JP2021059647A - Phosphor and light-emitting device using the same - Google Patents

Phosphor and light-emitting device using the same Download PDF

Info

Publication number
JP2021059647A
JP2021059647A JP2019183232A JP2019183232A JP2021059647A JP 2021059647 A JP2021059647 A JP 2021059647A JP 2019183232 A JP2019183232 A JP 2019183232A JP 2019183232 A JP2019183232 A JP 2019183232A JP 2021059647 A JP2021059647 A JP 2021059647A
Authority
JP
Japan
Prior art keywords
phosphor
lattice constant
less
light
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019183232A
Other languages
Japanese (ja)
Other versions
JP7318924B2 (en
Inventor
尚登 広崎
Naoto Hirosaki
尚登 広崎
隆史 武田
Takashi Takeda
隆史 武田
司朗 舟橋
Shiro Funabashi
司朗 舟橋
敦史 大石
Atsushi Oishi
敦史 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
National Institute for Materials Science
Mitsubishi Chemical Group Corp
Original Assignee
Mitsubishi Chemical Corp
National Institute for Materials Science
Mitsubishi Chemical Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, National Institute for Materials Science, Mitsubishi Chemical Holdings Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2019183232A priority Critical patent/JP7318924B2/en
Publication of JP2021059647A publication Critical patent/JP2021059647A/en
Application granted granted Critical
Publication of JP7318924B2 publication Critical patent/JP7318924B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a new phosphor that has a crystal structure different from that of a conventional phosphor and emits light in a color in the range from green to yellow by light in a near-ultraviolet or short-wavelength visible light region, and a light-emitting device using the phosphor.SOLUTION: The phosphor comprises a crystal phase having at least an M element, A element, B element, C element and O and having N in a proportion of e, and is expressed by formula [1] MmAaB1-mCcNeOf. In formula [1], M represents at least one element selected from the group consisting of Eu, Ce, Pr, Sm, Tb, Dy and Yb; A represents at least one element selected from the group consisting of Li, Na and K; B represents at least one element selected from the group consisting of Mg, Ca, Sr and Ba; C represents Al and/or Ga; and m, a, c, e and f each independently represent a value satisfying expressions of 0<m≤0.2, 0.31≤a≤0.51, 0.49≤c≤0.69, 0≤e≤0.38, 1.63≤f≤2.10, 0.95≤a+c≤1.05, and 1.90≤e+f≤2.10.SELECTED DRAWING: None

Description

本発明は、新規な蛍光体及びこれを用いた発光装置等に関する。 The present invention relates to a novel phosphor and a light emitting device using the same.

近年、省エネルギー化の流れを受け、画像表示装置や照明装置等の発光装置を用いる機器においては、LEDを用いた照明やバックライト等の需要が増加している。これらに用いられるLEDとしては、近紫外又は短波長可視域で発光するLEDチップと蛍光体とを併用することで白色発光させる白色発光LEDが一般化しつつある。このような白色発光LEDとしては、青色LEDチップが発する青色光を励起光として黄色に発光する蛍光体を用いたものが主流である。また近年では、青色に発光する蛍光体、緑色に発光する蛍光体、又は赤色に発光する蛍光体を用いる試みもなされている。そして、この種のLEDを用いた発光装置においては、優れた発光特性が求められており、これに用いるLEDの蛍光体においても、より高い発光特性を有するものが切望されている。 In recent years, in response to the trend of energy saving, demand for lighting using LEDs, backlights, and the like is increasing in devices using light emitting devices such as image display devices and lighting devices. As the LED used for these, a white light emitting LED that emits white light by using an LED chip that emits light in the near ultraviolet or short wavelength visible region and a phosphor is becoming popular. As such a white light emitting LED, those using a phosphor that emits yellow light using the blue light emitted by the blue LED chip as excitation light are mainly used. Further, in recent years, attempts have been made to use a phosphor that emits blue light, a phosphor that emits green light, or a phosphor that emits red light. A light emitting device using this type of LED is required to have excellent light emitting characteristics, and an LED phosphor used for this is also desired to have higher light emitting characteristics.

緑色蛍光体しては、例えば特許文献1には、アルカリ土類元素を含むサイアロン蛍光体が開示されている。黄色又は橙色蛍光体としては、例えば特許文献2には、Sr1.11Al2.25Si9.7516:Eu0.02の組成式で表されるαサイアロン蛍光体が開示されている。 As for the green phosphor, for example, Patent Document 1 discloses a sialon phosphor containing an alkaline earth element. As the yellow or orange phosphor, for example, Patent Document 2 discloses an α-sialon phosphor represented by the composition formula of Sr 1.11 Al 2.25 Si 9.75 N 16 : Eu 0.02. ..

また、発光特性を改善する目的で、Liを含む蛍光体が検討されている。Liを含む緑色蛍光体としては、例えば特許文献3に、Liを含有するアルミン酸ストロンチウムの応力発光材料が開示されている。また、例えば特許文献4には、Li1BaAlSi12:Eu2+蛍光体が開示されている。Liを含む赤色蛍光体として、例えば特許文献5には、CaAlSiN:Eu2+とLiSiの固溶体が開示されている。さらに、例えば特許文献6には、SrLiAl:Eu2+の組成で表されるSLA蛍光体が開示されている。 Further, for the purpose of improving the light emission characteristics, a phosphor containing Li has been studied. As a Li-containing green phosphor, for example, Patent Document 3 discloses a Li-containing strontium aluminate stress-luminescent material. Further, for example, Patent Document 4 discloses Li1Ba 2 Al 1 Si 7 N 12 : Eu 2+ phosphor. As a red phosphor containing Li, for example, Patent Document 5, CaAlSiN 3: a solid solution of Eu 2+ and LiSi 2 N 3 is disclosed. Further, for example, Patent Document 6 discloses an SLA phosphor represented by a composition of SrLiAl 3 N 4 : Eu 2+.

国際公開第2011/016486号International Publication No. 2011/016486 特開2009−256558号公報JP-A-2009-256558 特開2015−67799号公報Japanese Unexamined Patent Publication No. 2015-67799 国際公開第2014/003076号International Publication No. 2014/003076 国際公開第2006/126567号International Publication No. 2006/1265667 国際公開第2013/175336号International Publication No. 2013/175336

上記したように、各色の蛍光体が開発されているが、さらに発光特性を向上させた蛍光体が切望されている。 As described above, phosphors of each color have been developed, but phosphors with further improved emission characteristics are desired.

本発明は、上記課題に鑑みてなされたものである。即ち本発明の目的は、近紫外又は短波長可視域の光により、緑色から黄色の範囲の何れかの光を発する新規な蛍光体等を提供することにある。また、本発明の他の目的は、上記の蛍光体を用いた発光装置等を提供することにある。 The present invention has been made in view of the above problems. That is, an object of the present invention is to provide a novel phosphor or the like that emits light in the range of green to yellow by light in the near-ultraviolet or short wavelength visible region. Another object of the present invention is to provide a light emitting device or the like using the above-mentioned phosphor.

本発明者らは、上記課題を解決すべく蛍光体の新規探索を鋭意検討した結果、従来の蛍光体とは異なる結晶構造を有し、近紫外又は短波長可視域の光により、緑色から黄色の範囲の何れかの光を発する新規な蛍光体を見出し、本発明を完成するに至った。 As a result of diligent studies on a new search for a phosphor to solve the above problems, the present inventors have a crystal structure different from that of a conventional phosphor, and the light from near ultraviolet or short wavelength visible region causes green to yellow. A novel phosphor that emits light in any of the above ranges has been found, and the present invention has been completed.

すなわち本発明は、以下に示す種々の具体的態様を提供する。
<1>
M元素、A元素、B元素、C元素(但し、M元素は、Eu、Ce、Pr、Sm、Tb、Dy及びYbよりなる群から選ばれる少なくとも1種以上の元素、A元素はLi、Na及びKよりなる群から選ばれる少なくとも1種以上の元素、B元素はMg、Ca、Sr及びBaよりなる群から選ばれる少なくとも1種以上の元素、C元素はAl及び/又はGaである)及びOを少なくとも有し、更にNをeの割合で有する結晶相を含み、下記式[1]で表される蛍光体。
1−m [1]
(上記式[1]中、m、a、c、e及びfは、各々独立に、下記式を満たす値である。
0<m≦0.2
0.31≦a≦0.51
0.49≦c≦0.69
0≦e≦0.38
1.63≦f≦2.10
0.95≦a+c≦1.05
1.90≦e+f≦2.10)
That is, the present invention provides various specific aspects shown below.
<1>
M element, A element, B element, C element (However, M element is at least one element selected from the group consisting of Eu, Ce, Pr, Sm, Tb, Dy and Yb, and A element is Li, Na. And at least one element selected from the group consisting of K, element B is at least one element selected from the group consisting of Mg, Ca, Sr and Ba, and element C is Al and / or Ga) and A phosphor represented by the following formula [1], which contains a crystal phase having at least O and further having N in a proportion of e.
M m A a B 1-m C c N e O f [1]
(In the above formula [1], m, a, c, e and f are values that independently satisfy the following formula.
0 <m ≤ 0.2
0.31 ≤ a ≤ 0.51
0.49 ≤ c ≤ 0.69
0 ≦ e ≦ 0.38
1.63 ≤ f ≤ 2.10
0.95 ≤ a + c ≤ 1.05
1.90 ≦ e + f ≦ 2.10)

<2>
少なくともA元素とC元素が別の結晶サイトに存在し、晶系が斜方晶系であり、格子定数が下記範囲を満たす、<1>に記載の蛍光体。
10.06≦格子定数a≦12.29
5.06≦格子定数b≦6.19
5.99≦格子定数c≦7.32
<3>
300nm以上500nm以下の波長を有する励起光を照射することにより、480nm以上540nm以下の波長範囲に発光ピークを有する<1>又は<2>に記載の蛍光体。
<4>
発光スペクトルにおける半値幅が、50nm以下である、<1>〜<3>のいずれか一項に記載の蛍光体。
<5>
上記式[1]中、a=0.50、c=0.50、e=0、f=2.00である、<1>〜<4>のいずれか一項に記載の蛍光体。
<2>
The phosphor according to <1>, wherein at least elements A and C are present at different crystal sites, the crystal system is an orthorhombic system, and the lattice constant satisfies the following range.
10.06 ≤ lattice constant a ≤ 12.29
5.06 ≤ lattice constant b ≤ 6.19
5.99 ≤ lattice constant c ≤ 7.32
<3>
The phosphor according to <1> or <2>, which has an emission peak in a wavelength range of 480 nm or more and 540 nm or less by irradiating with excitation light having a wavelength of 300 nm or more and 500 nm or less.
<4>
The phosphor according to any one of <1> to <3>, wherein the half width in the emission spectrum is 50 nm or less.
<5>
The phosphor according to any one of <1> to <4>, wherein a = 0.50, c = 0.50, e = 0, and f = 2.00 in the above formula [1].

