JP2021051883A - 電池ユニット - Google Patents

電池ユニット Download PDF

Info

Publication number
JP2021051883A
JP2021051883A JP2019173441A JP2019173441A JP2021051883A JP 2021051883 A JP2021051883 A JP 2021051883A JP 2019173441 A JP2019173441 A JP 2019173441A JP 2019173441 A JP2019173441 A JP 2019173441A JP 2021051883 A JP2021051883 A JP 2021051883A
Authority
JP
Japan
Prior art keywords
battery
passage
refrigerant
sectional area
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019173441A
Other languages
English (en)
Inventor
敬弥 谷
Keiya Tani
敬弥 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2019173441A priority Critical patent/JP2021051883A/ja
Publication of JP2021051883A publication Critical patent/JP2021051883A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】電池ブロックの冷却を適切に実施することができる電池ユニットを提供することにある。【解決手段】複数の電池セル31を並べて設けられる電池ブロック30と、複数の電池セル31に各々対向する状態で設けられ、複数の電池セル31を横切る方向に冷媒を流す冷媒通路41を有する冷却器40と、を備え、冷媒通路41は、冷媒流通方向において通路断面積が異なるように設けられており、空気冷却の度合いの小さい電池セル31Cを横切る通路領域では、空気冷却の度合いの大きい電池セル31A,31Bを横切る通路領域よりも通路断面積が小さい。【選択図】 図2

Description

本発明は、電池ユニットに関するものである。
蓄電池を大容量化するために、複数の電池セルを直列又は並列に接続して、電池ユニットを形成することが行われる。このような電池ユニットでは、各電池セルが過高温になることを抑制するために、各電池セルに接触させた状態で冷却器が設けられ、この冷却器により各電池セルが冷却される。例えば、特許文献1の組電池には、組電池を冷却する冷却器が設けられている。冷却器に設けられた冷却通路の往路側と復路側では、受熱により復路側の冷媒の温度が上昇するため、往路側の方が復路側よりも冷却されやすくなる。この往路と復路との冷却差を調整するために、発熱する電子部品を往路側の蓄電池の近傍に設けている。
特開2010‐15788号公報
ところで、各電池セルでは外表面からの大気への放熱により空気冷却が行われる。電池セルが並べられた電池ブロックにおいて、内側の電池セルと外側の電池セルとでは、この空気冷却による放熱量が異なっている。そのため、外側ほど電池セルの温度が低く内側ほど電池セルの温度が高くなる。このように電池ブロック内での温度のばらつきがあると、温度による劣化や、温度による特性の違いが生じてしまい望ましくない。
本発明は、上記課題に鑑みてなされたものであり、その主たる目的は、電池ブロックの冷却を適切に実施することができる電池ユニットを提供することにある。
第1の手段は、複数の電池セルを並べて設けられる電池ブロックと、前記複数の電池セルに各々対向する状態で設けられ、前記複数の電池セルを横切る方向に冷媒を流す冷媒通路を有する冷却器と、を備え、前記冷媒通路は、冷媒流通方向において通路断面積が異なるように設けられており、空気冷却の度合いの小さい電池セルを横切る通路領域では、空気冷却の度合いの大きい電池セルを横切る通路領域よりも通路断面積が小さい。
電池ユニットの冷却器において、冷媒通路は、冷媒流通方向で通路断面積が異なるように設けられており、空気冷却の度合いの小さい電池セルを横切る通路領域では、空気冷却度合いの大きい電池セルを横切る通路領域よりも通路断面積が小さくなっている。これにより、空気冷却の度合いの小さい電池セルを横切る通路領域での冷媒の速度が、空気冷却度合いの大きい電池セルを横切る通路領域での冷媒の速度より速くなり、空気冷却度合いの小さい電池セルでは、空気冷却の度合いの大きい電池セルに比べて冷却器への放熱が促進される。つまり、空気冷却の度合いの小さい電池セルから冷却器への放熱量が増えることで、各電池セルの温度のばらつきを抑制できる。
