JP2021063699A - Device and method for monitoring belt press dewatering system, and device for controlling belt press dewatering system - Google Patents

Device and method for monitoring belt press dewatering system, and device for controlling belt press dewatering system Download PDF

Info

Publication number
JP2021063699A
JP2021063699A JP2019187889A JP2019187889A JP2021063699A JP 2021063699 A JP2021063699 A JP 2021063699A JP 2019187889 A JP2019187889 A JP 2019187889A JP 2019187889 A JP2019187889 A JP 2019187889A JP 2021063699 A JP2021063699 A JP 2021063699A
Authority
JP
Japan
Prior art keywords
belt press
value
filter cloth
dehydration system
scattered light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019187889A
Other languages
Japanese (ja)
Other versions
JP6897742B2 (en
Inventor
瑞季 鈴木
Mizuki Suzuki
瑞季 鈴木
井上 健
Takeshi Inoue
健 井上
長尾 信明
Nobuaki Nagao
信明 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2019187889A priority Critical patent/JP6897742B2/en
Priority to PCT/JP2020/034237 priority patent/WO2021070545A1/en
Priority to TW109131456A priority patent/TW202115379A/en
Publication of JP2021063699A publication Critical patent/JP2021063699A/en
Application granted granted Critical
Publication of JP6897742B2 publication Critical patent/JP6897742B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D33/00Filters with filtering elements which move during the filtering operation
    • B01D33/04Filters with filtering elements which move during the filtering operation with filtering bands or the like supported on cylinders which are impervious for filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D37/00Processes of filtration
    • B01D37/04Controlling the filtration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • C02F11/123Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering using belt or band filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Biochemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Treatment Of Sludge (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Filtration Of Liquid (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

To provide a monitoring system and a monitoring method capable of properly monitoring the sludge detachability of a belt press dehydrator, and also to provide a control device of a belt press dehydrator capable of appropriately controlling the belt press dehydrator based on the monitored result.SOLUTION: Disclosed is a device for monitoring a belt press dewatering system having measuring means for an index value corresponding to a state of a solid body in washing and drain water of a filter cloth belt of a belt press dehydrator 10. The measuring means includes an irradiation part which radiates laser light into washing and drain water of the filter cloth belt, and a light receiving part for receiving scattered light, and obtains the index value from a temporal change of the scattered light intensity signal.SELECTED DRAWING: Figure 1

Description

汚泥をベルトプレスにより脱水処理するシステムの監視及び制御に関する。 It relates to the monitoring and control of a system for dehydrating sludge by a belt press.

ベルトプレス脱水機を用いた脱水処理において、安定した脱水処理を行うために脱水ケーキの剥離性を適切に評価することが求められている。無機凝集剤や高分子凝集剤の注入量を増加することで脱水ケーキの剥離性を改善する方法は有効であるが、どの程度の薬剤投入でどの程度の改善効果があるかを投入時点において数値で示すことは困難である。実際には薬剤投入後に脱水ケーキの剥離性をベルトプレス脱水機の濾布の汚れ具合を目視で判断していたが、この手法は人が現場にいる時にのみ可能な方法であるため連続的な監視は困難である。 In the dehydration treatment using a belt press dehydrator, it is required to appropriately evaluate the peelability of the dehydrated cake in order to perform a stable dehydration treatment. A method of improving the peelability of a dehydrated cake by increasing the injection amount of an inorganic flocculant or a polymer flocculant is effective. It is difficult to indicate with. Actually, the peelability of the dehydrated cake was visually judged by the degree of dirt on the filter cloth of the belt press dehydrator after the drug was added, but this method is continuous because it is possible only when a person is in the field. Monitoring is difficult.

特公昭63−29639号公報には、濾布の通気度を測定することで剥離性を評価することが記載されている。しかし、剥離性の評価は濾布の広い範囲にわたって評価する必要があるため、広範囲にわたって通気度を測定するためには大がかりな装置が必要となる。また、部分的に汚泥が十分に剥離している濾布では、その部分に集中して流体が通過するため、通気性で剥離性を正確に評価することは困難である。 Japanese Patent Application Laid-Open No. 63-29639 describes that the peelability is evaluated by measuring the air permeability of the filter cloth. However, since it is necessary to evaluate the peelability over a wide range of the filter cloth, a large-scale device is required to measure the air permeability over a wide range. Further, in a filter cloth in which sludge is sufficiently peeled off, it is difficult to accurately evaluate the peelability by air permeability because the fluid passes through the filter cloth in a concentrated manner.

特公平3−80080号公報には濾布洗浄排水中の懸濁物質濃度を測定することにより剥離性を評価することが記載されている。しかし、濾布洗浄排水中の懸濁物質は、塊として存在することがあるため、均一に液中に分散するとは限らない。そのため、濾布洗浄排水中の懸濁物質の濃度は、通常の光学式MLSS計では適切に測定することができない。 Japanese Patent Publication No. 3-800080 describes that the peelability is evaluated by measuring the concentration of suspended solids in the filter cloth washing wastewater. However, since the suspended solids in the filter cloth washing wastewater may exist as a lump, they are not always uniformly dispersed in the liquid. Therefore, the concentration of suspended solids in the filter cloth washing wastewater cannot be appropriately measured by a normal optical MLSS meter.

そこで、従来は、濾布洗浄排水中の懸濁物質濃度は、濾過分離重量測定法などにより分析されている。しかし、濾過分離重量測定方法などの方法は連続的に測定するためには装置が大がかりとなる。 Therefore, conventionally, the concentration of suspended solids in the filter cloth washing wastewater has been analyzed by a filtration separation weight measurement method or the like. However, a method such as a filtration separation weight measuring method requires a large-scale device for continuous measurement.

特許文献3には、レーザー光を水中に向けて照射し、水中のフロック等によって散乱される散乱光を受光して凝集状態を測定する凝集状態モニタリングセンサを用いて凝集剤添加を制御することが記載されている。 In Patent Document 3, it is possible to control the addition of a coagulant by using a coagulation state monitoring sensor that irradiates a laser beam into water and receives scattered light scattered by flocs or the like in the water to measure the coagulation state. Are listed.

特公昭63−29639号公報Special Publication No. 63-29639 特公昭3−80080号公報Special Publication No. 3-800080 特開2017−26438号公報JP-A-2017-26438

本発明は、上記のような問題に鑑み、ベルトプレス脱水機の汚泥剥離性を的確に監視できる監視システムおよび監視方法と、その監視した結果に基づいて、ベルトプレス脱水機を適切に制御することが可能なベルトプレス脱水機の制御装置を提供することを目的とする。 In view of the above problems, the present invention appropriately controls the belt press dehydrator based on a monitoring system and a monitoring method capable of accurately monitoring the sludge detachability of the belt press dehydrator and the monitoring result. It is an object of the present invention to provide a control device for a belt press dehydrator capable of performing the above.

