中核分子基Aに直接結合するBが第1世代となり、Cは、末端基としてBに結合を形成し、デンドリマー分子の放射状に伸びた構造の末端に位置することになる。上記式(1)中のAは、r価の残基である有機基R1(R1−(N…)rとしてBと結合する。)であり、有機基R1としては、特に限定されず、従来のフェニルアゾメチン骨格およびカルバゾール骨格から選ばれる少なくとも1種を樹状分岐構造の構成単位とするデンドリマーに使用される有機基や、技術常識から導かれる類縁構造を持つ有機基が参照される。具体的には、例えば、単環または多環の芳香族基、ヘテロ芳香族基、ポルフィリン基、フタロシアニン基、サイクラム基等が挙げられ、これらは置換基を有してもよい。有機基の炭素数は、特に限定されないが、例えば50以下、40以下であってよい。上記式(1)において、pはBの世代数を示し、qはデンドリマーの末端基Cの数を表し、q=2prである。上記式R1−(N…)rで表される中核部分において、rとしては、特に限定されないが、例えば1〜4の整数が挙げられる。また、上記式(1)におけるpは、特に限定されないが、0〜6であることが好ましく例示される。
上記式(1)中のB、Cは、下記式(2−1)または式(2−2)の構造で表される。
A in the above formula (1) is a core molecular group that is the core of the dendrimer, and the dendrimer molecule is a unit represented by B in the formula (1) toward the outside centering on this core molecular group. Has a chain. As a result, the dendrimer molecule has a structure in which the B is chained and grown radially around the A. The number of times B is chained to reach C is called a "generation", and the number of generations increases outward, with the generation adjacent to the core molecular group A as the first generation. B, which directly binds to the core molecular group A, becomes the first generation, and C forms a bond to B as a terminal group and is located at the end of the radially extending structure of the dendrimer molecule. A in the above formula (1) is an organic group R 1 ( which binds to B as R 1 − (N ...) r ) which is a residue of r valence, and the organic group R 1 is particularly limited. Instead, reference is made to an organic group used in a dendrimer having at least one selected from a conventional phenylazomethine skeleton and a carbazole skeleton as a constituent unit of a dendritic branched structure, and an organic group having a related structure derived from common technical knowledge. .. Specific examples thereof include a monocyclic or polycyclic aromatic group, a heteroaromatic group, a porphyrin group, a phthalocyanine group, a cyclolam group and the like, and these may have a substituent. The number of carbon atoms of the organic group is not particularly limited, but may be, for example, 50 or less and 40 or less. In the above formula (1), p represents the number of generations of B, q represents the number of terminal groups C of the dendrimer, and q = 2 p r. In the core portion represented by the above formula R 1 − (N ...) r , r is not particularly limited, and examples thereof include integers 1 to 4. Further, p in the above formula (1) is not particularly limited, but is preferably 0 to 6.
B and C in the above formula (1) are represented by the structure of the following formula (2-1) or formula (2-2).

Figure 2021066709
Figure 2021066709

Figure 2021066709
Figure 2021066709

上記式(1)中のBにおいて、Ra1〜Ra5のうちいずれか1つ、およびRa6〜Ra10のうちいずれか1つは、次世代の式(2−1)、(2−2)の構造における窒素原子Nと結合する部分を示す。好ましい態様において、当該部分はパラ位Ra3とRa8であるか、あるいはメタ位Ra2とRa9である。上記式(1)中のBにおいて、Rb1〜Rb4のうちいずれか1つ、およびRb5〜Rb8のうちいずれか1つは、次世代の式(2−1)、(2−2)の構造の窒素原子Nと結合する部分を示す。好ましい態様において、当該部分はパラ位Rb3とRb6である。上記式(1)中のBにおいて、当該部分以外のRa1〜Ra10、Rb1〜Rb8は、それぞれ独立に、水素原子または置換基を示し、置換基としては、特に限定されないが、例えば、塩素原子、臭素原子、フッ素原子等のハロゲン原子、メチル基、エチル基等のアルキル基、クロロメチル基、トリフルオロメチル基等のハロアルキル基、メトキシ基、エトキシ基等のアルコキシ基、メトキシエチル基等のアルコキシアルキル基、アルキルチオ基、カルボニル基、シアノ基、アミノ基、ニトロ基や、これらを置換基として有してもよい芳香族基等が挙げられる。これらの中でも、水素原子が好ましい。 In B in the above formula (1), any one of R a1 to R a5 and any one of R a6 to R a10 are the next-generation formulas (2-1) and (2-2). ) Shows the part that binds to the nitrogen atom N. In a preferred embodiment, the moieties are para positions R a3 and R a8 , or meta positions R a2 and R a9 . In B in the above formula (1), any one of R b1 to R b4 and any one of R b5 to R b8 are the next-generation formulas (2-1) and (2-2). ) Shows the part that binds to the nitrogen atom N. In a preferred embodiment, the moieties are parapositions R b3 and R b6 . In B in the above formula (1), R a1 to R a10 and R b1 to R b8 other than the relevant portion independently represent a hydrogen atom or a substituent, and the substituent is not particularly limited, but for example. , Halogen atoms such as chlorine atom, bromine atom, fluorine atom, alkyl group such as methyl group and ethyl group, haloalkyl group such as chloromethyl group and trifluoromethyl group, alkoxy group such as methoxy group and ethoxy group, methoxyethyl group Examples thereof include an alkoxyalkyl group, an alkylthio group, a carbonyl group, a cyano group, an amino group, a nitro group, and an aromatic group which may have these as a substituent. Among these, a hydrogen atom is preferable.