第2の手段は、前記冷媒通路において、通路入口と通路出口との間の中間部で前記通路断面積が小さくなっている。
複数の電池セルが並べられた電池ブロックでは、電池セルが並べられた方向、つまり冷媒流通方向における中間部の電池セルで空気冷却の度合いが小さく、熱がこもりやすい。そこで、中間部の電池セルが接触する冷媒通路の中間部において、通路断面積が小さくなっている。これにより、空気冷却の度合いが小さく熱がこもりやすい中間部の電池セルでの冷却器への放熱が促進される。そのため、中間部の電池セルでの冷却器への放熱量が増えることで、各電池セルの温度のばらつきを抑制できる。
第3の手段は、前記冷却器は、前記電池ブロック側の第1壁部と、前記第1壁部に対向する第2壁部とを有し、それらの間に前記冷媒通路が形成されており、前記第2壁部に、前記第1壁部に向けて突出する突出部が設けられ、その突出部により通路断面積が狭められている。
冷媒通路を挟んで設けられる第1壁部と第2壁部のうち、第2壁部に突出部が設けられており、この突出部により通路断面積が狭められている。これにより、冷媒通路において、第2壁部側に設けられた突出部により、冷媒が第1壁部側、つまり電池ブロック側を流れることになる。そのため、各電池セルにおいて、冷媒通路とセル端面との間の離間距離を同一にしつつ、各電池セルで冷媒効果の差を持たせることができる。
第4の手段は、前記複数の電池セルに対向する対向面内において、前記冷媒流通方向に直交する方向に通路断面積が狭くなっている。
冷媒通路は、複数の電池セルに対向する対向面内において、冷媒流通方向に直交する方向に通路断面積が狭くなっている。これにより、複数の電池セルを横切る方向で通路断面積を狭くすることができない場合にも通路断面積を異ならせることができる。
第5の手段は、前記冷却器は、前記冷媒通路の通路断面積を可変とする断面積可変部材を有し、前記断面積可変部材は、温度に応じて変形可能であり、高温の前記電池セルに対応する通路領域の通路断面積が狭く、低温の前記電池セルに対応する通路領域の通路断面積が広くなるように変形する。
冷媒流通方向において通路断面積が異なっていると、通路断面積が狭くなる箇所では圧損の懸念が生じる。また、電池ユニットに流れる電流が小さいときには、各電池セルの発熱量が小さく、空気冷却による電池セル間の温度差が生じにくい。このような場合には、冷却器への放熱を場所によって変える必要があまりない。
そこで、冷却器に冷媒通路の通路断面積を可変とする断面積可変部材を設ける。断面積可変部材は、高温の電池セルに対応する通路領域の通路断面積が狭く、低温の電池セルに対応する通路領域の通路断面積が広くなるように変形する。これにより、電池セルの間で温度差が生じる状態では、空気冷却の度合いが小さく電池セルの温度が高温になった電池セルに対応する通路領域の通路断面積が相対的に狭くなる。一方、温度差が生じない、つまり高温の電池セルが生じない場合には、冷媒流通方向において全ての電池セルが低温になり、冷媒流通方向において通路断面積が変化しない。そのため、冷媒の速度を変化させる必要性と圧損とのバランスをとることができる。
第6の手段は、前記電池ブロックと前記冷却器とを有する複数の電池モジュールを備え、前記複数の電池モジュールは、各々の前記冷却器の前記冷媒通路が直列に接続されるように構成されており、前記複数の電池モジュールのうち上流側の前記電池モジュールの平均通路断面積は、前記複数の電池モジュールのうち下流側の前記電池モジュールの平均通路断面積より大きい。
複数の電池モジュールの各冷媒通路を直列に接続した場合、上流側の電池モジュールに比べて下流側の電池モジュールの冷媒の温度が上昇し、冷却効率が下がることになる。そこで、上流側の電池モジュールの平均通路断面積を下流側の電池モジュールの平均通路断面積より大きくしてある。これにより、下流側の電池モジュールの冷媒の平均速度が上流側の電池モジュールの平均速度より速くなる。そのため、電池モジュール間での温度のばらつきを抑制できる。
第7の手段は、前記電池ブロックと前記冷却器とを有する複数の電池モジュールを備え、前記複数の電池モジュールは、各々の前記冷却器の前記冷媒通路が直列に接続されるように構成されており、前記複数の電池モジュールのうち上流側の前記電池モジュールの通路断面積が小さくなっている領域の冷媒流通方向の寸法は、前記複数の電池モジュールのうち下流側の前記電池モジュールの通路断面積が小さくなっている領域の冷媒流通方向の寸法より小さい。