本発明のベルトプレス脱水システムの監視装置は、ベルトプレス脱水機の濾布ベルト洗浄排水中の固形物の状態に対応した指標値の測定手段を有するベルトプレス脱水システムの監視装置であって、該測定手段は、濾布ベルト洗浄排水中にレーザ光を照射する照射部及び散乱光を受光する受光部を有し、散乱光強度信号の時間的な変化から前記指標値を求めるものである。 The monitoring device for the belt press dehydration system of the present invention is a monitoring device for the belt press dehydration system having a means for measuring an index value corresponding to the state of solid matter in the filter cloth belt cleaning drainage of the belt press dehydrator. The measuring means has an irradiation unit that irradiates the laser beam and a light receiving unit that receives the scattered light in the filter cloth belt cleaning drainage, and obtains the index value from the temporal change of the scattered light intensity signal.

本発明のベルトプレス脱水システムの監視方法は、本発明のベルトプレス脱水システムの監視装置を用い、前記指標値に基づいてベルトプレス脱水システムの監視を行うものである。 The method for monitoring the belt press dehydration system of the present invention uses the monitoring device for the belt press dehydration system of the present invention to monitor the belt press dehydration system based on the index value.

本発明のベルトプレス脱水機の制御装置は、本発明のベルトプレス脱水システムの監視装置を用い、前記指標値が所定値又は所定範囲内となるように被処理汚泥への凝集剤添加量を制御するものである。 The control device for the belt press dewatering machine of the present invention uses the monitoring device for the belt press dewatering system of the present invention to control the amount of coagulant added to the sludge to be treated so that the index value falls within a predetermined value or a predetermined range. Is what you do.

本発明の一態様では、前記散乱光強度信号の時間積分値に基づいて前記指標値を設定する。 In one aspect of the present invention, the index value is set based on the time integral value of the scattered light intensity signal.

本発明の一態様では、前記散乱光強度信号の所定時間毎のボトム値に基づいて前記指標値を設定する。 In one aspect of the present invention, the index value is set based on the bottom value of the scattered light intensity signal at predetermined time intervals.

本発明の一態様では、所定時間における前記散乱光強度信号のピークの数を検出し、各ピークの信号強度を所定時間で積算した値に基づいて前記指標値を設定する。 In one aspect of the present invention, the number of peaks of the scattered light intensity signal in a predetermined time is detected, and the index value is set based on the value obtained by integrating the signal intensity of each peak in a predetermined time.

発明者らは、特許文献3に記載の凝集状態モニタリングセンサにより、ベルトプレス濾布洗浄排水中の固形物の状態(固形物量や粒径分布の相対的な情報)を評価できることを見出した。 The inventors have found that the state of solid matter (relative information on the amount of solid matter and the particle size distribution) in the belt press filter cloth washing drainage can be evaluated by the agglomeration state monitoring sensor described in Patent Document 3.

濾布からの脱水ケーキの剥離性が悪化した場合、脱水ケーキが濾布上に張り付いて残る。この濾布上に残った脱水ケーキは洗浄水で洗い流され、濾布洗浄排水中に含まれることになる。従って、濾布洗浄排水中に含まれる固形物量が多いほど、剥離性が悪化していることになる。濾布洗浄排水中の固形物量の増加は、該凝集状態モニタリングセンサを用いて測定した場合、一定以上の散乱光強度を伴う信号波形の出現率上昇として検出できる。 When the detachability of the dehydrated cake from the filter cloth deteriorates, the dehydrated cake sticks to the filter cloth and remains. The dehydrated cake remaining on the filter cloth is washed away with washing water and is contained in the filter cloth washing drainage. Therefore, the larger the amount of solid matter contained in the filter cloth cleaning wastewater, the worse the peelability. The increase in the amount of solid matter in the filter cloth washing drainage can be detected as an increase in the appearance rate of the signal waveform accompanied by the scattered light intensity above a certain level when measured using the aggregation state monitoring sensor.

また、裏漏れ(凝集不良の汚泥液が素透し状に濾布を透過すること)やサイドリーク(濾布の両サイドから汚泥液が流れ出ること)現象が生じているときには、濾布洗浄排水中に固化前の泥状態の汚泥に由来する微小な粒子の量が増加する。これにより、該凝集状態モニタリングセンサの出力において、一定レベル以下の散乱光強度の信号波形の出現率が上昇したり、全体的な信号ベースレベルが上昇する。 In addition, when back leakage (sludge liquid with poor aggregation permeates the filter cloth in a transparent manner) or side leak (sludge liquid flows out from both sides of the filter cloth) occurs, the filter cloth cleaning drainage The amount of fine particles derived from the sludge in the mud state before solidification increases. As a result, in the output of the agglutination state monitoring sensor, the appearance rate of the signal waveform having a scattered light intensity of a certain level or less increases, or the overall signal base level increases.

本発明によれば、脱水ケーキの剥離性や裏漏れといった運転上の障害現象を数値化し、運転障害事象に対する運転時の目標値を設けることで凝集剤の注入量や濾布送り速度などの脱水機運転条件を連続的に制御できる。 According to the present invention, by quantifying operational obstacle phenomena such as dewatering cake peeling property and back leakage and setting a target value during operation for an operation obstacle event, dehydration such as an injection amount of a coagulant and a filter cloth feeding speed The machine operating conditions can be continuously controlled.

実施の形態に係るベルトプレス脱水システムの構成図である。It is a block diagram of the belt press dehydration system which concerns on embodiment. 凝集状態モニタリングセンサの構成図である。It is a block diagram of the agglutination state monitoring sensor. 凝集状態モニタリングセンサの計測領域の模式図である。It is a schematic diagram of the measurement area of the agglutination state monitoring sensor. 凝集状態モニタリングセンサの検出波形図である。It is a detection waveform figure of the agglutination state monitoring sensor. 凝集状態モニタリングセンサの検出波形図である。It is a detection waveform figure of the agglutination state monitoring sensor. 凝集状態モニタリングセンサの検出波形図である。It is a detection waveform figure of the agglutination state monitoring sensor. 凝集状態モニタリングセンサの検出波形図である。It is a detection waveform figure of the agglutination state monitoring sensor.

以下、図面を参照して実施の形態に係るベルトプレス脱水システムについて説明する。 Hereinafter, the belt press dehydration system according to the embodiment will be described with reference to the drawings.

図1の通り、このベルトプレス脱水システムでは、被処理汚泥である原汚泥は、流量計2を有する流入管1を介して第1凝集槽3に導入され、第1薬注装置4によって無機凝集剤が添加される。第1凝集槽3には撹拌機3aが設置されている。 As shown in FIG. 1, in this belt press dewatering system, the raw sludge to be treated is introduced into the first coagulation tank 3 via the inflow pipe 1 having the flow meter 2, and is inorganically coagulated by the first chemical injection device 4. The agent is added. A stirrer 3a is installed in the first coagulation tank 3.