上記式(1)中のCにおいて、Ra1〜Ra10、Rb1〜Rb8は、それぞれ独立に、水素原子または置換基を示し、置換基としては、特に限定されないが、例えば、塩素原子、臭素原子、フッ素原子等のハロゲン原子、メチル基、エチル基等のアルキル基、クロロメチル基、トリフルオロメチル基等のハロアルキル基、メトキシ基、エトキシ基等のアルコキシ基、メトキシエチル基等のアルコキシアルキル基、アルキルチオ基、カルボニル基、シアノ基、アミノ基、ニトロ基や、これらを置換基として有してもよい芳香族基等が挙げられる。 In C in the above formula (1), R a1 to R a10 and R b1 to R b8 independently represent a hydrogen atom or a substituent, and the substituent is not particularly limited, but for example, a chlorine atom. Halogen atoms such as bromine atom and fluorine atom, alkyl groups such as methyl group and ethyl group, haloalkyl groups such as chloromethyl group and trifluoromethyl group, alkoxy groups such as methoxy group and ethoxy group, and alkoxyalkyl groups such as methoxyethyl group. Examples thereof include a group, an alkylthio group, a carbonyl group, a cyano group, an amino group, a nitro group, and an aromatic group which may have these as a substituent.

本発明に使用されるデンドリマーの典型的な例における基本構造を以下に示す。下記はデンドロン(枝一枚)の構造を示しているが(n、mは0以上の整数)、これをコアと呼ばれる中心分子に結合することでデンドリマーとなる。 The basic structure in a typical example of the dendrimer used in the present invention is shown below. The following shows the structure of a dendron (one branch) (n and m are integers of 0 or more), and by binding this to a central molecule called a core, it becomes a dendrimer.

フェニルアゾメチンを樹状分岐構造の構成単位とするフェニルアゾメチンデンドリマーは、下記式(I−1)のパラ位連結型をはじめ、下記式(I−2)のメタ位連結型が挙げられる。また、メタ位連結型の構造とパラ位連結型の構造のそれぞれを外層、内層に配置したものや、これらを交互に連結した構造が挙げられる。 Examples of the phenylazomethine dendrimer having phenylazomethine as a constituent unit of the dendritic branched structure include a para-position linked type of the following formula (I-1) and a meta-position linked type of the following formula (I-2). In addition, a structure in which a meta-position connection type structure and a para-position connection type structure are arranged in an outer layer and an inner layer, respectively, and a structure in which these are alternately connected can be mentioned.

Figure 2021066709
Figure 2021066709

Figure 2021066709
カルバゾールを樹状分岐構造の構成単位とするカルバゾールデンドリマーは、下記式(II)のパラ位連結型が挙げられる。
Figure 2021066709
Examples of the carbazole dendrimer having carbazole as a constituent unit of the dendritic branched structure include the para-position linked type of the following formula (II).

Figure 2021066709
Figure 2021066709

さらに、フェニルアゾメチンとカルバゾールを組み合わせた構造、例えば下記式(III)のように内層がフェニルアゾメチンで外層がカルバゾールである、カルバゾール・フェニルアゾメチンデンドリマーであってもよい。 Further, it may be a carbazole / phenylazomethine dendrimer having a structure in which phenylazomethin and carbazole are combined, for example, as shown in the following formula (III), the inner layer is phenylazomethin and the outer layer is carbazole.

Figure 2021066709
Figure 2021066709

本発明の多元素ナノ粒子の製造方法では、10μM以上の濃度の、フェニルアゾメチン骨格およびカルバゾール骨格から選ばれる少なくとも1種を樹状分岐構造の構成単位とするデンドリマーと、互いに金属種が異なる多数種の異種金属塩化合物とを溶媒中に存在させることにより、デンドリマーに異種金属塩化合物を集積した集積体を生成し、かつ前記集積体の凝集を促進させる。 In the method for producing multi-element nanoparticles of the present invention, a dendrimer having at least one selected from a phenylazomethine skeleton and a carbazole skeleton having a concentration of 10 μM or more as a constituent unit of a dendritic branched structure and a large number of species having different metal species from each other. By allowing the dissimilar metal salt compound of the above to be present in the solvent, an aggregate in which the dissimilar metal salt compound is accumulated in the dendrimer is generated, and the aggregation of the aggregate is promoted.

フェニルアゾメチン等を樹状分岐構造の構成単位とするデンドリマーは、π共役系による剛直な構造であるため硬いことを特徴とし、分子の内部には十分な広さの空間が確保され、金属塩と錯体を形成する配位サイトを多数有していることから、多数の金属塩化合物を内層から外層へ各段階の錯形成部位に精密集積するのに適している。 Dendrimers, which have phenylazomethine or the like as a constituent unit of a dendritic branched structure, are characterized by being rigid because they have a rigid structure based on a π-conjugated system. Since it has a large number of coordination sites that form a complex, it is suitable for precisely accumulating a large number of metal salt compounds from the inner layer to the outer layer at the complex formation site at each stage.

デンドリマーは、金属塩化合物と相互作用する環境の異なる部位を持つ。本発明においてデンドリマーの「環境の異なる部位」とは、デンドリマーにおける金属塩化合物を集積し得る部位であって、金属塩化合物との相互作用が互いに異なる部位を意味する。当該部位は、金属塩化合物との錯形成部位、イオン結合部位、共有結合部位を含む。「錯形成部位」とは、デンドリマーにおける金属塩化合物との錯体を形成する部位を意味し、シッフ塩基となる部分である。1方向の電子密度勾配型デンドリマーでは、錯形成強度等の相互作用の強度が内層から外層へ次第に弱くなるように段階的に変化し、環境の異なる部位を形成するが、その他に、例えば、最外層に電子供与性の配位子を持つデンドリマーが、最外層だけ強い配位環境になった場合には、最も相互作用が強い部位が最外層となるように、内層における相互作用がそれよりも弱い部位とともに、環境の異なる部位を形成する。 Dendrimers have different parts of the environment that interact with metal salt compounds. In the present invention, the "site of different environment" of the dendrimer means a site where the metal salt compound can be accumulated in the dendrimer and the interaction with the metal salt compound is different from each other. The site includes a complex formation site with a metal salt compound, an ionic bond site, and a covalent bond site. The “complex forming site” means a site forming a complex with a metal salt compound in a dendrimer, and is a site that serves as a Schiff base. In the unidirectional electron density gradient type dendrimer, the strength of interaction such as complex formation strength gradually changes from the inner layer to the outer layer to form different parts of the environment. When a dendrimer having an electron-donating ligand in the outer layer has a strong coordination environment only in the outermost layer, the interaction in the inner layer is higher than that in the outer layer so that the site with the strongest interaction becomes the outermost layer. It forms parts with different environments as well as weak parts.