複数の電池モジュールの各冷媒通路を直列に接続した場合、上流側の電池モジュールに比べて下流側の電池モジュールの冷媒の温度が上昇し、冷却効率が下がることになる。そこで、上流側の電池モジュールの通路断面積が小さくなっている領域の冷媒流通方向の寸法が、下流側の電池モジュールの通路断面積が小さくなっている領域の冷媒流通方向の寸法より小さくしてある。これにより、下流側の電池モジュールの冷媒への放熱が大きくなる領域が上流側の電池モジュールより長くなる。そのため、電池モジュール間での温度のばらつきを抑制できる。
電池ユニットの概略構成図 電池モジュールの概略構成図 従来の電池モジュールにおける放熱状態を示す図 本実施形態の電池モジュールにおける冷媒速度を示す図 本実施形態の電池モジュールにおける放熱状態を示す図 他の実施形態における電池モジュールの概略構成図 他の実施形態における電池モジュールの概略構成図 他の実施形態における電池モジュールの概略構成図 他の実施形態における電池モジュールの概略構成図 他の実施形態における電池モジュールの概略構成図 他の実施形態における電池モジュールの概略構成図
<実施形態>
以下、本発明を具体化した実施形態を図面に基づいて説明する。本実施形態では、例えば電気自動車やPHV、HVのようなモータを駆動源として走行する車両において、当該車両のモータ等の各種機器に電力を供給する車載電源である電池ユニットとして具体化するものとしている。なお、エンジンを駆動源として走行する車両の車載電源である電池ユニットとして具現化してもよい。また、以下の説明において、図2の上側、つまり電池ブロック30側を上側とし、図2の下側、つまり冷却器40側を下側とする。また、図2の左側、つまり冷媒の流れる方向の上流側を前側とし、図2の右側、つまり下流側を後側とする。そして、上下方向及び前後方向に直交する方向を幅方向とする。
図1は、電池ユニット10の概略構成図である。電池ユニット10は、複数の電池モジュール20を有している。各電池モジュール20は、複数の電池セル31を並べて設けられる電池ブロック30と、複数の電池セル31に各々接触した状態で設けられた冷却器40とを備えている。
複数の電池モジュール20は、各電池モジュール20の冷却器40における冷媒通路41が直列に接続されるように構成されている。そして、冷媒通路41が直列に接続された複数の電池モジュール20の列同士が、互いに並列になるように配置されている。また、冷媒通路41には、冷却機構60から冷媒が供給されている。
冷却機構60は、冷媒を循環させる循環ポンプ61と、冷媒から放熱させる放熱部62とを備えている。循環ポンプ61は、冷媒である冷却水を、冷却器40内の冷媒通路41及び放熱部62を含む循環経路で循環させる。放熱部62は、例えばファンによって冷媒から放熱させるラジエータやチラーである。なお、冷媒は、液体や気体等の流体であればよい。
循環ポンプ61と放熱部62は、制御装置70により制御されて駆動される。制御装置70は、CPU、ROM、RAM、入出力インターフェース等を含むマイコンにより構成されている。また、制御装置70には、その上位の制御装置である上位ECU等が接続されている。制御装置70は、CAN等の通信ネットワークにより上位ECU等に接続されて相互に通信可能となっており、各種データが互いに共有できるものとなっている。
制御装置70は、電池セル31の表面に設けられた温度センサ71で検出した電池セル31の温度に基づいて、循環ポンプ61及び放熱部62を駆動する。なお、温度センサ71は、各電池モジュール20に設けられていることが望ましい。また、温度センサ71によって検出された電池セル31の温度だけでなく、電池ユニット10の充電電流や放電電流に基づいて、循環ポンプ61及び放熱部62を駆動してもよい。
電池ブロック30は、複数の電池セル31により構成されている。各電池セル31は、リチウムイオン蓄電池等の二次電池である。各電池セル31は、積層方向、つまり前後方向に複数(本実施形態では6個)並べることで電池ブロック30を構成している。また、各電池セル31は、前後方向の厚さが薄い直方体状をしている。各電池セル31には、その上面に端子32が設けられている。各電池セル31は、その端子32が隣接する電池セル31に対して直列又は並列に接続されている。なお、電池セル31は、直方体状ではなく円筒状であってもよい。
複数の電池セル31に各々対向した状態で、電池ブロック30の下側に冷却器40が設けられている。つまり、電池ブロック30の下面に冷却器40が接触している。なお、各電池セル31は冷却器40と直接接触していなくてもよい。この場合には、各電池セル31から冷却器40に伝熱可能になっていればよい。つまり、各電池セル31と冷却器40とは熱的に接していればよい。