第1凝集槽3内で凝集処理された液(第1凝集処理液)は、移流口(又は移流管)を介して第2凝集槽5に導入され、第2薬注装置6によって高分子凝集剤が添加される。第2凝集槽5には撹拌機5aが設置されている。 The liquid (first coagulation-treated liquid) that has been coagulated in the first coagulation tank 3 is introduced into the second coagulation tank 5 via the advection port (or advection pipe), and polymer agglomerates by the second chemical injection device 6. The agent is added. A stirrer 5a is installed in the second coagulation tank 5.

無機凝集剤としては塩化第二鉄、硫酸第二鉄、ポリ塩化第二鉄、ポリ硫酸第二鉄などの鉄系無機凝集剤や塩化アルミニウム、ポリ塩化アルミニウム、硫酸バンド、水酸化アルミニウム、酸化アルミニウムなどのアルミ系無機凝集剤が挙げられる。 Examples of the inorganic flocculant include ferric chloride, ferric sulfate, polyferric chloride, polyferric sulfate and other iron-based inorganic flocculants, aluminum chloride, polyaluminum chloride, sulfate band, aluminum hydroxide and aluminum oxide. Examples include aluminum-based inorganic flocculants such as.

高分子凝集剤としてはカチオン性又は両性の高分子凝集剤、とりわけカチオン性高分子凝集剤が好適である。カチオン性高分子凝集剤としては、ジメチルアミノエチルアクリレート或いはその四級化物、ジメチルアミノエチルメタクリレート或いはその四級化物などのカチオン性単量体の単独重合物やアクリルアミドとの共重合物、ポリビニルアミジン、ポリ(ジアリルジメチルアンモニウムクロリド)、ポリエチレンイミン、ポリアリルアミン、ポリビニルアミン、ポリ(2−ビニル−1−メチルピリニジウム)、ジアルキルアミン‐エピクロルヒドリン重縮合物、ポリリジン、キトサン、ジエチルアミノエチルデキストランなどが挙げられる。 As the polymer flocculant, a cationic or amphoteric polymer flocculant, particularly a cationic polymer flocculant is preferable. Examples of the cationic polymer flocculant include homopolymers of cationic monomers such as dimethylaminoethyl acrylate or quaternized products thereof, dimethylaminoethyl methacrylate or quaternized products thereof, copolymers with acrylamide, and polyvinylamidine. Examples thereof include poly (diallyldimethylammonium chloride), polyethyleneimine, polyallylamine, polyvinylamine, poly (2-vinyl-1-methylpyrinidium), dialkylamine-epichlorohydrin polycondensate, polylysine, chitosan, diethylaminoethyldextran and the like. ..

両性高分子凝集剤としては、ジメチルアミノエチルアクリレート或いはその四級化物やジメチルアミノエチルメタクリレート或いはその四級化物などのカチオン性単量体と、アクリルアミドなどのノニオン性単量体と、アクリル酸或いはその塩などとの共重合物を用いることができる。 Examples of the amphoteric polymer flocculant include cationic monomers such as dimethylaminoethyl acrylate or its quaternized product, dimethylaminoethyl methacrylate or its quaternized product, nonionic monomer such as acrylamide, and acrylic acid or its quaternized product. A copolymer with a salt or the like can be used.

第2凝集槽8内で凝集処理された汚泥は、移送管9を介してベルトプレス脱水機10に送られる。 The sludge coagulated in the second coagulation tank 8 is sent to the belt press dehydrator 10 via the transfer pipe 9.

図1では、凝集槽3,5を設置しているが、無機凝集剤を配管1で添加し、凝集槽3を省略してもよい。 In FIG. 1, the coagulation tanks 3 and 5 are installed, but the coagulation tank 3 may be omitted by adding the inorganic coagulant in the pipe 1.

また、図1では、第2凝集槽5に高分子凝集剤を添加するものとしているが、第2凝集槽5の代わりに第2配管を設置し、該第2配管に高分子凝集剤を添加してもよい。 Further, in FIG. 1, the polymer coagulant is added to the second coagulation tank 5, but a second pipe is installed instead of the second coagulation tank 5, and the polymer coagulant is added to the second pipe. You may.

ベルトプレス脱水機10は、無端回動する下側濾布ベルト及び上側濾布ベルトを備えている。凝集汚泥は、両者の間で挟圧され、脱水される。脱水ケーキは濾布から剥離され、取り出される。 The belt press dehydrator 10 includes a lower filter cloth belt and an upper filter cloth belt that rotate endlessly. The coagulated sludge is sandwiched between the two and dehydrated. The dehydrated cake is peeled off from the filter cloth and taken out.

濾布ベルトの洗浄排水の一部は配管11を介して計測槽12に送水される。計測槽12には凝集状態モニタリングセンサ20が設置されており、その検出信号が制御器8に入力される。制御器8はこの検出信号に基づいて第1及び第2薬注装置4,6を制御する。 A part of the cleaning drainage of the filter cloth belt is sent to the measuring tank 12 via the pipe 11. An agglutination state monitoring sensor 20 is installed in the measuring tank 12, and a detection signal thereof is input to the controller 8. The controller 8 controls the first and second drug injection devices 4 and 6 based on this detection signal.

凝集状態モニタリングセンサ20は、好ましくは、特許文献3に記載のものが用いられる。図2はこの凝集状態モニタリングセンサのプローブ部分の構成を示している。このプローブは、直交する面21a,21b及びそれらが交わる頂部21cを有したブロック21と、面21aに沿って設けられた、凝集処理液に向ってレーザ光を照射する発光部22と、面21bに沿って設けられた、受光光軸を該発光部22の発光光軸と直交方向とした受光部23とを有する。また、凝集状態モニタリングセンサ20は、発光部22の発光作動及び受光部23の受光信号の解析を行うために、発光回路、検波回路及び計測回路(図示略)を備えている。計測回路は、タイミング回路、A/D変換部、演算部等を有する。 As the agglutination state monitoring sensor 20, the one described in Patent Document 3 is preferably used. FIG. 2 shows the configuration of the probe portion of this agglutination state monitoring sensor. This probe includes a block 21 having orthogonal surfaces 21a and 21b and an apex 21c where they intersect, a light emitting unit 22 provided along the surface 21a that irradiates a laser beam toward the aggregating liquid, and a surface 21b. It has a light receiving unit 23 having a light receiving optical axis oriented along the light emitting unit 22 in a direction orthogonal to the light emitting optical axis of the light emitting unit 22. Further, the agglutination state monitoring sensor 20 includes a light emitting circuit, a detection circuit, and a measurement circuit (not shown) in order to perform the light emitting operation of the light emitting unit 22 and the analysis of the light receiving signal of the light receiving unit 23. The measurement circuit includes a timing circuit, an A / D conversion unit, a calculation unit, and the like.