<6>
少なくともA元素とC元素が同一結晶サイトに存在し、晶系が単斜晶系であり、格子定数が下記範囲を満たす、<1>に記載の蛍光体。
5.25≦格子定数a≦6.41
5.07≦格子定数b≦6.20
5.99≦格子定数c≦7.32
96.0≦格子定数β≦117.3
<7>
300nm以上500nm以下の波長を有する励起光を照射することにより、545nm以上605nm以下の波長範囲に発光ピークを有する、<1>又は<6>に記載の蛍光体。
<8>
発光スペクトルにおける半値幅が、80nm以下である、<1>、<6>及び<7>のいずれか一項に記載の蛍光体。
<9>
上記式[1]中、0.44≦a≦0.50、0.50≦c≦0.56、0≦e≦0.13、1.88≦f≦2.0である、<1>及び<6>〜<8>のいずれか一項に記載の蛍光体。
<6>
The phosphor according to <1>, wherein at least elements A and C are present at the same crystal site, the crystal system is a monoclinic system, and the lattice constant satisfies the following range.
5.25 ≤ lattice constant a ≤ 6.41
5.07 ≤ lattice constant b ≤ 6.20
5.99 ≤ lattice constant c ≤ 7.32
96.0 ≤ lattice constant β ≤ 117.3
<7>
The phosphor according to <1> or <6>, which has an emission peak in a wavelength range of 545 nm or more and 605 nm or less by irradiating with excitation light having a wavelength of 300 nm or more and 500 nm or less.
<8>
The phosphor according to any one of <1>, <6> and <7>, wherein the half width in the emission spectrum is 80 nm or less.
<9>
In the above formula [1], 0.44 ≦ a ≦ 0.50, 0.50 ≦ c ≦ 0.56, 0 ≦ e ≦ 0.13, 1.88 ≦ f ≦ 2.0, <1>. And the phosphor according to any one of <6> to <8>.

<10>
M元素が、Euである、<1>〜<9>のいずれか一項に記載の蛍光体。
<11>
A元素が、Liである、<1>〜<10>のいずれか一項に記載の蛍光体。
<12>
B元素が、Srである、<1>〜<11>のいずれか一項に記載の蛍光体。
<13>
C元素が、Alである、<1>〜<12>のいずれか一項に記載の蛍光体。
<14>
前記蛍光体の含有率が20質量%以上であることを特徴とする、<1>〜<13>のいずれか一項に記載の蛍光体。
<15>
<1>〜<14>のいずれか一項に記載の蛍光体を含むことを特徴とする発光装置。
<10>
The phosphor according to any one of <1> to <9>, wherein the M element is Eu.
<11>
The phosphor according to any one of <1> to <10>, wherein the element A is Li.
<12>
The phosphor according to any one of <1> to <11>, wherein the element B is Sr.
<13>
The phosphor according to any one of <1> to <12>, wherein the C element is Al.
<14>
The fluorescent substance according to any one of <1> to <13>, wherein the content of the fluorescent substance is 20% by mass or more.
<15>
A light emitting device comprising the phosphor according to any one of <1> to <14>.

本発明によれば、従来の蛍光体とは異なる結晶構造を有し、近紫外又は短波長可視域の光により緑色から黄色の範囲のいずれかの光を発する新規な蛍光体等を実現できる。この新規な蛍光体は、その発光特性(励起スペクトル、発光スペクトル、発光色及び発光効率)により、白色発光LED用途において殊に有用なものである。そして、本発明の新規な蛍光体を含む発光装置、並びに、この発光装置を含む照明装置及び画像表示装置は、高発光効率で高品質である。 According to the present invention, it is possible to realize a novel phosphor or the like having a crystal structure different from that of a conventional phosphor and emitting light in the range of green to yellow by light in the near-ultraviolet or short wavelength visible region. This novel phosphor is particularly useful in white light emitting LED applications due to its emission characteristics (excitation spectrum, emission spectrum, emission color and luminous efficiency). The light emitting device including the novel phosphor of the present invention, and the lighting device and the image display device including the light emitting device have high luminous efficiency and high quality.

実施例1の蛍光体の発光スペクトルを示すグラフである。It is a graph which shows the emission spectrum of the phosphor of Example 1. FIG. 実施例2の蛍光体の発光スペクトルを示すグラフである。It is a graph which shows the emission spectrum of the phosphor of Example 2. 実施例3の粉末X線回折測定結果を示すグラフである。It is a graph which shows the powder X-ray diffraction measurement result of Example 3. 実施例3の蛍光体の発光スペクトルを示すグラフである。It is a graph which shows the emission spectrum of the phosphor of Example 3.

以下、本発明の実施の形態について詳細に説明する。以下の実施の形態は、本発明の実施態様の一例(代表例)であり、本発明はこれらに限定されるものではない。また、本発明は、その要旨を逸脱しない範囲内で任意に変更して実施することができる。なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。例えば「1〜100」との数値範囲は、その上限値「1」及び下限値「100」の双方を包含するものとする。他の数値範囲の表記も同様である。 Hereinafter, embodiments of the present invention will be described in detail. The following embodiments are examples (representative examples) of embodiments of the present invention, and the present invention is not limited thereto. Further, the present invention can be arbitrarily modified and implemented without departing from the gist thereof. The numerical range represented by using "~" in the present specification means a range including the numerical values before and after "~" as the lower limit value and the upper limit value. For example, the numerical range of "1 to 100" includes both the upper limit value "1" and the lower limit value "100". The same applies to the notation of other numerical ranges.

また、本明細書中の蛍光体の組成式において、各組成式の区切りは読点(、)で区切って表す。そして、カンマ(,)で区切って複数の元素を列記する場合には、列記された元素のうち一種又は二種以上を任意の組み合わせ及び比率で含有していてもよいことを示している。例えば、「(Ca,Sr,Ba)Al:Eu」という組成式は、「CaAl:Eu」と、「SrAl:Eu」と、「BaAl:Eu」と、「Ca1−xSrAl:Eu」と、「Sr1−xBaAl:Eu」と、「Ca1−xBaAl:Eu」と、「Ca1−x−ySrBaAl:Eu」(但し、これらの式中、0<x<1、0<y<1、0<x+y<1である。)とを包括的に示しているものとする。
また、上記の「(Ca,Sr,Ba)Al:Eu」の例の元素比率は、Alが2モルに対して、CaとSrとBaの合計が1モルであることを意味する。
Further, in the composition formula of the phosphor in the present specification, the delimiter of each composition formula is represented by separating it with a comma (,). When a plurality of elements are listed separated by a comma (,), it is indicated that one or more of the listed elements may be contained in any combination and ratio. For example, "(Ca, Sr, Ba) Al 2 O 4: Eu " hereinafter composition formula: a "CaAl 2 O 4 Eu": a "SrAl 2 O 4 Eu", "BaAl 2 O 4: Eu" And "Ca 1-x Sr x Al 2 O 4 : Eu", "Sr 1-x Ba x Al 2 O 4 : Eu", "Ca 1-x Ba x Al 2 O 4 : Eu", "Ca 1-x-y Sr x Ba y Al 2 O 4: Eu " (. However, in these formulas, is 0 <x <1,0 <y < 1,0 <x + y <1) and a comprehensive It shall be shown as.
Further, the element ratio in the above example of "(Ca, Sr, Ba) Al 2 O 4 : Eu" means that the total of Ca, Sr and Ba is 1 mol with respect to 2 mol of Al. ..

<蛍光体>
本実施形態の蛍光体は、M元素、A元素、B元素、C元素(但し、M元素はEu、Ce、Pr、Sm、Tb、Dy及びYbよりなる群から選ばれる少なくとも1種以上の元素、A元素はLi、Na及びKよりなる群から選ばれる少なくとも1種以上の元素、B元素はMg、Ca、Sr、及びBaよりなる群から選ばれる少なくとも1種以上の元素、C元素はAl及び/又はGaである)、及びOを少なくとも有し、更にNをeの割合で有する結晶相を含み、下記式[1]を満たすものである。
1−m [1]
(上記式[1]中、m、a、c、e及びfは、各々独立に、下記式を満たす値である。
0<m≦0.2
0.31≦a≦0.51
0.49≦c≦0.69
0≦e≦0.38
1.63≦f≦2.10
0.95≦a+c≦1.05
1.90≦e+f≦2.10)
<Fluorescent material>
The phosphor of the present embodiment is an M element, an A element, a B element, and a C element (however, the M element is at least one element selected from the group consisting of Eu, Ce, Pr, Sm, Tb, Dy and Yb. , Element A is at least one element selected from the group consisting of Li, Na and K, element B is at least one element selected from the group consisting of Mg, Ca, Sr and Ba, and element C is Al. And / or Ga), and a crystal phase having at least O and further having N in the proportion of e, satisfying the following formula [1].
M m A a B 1-m C c N e O f [1]
(In the above formula [1], m, a, c, e and f are values that independently satisfy the following formula.
0 <m ≤ 0.2
0.31 ≤ a ≤ 0.51
0.49 ≤ c ≤ 0.69
0 ≦ e ≦ 0.38
1.63 ≤ f ≤ 2.10
0.95 ≤ a + c ≤ 1.05
1.90 ≦ e + f ≦ 2.10)

M元素は、付活元素であり、ユーロピウム(Eu)、マンガン(Mn)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)及びイッテルビウム(Yb)からなる群から選ばれる1種又は2種以上の元素を表す。M元素は、少なくともEuを含むことが好ましい。 The M element is an active element, and is an active element, such as europium (Eu), manganese (Mn), cerium (Ce), placeodim (Pr), neodymium (Nd), samarium (Sm), terbium (Tb), dysprosium (Dy), Represents one or more elements selected from the group consisting of holmium (Ho), dysprosium (Er), samarium (Tm) and ytterbium (Yb). The M element preferably contains at least Eu.

また、Euは、その全部又は一部がCe、Pr、Sm、Tb、Dy及びYbよりなる群から選ばれる1種又は2種以上の元素で置換されていてもよい。すなわち、M元素は、Euと、Ce、Pr、Sm、Tb、Dy及びYbよりなる群から選ばれる少なくとも1種以上の元素とを含むことが好ましい。発光量子効率の観点からは、Euの全部又は一部がCeに置換されていることがより好ましい。つまり、M元素は、Eu及び/又はCeであることがさらに好ましく、より好ましくはEuである。なお、M元素全体に対するEuの含有割合は、特に限定されないが、50モル%以上が好ましく、70モル%以上がより好ましく、90モル%以上が特に好ましい。 Further, Eu may be entirely or partially substituted with one or more elements selected from the group consisting of Ce, Pr, Sm, Tb, Dy and Yb. That is, the M element preferably contains Eu and at least one or more elements selected from the group consisting of Ce, Pr, Sm, Tb, Dy and Yb. From the viewpoint of emission quantum efficiency, it is more preferable that all or part of Eu is replaced with Ce. That is, the M element is more preferably Eu and / or Ce, and more preferably Eu. The content ratio of Eu to the entire M element is not particularly limited, but is preferably 50 mol% or more, more preferably 70 mol% or more, and particularly preferably 90 mol% or more.

A元素は、リチウム(Li)、ナトリウム(Na)及びカリウム(K)よりなる群から選ばれる少なくとも1種以上の元素を表す。A元素は、Liを含むことが好ましく、Liであることがより好ましい。 Element A represents at least one element selected from the group consisting of lithium (Li), sodium (Na) and potassium (K). The element A preferably contains Li, and more preferably Li.

B元素は、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)及びバリウム(Ba)よりなる群から選ばれる少なくとも1種以上の元素を表す。B元素は、Srを含むことが好ましく、Srであることがより好ましい。なお、B元素は、アルカリ土類金属元素以外の他の2価金属元素、例えば亜鉛(Zn)等で一部置換されていてもよい。 Element B represents at least one element selected from the group consisting of magnesium (Mg), calcium (Ca), strontium (Sr) and barium (Ba). The element B preferably contains Sr, and more preferably Sr. The element B may be partially substituted with a divalent metal element other than the alkaline earth metal element, for example, zinc (Zn) or the like.