冷却器40は、複数の電池セル31を横切る方向、つまり前後方向に冷媒を流す冷媒通路41を有している。各電池モジュール20の冷媒通路41は、前後方向に隣接する電池モジュール20の冷媒通路41に繋ぎ配管42を介して直列に接続されている。繋ぎ配管42は、前後方向に隣接する冷却器40の冷媒通路41同士を接続している。繋ぎ配管42は、冷媒通路41との接続部分では、冷却器40と同じ幅を有しており、途中で一度通路が狭くなって、再び冷媒通路41の幅まで広がるようになっている。なお、繋ぎ配管42はその全長に亘って冷却器40と同じ幅になっていてもよい。
図2は、電池モジュール20の概略断面図である。電池モジュール20の冷却器40は、アルミ等の金属製であって、前後方向に開口する中空の角筒状になっている。冷却器40は、上側(電池ブロック30側)の第1壁部51と、第1壁部51に対向する下側の第2壁部52とを有しており、その間の中空の部分が、冷媒が流れる冷媒通路41になっている。冷却器40の幅方向の寸法は、電池ブロック30の幅方向の寸法と同じ又は若干大きくなっている。また、冷却器40の前後方向の寸法は、電池ブロック30の前後方向の寸法と同じ又は若干大きくなっている。つまり、冷却器40の電池ブロック30と接する上面は、電池ブロック30の下面よりも大きくなっている。これにより、各電池セル31の下面がそれぞれ全面で冷却器40に接するようになっている。
冷却器40の前端部(通路入口53側)と後端部(通路出口54側)には、繋ぎ配管42を接続するための繋ぎ部43が設けられている。繋ぎ部43は、繋ぎ配管42の内側に入り込むようになっている。なお、繋ぎ部43が繋ぎ配管42の外側を覆い、繋ぎ配管42が繋ぎ部43の内側に入り込むようになっていてもよい。
冷媒通路41において、通路入口53と通路出口54との間の中間部55で、通路断面積が狭く(小さく)なっている。冷媒通路41の中間部55において、第2壁部52に突出部56が設けられている。突出部56が設けられていることで、冷媒通路41の中間部55の通路断面積が狭められている。これにより、冷媒通路41において、第2壁部52側に設けられた突出部56により、冷媒が第1壁部51側、つまり電池ブロック30側を流れることになる。なお、通路断面積とは、冷媒の流れる方向(前後方向)に直交する面の面積である。
突出部56は、冷媒通路41の中央側に向かって突出寸法が大きくなるようになっている。具体的には、突出部56は、幅方向の全域に亘って設けられており、下流側に向けて徐々に突出量が大きくなり、かつ頂部を超えた後に徐々に突出量が小さくなるような円弧状の突出形状を有している。突出部56の冷媒通路41側の面は曲面になっている。突出部56は、その前後方向の寸法L1は、電池ブロック30の前後方向の寸法より小さくなっている。具体的には、突出部56は、電池ブロック30の前端の電池セル31Aと後端の電池セル31Bのある領域には設けられていないことが望ましい。また、突出部56の最大突出寸法H1は、圧損が大きくなりすぎない程度となっていることが望ましい。
次に、本実施形態のように突出部56を設けた場合の効果について説明する。図3は、従来の電池モジュールにおける放熱状態を示す図である。図3の矢印は熱の伝わり方を示しており、矢印が大きいほど従来の電池モジュールから放熱される量が大きいことを示している。
従来の電池モジュールでは、冷却器Cに突出部が設けられておらず、その冷媒通路の通路断面積が前後方向の全長に亘って同じである点が本実施形態と異なっている。電池ブロック30等の構成については、従来の電池モジュールは本実施形態と同様である。
充電時や放電時、電池ブロック30に電流が流れると、各電池セル31の温度が上昇する。各電池セル31の温度が上昇し、周囲(大気)温度と電池セル31の温度とに差が生じると、各電池セル31から大気に放熱される。この際、前端の電池セル31Aでは、その前側の外表面からも放熱できる。同様に、後端の電池セル31Bでも、その後側の外表面からも放熱できる。つまり、外側(前端及び後端)の電池セル31A,31Bは他の電池セル31よりも空気冷却の度合いが大きくなる。そして、外側の電池セル31A,31Bに隣接する電池セル31は、外側の電池セル31A,31Bに伝熱して、その温度がある程度下がる。つまり、大気への放熱により、電池ブロック30の外側の電池セル31の温度が最も下がり、中間部の電池セル31Cが最も高くなる。なお、以下の説明では、大気への放熱(空気冷却)の度合い及び空気冷却に伴う隣接セルへの伝熱の度合いを合わせて空気冷却の度合いとする。
一方、冷却器Cには、各電池セル31が同じように接している。また、冷却器Cの冷媒通路内での速度等の放熱条件の違いはない。そのため、各電池セル31からの冷却器Cへの放熱量はほぼ同じになる。