特許文献3と同様に、発光部22から、頂部21c近傍の計測領域Aに照射されたレーザー光が計測領域A内の粒子によって散乱され、この散乱光が受光部23で受光され、この受光強度の経時変化に基づいて凝集状態が計測される。なお、ブロック21は不透明材料よりなる。 Similar to Patent Document 3, the laser light emitted from the light emitting unit 22 to the measurement area A near the top 21c is scattered by the particles in the measurement area A, and the scattered light is received by the light receiving unit 23, and the light receiving intensity is received. The state of aggregation is measured based on the change over time. The block 21 is made of an opaque material.

発光回路は、タイミング回路からの信号に応じて発光部に一定の変調周波数を持った電気信号を送り、レーザ発光を行わせる。発光部は、発光回路からの信号によって、レーザ光を発光する。受光部は、レーザ光が水中の懸濁物に当たって発生した散乱光を受けて、電気信号に変換する。検波回路は、受光部からの電気信号から変調成分を除去し、散乱光強度に応じた受光電圧を出力する。 The light emitting circuit sends an electric signal having a constant modulation frequency to the light emitting unit in response to the signal from the timing circuit to cause laser light emission. The light emitting unit emits laser light by a signal from the light emitting circuit. The light receiving unit receives the scattered light generated by the laser light hitting the suspension in water and converts it into an electric signal. The detection circuit removes the modulation component from the electric signal from the light receiving unit and outputs the light receiving voltage according to the scattered light intensity.

計測回路 は、発光回路に発光のための信号(特定の周波数変調波)を送信すると共に、検波回路からの信号をデジタル信号に変換し、論理演算して凝集に関する情報を出力する。 The measurement circuit transmits a signal for light emission (specific frequency modulated wave) to the light emitting circuit, converts the signal from the detection circuit into a digital signal, performs a logical operation, and outputs information on aggregation.

この凝集状態モニタリングセンサとしては、特許文献3のモニタリング装置、特にそれが特許された特許第6281534号公報に記載のモニタリング装置を好適に用いることができるが、これに限定されるものではない。 As the agglutination state monitoring sensor, the monitoring device of Patent Document 3, particularly the monitoring device described in Japanese Patent No. 6281534, which is patented thereto, can be preferably used, but is not limited thereto.

なお、特許第6281534号の凝集モニタリング装置は、
「 凝集処理される被処理水の処理状態を監視する凝集モニタリング装置であって、
計測光を前記被処理水の計測領域に照射する計測光照射部と、
前記計測領域にある前記被処理水の粒子による散乱光を受光する散乱光受光部と、
前記散乱光受光部に得られる受光信号の振幅を計測する振幅計測手段を含み、計測された前記振幅の出現を監視および集計し、特定の振幅の発生率または発生頻度を算出して、前記被処理水中のフロックの粒径を表す前記被処理水の凝集に関わる指標を算出する計測値演算部と、
を備え、
前記振幅計測手段は、前記受光信号が上昇から下降に変化する第1の変曲点および下降から上昇に変化する第2の変曲点を検出し、前記第1の変曲点および第2の変曲点のレベル差から前記振幅を計測することを特徴とする凝集モニタリング装置。」
である。
The agglutination monitoring device of Japanese Patent No. 6281534 is available.
"A coagulation monitoring device that monitors the treatment status of the water to be coagulated.
A measurement light irradiation unit that irradiates the measurement area of the water to be treated with measurement light,
A scattered light receiving unit that receives scattered light by the particles of the water to be treated in the measurement area, and a scattered light receiving unit.
The subject includes an amplitude measuring means for measuring the amplitude of a received signal obtained by the scattered light receiving unit, monitors and aggregates the appearance of the measured amplitude, calculates the occurrence rate or occurrence frequency of a specific amplitude, and obtains the subject. A measurement value calculation unit that calculates an index related to the aggregation of the water to be treated, which represents the particle size of the flocs in the treated water.
With
The amplitude measuring means detects a first inflection point in which the received light signal changes from rising to falling and a second inflection point in which the received signal changes from falling to rising, and the first inflection point and the second inflection point. An agglomeration monitoring device characterized in that the amplitude is measured from the level difference of an inflection point. "
Is.

図3は、図2の計測領域Aにおけるレーザー光Lの光軸と垂直な断面を示す模式図である。図3の通り、ある時点では、計測領域Aに5個の粒子が存在している。この時点で計測領域Aに照射されたレーザー光が、各粒子によって散乱され、散乱光Sが受光部13に入射する。この時点から所定時間Δt(好ましくは0.1〜10mSecの間から選定された時間。例えば、約1mSec)が経過した時点では、計測領域Aに存在する粒子数が変動する(理論上は、粒子数が変化しないこともあるが、粒子がブラウン運動し、また計測槽12内に液が連続的に注入するので、通常は該粒子数は変動する。)。 FIG. 3 is a schematic view showing a cross section perpendicular to the optical axis of the laser beam L in the measurement region A of FIG. As shown in FIG. 3, at a certain point in time, five particles are present in the measurement region A. At this point, the laser light irradiated to the measurement region A is scattered by each particle, and the scattered light S is incident on the light receiving unit 13. When a predetermined time Δt (preferably a time selected from between 0.1 and 10 mSec, for example, about 1 mSec) elapses from this point, the number of particles existing in the measurement region A fluctuates (theoretically, the particles). Although the number may not change, the number of particles usually fluctuates because the particles move in Brownian motion and the liquid is continuously injected into the measuring tank 12.).

粒子数が変動すると、それに連動して散乱光強度が変動し、受光部23の受光強度が変動する。 When the number of particles fluctuates, the scattered light intensity fluctuates in conjunction with it, and the light receiving intensity of the light receiving unit 23 fluctuates.

粒子の粒径が大きいほど、1個の粒子が計測領域Aに出入りしたときの該受光強度の変動幅が大きいものとなる。従って、この受光強度の変動幅から、計測領域Aに出入りした粒子の粒径の大小を検出することができる。すなわち、任意の時刻tの受光強度と、Δt経過後の時刻tk+1の受光強度との差は、該Δtの間に計測領域Aに出入りした粒子の表面積に比例した値となる。 The larger the particle size of the particles, the larger the fluctuation range of the light receiving intensity when one particle enters or exits the measurement region A. Therefore, it is possible to detect the size of the particle size of the particles entering and exiting the measurement region A from the fluctuation range of the light receiving intensity. That is, the difference between the light receiving intensity at an arbitrary time t k and the light receiving intensity at the time t k + 1 after the elapse of Δt is a value proportional to the surface area of the particles entering and exiting the measurement region A during the Δt.