1方向の電子密度勾配型デンドリマーでは、コアから末端にかけて塩基性勾配が生じているため、コアやそれに最も近い1世代目の錯形成部位の錯形成定数が最も高く、外側に向かって段階的に錯形成定数が減少していく。この錯形成定数の差が駆動力となって、金属塩化合物は段階的に中心に近い1世代目から2世代目、3世代目と集積されていく。例えば、第4世代のフェニルアゾメチンデンドリマーでは、各層までが充填される数は、コアの分岐数が4の場合、4、12、28、60となる。 In the unidirectional electron density gradient type dendrimer, since the basic gradient is generated from the core to the end, the complex formation constant of the core and the first generation complex formation site closest to the core is the highest, and the complex formation constant is stepwise toward the outside. The complex formation constant decreases. The difference in the complex formation constant serves as a driving force, and the metal salt compounds are gradually accumulated from the first generation to the second generation and the third generation near the center. For example, in the 4th generation phenylazomethine dendrimer, the number of fillings up to each layer is 4, 12, 28, 60 when the number of branches of the core is 4.

本発明において「金属塩化合物」とは、金属とアニオンとの塩、配位子との錯体等を含む広義のものであり、更に、デンドリマーの環境の異なる部位に直接配位するそのような金属塩である他、金属塩が対アニオンとなる有機カチオンまたはプロトンが前記部位に配位して集積される化合物も包含する。
本発明において「金属塩化合物」の金属には、半金属も包含する。
In the present invention, the "metal salt compound" is a broad definition including a salt of a metal and an anion, a complex of a ligand, and the like, and further, such a metal that directly coordinates with different parts of the environment of the dendrimer. In addition to the salt, it also includes a compound in which an organic cation or a proton having a metal salt as a counter anion is coordinated and accumulated at the site.
In the present invention, the metal of the "metal salt compound" also includes a semimetal.

本発明の多元素ナノ粒子の製造方法の一例を以下に説明する。最初の工程として、デンドリマーを含む溶液を調製する。本発明において、デンドリマーとその金属塩化合物集積体を溶解させる溶媒は、これらを溶解させることができるものであれば特に限定されない。例えば、ジクロロメタン、クロロホルム、1,2−ジクロロエタン、1,1−ジクロロエタン、四塩化炭素等の含塩素系有機溶媒、ベンゼン、トルエン、キシレン、クロロベンゼン、アニソール、アセトフェノン等の芳香族系有機溶媒、シクロヘキサノン、テトラヒドロフラン、リモネン、プロピレングリコールモノエチルエーテルアセテート、アセトニトリル等の有機溶媒が挙げられる。これらは2種以上を組み合わせて使用してもよい。 An example of the method for producing the multi-element nanoparticles of the present invention will be described below. As a first step, a solution containing a dendrimer is prepared. In the present invention, the solvent for dissolving the dendrimer and the metal salt compound aggregate thereof is not particularly limited as long as it can dissolve them. For example, chlorine-containing organic solvents such as dichloromethane, chloroform, 1,2-dichloroethane, 1,1-dichloroethane and carbon tetrachloride, aromatic organic solvents such as benzene, toluene, xylene, chlorobenzene, anisole and acetophenone, cyclohexanone, Examples thereof include organic solvents such as tetrahydrofuran, limonene, propylene glycol monoethyl ether acetate and acetonitrile. These may be used in combination of 2 or more types.

これらの中でも、本発明では多数種の異種金属塩化合物を用いる観点より、(1)疎水的かつ非配位性であり配位力の弱い金属でも錯形成できること、および、(2)もともと配位力の強い金属が積極的に多座配位することを促進し、デンドリマー同士の凝集にも寄与することを考慮すると、溶媒はジクロロメタン、クロロホルム、1,2−ジクロロエタン、1,1−ジクロロエタン、四塩化炭素、ベンゼン、トルエン、キシレン、およびクロロベンゼンから選ばれる少なくとも1種であることが好ましい。 Among these, from the viewpoint of using a large number of dissimilar metal salt compounds in the present invention, (1) hydrophobic, non-coordinating and weakly coordinating metal can be complex-formed, and (2) originally coordinating. Considering that strong metals actively promote polydentation and contribute to aggregation of dendrimers, the solvents are dichloromethane, chloroform, 1,2-dichloroethane, 1,1-dichloroethane, tetra. It is preferably at least one selected from carbon chloride, benzene, toluene, xylene, and chloroform.

デンドリマーの濃度は、金属塩化合物を混合した後の溶液中における濃度で、10μM以上であり、10〜100μMが好ましく、20〜50μMがより好ましい。従来、粒径分布が極めて小さい精密に制御された金属サブナノ粒子を得ることを目的として、デンドリマーの濃度は例えば3μM程度としていたが、多元素ナノ粒子の合成を目的とする観点より、デンドリマーを凝集させる効果に着目し、高濃度としている。高濃度の効果は大きく分けて2つあり、還元前の錯体デンドリマーを凝集させる効果と、合成後のクラスターを凝集させる効果である。錯形成反応は平衡反応であるため、高濃度であると錯形成しやすくなる。もともと配位力の強い金属は多座配位しやすくなり、デンドリマー同士の凝集に寄与する。クラスターは、通常濃度でのクラスター合成の経験則から、高濃度にするとより凝集体が増えると推測される。 The concentration of the dendrimer is 10 μM or more, preferably 10 to 100 μM, and more preferably 20 to 50 μM in the solution after mixing the metal salt compound. Conventionally, the concentration of the dendrimer was set to, for example, about 3 μM for the purpose of obtaining precisely controlled metal sub-nanoparticles having an extremely small particle size distribution, but from the viewpoint of synthesizing multi-element nanoparticles, the dendrimer is aggregated. Focusing on the effect of causing it, the concentration is set to high. The effect of high concentration is roughly divided into two, the effect of aggregating the complex dendrimer before reduction and the effect of aggregating the cluster after synthesis. Since the complex formation reaction is an equilibrium reaction, complex formation is likely to occur at a high concentration. A metal with a strong coordinating force is easy to coordinate in multiple loci and contributes to agglutination between dendrimers. From the empirical rule of cluster synthesis at normal concentrations, it is estimated that clusters will have more aggregates at higher concentrations.