C元素は、アルミニウム(Al)及び/又はガリウム(Ga)を表す。C元素は、Alを含むことが好ましく、Alであることがより好ましい。なお、C元素は、その他の3価の元素、例えば、ホウ素(B)、インジウム(In)、スカンジウム(Sc)、イットリウム(Y)、ランタン(La)、ガドリニウム(Gd)、ルテチウム(Lu)等で一部置換されていてもよい。 Element C represents aluminum (Al) and / or gallium (Ga). The C element preferably contains Al, and more preferably Al. The C element is another trivalent element such as boron (B), indium (In), scandium (Sc), yttrium (Y), lanthanum (La), gadolinium (Gd), lutetium (Lu) and the like. It may be partially replaced with.

なお、本実施態様の蛍光体は、上記した最小構成元素以外に、他の元素、例えばフッ素原子(F)、塩素原子(Cl)、臭素原子(Br)、ヨウ素原子(I)等のハロゲン原子を含んでいてもよい。ハロゲン原子は、原料金属中の不純物としての混入のみならず、粉砕工程或いは窒化工程等の製造プロセス時に導入されてもよい。特に、フラックスとしてハロゲン化物を用いる場合、蛍光体中にハロゲン原子が高確率で含まれてしまう傾向にある。 The phosphor of the present embodiment has other elements other than the above-mentioned minimum constituent elements, such as halogen atoms such as fluorine atom (F), chlorine atom (Cl), bromine atom (Br), and iodine atom (I). May include. The halogen atom may be introduced not only as an impurity in the raw material metal but also during a manufacturing process such as a pulverization step or a nitriding step. In particular, when a halide is used as the flux, halogen atoms tend to be contained in the phosphor with a high probability.

mは、式[1]中のM元素の含有割合を表し、その範囲は、0<m≦0.2である。mの下限値は、好ましくは0.001、より好ましくは0.02であり、またその上限値は、好ましくは0.15、さらに好ましくは0.1である。 m represents the content ratio of the M element in the formula [1], and the range thereof is 0 <m ≦ 0.2. The lower limit of m is preferably 0.001, more preferably 0.02, and the upper limit thereof is preferably 0.15, further preferably 0.1.

aは、式[1]中のA元素の含有割合を表し、その範囲は、0.31≦a≦0.51である。aの下限値は、好ましくは0.38、より好ましくは0.44である。また、aの上限値は、好ましくは0.50である。 a represents the content ratio of the element A in the formula [1], and the range thereof is 0.31 ≦ a ≦ 0.51. The lower limit of a is preferably 0.38, more preferably 0.44. The upper limit of a is preferably 0.50.

cは、式[1]中のC元素の含有割合を表し、その範囲は、0.49≦c≦0.69である。cの下限値は、好ましくは0.50であり、また、その上限値は、好ましくは0.63、より好ましくは0.56である。 c represents the content ratio of the C element in the formula [1], and the range thereof is 0.49 ≦ c ≦ 0.69. The lower limit of c is preferably 0.50, and the upper limit thereof is preferably 0.63, more preferably 0.56.

eは、式[1]中のN(窒素)の含有割合を表し、その範囲は、0≦e≦0.38である。eの上限値は、好ましくは0.25、より好ましくは0.13である。 e represents the content ratio of N (nitrogen) in the formula [1], and the range thereof is 0 ≦ e ≦ 0.38. The upper limit of e is preferably 0.25, more preferably 0.13.

fは、式[1]中のO(酸素)の含有割合を表し、その範囲は、1.63≦f≦2.10である。fの下限値は、好ましくは1.75、より好ましくは1.88であり、また、その上限値は、好ましくは2.05、より好ましくは2.00である。 f represents the content ratio of O (oxygen) in the formula [1], and the range thereof is 1.63 ≦ f ≦ 2.10. The lower limit of f is preferably 1.75, more preferably 1.88, and the upper limit thereof is preferably 2.05, more preferably 2.00.

式[1]におけるa+cの範囲は、0.95≦a+c≦1.05である。a+cの下限値は、より好ましくは0.97、さらに好ましくは0.99であり、また、その上限値は、より好ましくは1.03、さらに好ましくは1.01である。 The range of a + c in the formula [1] is 0.95 ≦ a + c ≦ 1.05. The lower limit of a + c is more preferably 0.97, still more preferably 0.99, and the upper limit thereof is more preferably 1.03, still more preferably 1.01.

式[1]におけるe+fの範囲は、1.90≦e+f≦2.10である。e+fの下限値は、より好ましくは1.94、さらに好ましくは1.98であり、また、その上限値は、より好ましくは2.06、さらに好ましくは2.02である。 The range of e + f in the formula [1] is 1.90 ≦ e + f ≦ 2.10. The lower limit of e + f is more preferably 1.94, still more preferably 1.98, and the upper limit thereof is more preferably 2.06, still more preferably 2.02.

式[1]で表される蛍光体において、いずれの元素の含有量も、上述した範囲内であると、発光特性に優れる蛍光体が得られ易い。 In the phosphor represented by the formula [1], if the content of any element is within the above-mentioned range, it is easy to obtain a phosphor having excellent light emission characteristics.

本実施形態の第1の蛍光体は、結晶構造において、少なくともA元素とC元素が別の結晶サイトに存在し、斜方晶系の結晶構造を有する。 The first phosphor of the present embodiment has an orthorhombic crystal structure in which at least elements A and C are present at different crystal sites in the crystal structure.

本実施様態の第1の蛍光体の格子定数aは、10.06≦a≦12.29である。格子定数aの下限値は、より好ましくは10.62Å以上、さらに好ましくは10.90Å以上であり、また、その上限値は、より好ましくは11.73Å以下、さらに好ましくは11.45Å以下である。 The lattice constant a of the first phosphor of the present embodiment is 10.06 ≦ a ≦ 12.29. The lower limit of the lattice constant a is more preferably 10.62 Å or more, further preferably 10.90 Å or more, and the upper limit is more preferably 11.73 Å or less, still more preferably 11.45 Å or less. ..

また、格子定数bは、5.06≦b≦6.19である。格子定数bの下限値は、より好ましくは5.34Å以上、さらに好ましくは5.48Å以上であり、また、その上限値は、より好ましくは5.91Å以下、さらに好ましくは5.77Å以下である。 The lattice constant b is 5.06 ≦ b ≦ 6.19. The lower limit of the lattice constant b is more preferably 5.34 Å or more, further preferably 5.48 Å or more, and the upper limit is more preferably 5.91 Å or less, still more preferably 5.77 Å or less. ..

また、格子定数cは、5.99≦c≦7.32である。格子定数cの下限値は、より好ましくは6.33Å以上、さらに好ましくは6.49Å以上であり、また、その上限値は、より好ましくは6.99Å以下、さらに好ましくは6.82Å以下である。 The lattice constant c is 5.99 ≦ c ≦ 7.32. The lower limit of the lattice constant c is more preferably 6.33 Å or more, further preferably 6.49 Å or more, and the upper limit is more preferably 6.99 Å or less, still more preferably 6.82 Å or less. ..

本実施形態の第2の蛍光体は、結晶構造において、少なくともA元素とC元素が同一結晶サイトに存在し、単斜晶系の結晶構造を有する。 The second phosphor of the present embodiment has a monoclinic crystal structure in which at least elements A and C are present at the same crystal site in the crystal structure.

本実施様態の第2の蛍光体の格子定数aは、5.25≦a≦6.41である。格子定数aの下限値は、より好ましくは5.54Å以上、さらに好ましくは5.68Å以上であり、また、その上限値は、より好ましくは6.12Å以下、さらに好ましくは5.98Å以下である。 The lattice constant a of the second phosphor of the present embodiment is 5.25 ≦ a ≦ 6.41. The lower limit of the lattice constant a is more preferably 5.54 Å or more, further preferably 5.68 Å or more, and the upper limit is more preferably 6.12 Å or less, still more preferably 5.98 Å or less. ..

また、格子定数bは、5.07≦b≦6.20である。格子定数bの下限値は、より好ましくは5.35Å以上、さらに好ましくは5.50Å以上であり、また、その上限値は、より好ましくは5.92Å以下、さらに好ましくは5.78Å以下である。 The lattice constant b is 5.07 ≦ b ≦ 6.20. The lower limit of the lattice constant b is more preferably 5.35 Å or more, further preferably 5.50 Å or more, and the upper limit is more preferably 5.92 Å or less, still more preferably 5.78 Å or less. ..

また、格子定数cは、5.99≦c≦7.32である。格子定数cの下限値は、より好ましくは6.32Å以上、さらに好ましくは6.49Å以上であり、また、その上限値は、より好ましくは6.99Å以下、さらに好ましくは6.82Å以下である。 The lattice constant c is 5.99 ≦ c ≦ 7.32. The lower limit of the lattice constant c is more preferably 6.32 Å or more, further preferably 6.49 Å or more, and the upper limit is more preferably 6.99 Å or less, still more preferably 6.82 Å or less. ..

<蛍光体の諸物性>
[発光色]
本実施形態の蛍光体は、波長300nm以上480nm以下の近紫外領域〜短波長可視領域の光で励起することができる。蛍光体に含まれる元素の化学組成等を調整することにより、本実施形態の蛍光体は、緑色、黄緑色、及び黄色等、所望の色の光を発光することができる。
<Physical characteristics of phosphor>
[Emission color]
The phosphor of the present embodiment can be excited by light in the near-ultraviolet region to the short wavelength visible region having a wavelength of 300 nm or more and 480 nm or less. By adjusting the chemical composition of the elements contained in the phosphor, the phosphor of the present embodiment can emit light of a desired color such as green, yellowish green, and yellow.

[発光スペクトル]
本実施態様の第1の蛍光体は、波長300nm以上500nm以下のいずれかの光を照射することにより励起した場合における発光スペクトルを測定した際に、その内の少なくとも1つの発光スペクトルにおいて、以下の特性を有することが好ましい。すなわち、上述の発光スペクトルにおけるピーク波長(発光極大波長)は、480nm以上、好ましくは490nm以上、より好ましくは500nm以上である。また、その上限値は、540nm以下、好ましくは530nm以下、より好ましくは520nm以下である。発光スペクトルが上記範囲内であると、得られる蛍光体において、良好な緑〜黄緑色を呈するため好ましい。
[Emission spectrum]
When the emission spectrum of the first phosphor of the present embodiment when excited by irradiating any light having a wavelength of 300 nm or more and 500 nm or less is measured, in at least one emission spectrum thereof, the following It is preferable to have characteristics. That is, the peak wavelength (maximum emission wavelength) in the above-mentioned emission spectrum is 480 nm or more, preferably 490 nm or more, and more preferably 500 nm or more. The upper limit is 540 nm or less, preferably 530 nm or less, and more preferably 520 nm or less. When the emission spectrum is within the above range, the obtained phosphor exhibits a good green to yellowish green color, which is preferable.

本実施態様の第2の蛍光体は、波長300nm以上500nm以下のいずれかの光を照射することにより励起した場合における発光スペクトルを測定した際に、その内の少なくとも1つの発光スペクトルにおいて、以下の特性を有することが好ましい。すなわち、上述の発光スペクトルにおけるピーク波長(発光極大波長)は、545nm以上、好ましくは555nm以上、より好ましくは565nm以上である。また、その上限値は、605nm以下、好ましくは595nm以下、より好ましくは585nm以下である。発光スペクトルが上記範囲内であると、得られる蛍光体において、良好な黄緑〜黄色を呈するため好ましい。 When the emission spectrum of the second phosphor of the present embodiment when excited by irradiating any light having a wavelength of 300 nm or more and 500 nm or less is measured, in at least one emission spectrum thereof, the following It is preferable to have characteristics. That is, the peak wavelength (maximum emission wavelength) in the above-mentioned emission spectrum is 545 nm or more, preferably 555 nm or more, and more preferably 565 nm or more. The upper limit is 605 nm or less, preferably 595 nm or less, and more preferably 585 nm or less. When the emission spectrum is within the above range, the obtained phosphor exhibits a good yellow-green to yellow color, which is preferable.