図4は、凝集状態モニタリングセンサの散乱光強度を信号処理して得られる凝集状態モニタリングセンサ出力信号(受光信号強度)の経時変化の一例を示している。図4における出力信号は、受光部23の受光強度(散乱光強度)に比例した値であり、単位は、例えばmVである。 FIG. 4 shows an example of a change over time in the output signal (light receiving signal intensity) of the aggregation state monitoring sensor obtained by signal processing the scattered light intensity of the aggregation state monitoring sensor. The output signal in FIG. 4 is a value proportional to the light receiving intensity (scattered light intensity) of the light receiving unit 23, and the unit is, for example, mV.

この実施の形態では、センサの発光素子の消耗を抑制するために、発光素子を間欠的に作動させる。一例としては、図5のように、200mSec発光作動させた後、1800mSec停止するように、2秒に1回のペースで発光させる。なお、200mSec、1800mSec及び2秒は一例であり、これに限定されるものではない。 In this embodiment, the light emitting element is operated intermittently in order to suppress the consumption of the light emitting element of the sensor. As an example, as shown in FIG. 5, after the 200 mSec light emission is activated, the light is emitted at a pace of once every two seconds so as to stop the 1800 mSec. Note that 200 mSec, 1800 mSec and 2 seconds are examples, and the present invention is not limited to these.

この実施の形態では、凝集状態モニタリングセンサ20の受光強度に基づいて濾布ベルト洗浄排水中の固形物量を評価し、この固形物量を濾布からの脱水ケーキの剥離性の指標として、無機凝集剤及び高分子凝集剤の添加制御を行う。 In this embodiment, the amount of solid matter in the filter cloth belt cleaning drainage is evaluated based on the light receiving intensity of the aggregation state monitoring sensor 20, and this solid matter amount is used as an index of the detachability of the dehydrated cake from the filter cloth, and the inorganic flocculant is used. And control the addition of the polymer flocculant.

凝集状態モニタリングセンサの受光信号強度から濾布ベルト洗浄排水中の固形物量を評価する方法の第1の態様は、図5のように、受光信号強度を時間で積分し、この積分値が大きいほど固形物量が多いと判定する方法である。図5では、時刻T(mSec)〜T+200(mSec)間、T+2000(mSec)〜T+2200(mSec)間、…のように200mSecの発光期間の受光信号強度を積分している。即ち、図5でドットを付した部分の面積(S,S…)を経時的に測定している。 As shown in FIG. 5, the first aspect of the method of evaluating the amount of solid matter in the filter cloth belt cleaning drainage from the received signal intensity of the agglomeration state monitoring sensor is to integrate the received signal intensity with time, and the larger the integrated value, the larger the integrated value. This is a method for determining that the amount of solid matter is large. In FIG. 5, the received signal intensities during the light emission period of 200 mSec are integrated as in the time T (mSec) to T + 200 (mSec), T + 2000 (mSec) to T + 2200 (mSec), and so on. That is, over time measure the area (S 1, S 2 ...) of the portion denoted by the dots in FIG.

所定時間(例えば200秒)間における各積分値S,S…の和又は平均値に基づいて濾布ベルト洗浄排水中の固形物量を評価する。 To evaluate the solid content in the filter cloth belt cleaning waste water, based on the integrated value S 1, S 2 ... sum or average value of between predetermined time (e.g. 200 seconds).

濾布ベルト洗浄排水中の固形物量を評価する方法の第2態様は、図6のように各発光期間時刻T(mSec)〜T+200(mSec)間、T+2000(mSec)〜T+2200(mSec)間、…の最小受光信号強度Imin(1),Imin(2),…を求める方法である。この方法では、所定時間(例えば10分間。この10分間に発光期間は300個(10×60÷2=300)存在する。)における最小受光信号強度(以下、ボトム値ということがある。)Imin(1),Imin(2)…Imin(300)の和又は平均値を求め、この値を濾布ベルト洗浄排水中の固形物量の指標値とする。 The second aspect of the method for evaluating the amount of solid matter in the filter cloth belt cleaning drainage is as shown in FIG. 6 during each light emission period time T (mSec) to T + 200 (mSec), T + 2000 (mSec) to T + 2200 (mSec), and so on. This is a method for obtaining the minimum received signal strengths Imin (1), Imin (2), .... In this method, the minimum received signal intensity (hereinafter, may be referred to as a bottom value) Imin at a predetermined time (for example, 10 minutes. There are 300 light emitting periods (10 × 60/2 = 300) in this 10 minutes). (1), Imin (2) ... Obtain the sum or average value of Imin (300), and use this value as an index value of the amount of solid matter in the filter cloth belt washing drainage.

上記第1の実施の態様、第2の実施の態様では、発光素子を間欠的に作動させる例で説明したが、発光素子は連続で作動させてもよい。この場合、発光素子が連続して発光している所定時間(例えば200秒)を更に短い単位(例えば200mSec)に区切り、この単位時間での受光信号強度の積分値やボトム値を算出する。引き続き、この単位時間での受光信号強度の積分値やボトム値を、所定時間にわたって、更に積算あるいは平均(加算移動平均)する。そして、所定時間にわたって得られた積算値或いは平均値を濾布ベルト洗浄排水中の固形物量の指標値とする。 In the first embodiment and the second embodiment described above, the example of intermittently operating the light emitting element has been described, but the light emitting element may be continuously operated. In this case, a predetermined time (for example, 200 seconds) in which the light emitting element continuously emits light is divided into shorter units (for example, 200 mSec), and the integrated value and the bottom value of the received signal intensity in this unit time are calculated. Subsequently, the integrated value and the bottom value of the received signal intensity in this unit time are further integrated or averaged (additional moving average) over a predetermined time. Then, the integrated value or the average value obtained over a predetermined time is used as an index value of the amount of solid matter in the filter cloth belt washing drainage.

濾布ベルト洗浄排水中の固形物量を評価する方法の第3態様は、所定時間における受光信号強度のピークの数を検出し、各ピークの信号強度を積算する方法である、この積算値に基づいて固形物量を評価する。 The third aspect of the method of evaluating the amount of solid matter in the filter cloth belt washing drainage is a method of detecting the number of peaks of the received signal intensity at a predetermined time and integrating the signal intensity of each peak, based on this integrated value. And evaluate the amount of solids.

なお、上記所定時間は200mSec〜20分、特に200mSec〜10分の間から選ばれることが好ましく、上記の200秒及び10分は一例にすぎない。 The predetermined time is preferably selected from 200 mSec to 20 minutes, particularly 200 mSec to 10 minutes, and the above 200 seconds and 10 minutes are only examples.

濾布ベルト洗浄排水中の固形物量を評価する方法の第4態様を図7a,7bを参照して次に説明する。 A fourth aspect of the method for evaluating the amount of solid matter in the filter cloth belt cleaning drainage will be described below with reference to FIGS. 7a and 7b.