次の工程として、互いに金属種が異なる多数種の異種金属塩化合物を溶液と混合し、異種金属塩化合物が環境の異なる部位ごとに集積したデンドリマーの異種金属塩集積体を得る。
デンドリマーに集積させる異種金属塩化合物における構成元素としては、特に限定されない。第1族から第18族までの各元素であってよい。
その中でも、異種金属塩化合物における金属元素(半金属元素を含む。)、特に第1族から第16族の元素やランタノイドが主な対象として例示される。
In the next step, a large number of dissimilar metal salt compounds having different metal species are mixed with the solution to obtain a dissimilar metal salt accumulation of a dendrimer in which the dissimilar metal salt compounds are accumulated in different parts of the environment.
The constituent elements of the dissimilar metal salt compound to be accumulated in the dendrimer are not particularly limited. It may be each element from Group 1 to Group 18.
Among them, metal elements (including metalloid elements) in dissimilar metal salt compounds, particularly elements of groups 1 to 16 and lanthanoids are exemplified as main targets.

異種金属塩化合物におけるカウンターアニオンもしくは配位子として、ホウ素、硫黄、リン等は多元素ナノ粒子の元素となり得る。酸素は、酸化物として多元素ナノ粒子の元素となり得る。水素は、水酸化物として多元素ナノ粒子の元素となり得る。 Boron, sulfur, phosphorus and the like can be elements of multi-element nanoparticles as counter anions or ligands in dissimilar metal salt compounds. Oxygen can be an element of multi-element nanoparticles as an oxide. Hydrogen can be an element of multi-element nanoparticles as a hydroxide.

多元素ナノ粒子の元素となり、また異種金属塩化合物を構成する元素の例としては、第1族元素(Li、Na、K、Rb、Cs、Fr)、第2族元素(Be、Mg、Ca、Sr、Ba、Ra)、第3族元素(Sc、Y)、第4族元素(Ti、Zr、Hf等)、第5族元素(V、Nb、Ta等)、第6族元素(Cr、Mo、W等)、第7族元素(Mn、Tc、Re等)、第8族元素(Fe、Ru、Os等)、第9族元素(Co、Rh、Ir等)、第10族元素(Ni、Pd、Pt等)、第11族元素(Cu、Ag、Au等)、第12族元素(Zn、Cd、Hg等)、第13族元素(B、Al、Ga、In、Tl等)、第14族元素(C、Si、Ge、Sn、Pb等)、第15族元素(N、P、As、Sb、Bi等)、第16族元素(O、S、Se、Te、Po等)、第17族元素(F、Cl、Br、I、At等)、ランタノイド(La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)、アクチノイド(Ac、Th、Pa、U、Np、Pu等)等が挙げられる。 Examples of elements that become elements of multi-element nanoparticles and constitute dissimilar metal salt compounds include Group 1 elements (Li, Na, K, Rb, Cs, Fr) and Group 2 elements (Be, Mg, Ca). , Sr, Ba, Ra), Group 3 elements (Sc, Y), Group 4 elements (Ti, Zr, Hf, etc.), Group 5 elements (V, Nb, Ta, etc.), Group 6 elements (Cr , Mo, W, etc.), Group 7 elements (Mn, Tc, Re, etc.), Group 8 elements (Fe, Ru, Os, etc.), Group 9 elements (Co, Rh, Ir, etc.), Group 10 elements (Ni, Pd, Pt, etc.), Group 11 elements (Cu, Ag, Au, etc.), Group 12 elements (Zn, Cd, Hg, etc.), Group 13 elements (B, Al, Ga, In, Tl, etc.) ), Group 14 elements (C, Si, Ge, Sn, Pb, etc.), Group 15 elements (N, P, As, Sb, Bi, etc.), Group 16 elements (O, S, Se, Te, Po, etc.) Etc.), Group 17 elements (F, Cl, Br, I, At, etc.), Lantanoids (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, etc.) Lu), actinoids (Ac, Th, Pa, U, Np, Pu, etc.) and the like can be mentioned.

異種金属塩化合物におけるカウンターアニオンもしくは配位子としては、特に限定されないが、例えば、弗化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン等のハロゲンイオンや、硫酸、硝酸、テトラフルオロホウ酸等の無機酸、トリフルオロメタンスルホン酸、酢酸、トリフルオロ酢酸等の有機酸、アセチルアセトン、サレン、シクロペンタジエニル、シクロオクタジエン、トリフェニルホスフィン等が挙げられる。 The counter anion or ligand in the dissimilar metal salt compound is not particularly limited, and is, for example, halogen ions such as fluoride ion, chloride ion, bromide ion, and iodide ion, sulfuric acid, nitric acid, tetrafluoroboric acid, and the like. Examples thereof include inorganic acids, organic acids such as trifluoromethanesulfonic acid, acetic acid and trifluoroacetic acid, acetylacetone, salen, cyclopentadienyl, cyclooctadien and triphenylphosphine.

金属塩アニオンと有機カチオンを含む化合物としては、例えば、トリフェニルメチリウムカチオンのペンタクロロスズ酸塩、ヘキサクロロアンチモン酸塩等が挙げられる。 Examples of the compound containing a metal salt anion and an organic cation include pentachlorostannate and hexachloroantimonate of triphenylmethylium cation.

金属塩アニオンとプロトンを含む化合物としては、例えば、テトラクロロ金酸、ヘキサクロロ白金酸、ヘキサクロロイリジウム酸、ヘキサクロロオスミウム酸、過レニウム酸、タングステン酸等が挙げられる。 Examples of the compound containing a metal salt anion and a proton include tetrachlorogold acid, hexachloroplatinic acid, hexachloroiridium acid, hexachloroosmium acid, perrhenic acid, and tungstic acid.