[発光スペクトルの半値幅]
本実施態様の蛍光体は、上述の発光スペクトルにおける発光ピークの半値幅が、100nm以下、好ましくは90nm以下、より好ましくは85nm以下であり、また、その下限値は、30nm以上である。上記範囲内であると、液晶表示装置等の発光装置に使用する場合、色純度の低下が抑えられ、また、色再現範囲が広くなる傾向にあるため好ましい。
[Half width of emission spectrum]
In the phosphor of the present embodiment, the half width of the emission peak in the above emission spectrum is 100 nm or less, preferably 90 nm or less, more preferably 85 nm or less, and the lower limit value thereof is 30 nm or more. Within the above range, when used in a light emitting device such as a liquid crystal display device, a decrease in color purity is suppressed and a color reproduction range tends to be widened, which is preferable.

なお、本実施態様の蛍光体を波長300nm以上500nm以下の光で励起するための励起用光源としては、特に限定されないが、例えばGaN系LEDを用いることができる。LED発光素子としては、GaNやInGaNなどの窒化物半導体からなるものが知られており、その組成を調整することにより、所定の波長の光を発する発光光源となり得る。なお、本実施態様の蛍光体の発光スペクトルの測定、並びにその発光ピーク波長、ピーク相対強度及びピーク半値幅等の算出は、例えば、励起光源として150Wキセノンランプを、スペクトル測定装置としてマルチチャンネルCCD検出器C7041(浜松フォトニクス社製)を備える蛍光測定装置(日本分光社製)を用いて行うことができる。なお、LED発光装置は、本実施形態の蛍光体を用いて、特開平5−152609、特開平7−99345又は特許公報第2927279号等に記載されているような公知の方法により製造することができる。 The excitation light source for exciting the phosphor of the present embodiment with light having a wavelength of 300 nm or more and 500 nm or less is not particularly limited, but for example, a GaN-based LED can be used. As the LED light emitting element, one made of a nitride semiconductor such as GaN or InGaN is known, and by adjusting the composition thereof, it can be a light emitting light source that emits light having a predetermined wavelength. For the measurement of the emission spectrum of the phosphor of the present embodiment and the calculation of the emission peak wavelength, peak relative intensity, peak half-value width, etc., for example, a 150 W xenon lamp as an excitation light source and a multi-channel CCD detection as a spectrum measurement device are used. This can be performed using a fluorescence measuring device (manufactured by Nippon Spectral Co., Ltd.) equipped with a device C7041 (manufactured by Hamamatsu Photonics). The LED light emitting device can be manufactured by a known method as described in JP-A-5-152609, JP-A-7-99345, Patent Publication No. 2927279, etc. using the phosphor of the present embodiment. it can.

[励起波長]
本実施態様の蛍光体は、300nm以上、好ましくは350nm以上、より好ましくは380nm以上の波長範囲に励起ピーク(吸収極大波長)を有する。また、本実施態様の蛍光体は、500nm以下、好ましくは490nm以下、より好ましくは480nm以下の波長範囲に励起ピーク(吸収極大波長)を有する。すなわち、本実施態様の蛍光体は、近紫外から青色領域の光で励起可能である。
[Excitation wavelength]
The phosphor of the present embodiment has an excitation peak (absorption maximum wavelength) in a wavelength range of 300 nm or more, preferably 350 nm or more, more preferably 380 nm or more. Further, the phosphor of the present embodiment has an excitation peak (absorption maximum wavelength) in a wavelength range of 500 nm or less, preferably 490 nm or less, more preferably 480 nm or less. That is, the phosphor of the present embodiment can be excited by light in the near-ultraviolet to blue region.

[結晶系と空間群]
本実施態様の蛍光体における結晶系は、斜方晶系(Orthorhombic)もしくは単斜晶系(Monoclinic)である。また、本実施態様の蛍光体における空間群は、平均構造が上記長さの繰り返し周期(すなわち、格子定数cが所定の範囲内の周期)を示していれば特に限定されないが、「International Tables for Crystallography(Third,revised edition),Volume A SPACE−GROUP SYMMETRY」に基づく62番(P n m a)又は11番(P 21/m)に属するものであることが好ましい。ここで、格子定数及び空間群は、常法にしたがって求めることできる。具体的には、格子定数は、X線回折及び中性子線回折の結果をリートベルト(Rietveld)解析することにより求めることができる。空間群は、電子線回折、単結晶を用いたX線回折及び中性子線回折の解析により求めることができる。
[Crystal system and space group]
The crystal system in the phosphor of the present embodiment is an orthorhombic system or a monoclinic system. Further, the space group in the phosphor of the present embodiment is not particularly limited as long as the average structure indicates a repetition period of the above length (that is, a period in which the lattice constant c is within a predetermined range), but "International Tables for". It is preferable that it belongs to No. 62 (P n ma) or No. 11 (P 21 / m) based on "Crystal Fluorescence (Third, revised edition), Volume A SPACE-GROUP SYMMETRY". Here, the lattice constant and the space group can be obtained according to a conventional method. Specifically, the lattice constant can be obtained by Rietveld analysis of the results of X-ray diffraction and neutron diffraction. The space group can be obtained by analysis of electron diffraction, X-ray diffraction using a single crystal, and neutron diffraction.

<蛍光体の製造方法>
本実施態様の蛍光体の製造方法としては、特に制限されないが、例えば、付活元素であるM元素の原料(以下、適宜「M源」と称する場合がある。)、A元素の原料(以下、適宜「A源」と称する場合がある。)、B元素の原料(以下、適宜「B源」と称する場合がある。)、及びC元素の原料(以下、適宜「C源」と称する場合がある。)等の蛍光体原料を混合する工程(混合工程)と、得られた混合物を焼成する工程(焼成工程)とを少なくとも備える方法が好ましく用いられる。なお、以下では例えば、元素Euの原料を「Eu源」、元素Smの原料を「Sm源」などということがある。元素Alの原料を「Al源」、元素Siの原料を「Si源」等と称することがあり、他の元素についても同様とする。
<Manufacturing method of phosphor>
The method for producing the phosphor of the present embodiment is not particularly limited, but for example, a raw material for element M, which is an activating element (hereinafter, may be appropriately referred to as “M source”), and a raw material for element A (hereinafter, referred to as “M source”). , Appropriately referred to as "A source"), B element raw material (hereinafter, may be appropriately referred to as "B source"), and C element raw material (hereinafter, appropriately referred to as "C source"). A method including at least a step of mixing the phosphor raw materials (mixing step) and a step of firing the obtained mixture (firing step) is preferably used. In the following, for example, the raw material of the element Eu may be referred to as "Eu source", the raw material of the element Sm may be referred to as "Sm source", and the like. The raw material of the element Al may be referred to as "Al source", the raw material of the element Si may be referred to as "Si source", and the same shall apply to other elements.

[蛍光体原料]
M源、A源、B源及びC源等の蛍光体原料は、これらのケイ化物、酸化物、炭酸塩、窒化物、酸窒化物、ハロゲン化物(塩化物、フッ化物)、酸フッ化物、水酸化物、シュウ酸塩、硫酸塩、硝酸塩、又は有機金属化合物或いはこれらの前駆体化合物等を用いることができ、その種類は特に限定されない。蛍光体原料としては、1種を単独で用いることができ、また、2種以上を任意の組み合わせ及び比率で用いることができる。これらの中でも、酸化物、窒化物、ハロゲン化物、炭酸塩、及びケイ化物が好ましく、より好ましくは酸化物、窒化物及びハロゲン化物である。
[Fluorescent material]
The phosphor raw materials such as M source, A source, B source and C source are these silicates, oxides, carbonates, nitrides, nitrides, halides (chlorides, fluorides), acid fluorides, etc. Hydroides, oxalates, sulfates, nitrates, organic metal compounds, precursor compounds thereof and the like can be used, and the types thereof are not particularly limited. As the phosphor raw material, one type can be used alone, and two or more types can be used in any combination and ratio. Among these, oxides, nitrides, halides, carbonates, and silicides are preferable, and oxides, nitrides, and halides are more preferable.

なお、必要に応じて、本実施形態の蛍光体を予め合成し、これを種結晶(シード結晶)として原料混合物に混合してもよい。このように種結晶を用いることで、結晶化及び低温合成が促進され、より高い結晶度を有する蛍光体が得られ易い傾向にある。なお、種結晶の配合割合は、特に限定されないが、全蛍光体原料100質量部に対して、0.1〜30質量部の範囲が好ましい。 If necessary, the phosphor of the present embodiment may be synthesized in advance and mixed with the raw material mixture as a seed crystal (seed crystal). By using the seed crystal in this way, crystallization and low temperature synthesis are promoted, and a phosphor having a higher crystallinity tends to be easily obtained. The blending ratio of the seed crystal is not particularly limited, but is preferably in the range of 0.1 to 30 parts by mass with respect to 100 parts by mass of the total phosphor raw material.

(M源)
付活元素であるM源のうち、Eu源の具体例としては、Eu、Eu(SO、Eu(C・10HO、EuF、EuCl、EuCl、Eu(NO・6HO、EuN及びEuNH等が挙げられるが、これらに特に限定されない。これらの中でも、Eu3、EuF及びEuN等が好ましく、特に好ましくはEuである。一方、Sm源、Tm源及びYb源等のその他の付活元素の原料の具体例としては、Eu源の具体例として挙げた各化合物において、EuをそれぞれSm、Tm及びYb等に置き換えた化合物が挙げられる。
(M source)
Among the M sources that are active elements, specific examples of the Eu source include Eu 2 O 3 , Eu 2 (SO 4 ) 3 , Eu 2 (C 2 O 4 ) 3・ 10H 2 O, EuF 3 , and EuCl 2. , EuCl 3, Eu (nO 3 ) 3 · 6H 2 O, although such EuN and EuNH include, but are not particularly limited thereto. Of these, Eu 2 O 3, EuF 3 and EuN are preferable, particularly preferably Eu 2 O 3. On the other hand, as specific examples of raw materials for other active elements such as Sm source, Tm source and Yb source, in each of the compounds mentioned as specific examples of Eu source, Eu is replaced with Sm, Tm, Yb and the like, respectively. Can be mentioned.

(A源)
A源のうち、Li源の具体例としては、LiO、LiOH、LiCO、LiNO、LiSO、LiF、LiCl、LiN、LiNH及びこれらの化合物の水和物等が挙げられるが、これらに特に限定されない。これらの中でも、LiO、LiCO及びLiNが好ましい。また、発光効率の点からは、純度の高いものが好ましい。一方、Liがその他の1価の元素によって一部置換される場合において、その他の1価の元素の原料の具体例としては、上記Li源の具体例として挙げた各化合物において、LiをNa、K、Rb又はCs等に置き換えた化合物が挙げられる。なお、Li源は、単体のLiを用いてもよく、LiAlOといったLi化合物を用いてもよい。
(Source A)
Among the A sources, specific examples of the Li source include Li 2 O, LiOH, Li 2 CO 3 , Li NO 3 , Li 2 SO 4 , LiF, LiCl, Li 3 N, Li NH 2 and hydrates of these compounds. Etc., but are not particularly limited to these. Among these, Li 2 O, Li 2 CO 3 and Li 3 N are preferable. Further, from the viewpoint of luminous efficiency, those having high purity are preferable. On the other hand, when Li is partially replaced by another monovalent element, as a specific example of the raw material of the other monovalent element, in each compound mentioned as a specific example of the Li source, Li is Na. Examples thereof include compounds replaced with K, Rb, Cs and the like. As the Li source, a simple substance Li may be used, or a Li compound such as LiAlO 2 may be used.