図7aは、時刻t,t…tの各時刻において測定された受光信号強度をプロットしたグラフであり、各時刻の間隔Δt(すなわちt−tk−1)は前述の通り、好ましくは0.1〜10mSec、例えば1mSecである。 Figure 7a, the time t 1, t 2 ... a graph plotting the measured received signal strength at each time of t z, distance Delta] t (i.e. t k -t k-1) at each time is as defined above, It is preferably 0.1 to 10 mSec, for example 1 mSec.

図7bは、図7aにおいて、極小点P,P…と、極大点Q,Q…とを記入し、極小点と極大点との差(以下、ピーク差ということがある。)h,h…を記入した説明図である。なお、ピーク差が所定値以下の微小な極小、極大は外乱との差異が不明であるため無視して処理する。例えば、hが所定値以下の場合、P≧PであればPとQは無視してデータ処理し、P<PであればQとPは無視して、PとQとの差をピーク差となるようデータ処理する。 In FIG. 7b, the minimum points P 1 , P 2 ... And the maximum points Q 1 , Q 2 ... Are entered in FIG. 7a, and the difference between the minimum points and the maximum points (hereinafter, may be referred to as a peak difference). It is explanatory drawing which filled in h 1 , h 2 .... It should be noted that the minute minimum and maximum peak difference of less than a predetermined value is ignored because the difference from the disturbance is unknown. For example, when h 1 is less than or equal to a predetermined value, if P 1 ≥ P 2 , P 1 and Q 1 are ignored and data processing is performed, and if P 1 <P 2 , Q 1 and P 2 are ignored. Data processing is performed so that the difference between P 1 and Q 2 becomes a peak difference.

上述の通り、任意の時刻tk−1の受光信号強度と時刻tの受光信号強度との差hは、時刻tk−1〜t間に計測領域Aに出入りした粒子の表面積に相関した値である。 As described above, the difference h k of the light-receiving signal intensity at an arbitrary time t k-1 of the light-receiving signal intensity and the time t k is between times t k-1 ~t k to the surface area of the out particles in the measurement region A It is a correlated value.

そこで、時刻t〜tのΔt・z秒間(zは例えば200とされ、Δt=1mSecである場合Δt×zは0.2秒となる。)におけるすべてのピーク差h,h…hの和に基づいて濾布洗浄排水中の固形物量を評価する。 Therefore, all the peak differences h 1 , h 2 ... At the time t 1 to t z for Δt · z seconds (z is, for example, 200, and Δt × z is 0.2 seconds when Δt = 1 mSec). to evaluate the solid content in the filter cloth washing water discharge on the basis of the sum of the h n.

原汚泥への無機凝集剤の注入量を増加するに従って濾布洗浄排水中の固形物量が少なくなる。濾布洗浄排水中の固形物量と脱水ケーキの剥離性は相関し、脱水ケーキの剥離性が良いほど固形物量は少なくなる。上記第1〜第4のいずれかの方法で求められる固形物量指標値に目標値又は目標範囲を設定し、目標値(又は目標範囲上限値)より大きくなったときには目標値(又は目標範囲上限値以下)になるまで無機凝集剤の注入量を増加させる。また、目標値(又は目標範囲下限値)より小さくなったときには目標値(又は目標範囲下限値以上)になるまで無機凝集剤の注入量を減少させる(又は維持する)ことで、適正な薬注条件となるよう連続的な制御が可能となる。 As the amount of the inorganic flocculant injected into the raw sludge is increased, the amount of solid matter in the filter cloth washing wastewater decreases. The amount of solid matter in the filter cloth washing drainage correlates with the peelability of the dehydrated cake, and the better the peelability of the dehydrated cake, the smaller the amount of solid matter. A target value or a target range is set for the solid matter amount index value obtained by any of the first to fourth methods, and when the target value (or the upper limit of the target range) becomes larger than the target value (or the upper limit of the target range). Increase the injection amount of the inorganic flocculant until (below). In addition, when it becomes smaller than the target value (or the lower limit of the target range), the injection amount of the inorganic flocculant is reduced (or maintained) until it reaches the target value (or the lower limit of the target range or more), so that appropriate chemical injection is performed. Continuous control is possible so that the condition is met.

尚、検出する信号強度(上記第3の態様に関連)或いは強度差(上記第4の態様に関連)を2つ以上設けて、それぞれの検出数値に重みづけを行って指標化することも可能である。つまり、特定のレベル以上の信号強度或いは強度差を設け、前記レベルの倍強度までの信号強度或いは強度差の範囲での出現数をA、倍強度以上の信号強度或いは強度差の出現数をBとする時、
C=A+nB(nは信号強度差に基づき設定される係数である。)
で算出される剥離指標Cを求めて、Cが特定の値となるように無機凝集剤の注入量を制御する、または脱水機の濾布送り速度を調整する といった方法を採用してもよい。
It is also possible to provide two or more signal intensities to be detected (related to the third aspect) or intensity differences (related to the fourth aspect), and weight each detected value for indexing. Is. That is, a signal intensity or intensity difference of a specific level or higher is provided, the number of occurrences in the range of signal intensity or intensity difference up to the double intensity of the above level is A, and the number of occurrences of signal intensity or intensity difference of double intensity or higher is B. When
C = A + nB (n is a coefficient set based on the difference in signal strength)
The peeling index C calculated in 1 may be obtained, and a method such as controlling the injection amount of the inorganic flocculant so that C becomes a specific value or adjusting the filter cloth feeding speed of the dehydrator may be adopted.

また、裏漏れやサイドリーク等の、固化前の汚泥の混入が見られる場合においては、散乱光受光信号のベース電圧(特許第6281534号に述べる、フロック間の濁度)の上昇を伴う為、この値が一定値以上となった場合には、外部に警報を出力することで凝集槽での高分子凝集剤の増加を促す。または、前記一定値を下回るまで、直接高分子凝集剤の添加量を増加する などの制御を行ってもよい。 In addition, when sludge before solidification such as back leakage and side leakage is observed, the base voltage of the scattered light reception signal (the turbidity between flocs described in Patent No. 6281534) increases. When this value exceeds a certain value, an alarm is output to the outside to promote an increase in the polymer flocculant in the coagulation tank. Alternatively, control such as directly increasing the amount of the polymer flocculant added may be performed until the value falls below the certain value.