金属塩の配位力は、カウンターアニオンの電子的な効果、有機配位子の配位子の立体的効果や、ダミーの配位力を利用した金属集積、すなわち金属塩そのものではなく有機カチオンやプロトンの配位力によって、その対アニオンとして金属を集積すること、その他、金属塩の酸化数を変更することによっても調整可能である。これらの手段によって、同一元素であっても金属集積における配位力のバリエーションを増やすことができ、2種の金属の集積順序を変化させることも可能である。
異種金属塩化合物をデンドリマー溶液と混合する方法としては、特に限定されないが、金属塩化合物の溶液のデンドリマー溶液への滴下等が挙げられる。
The coordinating power of the metal salt is the electronic effect of the counter anion, the steric effect of the ligand of the organic ligand, and the metal accumulation using the coordinating power of the dummy, that is, the organic cation instead of the metal salt itself. It can also be adjusted by accumulating a metal as its counter anion by the coordination force of the proton and by changing the oxidation number of the metal salt. By these means, it is possible to increase the variation of the coordination force in the metal accumulation even if it is the same element, and it is also possible to change the accumulation order of the two kinds of metals.
The method of mixing the dissimilar metal salt compound with the dendrimer solution is not particularly limited, and examples thereof include dropping the metal salt compound solution into the dendrimer solution.

金属塩化合物の溶液濃度は、特に限定されないが、0.5〜10mMが好ましく、2〜6mMがより好ましい。金属塩化合物の添加量は、全てのデンドリマーにおける金属塩化合物と相互作用する部位の総数、つまりデンドリマーの配位サイト数に対して、全ての金属塩化合物の全モル数がこの範囲内となるように添加することが好ましい。
金属塩化合物の溶液に使用される溶媒は、その種類に応じたものを用いることができる。
このデンドリマーの異種金属塩集積体を還元剤の存在下に還元することによって、多元素ナノ粒子を製造することができる。
The solution concentration of the metal salt compound is not particularly limited, but is preferably 0.5 to 10 mM, more preferably 2 to 6 mM. The amount of the metal salt compound added should be such that the total number of moles of all the metal salt compounds is within this range with respect to the total number of sites that interact with the metal salt compound in all dendrimers, that is, the number of coordination sites of the dendrimers. It is preferable to add to.
As the solvent used for the solution of the metal salt compound, a solvent can be used according to the type.
Multi-element nanoparticles can be produced by reducing the dissimilar metal salt aggregate of this dendrimer in the presence of a reducing agent.

デンドリマーの異種金属塩集積体の還元は、例えば、金属塩化合物に対して還元作用を有し、これを0価の状態まで還元することができる還元剤を用いて溶液中で行うことができる。イオン化傾向の強い金属を還元するために、非常に強力な還元剤を用いることが好ましい。このような還元剤としては、例えば、リチウムナフタレニド等の金属ナフタレニド類、Li金属、Na金属等が挙げられる。これらの中でも、リチウムナフタレニドは液相還元が可能で、ナフタレニドの中でも特に強力な還元力を有する点から好ましい。 The reduction of the dissimilar metal salt aggregate of the dendrimer can be carried out in solution using, for example, a reducing agent having a reducing action on the metal salt compound and capable of reducing the metal salt compound to a zero-valent state. In order to reduce a metal having a strong ionization tendency, it is preferable to use a very strong reducing agent. Examples of such a reducing agent include metal naphthalenides such as lithium naphthalenide, Li metal, Na metal and the like. Among these, lithium naphthalenide is preferable because it can reduce the liquid phase and has a particularly strong reducing power among naphthalenides.

このようにしてデンドリマーの異種金属塩集積体を還元することで、多元素ナノ粒子を調製することができる。典型的には、多元素ナノ粒子は、フェニルアゾメチン骨格およびカルバゾール骨格から選ばれる少なくとも1種を樹状分岐構造の構成単位とするデンドリマーに内包もしくは接触している。多元素ナノ粒子としては、例えば、9種類以上の元素、さらには9種類以上の元素からなる多元素ナノ粒子が例示される。安定で、毒性のない(例えばAs、Se、Os、Tlを使用しない)点から、少なくとも76種類までの元素からなる多元素ナノ粒子を合成し得る。多元素ナノ粒子の元素数の例は、9種類から76種類までのいずれかの数であってよく、また15種類以上、20種類以上、30種類以上、あるいは40種類以上であってよく、また70種類以下であってよい。 By reducing the dissimilar metal salt aggregate of the dendrimer in this way, multi-element nanoparticles can be prepared. Typically, the multi-element nanoparticles are encapsulated or in contact with a dendrimer having at least one selected from a phenylazomethine skeleton and a carbazole skeleton as a constituent unit of a dendritic bifurcated structure. Examples of the multi-element nanoparticles include, for example, 9 or more kinds of elements, and further, multi-element nanoparticles composed of 9 or more kinds of elements. From the point of being stable and non-toxic (eg, As, Se, Os, Tl not used), multi-element nanoparticles consisting of at least 76 kinds of elements can be synthesized. Examples of the number of elements of the multi-element nanoparticles may be any number from 9 types to 76 types, and may be 15 types or more, 20 types or more, 30 types or more, or 40 types or more, and also. It may be 70 types or less.

多元素ナノ粒子は、デンドリマーの異種金属塩集積体の還元によって合成された全てのクラスターのうち、少なくとも部分的に凝集体として観察し得る。通常濃度でのクラスター合成の経験則から、溶液中におけるデンドリマーの濃度を上記のように高濃度にするとよってクラスターの凝集体が増え、これにより上記のような多数種からなる多元素ナノ粒子が得られると推測される。 Multi-element nanoparticles can be observed as aggregates, at least in part, of all clusters synthesized by reduction of dendrimer dissimilar metal salt aggregates. From the rule of thumb of cluster synthesis at normal concentration, increasing the concentration of dendrimer in solution as described above increases the number of cluster aggregates, which results in the above-mentioned multi-element nanoparticles consisting of many species. It is presumed that it will be done.

以上のようにして得られた多元素ナノ粒子は、担体に担持してもよい。多元素ナノ粒子が担持される担体の形状は、特に限定されるものではなく、粒状、繊維状、顆粒状、膜状、板状等、各種のものであってよい。単位重量当たりの表面積が大きい点を考慮すると、粒状(粉末状)が好ましい。 The multi-element nanoparticles obtained as described above may be supported on a carrier. The shape of the carrier on which the multi-element nanoparticles are supported is not particularly limited, and may be various, such as granular, fibrous, granular, film-like, and plate-like. Considering that the surface area per unit weight is large, granular (powdered) is preferable.