(B源)
B源のうち、Sr源の具体例としては、SrO、Sr(OH)・8HO、SrCO、Sr(NO、SrSO、Sr(C)・HO、Sr(OCOCH・0.5HO、SrF、SrCl、SrN、Sr及びSrNH等が挙げられるが、これらに特に限定されない。これらの中でも、SrO、SrCO、SrN及びSrが好ましい。また、反応性の点から、Sr源は、粒径が小さく、発光効率の点から純度の高いものが好ましい。一方、Mg、Ca源及びBa源等のその他のアルカリ土類金属元素の原料の具体例としては、上記Sr源の具体例として挙げた各化合物において、SrをMg、Ca、Ba等に置き換えた化合物が挙げられる。
(Source B)
Of B source, specific examples of Sr source, SrO, Sr (OH) 2 · 8H 2 O, SrCO 3, Sr (NO 3) 2, SrSO 4, Sr (C 2 O 4) · H 2 O, Sr (OCOCH 3) 2 · 0.5H 2 O, SrF 2, SrCl 2, Sr 2 N, but Sr 3 N 2 and SrNH like, not particularly limited thereto. Among these, SrO, SrCO 3 , Sr 2 N and Sr 3 N 2 are preferable. Further, from the viewpoint of reactivity, the Sr source preferably has a small particle size and high purity from the viewpoint of luminous efficiency. On the other hand, as specific examples of raw materials for other alkaline earth metal elements such as Mg, Ca source and Ba source, Sr was replaced with Mg, Ca, Ba and the like in each of the compounds mentioned as specific examples of the Sr source. Examples include compounds.

(C源)
C源のうち、Al源の具体例としては、AlN、Al、Al(OH)、AlOOH、Al(NO、AlF及びAlCl等が挙げられるが、これらに特に限定されない。これらの中でも、AlN及びAlが好ましい。また、反応性の点から、Al源は粒径が小さく、発光効率の点から純度の高いものが好ましい。一方、Ga源の具体例としては、上記Al源の具体例として挙げた各化合物において、AlをGaに置き換えた化合物が挙げられる。また、AlやGaがその他の3価の元素によって一部置換される場合において、その他の3価の元素の原料の具体例としては、上記Al源の具体例として挙げた各化合物において、AlをB、In、Sc、Y、La、Gd及びLu等に置き換えた化合物が挙げられる。なお、Al源は、単体のAlを用いてもよく、LiAlOといったLi化合物を用いてもよい。
(C source)
Among the C sources, specific examples of the Al source include, but are particularly limited to , AlN, Al 2 O 3 , Al (OH) 3 , AlOOH, Al (NO 3 ) 3 , AlF 3, AlCl 3, and the like. Not done. Among these, AlN and Al 2 O 3 is preferred. Further, from the viewpoint of reactivity, the Al source preferably has a small particle size and high purity from the viewpoint of luminous efficiency. On the other hand, specific examples of the Ga source include compounds in which Al is replaced with Ga in each of the compounds mentioned as specific examples of the Al source. Further, when Al or Ga is partially replaced by another trivalent element, as a specific example of the raw material of the other trivalent element, in each compound mentioned as a specific example of the Al source, Al is used. Examples thereof include compounds replaced with B, In, Sc, Y, La, Gd, Lu and the like. As the Al source, a simple substance Al may be used, or a Li compound such as LiAlO 2 may be used.

なお、上述したM源、A源、B源及びC源は、それぞれ、一種のみを用いてもよく、二種以上を任意の組み合わせ及び比率で併用してもよい。本実施態様の蛍光体の製造方法としては、以下に記載するように、所望する組成の蛍光体が得られるように上述した蛍光体原料を秤量し、ボールミル等を用いて十分混合した後、ルツボに充填し、所定温度及び雰囲気下で焼成し、得られた焼成物を粉砕及び洗浄することにより、所望組成を有する本実施態様の蛍光体を得ることができる。 As the above-mentioned M source, A source, B source and C source, only one type may be used, or two or more types may be used in any combination and ratio. As a method for producing a fluorescent substance of the present embodiment, as described below, the above-mentioned fluorescent material raw materials are weighed so as to obtain a fluorescent substance having a desired composition, sufficiently mixed using a ball mill or the like, and then rubbed. The fluorescent substance of the present embodiment having a desired composition can be obtained by filling the mixture in the above form, firing it at a predetermined temperature and atmosphere, and pulverizing and washing the obtained fired product.

[混合工程]
蛍光体原料の混合方法は、乾式混合法や湿式混合法等の公知の手法により行えばよく、特に限定されない。乾式混合法としては、例えば、ボールミル等を用いた混合法が挙げられる。また、湿式混合法としては、例えば、前述の蛍光体原料に水等の溶媒又は分散媒を加えて、ボールミルや、乳鉢及び乳棒等を用いて混合し、溶液又はスラリーの状態とした上で、噴霧乾燥、加熱乾燥又は自然乾燥等により乾燥させる方法である。なお、溶媒又は分散媒としては、水、有機溶媒、及びこれらの混合溶媒等が挙げられるが、これらに特に限定されない。例えば、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル系溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤;メチルアルコール、エチルアルコール、イソプロピルアルコール、n−ブタノール等のアルコール系溶剤;ヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の炭化水素系溶剤;トルエン、キシレン等の芳香族炭化水素系溶剤;或いはこれらの混合溶剤;等が挙げられるが、これらに特に限定されない。これらの中でも、水、アルコール系溶剤及び炭化水素系溶剤が好ましい。これらは、1種を単独で又は2種以上を組み合わせて用いることができる。
[Mixing process]
The mixing method of the phosphor raw material may be performed by a known method such as a dry mixing method or a wet mixing method, and is not particularly limited. Examples of the dry mixing method include a mixing method using a ball mill or the like. As a wet mixing method, for example, a solvent such as water or a dispersion medium is added to the above-mentioned phosphor raw material and mixed using a ball mill, a mortar, a pestle, or the like to prepare a solution or a slurry. This is a method of drying by spray drying, heat drying, natural drying or the like. Examples of the solvent or dispersion medium include water, organic solvents, mixed solvents thereof, and the like, but the solvent is not particularly limited. For example, ester solvents such as methyl acetate, ethyl acetate, propyl acetate and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; alcohol solvents such as methyl alcohol, ethyl alcohol, isopropyl alcohol and n-butanol; Carbohydrate-based solvents such as hexane, cyclohexane, methylcyclohexane, and ethylcyclohexane; aromatic hydrocarbon-based solvents such as toluene and xylene; or mixed solvents thereof; and the like can be mentioned, but are not particularly limited thereto. Among these, water, alcohol-based solvent and hydrocarbon-based solvent are preferable. These can be used alone or in combination of two or more.

[焼成工程]
得られた混合物を、各蛍光体原料と反応性の低い材料からなるルツボ又はトレイ等の耐熱容器中に充填する。このような焼成時に用いる耐熱容器の材質としては、本実施態様の効果を損なわない限り特に制限はないが、例えば、酸化アルミニウム製の坩堝や、窒化ホウ素等の坩堝や、モリブデンやタングステンで作製した容器等が挙げられる。
[Baking process]
The obtained mixture is filled in a heat-resistant container such as a crucible or a tray made of a material having low reactivity with each phosphor raw material. The material of the heat-resistant container used at the time of firing is not particularly limited as long as the effect of this embodiment is not impaired. For example, it is made of a crucible made of aluminum oxide, a crucible such as boron nitride, molybdenum or tungsten. Examples include containers.

焼成工程時の焼成温度は、圧力や外部雰囲気等によっても異なるが、500℃以上、2000℃以下の温度範囲である。この焼成工程における最高到達温度としては、600℃以上、好ましくは700℃以上、より好ましくは800℃以上、また、2000℃以下、好ましくは1800℃以下である。焼成温度を高くしすぎないことで、母体中に含まれる元素が一部脱離し、結晶中に欠陥が多く生成し、得られる結晶が着色することを抑制できる場合がある。また、結晶相が分解して別の相が不純物として生じてしまうことを抑制できる場合がある。焼成温度を低くしすぎないことで、固相反応の進行が遅くなり、目的相を主相として有する蛍光体が得られ難くなることを抑制できる場合がある。また、焼成温度を低くしすぎないことで、結晶内で発光中心となる元素、例えばEu元素の拡散がされず量子効率が低下することを抑制できる場合がある。 The firing temperature during the firing step varies depending on the pressure, the external atmosphere, and the like, but is in the temperature range of 500 ° C. or higher and 2000 ° C. or lower. The maximum temperature reached in this firing step is 600 ° C. or higher, preferably 700 ° C. or higher, more preferably 800 ° C. or higher, and 2000 ° C. or lower, preferably 1800 ° C. or lower. By not raising the calcination temperature too high, some elements contained in the matrix may be desorbed, many defects may be generated in the crystal, and it may be possible to suppress coloring of the obtained crystal. In addition, it may be possible to prevent the crystal phase from decomposing and another phase as an impurity. By not lowering the calcination temperature too low, the progress of the solid-phase reaction may be slowed down, and it may be possible to suppress the difficulty in obtaining a phosphor having the target phase as the main phase. Further, by not lowering the firing temperature too low, it may be possible to prevent the element that is the center of light emission in the crystal, for example, the Eu element, from being diffused and the quantum efficiency from being lowered.

焼成工程時の圧力は、焼成温度や外部雰囲気等によっても異なるが、0.1MPa以上であり、また、200MPa以下、好ましくは190MPa以下である。 The pressure during the firing step varies depending on the firing temperature, the external atmosphere, and the like, but is 0.1 MPa or more, and 200 MPa or less, preferably 190 MPa or less.

焼成工程における焼成雰囲気は、本実施態様の蛍光体が得られる限り任意であるが、不活性ガス(窒素、アルゴン等)含有雰囲気とすることが好ましい。具体的には、窒素ガス雰囲気及び水素含有窒素雰囲気等が好ましく、より好ましくは窒素ガス雰囲気である。 The firing atmosphere in the firing step is arbitrary as long as the phosphor of the present embodiment can be obtained, but it is preferably an atmosphere containing an inert gas (nitrogen, argon, etc.). Specifically, a nitrogen gas atmosphere, a hydrogen-containing nitrogen atmosphere, and the like are preferable, and a nitrogen gas atmosphere is more preferable.

焼成工程における焼成時間は、焼成時の温度や圧力、外部雰囲気等によっても異なるが、10分間以上、好ましくは30分間以上、また、72時間以下、好ましくは24時間以下である。焼成時間を短くしすぎないことで、粒生成と粒成長を促すことができずに、特性のよい蛍光体が得られ難くなることを抑制できる場合がある。焼成時間を長くしすぎないことで、構成している元素の揮発が促され、原子欠損により結晶構造内に欠陥が誘発され特性のよい蛍光体が得られ難くなることを抑制できる場合がある。 The firing time in the firing step varies depending on the temperature and pressure at the time of firing, the external atmosphere, and the like, but is 10 minutes or more, preferably 30 minutes or more, and 72 hours or less, preferably 24 hours or less. By not shortening the firing time too much, it may not be possible to promote grain formation and grain growth, and it may be possible to suppress the difficulty in obtaining a phosphor having good characteristics. By not making the firing time too long, it may be possible to prevent the volatilization of the constituent elements from being promoted and the atomic defects from inducing defects in the crystal structure, making it difficult to obtain a phosphor having good characteristics.