なお、濾布からのリーク(裏漏れ)は、汚泥が十分に凝集されていないために、汚泥(濁質)が濾布を通過する現象である。この場合、上記第2態様(図6)のボトム値は十分大きな値として検出されるが、凝集物はない或いは少ないため、所定値以上の信号強度(上記第3態様に関連)或いは強度差(上記第4態様に関連)を有するピークの出現率は低くなる。したがって、これらを解析することで、裏漏れと剥離性の悪化とを区別して判断することができる。 Leakage (back leakage) from the filter cloth is a phenomenon in which sludge (turbid substance) passes through the filter cloth because the sludge is not sufficiently aggregated. In this case, the bottom value of the second aspect (FIG. 6) is detected as a sufficiently large value, but since there is no or little agglomerates, the signal intensity (related to the third aspect) or the intensity difference (related to the third aspect) (related to the third aspect) or the intensity difference (related to the third aspect). The appearance rate of peaks having (related to the fourth aspect) is low. Therefore, by analyzing these, it is possible to distinguish between back leakage and deterioration of peelability.

また、サイドリーク状態では、サイドリークや裏漏れが無い状態で剥離性悪化が生じた場合に比較して、小さい粒径の懸濁物質が洗浄排水中に検出される。そのため、予め設定したレベル範囲のピークの出現率によりサイドリークが生じたことを判断することができる。 Further, in the side leak state, suspended solids having a smaller particle size are detected in the washing wastewater as compared with the case where the peelability is deteriorated in the state where there is no side leak or back leakage. Therefore, it can be determined that the side leak has occurred based on the appearance rate of the peak in the preset level range.

上記説明では、凝集状態モニタリングセンサの検出データに基づいて凝集剤添加量を制御しているが、汚泥供給量や濾布ベルトの走行速度を制御してもよく、これらを適宜組み合わせて制御してもよい。 In the above description, the amount of the coagulant added is controlled based on the detection data of the coagulation state monitoring sensor, but the sludge supply amount and the running speed of the filter cloth belt may be controlled, and these are appropriately combined and controlled. May be good.

[実施例1]
原汚泥として工場廃水の活性汚泥処理工程から排出された余剰汚泥を用い、ベルトプレス脱水機として栗田工業株式会社製ハイドプレス2250を用いた。無機凝集剤としてPACを用い、高分子凝集剤として栗田工業株式会社製クリフィックスEC−466を用いた。濾布ベルト洗浄排水中の固形物状態の測定装置として、特許第6281534号に記載の凝集センサ(栗田工業株式会社製S.sensing CP−P)を用いた。
[Example 1]
Excess sludge discharged from the activated sludge treatment process of factory wastewater was used as the raw sludge, and Hide Press 2250 manufactured by Kurita Water Industries, Ltd. was used as the belt press dehydrator. PAC was used as the inorganic flocculant, and Crifix EC-466 manufactured by Kurita Water Industries, Ltd. was used as the polymer flocculant. The aggregation sensor (S. sensing CP-P manufactured by Kurita Water Industries, Ltd.) described in Japanese Patent No. 6281534 was used as a measuring device for the state of solid matter in the filter cloth belt cleaning drainage.

図5に示した200mSec間の積分値の200秒間の和を算出した。 The sum of the integrated values between the 200 mSecs shown in FIG. 5 for 200 seconds was calculated.

無機凝集剤添加量を1642,2462,又は4456mg/Lとし、高分子凝集剤添加量を244mg/Lとし、汚泥供給量96Kg/h,濾布速度78m/hとして脱水処理し、濾布からの脱水ケーキ剥離状況を観察した。結果を表1に示す。 The amount of the inorganic flocculant added was 1642, 2462, or 4456 mg / L, the amount of the polymer flocculant added was 244 mg / L, the sludge supply amount was 96 kg / h, and the filtration rate was 78 m / h. The state of dewatering cake peeling was observed. The results are shown in Table 1.

[実施例2]
実施例1において、図6に示した200mSecのボトム値Imin(1)、Imin(2)…Imin(300)を求め、それらの平均値を算出した。結果を表1に示す。
[Example 2]
In Example 1, the bottom values Imin (1), Imin (2) ... Imin (300) of 200 mSec shown in FIG. 6 were obtained, and their average values were calculated. The results are shown in Table 1.

Figure 2021063699
Figure 2021063699

表1の通り、無機凝集剤の注入量を増加させるほど濾布からの脱水ケーキ剥離性が良好になることが認められた。また、散乱光強度積分値や平均ボトム値が基準値以下(例えば前者の場合は42V/200秒以下、後者の場合は63mV以下)となるように無機凝集剤を添加することにより、脱水ケーキ剥離性を良好に維持できることが認められた。 As shown in Table 1, it was found that the dewatering cake peelability from the filter cloth became better as the injection amount of the inorganic flocculant was increased. Further, by adding an inorganic flocculant so that the integrated value of scattered light intensity and the average bottom value are equal to or less than the reference value (for example, 42 V / 200 seconds or less in the former case and 63 mV or less in the latter case), the dehydrated cake is peeled off. It was confirmed that the sex could be maintained well.

3,5 凝集槽
4,6 薬注装置
8 制御器
20 凝集状態モニタリングセンサ
3,5 Coagulation tank 4,6 Chemical injection device 8 Controller 20 Coagulation status monitoring sensor

Claims (7)