担体としては、炭素材料、例えば、カーボンブラック(ケッチェンブラック、オイルファーネスブラック、ガスブラック、アセチレンブラック、ランプブラック、サーマルブラック、チャンネルブラック等)、活性炭、カーボンファイバー等の非晶質(微結晶)カーボン、フラーレン、ナノチューブ、グラフェン、酸化グラフェン等のナノカーボン、グラファイト等の3次元結晶、グラファイト化メソポーラスカーボン等が挙げられる。これらの炭素材料は多孔質物質であってもよく、細孔表面に多元素ナノ粒子を担持できる。 As the carrier, carbon materials such as carbon black (Ketjen black, oil furnace black, gas black, acetylene black, lamp black, thermal black, channel black, etc.), activated carbon, carbon fiber and other amorphous (microcrystals) Examples thereof include nanocarbons such as carbon, fullerene, nanotubes, graphene and graphene oxide, three-dimensional crystals such as graphite, and graphitized mesoporous carbon. These carbon materials may be porous materials and can support multi-element nanoparticles on the surface of pores.

この他、担体として無機材料を用いることができる。無機材料としては、例えば、シリカゲル、アルミナ、チタニア、マグネシア、ジルコニア、酸化鉄、酸化銅、ガラス、珪砂、タルク、マイカ、クレイ、ウォラスナイト等が挙げられる。 In addition, an inorganic material can be used as the carrier. Examples of the inorganic material include silica gel, alumina, titania, magnesia, zirconia, iron oxide, copper oxide, glass, silica sand, talc, mica, clay, and wallusnite.

担体の内部面積、親和性、汎用性、安定性、耐久性の点から好ましい担体として、ケッチェンブラック(KB)、グラファイト化メソポーラスカーボン(GMC)、酸化グラフェン(GO)、酸化アルミニウム(Al23)等が挙げられる。 Preferred carriers in terms of carrier internal area, affinity, versatility, stability and durability include Ketjenblack (KB), graphitized mesoporous carbon (GMC), graphene oxide (GO) and aluminum oxide (Al 2 O). 3 ) etc. can be mentioned.

EDS(エネルギー分散型X線分光法)によって多元素ナノ粒子を確認する場合、グリッドに担持するためにグラフェンナノプレートレット(GNP)を用いることができる。 When confirming multi-element nanoparticles by EDS (Energy Dispersive X-ray Spectroscopy), graphene nanoplatelets (GNP) can be used to support the grid.

担体への担持は、例えば、デンドリマーに内包もしくは接触している多元素ナノ粒子を有機溶媒等の適宜の溶媒に溶解した溶液を用いて、担体分散液との混合、含浸、塗布、滴下等によって担体に接触させた後、乾燥することによって行うことができる。必要に応じて粉砕処理を行ってもよい。
本発明の多元素ナノ粒子は、各種の分野、例えば、触媒、医薬品、電子機能材料、環境適合材料、発光材料等のための素材としての応用が期待される。
The support on the carrier is carried out, for example, by mixing, impregnating, coating, dropping, or the like with a carrier dispersion using a solution in which multi-element nanoparticles encapsulated or in contact with the dendrimer are dissolved in an appropriate solvent such as an organic solvent. This can be done by contacting the carrier and then drying. If necessary, a pulverization treatment may be performed.
The multi-element nanoparticles of the present invention are expected to be applied as materials for various fields such as catalysts, pharmaceuticals, electronic functional materials, environment-friendly materials, and light emitting materials.

以下に、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
以下のスキームで56元素混合ナノ粒子の合成を行った。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
56 element mixed nanoparticles were synthesized by the following scheme.

Figure 2021066709
Figure 2021066709

グローブボックス雰囲気下、溶媒のジクロロメタンにテトラフェニルメタンをコアとする第4世代のフェニルアゾメチンデンドリマー(TPM−G4)を溶解した溶液(30μM)を調製した。
この溶液に、次の金属塩(濃度3mM、Reは1.5mM)の溶液を加えて、金属塩の錯形成を行った。
<使用した金属塩>
Under a glove box atmosphere, a solution (30 μM) in which a fourth-generation phenylazomethine dendrimer (TPM-G4) having tetraphenylmethane as a core was dissolved in dichloromethane as a solvent was prepared.
A solution of the following metal salt (concentration: 3 mM, Re: 1.5 mM) was added to this solution to form a metal salt complex.
<Metal salt used>