[後処理工程]
得られる焼成物は、粒状又は塊状となる。これを解砕、粉砕及び/又は分級操作を組み合わせて所定のサイズの粉末にする。ここでは、D50(メジアン径ともいう)が約30μm以下になるように処理してもよい。
[Post-treatment process]
The resulting fired product is granular or lumpy. This is combined with crushing, crushing and / or classification operations into a powder of a predetermined size. Here, processing may be performed so that D50 (also referred to as median diameter) is about 30 μm or less.

具体的な処理の例としては、合成物を目開き45μm程度の篩分級処理し、篩を通過した粉末を次工程に回す方法、或いは合成物をボールミルや振動ミル、ジェットミル等の一般的な粉砕機を使用して所定の粒度に粉砕する方法が挙げられる。後者の方法において、過度の粉砕を行わないことで、光を散乱しやすい微粒子が生成したり、粒子表面に結晶欠陥が生成し、発光効率の低下を引き起こしたりすることを抑制できる場合がある。 Specific examples of the treatment include a method in which the composite is sieve-classified with an opening of about 45 μm and the powder that has passed through the sieve is passed to the next step, or the composite is generally used in a ball mill, vibration mill, jet mill, or the like. Examples thereof include a method of pulverizing to a predetermined particle size using a pulverizer. In the latter method, by not performing excessive pulverization, it may be possible to suppress the formation of fine particles that easily scatter light or the formation of crystal defects on the particle surface, which causes a decrease in luminous efficiency.

また、必要に応じて、蛍光体(焼成物)を洗浄する工程を設けてもよい。洗浄工程後は、蛍光体を付着水分がなくなるまで乾燥させて、使用に供する。さらに、必要に応じて、凝集をほぐすために分散及び/又は分級処理を行ってもよい。 Further, if necessary, a step of cleaning the phosphor (fired product) may be provided. After the washing step, the phosphor is dried until there is no adhering water and is used. Further, if necessary, dispersion and / or classification treatment may be performed to loosen the agglomeration.

発光特性に優れる蛍光体を得る観点から、不純物の含有量が少ない方が好ましい。とりわけ、Cl及びF等のハロゲン元素を少なくすることで、発光が阻害されることを抑制できる場合がある。そのため、蛍光体の全質量に対するCl及びFの元素量換算の含有割合は合計で5000ppm以下であることが好ましく、より好ましくは3000ppm以下、さらに好ましくは2000ppm以下である。 From the viewpoint of obtaining a phosphor having excellent light emission characteristics, it is preferable that the content of impurities is small. In particular, by reducing the amount of halogen elements such as Cl and F, it may be possible to suppress the inhibition of light emission. Therefore, the total content ratio of Cl and F in terms of element content with respect to the total mass of the phosphor is preferably 5000 ppm or less, more preferably 3000 ppm or less, and further preferably 2000 ppm or less.

<蛍光体含有組成物>
本実施形態の蛍光体は、そのまま単独で発光材料として用いることができるが、他の材料と混合して蛍光体含有組成物として用いることもできる。すなわち、蛍光体含有組成物は、本実施形態の蛍光体とは異なる物質を含んでいてもよい。例えば、本実施形態の蛍光体を発光装置等の用途に使用する場合には、これを液体媒体やバインダー樹脂や封止樹脂中に分散させた形態で用いることができる。蛍光体含有組成物として用いる場合、本実施形態の蛍光体の含有割合(含有率)は、組成物総質量に対して、20質量%以上が好ましく、より好ましくは30質量%以上、さらに好ましくは40質量%以上である。このとき、本実施形態の蛍光体とは異なる物質としては、任意の無機系材料及び/又は有機系材料を使用することができ、例えば、本実施形態の蛍光体とは異なる蛍光体;付加反応型シリコーン又は縮合反応型のシリコーン樹脂、変性シリコーン樹脂、ポリイミドシリコーン樹脂、ポリカーボネート樹脂、エポキシ樹脂、ポリビニル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂等のバインダー樹脂や封止樹脂;ガラス;拡散剤;増粘剤;増量剤;緩衝剤等が挙げられるが、これらに特に限定されない。
<Fluorescent material-containing composition>
The phosphor of the present embodiment can be used as it is as a light emitting material, but it can also be mixed with other materials and used as a phosphor-containing composition. That is, the fluorescent substance-containing composition may contain a substance different from that of the fluorescent substance of the present embodiment. For example, when the phosphor of the present embodiment is used for a light emitting device or the like, it can be used in a form of being dispersed in a liquid medium, a binder resin, or a sealing resin. When used as a phosphor-containing composition, the content ratio (content rate) of the phosphor of the present embodiment is preferably 20% by mass or more, more preferably 30% by mass or more, still more preferably 30% by mass, based on the total mass of the composition. It is 40% by mass or more. At this time, any inorganic material and / or organic material can be used as the substance different from the phosphor of the present embodiment, for example, a phosphor different from the phosphor of the present embodiment; addition reaction. Binder resin and sealing resin such as type silicone or condensation reaction type silicone resin, modified silicone resin, polyimide silicone resin, polycarbonate resin, epoxy resin, polyvinyl resin, polyethylene resin, polypropylene resin, polyester resin; glass; Diffusing agent; thickener; bulking agent; buffering agent and the like can be mentioned, but the present invention is not particularly limited thereto.

<発光装置等>
上述した本実施形態の蛍光体及びこれを用いた蛍光体含有組成物は、照明装置や画像表示装置等の発光装置の発光材料として好適に用いられる。この種の発光装置の一態様は、300nm以上500nm以下の近紫外又は短波長可視域の光を発する励起用光源、及びこの励起用光源が発する光の少なくとも一部を異なる発光スペクトルに変換する蛍光体を少なくとも備える。かかる蛍光体として、上述した本実施形態の蛍光体及びこれを用いた蛍光体含有組成物を用いればよい。励起用光源としては、特に限定されないが、例えば300〜500nmの波長の光を発する紫外(又は紫)LED発光素子又は青色LED発光素子を用いることができる。LED発光素子としては、例えば、GaN系LEDを用いることができる。GaN系LEDとしては、GaNやInGaNなどの窒化物半導体を用いることができる。照明装置や画像表示装置等の発光装置としては、LED照明装置やLED画像表示装置等のLEDデバイス、EL照明装置やEL画像表示装置等のELデバイス、蛍光ランプ等が知られている。より具体的には、白色発光ダイオード、複数の白色発光ダイオードを含む照明器具、液晶パネル用バックライト等が挙げられるが、これらに特に限定されない。また、画像表示装置としては、蛍光表示管(VFD)、フィールドエミッションディスプレイ(FED)、プラズマディスプレイパネル(PDP)、陰極線管(CRT)及び液晶ディスプレイ(LCD)等が挙げられるが、これらに特に限定されない。装置構成及び発光装置の実施形態としては、種々のものが知られており、それらの構成は何ら制限されず、公知の装置構成を任意に採用することが可能である。例えば、特開2007−291352号公報に記載のものが挙げられる。また、発光装置の形態としては、砲弾型、カップ型、チップオンボード及びリモートフォスファー等が挙げられる。画像表示装置としては、具体的構成に制限はないが、カラーフィルターとともに用いることが好ましい。例えば、画像表示装置として、カラー液晶表示素子を利用したカラー画像表示装置を構成する場合は、上記発光装置をバックライトとし、液晶を利用した光シャッターと赤、緑及び青の画素を有するカラーフィルターとを組み合わせることにより画像表示装置を形成することができる。
<Light emitting device, etc.>
The phosphor of the present embodiment described above and a phosphor-containing composition using the same are suitably used as a light emitting material for a light emitting device such as a lighting device or an image display device. One aspect of this type of light emitting device is an excitation light source that emits near-ultraviolet or short wavelength visible light of 300 nm or more and 500 nm or less, and fluorescence that converts at least a part of the light emitted by the excitation light source into a different emission spectrum. At least have a body. As such a fluorescent substance, the above-mentioned fluorescent substance of the present embodiment and a fluorescent substance-containing composition using the same may be used. The excitation light source is not particularly limited, and for example, an ultraviolet (or purple) LED light emitting element or a blue LED light emitting element that emits light having a wavelength of 300 to 500 nm can be used. As the LED light emitting element, for example, a GaN-based LED can be used. As the GaN-based LED, a nitride semiconductor such as GaN or InGaN can be used. As light emitting devices such as lighting devices and image display devices, LED devices such as LED lighting devices and LED image display devices, EL devices such as EL lighting devices and EL image display devices, fluorescent lamps, and the like are known. More specifically, examples thereof include a white light emitting diode, a lighting fixture including a plurality of white light emitting diodes, a backlight for a liquid crystal panel, and the like, but the present invention is not particularly limited thereto. Examples of the image display device include a vacuum fluorescent display (VFD), a field emission display (FED), a plasma display panel (PDP), a cathode ray tube (CRT), a liquid crystal display (LCD), and the like, but are particularly limited thereto. Not done. Various device configurations and embodiments of the light emitting device are known, and the configurations thereof are not limited at all, and known device configurations can be arbitrarily adopted. For example, those described in JP-A-2007-291352 can be mentioned. Examples of the light emitting device include a cannonball type, a cup type, a chip-on-board type, a remote phosphor, and the like. The image display device is not limited in specific configuration, but is preferably used together with a color filter. For example, when a color image display device using a color liquid crystal display element is configured as an image display device, the light emitting device is used as a backlight, an optical shutter using a liquid crystal, and a color filter having red, green, and blue pixels. An image display device can be formed by combining with and.

励起用光源としては、本実施形態の蛍光体の励起ピーク(吸収極大波長)に一致した波長300nm以上500nm以下の近紫外又は短波長可視領域に発光ピークを有する光を発する光源が好ましく用いられる。このような光源としては、発光ダイオード(LED)、レーザダイオード(LD)、半導体レーザ、又は、有機EL発光体(OLED)等が挙げられる。これにより、蛍光体から緑色、黄緑色、黄色等、所望の発光色を効率よく発光させることができる。 As the excitation light source, a light source that emits light having an emission peak in the near-ultraviolet or short-wavelength visible region having a wavelength of 300 nm or more and 500 nm or less that matches the excitation peak (absorption maximum wavelength) of the phosphor of the present embodiment is preferably used. Examples of such a light source include a light emitting diode (LED), a laser diode (LD), a semiconductor laser, an organic EL light emitter (OLED), and the like. As a result, a desired emission color such as green, yellowish green, or yellow can be efficiently emitted from the phosphor.

以下、実施例を用いて本発明の内容をさらに具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例によって何ら限定されるものではない。なお、以下の実施例における各種の製造条件や評価結果の値は、本発明の実施態様における上限又は下限の好ましい値としての意味を持つものであり、好ましい範囲は前記した上限又は下限の好ましい値としての意味をもつものであり、好ましい範囲は前記した上限又は下限の値と、下記実施例の値又は実施例同士の値との組み合わせで規定される範囲であってもよい。 Hereinafter, the content of the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples as long as the gist of the present invention is not exceeded. The values of various production conditions and evaluation results in the following examples have meanings as preferable values of the upper limit or the lower limit in the embodiment of the present invention, and the preferable range is the preferable value of the upper limit or the lower limit described above. The preferable range may be a range defined by a combination of the above-mentioned upper limit or lower limit value and the value of the following examples or the values of the examples.