ベルトプレス脱水機の濾布ベルト洗浄排水中の固形物の状態に対応した指標値の測定手段を有するベルトプレス脱水システムの監視装置であって、
該測定手段は、濾布ベルト洗浄排水中にレーザ光を照射する照射部及び散乱光を受光する受光部を有し、散乱光強度信号の時間的な変化から前記指標値を求めるベルトプレス脱水システムの監視装置。
A monitoring device for a belt press dehydration system that has a means for measuring index values corresponding to the state of solid matter in the filter cloth belt cleaning drainage of the belt press dehydrator.
The measuring means has an irradiation unit that irradiates a laser beam in the filter cloth belt cleaning drainage and a light receiving unit that receives scattered light, and a belt press dehydration system that obtains the index value from a temporal change of a scattered light intensity signal. Monitoring device.
前記散乱光強度信号の時間積分値に基づいて前記指標値を設定する請求項1のベルトプレス脱水システムの監視装置。 The monitoring device for the belt press dehydration system according to claim 1, wherein the index value is set based on the time integral value of the scattered light intensity signal. 前記散乱光強度信号の所定時間毎のボトム値に基づいて前記指標値を設定する請求項1のベルトプレス脱水システムの監視装置。 The monitoring device for the belt press dehydration system according to claim 1, wherein the index value is set based on the bottom value of the scattered light intensity signal at predetermined time intervals. 所定時間における前記散乱光強度信号のピークの数を検出し、各ピークの信号強度を所定時間で積算した値に基づいて前記指標値を設定する請求項1のベルトプレス脱水システムの監視装置。 The monitoring device for the belt press dehydration system according to claim 1, wherein the number of peaks of the scattered light intensity signal in a predetermined time is detected, and the index value is set based on the value obtained by integrating the signal intensity of each peak in a predetermined time. 前記散乱光強度信号の極大値と極小値との差(強度差)を求め、所定時間における強度差の積算値に基づいて前記指標値を設定する請求項1のベルトプレス脱水システムの監視装置。 The monitoring device for the belt press dehydration system according to claim 1, wherein the difference (intensity difference) between the maximum value and the minimum value of the scattered light intensity signal is obtained, and the index value is set based on the integrated value of the intensity difference in a predetermined time. 請求項1〜5のいずれか1項に記載のベルトプレス脱水システムの監視装置を用い、前記指標値に基づいてベルトプレス脱水システムの監視を行うベルトプレス脱水システムの監視方法。 A method for monitoring a belt press dehydration system, which monitors the belt press dehydration system based on the index value using the belt press dehydration system monitoring device according to any one of claims 1 to 5. 請求項1〜5のいずれか1項に記載のベルトプレス脱水システムの監視装置を用い、前記指標値が所定値又は所定範囲内となるように被処理汚泥への凝集剤添加量を制御する、ベルトプレス脱水機の制御装置。 The monitoring device of the belt press dehydration system according to any one of claims 1 to 5 is used to control the amount of coagulant added to the sludge to be treated so that the index value is within a predetermined value or a predetermined range. Belt press dehydrator control device.
JP2019187889A 2019-10-11 2019-10-11 Belt press dehydration system monitoring device, monitoring method and control device Active JP6897742B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019187889A JP6897742B2 (en) 2019-10-11 2019-10-11 Belt press dehydration system monitoring device, monitoring method and control device
PCT/JP2020/034237 WO2021070545A1 (en) 2019-10-11 2020-09-10 Monitoring device and monitoring method for belt press dehydration system, and control device
TW109131456A TW202115379A (en) 2019-10-11 2020-09-14 Monitoring device and monitoring method for belt press dehydration system, and control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019187889A JP6897742B2 (en) 2019-10-11 2019-10-11 Belt press dehydration system monitoring device, monitoring method and control device

Publications (2)

Publication Number Publication Date
JP2021063699A true JP2021063699A (en) 2021-04-22
JP6897742B2 JP6897742B2 (en) 2021-07-07

Family

ID=75437843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019187889A Active JP6897742B2 (en) 2019-10-11 2019-10-11 Belt press dehydration system monitoring device, monitoring method and control device

Country Status (3)

Country Link
JP (1) JP6897742B2 (en)
TW (1) TW202115379A (en)
WO (1) WO2021070545A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166500A (en) * 1986-12-22 1988-07-09 パサバント−ウエルケ・アクチエンゲゼルシヤフト Method for conditioning and dehydrating sludge
JPH06182399A (en) * 1992-12-18 1994-07-05 Kazunobu Hishitani Dehydrator of sludge
JPH1110199A (en) * 1997-06-18 1999-01-19 Meidensha Corp Chemical injection method and apparatus for sludge dewatering process
JPH11104890A (en) * 1997-10-02 1999-04-20 Japan Organo Co Ltd Belt press dehydrator
US6447687B1 (en) * 1997-04-30 2002-09-10 Ciba Specialty Chemcials Water Treatments Ltd. Dewatering of sewage sludge
US20090255876A1 (en) * 2008-04-11 2009-10-15 Dunbar James M Feedback control scheme for optimizing dewatering processes
JP2017026438A (en) * 2015-07-22 2017-02-02 栗田工業株式会社 Aggregation monitoring device, aggregation monitoring method and aggregation system
JP2018096768A (en) * 2016-12-12 2018-06-21 栗田工業株式会社 Method for aggregation monitoring, aggregation monitoring device, aggregation monitoring probe, and aggregation system
WO2019187698A1 (en) * 2018-03-29 2019-10-03 栗田工業株式会社 Method for controlling addition of flocculant, control device, and water treatment system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166500A (en) * 1986-12-22 1988-07-09 パサバント−ウエルケ・アクチエンゲゼルシヤフト Method for conditioning and dehydrating sludge
JPH06182399A (en) * 1992-12-18 1994-07-05 Kazunobu Hishitani Dehydrator of sludge
US6447687B1 (en) * 1997-04-30 2002-09-10 Ciba Specialty Chemcials Water Treatments Ltd. Dewatering of sewage sludge
JPH1110199A (en) * 1997-06-18 1999-01-19 Meidensha Corp Chemical injection method and apparatus for sludge dewatering process
JPH11104890A (en) * 1997-10-02 1999-04-20 Japan Organo Co Ltd Belt press dehydrator
US20090255876A1 (en) * 2008-04-11 2009-10-15 Dunbar James M Feedback control scheme for optimizing dewatering processes
JP2017026438A (en) * 2015-07-22 2017-02-02 栗田工業株式会社 Aggregation monitoring device, aggregation monitoring method and aggregation system
JP2018096768A (en) * 2016-12-12 2018-06-21 栗田工業株式会社 Method for aggregation monitoring, aggregation monitoring device, aggregation monitoring probe, and aggregation system
WO2019187698A1 (en) * 2018-03-29 2019-10-03 栗田工業株式会社 Method for controlling addition of flocculant, control device, and water treatment system

Also Published As

Publication number Publication date
TW202115379A (en) 2021-04-16
WO2021070545A1 (en) 2021-04-15
JP6897742B2 (en) 2021-07-07

Similar Documents

Publication Publication Date Title
Kan et al. Time requirement for rapid-mixing in coagulation
Yao et al. Effect of particle size distribution on turbidity under various water quality levels during flocculation processes
JP6281534B2 (en) Aggregation monitoring apparatus, aggregation monitoring method, and aggregation system
JP6699690B2 (en) Flocculant injection controller
JP6897742B2 (en) Belt press dehydration system monitoring device, monitoring method and control device
WO2021020125A1 (en) Flocculation processing device
WO2023017637A1 (en) Flocculation processing device
JP6673390B2 (en) Coagulant addition control method, control device and water treatment system
JP4605327B2 (en) Aggregation monitoring device
Yousuf Methods for estimation and comparison of activated sludge settleability
JP2022156300A (en) Monitoring device, monitoring method and control device for dehydration system
WO2024018882A1 (en) Aggregation state determination method and aggregation processing method
JP4309645B2 (en) Flocculant injection control method and apparatus
Chou et al. Application of optical monitor to evaluate the coagulation of pulp wastewater
WO2024018885A1 (en) Method for determining state of aggregation and method for processing aggregation
JP4400720B2 (en) Water treatment system
WO2024018884A1 (en) Method for determining aggregation state and method for performing aggregation process
JP2024044564A (en) Treatment method for wastewater from civil engineering works
JP2006263506A (en) Dehydration method and device of sludge
JPH05269309A (en) Flocculating treatment equipment
JPH04317703A (en) Coagulation processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210524

R150 Certificate of patent or registration of utility model

Ref document number: 6897742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250