過塩素酸マグネシウム(II)、過塩素酸カルシウム(II)、過塩素酸ストロンチウム(II)3水和物、過塩素酸バリウム(II)3水和物、塩化スカンジウム(III)6水和物、塩化イットリウム(III)6水和物、塩化ランタン(III)7水和物、塩化セリウム(III)7水和物、塩化プラセオジム(III)7水和物、塩化ネオジム(III)6水和物、塩化サマリウム(III)6水和物、塩化ユーロピウム(III)6水和物、塩化ガドリニウム(III)6水和物、塩化テルビウム(III)6水和物、塩化ジスプロシウム(III)6水和物、塩化ホルミウム(III)6水和物、塩化エルビウム(III)6水和物、塩化ツリウム(III)6水和物、塩化イッテルビウム(III)6水和物、塩化ルテチウム(III)6水和物、シクロペンタジエニル塩化チタン(IV)、シクロペンタジエニル塩化ジルコニウム(IV)、ペンタメチルシクロペンタジエニル塩化ハフニウム(IV)、塩化バナジウム(III)、シクロペンタジエニル塩化ニオブ(V)、ペンタメチルシクロペンタジエニル塩化タンタル(V)、塩化クロム(III)6水和物、シクロペンタジエニル塩化モリブデン(V)、オキシ塩化タングステン(VI)、過塩素酸マンガン(II)6水和物、ビス(トリフェニルホスフィン)オキシ塩化レニウム(V)、塩化鉄(III)、塩化ルテニウム(III)、ビス(トリフェニルホスフィン)臭化コバルト(II)、塩化ロジウム(III)3水和物、ビス(シクロオクタジエン)テトラフルオロホウ酸イリジウム(I)、ビス(トリフェニルホスフィン)臭化ニッケル(II)、テトラキス(アセトニトリル)テトラフルオロホウ酸パラジウム(II)、臭化白金(IV)、臭化銅(II)、弗化銀(II)、塩化金(III)、テトラフルオロホウ酸亜鉛(II)7水和物、過塩素酸カドミウム(II)6水和物、塩化アルミニウム(III)、塩化ガリウム(III)、塩化インジウム(III)、臭化ケイ素(IV)、ジオキサン塩化ゲルマニウム(II)、塩化スズ(II)、トリフルオロ酢酸鉛(II)1/2水和物、塩化リン(V)、塩化アンチモン(III)、塩化ビスマス(III)、オキシ塩化硫黄(IV)、塩化テルル(IV)。
各金属塩のTPM−G4に対するモル比は、1:1となるように調整した。
各金属塩の溶液において(図1)、溶媒はそれぞれ最適化した溶媒を、作成から1日以内に使用した。
Magnesium perchlorate (II), Calcium perchlorate (II), Strontium perchlorate (II) trihydrate, Barium perchlorate (II) trihydrate, Scandium chloride (III) hexahydrate, Ittium chloride (III) hexahydrate, lanthanum chloride (III) heptahydrate, cerium (III) chloride heptahydrate, placeodium chloride (III) heptahydrate, neodymium chloride (III) hexahydrate, Samalium Chloride (III) Hexahydrate, Europium Chloride (III) Hexahydrate, Gadrinium Chloride (III) Hexahydrate, Terbium Chloride (III) Hexahydrate, Disprocium Chloride (III) Hexahydrate, Formium chloride (III) hexahydrate, Elbium (III) chloride hexahydrate, Thurium (III) chloride hexahydrate, Itterbium chloride (III) hexahydrate, Rutetium chloride (III) hexahydrate, Cyclopentadienyl titanium chloride (IV), cyclopentadienyl zirconium chloride (IV), pentamethylcyclopentadienyl hafnium chloride (IV), vanadium chloride (III), cyclopentadienyl niobrate chloride (V), pentamethyl Cyclopentadienyl tantal chloride (V), chromium (III) chloride hexahydrate, cyclopentadienyl molybdenum chloride (V), tungsten oxychloride (VI), manganese perchlorate (II) hexahydrate, bis (Triphenylphosphine) Renium oxychloride (V), iron (III) chloride, ruthenium chloride (III), bis (triphenylphosphine) cobalt bromide (II), rhodium (III) chloride trihydrate, bis (cyclo) Octadiene) iridium tetrafluoroborate (I), bis (triphenylphosphine) nickel bromide (II), tetrakis (acetriform) palladium tetrafluoroborate (II), platinum bromide (IV), copper bromide (II) ), Silver fluoride (II), gold chloride (III), zinc tetrafluoroborate (II) heptahydrate, cadmium perchlorate (II) hexahydrate, aluminum chloride (III), gallium chloride (III) ), Indium Chloride (III), Silicon Bromide (IV), Dioxane Germanium Chloride (II), Tin Chloride (II), Lead Trifluoroacetate (II) 1/2 Hydrate, Phosphorus Chloride (V), Antimon Chloride (III), bismuth chloride (III), sulfur oxychloride (IV), tellurium chloride (IV).
The molar ratio of each metal salt to TPM-G4 was adjusted to 1: 1.
In the solution of each metal salt (Fig. 1), the solvent optimized for each was used within 1 day from the preparation.

次に、フェニルアゾメチンデンドリマー金属塩集積体の還元を行った。還元剤としてリチウムナフタレニド(Li(C108))/THFをその場調整し、大過剰量で液相還元した。 Next, the phenylazomethine dendrimer metal salt aggregate was reduced. Lithium naphthalenide (Li (C 10 H 8 )) / THF was in-situ adjusted as a reducing agent, and the liquid phase was reduced in a large excess amount.

その反応溶液をジクロロメタンで分散させたグラフェンナノパウダー(GNP)と素早く混合し、還元により得られたナノ粒子を含むデンドリマーをGNPに担持させた。このGNPをベリリウムのグリッドに担持させて、メタノールで洗浄して還元剤のクエンチおよび除去を行った後、真空下で十分に乾燥させ、STEM−HAADF観察、STEM−EDX分析を行った。 The reaction solution was quickly mixed with graphene nanopowder (GNP) dispersed in dichloromethane, and a dendrimer containing nanoparticles obtained by reduction was supported on the GNP. This GNP was supported on a beryllium grid, washed with methanol to quench and remove the reducing agent, and then sufficiently dried under vacuum for STEM-HAADF observation and STEM-EDX analysis.

図2(a)、(b)、図3(a)、(b)、(c)にその結果を示す。STEM−HAADF観察の結果、粒径2〜3nm程度のナノ粒子が合成できていることを確認した。また、一つのナノ粒子を拡大して原子分解能観察することにより、これらのナノ粒子が非晶質であることが明らかになった。さらに、STEM-EDX分析により、このナノ粒子の中に目的の元素が含まれていることを確認した。全ての元素のシグナルはナノ粒子像の部分から検出されており、ナノ粒子の存在しない画像エリアからは検出されなかった。これは各元素のマッピング像からも明らかである。 The results are shown in FIGS. 2 (a), 2 (b), 3 (a), (b), and (c). As a result of STEM-HAADF observation, it was confirmed that nanoparticles having a particle size of about 2 to 3 nm could be synthesized. Moreover, by magnifying one nanoparticle and observing it with atomic resolution, it became clear that these nanoparticles are amorphous. Furthermore, it was confirmed by STEM-EDX analysis that the desired element was contained in the nanoparticles. Signals for all elements were detected in the part of the nanoparticle image, not in the image area where the nanoparticles were absent. This is clear from the mapping image of each element.