<測定方法>
[発光特性]
発光粒子をガラスキャピラリ中に封入するか、ガラスファイバー先端に設置し、Xe分光励起装置QE1100(大塚電子社製)及び発光検出器MCPD−7700(大塚電子社製)を用いて励起発光スペクトルと発光スペクトルを測定した。励起スペクトルは、発光ピーク波長近傍の発光をモニターしたときの測定結果である。また 、発光ピーク波長と発光ピークの半値幅は、得られた発光スペクトルから読み取った。
<Measurement method>
[Light emission characteristics]
Emission particles are enclosed in a glass capillary or installed at the tip of a glass fiber, and the excitation emission spectrum and emission are emitted using the Xe spectroscopic excitation device QE1100 (manufactured by Otsuka Electronics Co., Ltd.) and the emission detector MCPD-7700 (manufactured by Otsuka Electronics Co., Ltd.). The spectrum was measured. The excitation spectrum is a measurement result when the emission near the emission peak wavelength is monitored. The emission peak wavelength and the half width of the emission peak were read from the obtained emission spectrum.

[元素分析]
走査型電子顕微鏡(SEM)による観察にて結晶を選び出したのち、エネルギー分散型X線分析装置(EDX)を用いて各元素の分析を実施した。
[Elemental analysis]
After selecting crystals by observation with a scanning electron microscope (SEM), each element was analyzed using an energy dispersive X-ray analyzer (EDX).

[結晶構造解析]
単結晶粒子のX線回折データをイメージングプレートとグラファイトモノクロメータを備えMo KαをX線源とする単結晶X線回折装置(Bruker AXS,D8 QUEST)で測定した。データの収集と格子定数の精密化にはAPEX2を、X線形状吸収補正にはSADABS(Siemens Area Detector ABSorption correction program)を使用した。F2のデータについて最小自乗法プログラムSHELXL−97を用いて結晶構造パラメータの精密化を行った。また、結晶構造の描画にはVESTA(三次元結晶構造表示ソフトウェア)を用いた。
[Crystal structure analysis]
The X-ray diffraction data of the single crystal particles were measured by a single crystal X-ray diffractometer (Brooker AXS, D8 QUEST) equipped with an imaging plate and a graphite monochromator and using Mo Kα as an X-ray source. APEX2 was used for data collection and refinement of the lattice constant, and SADABS (Siemens Area Detector ABSorection direction program) was used for X-ray shape absorption correction. The crystal structure parameters of the F2 data were refined using the least squares program SHELXL-97. In addition, VESTA (three-dimensional crystal structure display software) was used to draw the crystal structure.

(実施例1)
蛍光体原料粉末としてLiAlO 24.0質量%、SrO 74.7質量%、Eu 1.3質量%となるようにそれぞれ秤量した後、乳鉢に入れ、均一になるまで混合し、実施例1の原料混合粉末を得た。得られた原料混合粉末を、モリブデン製容器に充填した。なお、これらの操作は、高純度窒素ガスで満たしたグローブボックス中ですべて行った。
(Example 1)
LiAlO 2 24.0 wt% as a phosphor raw material powder, SrO 74.7 wt%, was weighed so that Eu 2 O 3 1.3 wt%, placed in a mortar, and mixed until uniform, carried The raw material mixed powder of Example 1 was obtained. The obtained mixed raw material powder was filled in a molybdenum container. All of these operations were performed in a glove box filled with high-purity nitrogen gas.

次いで、容器を管状炉中に設置し、Nガスを流通させ、最高温度1000℃で2時間保持することによって焼成した。焼成後の容器をNガスで満たしたグローブボックス中へ導入し、得られた生成物を乳鉢にて解砕し、実施例1の焼成粉末を得た。 Then, set up a container in a tubular furnace, allowed to flow N 2 gas was fired by holding for 2 hours at a maximum temperature of 1000 ° C.. The calcined container was introduced into a glove box filled with N 2 gas, and the obtained product was crushed in a mortar to obtain a calcined powder of Example 1.

得られた実施例1の焼成粉末から、塊状の緑色粒子を採取した(実施例1の蛍光体)。この実施例1の蛍光体について、単結晶X線回折測定による結晶構造解析を実施したところ、実施例1の蛍光体は、斜方晶系に属し、P n m a空間群に属し、表1に示す結晶パラメータ及び原子座標を占める結晶であった。実施例1の蛍光体においては、LiとAlは別の結晶サイトに存在していた。また、Euを含まない場合の結晶組成は、SrLiAlであった。なお、表1中の席占有率は例示であり、記載通りの比率に限定されるものではない。 From the obtained calcined powder of Example 1, massive green particles were collected (fluorescent substance of Example 1). When the crystal structure analysis of the phosphor of Example 1 was carried out by single crystal X-ray diffraction measurement, the phosphor of Example 1 belonged to the oblique crystal system and belonged to the Pnm a space group, and Table 1 It was a crystal occupying the crystal parameters and atomic coordinates shown in. In the fluorophore of Example 1, Li and Al were present at different crystal sites. The crystal composition when Eu was not contained was Sr 2 Li 1 Al 1 O 4 . The seat occupancy rate in Table 1 is an example, and is not limited to the ratio as described.

Figure 2021059647
Figure 2021059647

さらに、実施例1の蛍光体について、元素分析(EDX測定)を行った。検出された元素は、Sr、Al、Eu、O及びClであった。Sr+Eu=1で規格化したカチオンのEDX測定組成は、Sr:Al:Eu=0.99:0.57:0.01であり、結晶構造解析結果との一致が良好であった。なお、Liは、EDX測定によっては検出されず、Clは、焼成粉末の作製過程において混入したものと考えられる。 Furthermore, elemental analysis (EDX measurement) was performed on the phosphor of Example 1. The detected elements were Sr, Al, Eu, O and Cl. The EDX measurement composition of the cation standardized by Sr + Eu = 1 was Sr: Al: Eu = 0.99: 0.57: 0.01, which was in good agreement with the crystal structure analysis result. It is considered that Li was not detected by EDX measurement and Cl was mixed in the process of producing the calcined powder.

次いで、実施例1の蛍光体を365nmの光源を用いて励起したときの発光スペクトルを図1に示す。実施例1の蛍光体は、発光ピーク波長509nm、半値幅46nmの狭帯域緑色発光を示した。 Next, the emission spectrum when the phosphor of Example 1 is excited using a light source of 365 nm is shown in FIG. The phosphor of Example 1 showed a narrow band green emission having an emission peak wavelength of 509 nm and a half width of 46 nm.

(実施例2)
蛍光体原料粉末としてLiNが9.6質量%、LiOが2.7質量%、Srが16.4質量%、SrOが3.9質量%、AlNが47.3質量%、Alが13.1質量%、EuFが2.3質量%、及びSrFが4.8質量%となるようにそれぞれ秤量した後、乳鉢に入れ、均一になるまで混合し、実施例2の原料混合粉末を得た。得られた原料混合粉末をモリブデン製容器に充填した。なお、これらの操作は、高純度窒素ガスで満たしたグローブボックス中ですべて行った。
(Example 2)
As a phosphor raw material powder, Li 3 N is 9.6% by mass, Li 2 O is 2.7% by mass, Sr 3 N 2 is 16.4% by mass, SrO is 3.9% by mass, and Al N is 47.3% by mass. %, Al 2 O 3 is 13.1% by mass, EuF 3 is 2.3% by mass, and SrF 2 is 4.8% by mass, and then placed in a dairy pot and mixed until uniform. , The raw material mixed powder of Example 2 was obtained. The obtained mixed raw material powder was filled in a molybdenum container. All of these operations were performed in a glove box filled with high-purity nitrogen gas.

次いで、容器を管状炉中に設置し、Nガスを流通させ、最高温度1100℃で12時間保持することによって焼成した。焼成後の容器をNガスで満たしたグローブボックス中へ導入した。 Then, set up a container in a tubular furnace, allowed to flow N 2 gas was fired by holding for 12 hours at a maximum temperature of 1100 ° C.. The calcined container was introduced into a glove box filled with N 2 gas.

焼成後の容器壁面から、平板状の黄色粒子を採取した(実施例2の蛍光体)。この実施例2の蛍光体について、単結晶X線回折測定による結晶構造解析を実施したところ、実施例2の蛍光体は、単斜晶系に属し、P 21/m空間群に属し、表2に示す結晶パラメータ及び原子座標を占める結晶であった。実施例2の蛍光体においては、LiとAlは同一の結晶サイトに存在していた。また、Euを含まない場合の結晶組成は、Sr(Li、Al)であった。なお、表2中の席占有率は例示であり、記載通りの比率に限定されるものではない。 Flat-shaped yellow particles were collected from the wall surface of the container after firing (fluorescent substance of Example 2). When the crystal structure analysis of the phosphor of Example 2 was carried out by single crystal X-ray diffraction measurement, the phosphor of Example 2 belonged to the monoclinic system and belonged to the P21 / m space group, and Table 2 It was a crystal occupying the crystal parameters and atomic coordinates shown in. In the phosphor of Example 2, Li and Al were present at the same crystal site. The crystal composition when Eu was not contained was Sr 2 (Li, Al) 2 O 4 . The seat occupancy rate in Table 2 is an example and is not limited to the ratio as described.

Figure 2021059647
Figure 2021059647

次いで、実施例2の蛍光体を416nmの光源を用いて励起したときの発光スペクトル及び576nmの発光をモニターした励起スペクトルを図2に示す。実施例2の蛍光体は、発光ピーク波長577nm、半値幅71nmの黄色発光を示した。なお、実施例2の蛍光体の励起帯は、ピークが416nmであり、530nm付近まで伸びており(416nmで規格化した場合、400nmでの相対強度は0.89であり、450nmでの相対強度は0.89である。)、近紫外又は青色波長可視領域の光での励起に好適なものであることがわかる。 Next, FIG. 2 shows an emission spectrum when the phosphor of Example 2 was excited using a light source of 416 nm and an excitation spectrum in which emission of 576 nm was monitored. The phosphor of Example 2 showed yellow emission with an emission peak wavelength of 577 nm and a half width of 71 nm. The excitation band of the phosphor of Example 2 has a peak of 416 nm and extends to around 530 nm (when standardized at 416 nm, the relative intensity at 400 nm is 0.89, and the relative intensity at 450 nm. Is 0.89.), It can be seen that it is suitable for excitation with light in the near-ultraviolet or blue wavelength visible region.

(実施例3)
表3に示す元素比率となるように、表4の質量割合(%)で、それぞれの原料を秤量した後、乳鉢に入れ、均一になるまで混合し、実施例3の原料混合粉末を得た。得られた原料混合粉末を、モリブデン製容器に充填した。なお、これらの操作は、高純度窒素ガスで満たしたグローブボックス中ですべて行った。
(Example 3)
Each raw material was weighed at the mass ratio (%) of Table 4 so as to have the element ratio shown in Table 3, then placed in a mortar and mixed until uniform to obtain a raw material mixed powder of Example 3. .. The obtained mixed raw material powder was filled in a molybdenum container. All of these operations were performed in a glove box filled with high-purity nitrogen gas.

Figure 2021059647
Figure 2021059647

Figure 2021059647
Figure 2021059647

次いで、容器を管状炉中に設置し、Nガスを流通させ、最高温度1100℃で3時間保持することによって焼成した。焼成後の容器をNガスで満たしたグローブボックス中へ導入し、得られた生成物を乳鉢にて解砕し、実施例3の蛍光体を得た。 Then, set up a container in a tubular furnace, allowed to flow N 2 gas was fired by holding for 3 hours at a maximum temperature 1100 ° C.. The calcined container was introduced into a glove box filled with N 2 gas, and the obtained product was crushed in a mortar to obtain the phosphor of Example 3.