Claims (6)

以下の工程を含む、多元素ナノ粒子の製造方法:
10μM以上の濃度の、フェニルアゾメチン骨格およびカルバゾール骨格から選ばれる少なくとも1種を樹状分岐構造の構成単位とするデンドリマーと、互いに金属種が異なる多数種の異種金属塩化合物とを溶媒中に存在させることにより、前記フェニルアゾメチン型デンドリマーに前記異種金属塩化合物を集積した集積体を生成し、かつ前記集積体の凝集を促進させる工程;および
還元剤の存在下に前記集積体を還元する工程。
Method for producing multi-element nanoparticles including the following steps:
A dendrimer having a concentration of 10 μM or more and having at least one selected from a phenylazomethine skeleton and a carbazole skeleton as a constituent unit of a dendritic branched structure and a large number of dissimilar metal salt compounds having different metal species from each other are present in a solvent. Thereby, a step of producing an aggregate in which the dissimilar metal salt compound is accumulated in the phenylazomethine type dendrimer and promoting aggregation of the aggregate; and a step of reducing the aggregate in the presence of a reducing agent.
9種類以上の元素からなる多元素ナノ粒子を得る、請求項1に記載の多元素ナノ粒子の製造方法。 The method for producing multi-element nanoparticles according to claim 1, wherein multi-element nanoparticles composed of 9 or more kinds of elements are obtained. 前記溶媒はジクロロメタン、クロロホルム、1,2−ジクロロエタン、1,1−ジクロロエタン、四塩化炭素、クロロベンゼン、トルエン、キシレン、およびクロロベンゼンから選ばれる少なくとも1種である、請求項1または2に記載の多元素ナノ粒子の製造方法。 The multi-element according to claim 1 or 2, wherein the solvent is at least one selected from dichloromethane, chloroform, 1,2-dichloroethane, 1,1-dichloroethane, carbon tetrachloride, chlorobenzene, toluene, xylene, and chlorobenzene. Method for producing nanoparticles. 前記還元剤はリチウムナフタレニドである、請求項1〜3のいずれか一項に記載の多元素ナノ粒子の製造方法。 The method for producing multi-element nanoparticles according to any one of claims 1 to 3, wherein the reducing agent is lithium naphthalenide. 9種類以上の元素からなる多元素ナノ粒子。 Multi-element nanoparticles composed of 9 or more types of elements. フェニルアゾメチン骨格およびカルバゾール骨格から選ばれる少なくとも1種を樹状分岐構造の構成単位とするデンドリマーに内包もしくは接触している請求項5に記載の多元素ナノ粒子。 The multi-element nanoparticles according to claim 5, which are encapsulated or in contact with a dendrimer having at least one selected from a phenylazomethine skeleton and a carbazole skeleton as a constituent unit of a dendritic branched structure.
JP2019194937A 2019-10-28 2019-10-28 Method for producing multi-element nanoparticles and multi-element nanoparticles Pending JP2021066709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019194937A JP2021066709A (en) 2019-10-28 2019-10-28 Method for producing multi-element nanoparticles and multi-element nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019194937A JP2021066709A (en) 2019-10-28 2019-10-28 Method for producing multi-element nanoparticles and multi-element nanoparticles

Publications (1)

Publication Number Publication Date
JP2021066709A true JP2021066709A (en) 2021-04-30

Family

ID=75637082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019194937A Pending JP2021066709A (en) 2019-10-28 2019-10-28 Method for producing multi-element nanoparticles and multi-element nanoparticles

Country Status (1)

Country Link
JP (1) JP2021066709A (en)

Similar Documents

Publication Publication Date Title
Yamamoto et al. New horizon of nanoparticle and cluster catalysis with dendrimers
Kim et al. Inorganic nanoparticles in porous coordination polymers
Tsukamoto et al. Atom-hybridization for synthesis of polymetallic clusters
Kusada et al. New Aspects of Platinum Group Metal‐Based Solid‐Solution Alloy Nanoparticles: Binary to High‐Entropy Alloys
Xu et al. Phase-selective growth of assembled FeSe2 nanorods from organometallic polymers and their surface magnetism
JP4675787B2 (en) Carbon-metal composite material and method for producing the same
US20110037020A1 (en) Highly Aromatic Compounds and Polymers as Precursors to Carbon Nanotube and Metal Nanoparticle Compositions in Shaped Solids
JP5990329B2 (en) Catalyst for preparing single-walled carbon nanotubes with chirality selectivity and electrical conductivity selectivity, and its preparation method and application
Jiang et al. Mesoporous trimetallic PtPdRu spheres as superior electrocatalysts
Daniels et al. Intermetallic Nanocatalysts from Heterobimetallic Group 10–14 Pyridine-2-Thiolate Precursors
JP2007296593A (en) Fullerene nanowire, method for manufacturing the same and element using the same
Tsukamoto et al. Unique functions and applications of rigid dendrimers featuring radial aromatic chains
Zhou et al. Dimension-manipulated ceria nanostructures (0D uniform nanocrystals, 2D polycrystalline assembly, and 3D mesoporous framework) from cerium octylate precursor in solution phases and their CO oxidation activities
Lau et al. Fabrication of Fe-doped molybdenum multisulfide MoS2/Mo2S3 thin film via aerosol-assisted chemical vapor deposition (AACVD) for photoelectrochemical (PEC) water splitting
Heitz et al. Unprecedented Alkylzinc–Magnesium Alkoxide Clusters as Suitable Organometallic Precursors for Magnesium‐Containing ZnO Nanoparticles
JP6355078B2 (en) Process for producing organosilane compound and catalyst composition for synthesis of organosilane compound
Chang et al. Low-temperature synthesis of transition metal nanoparticles from metal complexes and organopolysilane oligomers
US20120270727A1 (en) Catalyst
Deepak et al. Fullerene‐like Mo (W) 1− xRexS2 Nanoparticles
Heinrich et al. Molecular palladium precursors for Pd0 nanoparticle preparation by microwave irradiation: Synthesis, structural characterization and catalytic activity
JP2021066709A (en) Method for producing multi-element nanoparticles and multi-element nanoparticles
JP5534394B2 (en) Fuel cell catalyst using platinum-foreign metal composite nanoparticles encapsulated in phenylazomethine dendrimer
JP2021084896A (en) Novel dendrimer having alkyl shell structure and production method of metal sub-nanoparticle
WO2018159505A1 (en) Dissimilar-metal salt assembly which is dendrimer having four or more types of dissimilar-metal salt compounds precisely integrated therein, and production method for subnano metal particles
JP6582310B2 (en) Dendrimer dissimilar metal salt aggregates and sub-nano metal particle production methods in which four or more different metal salt compounds are precisely integrated

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191115