実施例3の蛍光体の粉末X線回折測定を行った結果を図3に示す。実施例3の蛍光体は実施例2で示した蛍光体を含有していた(不純物として、SrOとAlNを含む)。実施例3の蛍光体は、窒素を含有していることが推測される。 The result of powder X-ray diffraction measurement of the phosphor of Example 3 is shown in FIG. The fluorophore of Example 3 contained the fluorophore shown in Example 2 (including SrO and AlN as impurities). It is presumed that the phosphor of Example 3 contains nitrogen.

次いで、実施例3の蛍光体を405nmの光源を用いて励起したときの発光スペクトルを図4に示す。実施例3の蛍光体は、発光ピーク波長571nm、半値幅74nmの黄色発光を示した。 Next, the emission spectrum when the phosphor of Example 3 is excited using a light source of 405 nm is shown in FIG. The phosphor of Example 3 showed yellow emission with an emission peak wavelength of 571 nm and a half width of 74 nm.

本発明の蛍光体は、従来の蛍光体とは異なる結晶構造及び発光特性を有し、近紫外又は短波長可視域の光により、緑色から黄色の範囲の何れかの光を発するものであるため、発光装置、照明装置及び画像表示装置等の各種用途において使用される蛍光材料として広く且つ有効に利用可能である。 The phosphor of the present invention has a crystal structure and emission characteristics different from those of the conventional phosphor, and emits light in the range of green to yellow by light in the near-ultraviolet or short wavelength visible region. It can be widely and effectively used as a fluorescent material used in various applications such as a light emitting device, a lighting device, and an image display device.

Claims (15)

M元素、A元素、B元素、C元素(但し、M元素はEu、Ce、Pr、Sm、Tb、Dy及びYbよりなる群から選ばれる少なくとも1種以上の元素、A元素はLi、Na及びKよりなる群から選ばれる少なくとも1種以上の元素、B元素はMg、Ca、Sr及びBaよりなる群から選ばれる少なくとも1種以上の元素、C元素はAl及び/又はGaである)及びOを少なくとも有し、更にNをeの割合で有する結晶相を含み、下記式[1]で表される蛍光体。
1−m [1]
(上記式[1]中、m、a、c、e及びfは、各々独立に、下記式を満たす値である。
0<m≦0.2
0.31≦a≦0.51
0.49≦c≦0.69
0≦e≦0.38
1.63≦f≦2.10
0.95≦a+c≦1.05
1.90≦e+f≦2.10)
M element, A element, B element, C element (However, M element is at least one element selected from the group consisting of Eu, Ce, Pr, Sm, Tb, Dy and Yb, and A element is Li, Na and At least one element selected from the group consisting of K, element B is at least one element selected from the group consisting of Mg, Ca, Sr and Ba, and element C is Al and / or Ga) and O. A phosphor represented by the following formula [1], which comprises a crystal phase having at least N and having N in a proportion of e.
M m A a B 1-m C c N e O f [1]
(In the above formula [1], m, a, c, e and f are values that independently satisfy the following formula.
0 <m ≤ 0.2
0.31 ≤ a ≤ 0.51
0.49 ≤ c ≤ 0.69
0 ≦ e ≦ 0.38
1.63 ≤ f ≤ 2.10
0.95 ≤ a + c ≤ 1.05
1.90 ≦ e + f ≦ 2.10)
少なくともA元素とC元素が別の結晶サイトに存在し、晶系が斜方晶系であり、格子定数が下記範囲を満たす、請求項1に記載の蛍光体。
10.06≦格子定数a≦12.29
5.06≦格子定数b≦6.19
5.99≦格子定数c≦7.32
The phosphor according to claim 1, wherein at least elements A and C are present at different crystal sites, the crystal system is an orthorhombic system, and the lattice constant satisfies the following range.
10.06 ≤ lattice constant a ≤ 12.29
5.06 ≤ lattice constant b ≤ 6.19
5.99 ≤ lattice constant c ≤ 7.32
300nm以上500nm以下の波長を有する励起光を照射することにより、480nm以上540nm以下の波長範囲に発光ピークを有する、請求項1〜2のいずれか一項に記載の蛍光体。 The phosphor according to any one of claims 1 to 2, which has an emission peak in a wavelength range of 480 nm or more and 540 nm or less by irradiating with excitation light having a wavelength of 300 nm or more and 500 nm or less. 発光スペクトルにおける半値幅が、50nm以下である、請求項1〜3のいずれか一項に記載の蛍光体。 The phosphor according to any one of claims 1 to 3, wherein the half width in the emission spectrum is 50 nm or less. 上記式[1]中、a=0.50、c=0.50、e=0、f=2.00である、請求項1〜4のいずれか一項に記載の蛍光体。 The fluorescent substance according to any one of claims 1 to 4, wherein a = 0.50, c = 0.50, e = 0, and f = 2.00 in the above formula [1]. 少なくともA元素とC元素が同一結晶サイトに存在し、晶系が単斜晶系であり、格子定数が下記範囲を満たす、請求項1に記載の蛍光体。
5.25≦格子定数a≦6.41
5.07≦格子定数b≦6.20
5.99≦格子定数c≦7.32
96.0≦格子定数β≦117.3
The phosphor according to claim 1, wherein at least elements A and C are present at the same crystal site, the crystal system is a monoclinic system, and the lattice constant satisfies the following range.
5.25 ≤ lattice constant a ≤ 6.41
5.07 ≤ lattice constant b ≤ 6.20
5.99 ≤ lattice constant c ≤ 7.32
96.0 ≤ lattice constant β ≤ 117.3
300nm以上500nm以下の波長を有する励起光を照射することにより、545nm以上605nm以下の波長範囲に発光ピークを有する、請求項1又は6に記載の蛍光体。 The phosphor according to claim 1 or 6, which has an emission peak in a wavelength range of 545 nm or more and 605 nm or less by irradiating with excitation light having a wavelength of 300 nm or more and 500 nm or less. 発光スペクトルにおける半値幅が、80nm以下である、請求項1、6及び7のいずれか一項に記載の蛍光体。 The phosphor according to any one of claims 1, 6 and 7, wherein the half width in the emission spectrum is 80 nm or less. 上記式[1]中、0.44≦a≦0.50、0.50≦c≦0.56、0≦e≦0.13、1.88≦f≦2.0である、請求項1及び6〜8のいずれか一項に記載の蛍光体。 In the above formula [1], claim 1 is 0.44 ≦ a ≦ 0.50, 0.50 ≦ c ≦ 0.56, 0 ≦ e ≦ 0.13, 1.88 ≦ f ≦ 2.0. And the phosphor according to any one of 6 to 8. M元素が、Euである、請求項1〜9のいずれか一項に記載の蛍光体。 The phosphor according to any one of claims 1 to 9, wherein the M element is Eu. A元素が、Liである、請求項1〜10のいずれか一項に記載の蛍光体。 The phosphor according to any one of claims 1 to 10, wherein the element A is Li. B元素が、Srである、請求項1〜11のいずれか一項に記載の蛍光体。 The phosphor according to any one of claims 1 to 11, wherein the element B is Sr. C元素が、Alである、請求項1〜12のいずれか一項に記載の蛍光体。 The phosphor according to any one of claims 1 to 12, wherein the C element is Al. 前記蛍光体の含有率が20質量%以上であることを特徴とする、請求項1〜13のいずれか一項に記載の蛍光体。 The fluorescent substance according to any one of claims 1 to 13, wherein the content of the fluorescent substance is 20% by mass or more. 請求項1〜14のいずれか一項に記載の蛍光体を含むことを特徴とする発光装置。 A light emitting device comprising the phosphor according to any one of claims 1 to 14.
JP2019183232A 2019-10-03 2019-10-03 Phosphor and light-emitting device using the same Active JP7318924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019183232A JP7318924B2 (en) 2019-10-03 2019-10-03 Phosphor and light-emitting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019183232A JP7318924B2 (en) 2019-10-03 2019-10-03 Phosphor and light-emitting device using the same

Publications (2)

Publication Number Publication Date
JP2021059647A true JP2021059647A (en) 2021-04-15
JP7318924B2 JP7318924B2 (en) 2023-08-01

Family

ID=75381283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019183232A Active JP7318924B2 (en) 2019-10-03 2019-10-03 Phosphor and light-emitting device using the same

Country Status (1)

Country Link
JP (1) JP7318924B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015526532A (en) * 2012-05-22 2015-09-10 コーニンクレッカ フィリップス エヌ ヴェ Novel phosphors such as novel narrow-band red-emitting phosphors for solid state lighting
WO2019075469A1 (en) * 2017-10-13 2019-04-18 The Regents Of The University Of California Mining unexplored chemistries for phosphors for high-color-quality white-light-emitting diodes
JP2019527760A (en) * 2016-08-12 2019-10-03 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Phosphor and method for producing phosphor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015526532A (en) * 2012-05-22 2015-09-10 コーニンクレッカ フィリップス エヌ ヴェ Novel phosphors such as novel narrow-band red-emitting phosphors for solid state lighting
JP2019527760A (en) * 2016-08-12 2019-10-03 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Phosphor and method for producing phosphor
WO2019075469A1 (en) * 2017-10-13 2019-04-18 The Regents Of The University Of California Mining unexplored chemistries for phosphors for high-color-quality white-light-emitting diodes

Also Published As

Publication number Publication date
JP7318924B2 (en) 2023-08-01

Similar Documents

Publication Publication Date Title
WO2016186057A1 (en) Phosphor, production method for same, illumination instrument, and image display device
JP5578739B2 (en) Alkaline earth metal silicate phosphor and method for producing the same
WO2020261691A1 (en) Fluorescent body, method for manufacturing same, and light-emitting device using same
JP6782427B2 (en) Fluorescent material, light emitting device, lighting device and image display device
JP6985704B2 (en) Fluorescent material, light emitting device, lighting device and image display device
WO2016186058A1 (en) Light-emitting instrument and image display device
JP2016216711A (en) Phosphor, production method of the same, lighting apparatus and image display device
JP2007141855A (en) Luminaire using phosphor, and image display device
WO2016076380A1 (en) Phosphor, light-emitting device, illumination device, and image display device
JP6763360B2 (en) Manufacturing method of aluminate phosphor, light emitting device and aluminate phosphor
JP5187817B2 (en) Phosphors and light emitting devices
JP6421806B2 (en) Aluminate phosphor manufacturing method, aluminate phosphor and light emitting device
JP7318924B2 (en) Phosphor and light-emitting device using the same
JP2017190434A (en) Fluophor, light-emitting device, luminaire and image display device
JP6962569B2 (en) A phosphor and a phosphor-containing composition using the same, and a light emitting device, a lighting device, and an image display device using these.
JP7144002B2 (en) Phosphor, phosphor composition using the same, and light-emitting device, lighting device, and image display device using the same
JP2016088970A (en) Phosphor, light emitting device, illumination device and image display device
JP2020096175A (en) Light-emitting device, illumination device, image display unit and nitride fluorescent body
WO2023063251A1 (en) Phosphor, light emitting device, lighting device, image display device and indicator lamp for vehicles
JP2018095783A (en) Phosphor and light emitting device
JP2016056246A (en) Phosphor, light emitting device, illumination device and image display device
JP2016191011A (en) Phosphor, light emitting device, lighting device and image display device
JP2016094533A (en) Phosphor, light emitting device, illumination device and image display device
JP2016124929A (en) Phosphor, light emitting device, illumination device and image display device
JP2016079213A (en) Phosphor, light emitting device, illumination device and image display device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220905

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220905

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20220915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230712

R150 Certificate of patent or registration of utility model

Ref document number: 7318924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150