したがって、従来では、各電池セル31の空気冷却の度合いの違いが、そのまま各電池セル31からの放熱量の違いになる。各電池セル31からの放熱量が異なることで、各電池セル31の温度が異なることになる。具体的には、中間部の電池セル31Cの温度が高く、外側の電池セル31A,31Bの温度が低くなる。そして、温度が高い中間部の電池セル31Cに合わせて電流制限を実施するため、電池モジュール全体の充電電流や放電電流に制限がかかる。また、中間部の電池セル31Cは、温度が高くなるため劣化が促進される。この中間部の電池セル31Cの劣化に合わせて電池ブロック30の使用範囲が定まるため、全ての電池セル31の使用範囲が狭くなる。
一方、本実施形態では、冷媒通路41内の通路断面積が中間部55で狭くなっている。図4は、本実施形態の冷媒通路41における冷媒速度を示す図である。図4の矢印は、冷媒の速度を示しており、サイズが大きいほど冷媒の速度が速いことを示している。
本実施形態では、冷媒通路41の通路断面積が場所により異なることから、冷媒通路41において冷媒の速度が場所により異なっている。つまり、冷媒通路41において、冷媒の速度が場所により変化している。具体的には、通路断面積が狭くなるほど、冷媒の速度が速くなっている。通路断面積の狭い中間部55では、通路断面積の広い通路入口53付近や通路出口54付近に比べて冷媒の速度が速くなっている。
図5は、本実施形態の電池モジュール20における放熱状態を示す図である。図5の矢印は、図3の矢印と同様に、熱の伝わり方を示しており、矢印が大きいほど従来の電池モジュール20から放熱される量が大きいことを示している。
充電や放電時、電池ブロック30に電流が流れると、各電池セル31の温度が上昇する。各電池セル31の温度が上昇し、周囲(大気)温度と電池セル31の温度とに差が生じると、各電池セル31から大気に放熱される。この際、従来と同様、外側の電池セル31A,31Bは他の電池セル31よりも空気冷却の度合いが大きくなる。そのため、電池ブロック30の外側のほど放熱され、中間部の電池セル31Cで最も熱がこもる。
一方、各電池セル31から冷却器40への放熱は、場所により冷媒通路41の通路断面積が異なることから、場所により放熱量が異なっている。具体的には、通路断面積が狭く冷媒の速度が速い領域ほど、冷媒への放熱量が大きくなる。そのため、通路断面積が狭い領域に対応する中間部の電池セル31Cから冷却器40への放熱量が促進される。また、突出部56により通路断面積が狭くなっているが、突出部56は、第2壁部52側に設けられており、各電池セル31から冷媒への放熱を阻害しない。つまり、突出部56が第2壁部52側に設けられていることで、各電池セル31において、冷媒通路41とセル端面(下面)との間の離間距離を同一にしつつ、各電池セル31で冷媒効果の差を持たせることができる。
したがって、空気冷却度合いの大きい外側の電池セル31A,31Bよりも、空気冷却度合いの小さい中間部の電池セル31Cの方が冷却器40への放熱量が大きくなる。つまり、空気冷却の度合いの小さい電池セル31(中間部の電池セル31C)を横切る通路領域での冷媒の速度が、空気冷却度合いの大きい電池セル31(外側の電池セル31A,31B)を横切る通路領域での冷媒の速度より速くなる。そして、中間部の電池セル31Cでは、外側の電池セル31A,31Bに比べて冷却器40への放熱が促進される。
また、外側の電池セル31A,31Bと中間部の電池セル31Cとの空気冷却度合いの差分が、外側の電池セル31A,31Bと中間部の電池セル31Cとの冷却器40への放熱量の違いと同じぐらいであることが望ましい。これにより、各電池セル31間において、空気冷却の度合いと冷却器40への放熱量との合計が同じくらいになる。そのため、各電池セル31が均温化され、一部の高温の電池セル31により電流や使用範囲が制限されることを抑制できる。
そして、本実施形態のように複数の電池モジュール20の冷媒通路41が直列に接続されている場合には、上流側の電池モジュール20に比べて下流側の電池モジュール20の冷媒の温度が上昇する。そのため、電池ブロック30と冷媒との温度差が小さくなり、上流側に比べて下流側の冷却効率が下がることになる。
そこで、上流側の電池モジュール20の冷媒通路41の平均通路断面積は、下流側の電池モジュール20の冷媒通路41の平均通路断面積より大きくなっていることが望ましい。具体的には、突出部56の最大突出寸法H1が、上流側の方が下流側の方よりも小さくなっている。これにより、下流側の電池モジュール20の冷媒の平均速度が上流側の電池モジュール20の平均速度より速くなる。そのため、上流側の電池モジュール20と下流側の電池モジュール20の温度を同じぐらいにすることができる。また、冷媒の温度が上がって冷却効率が下がっていても、突出部56の最大突出寸法H1が大きくなることで、冷却器40への放熱効率の差を確保でき、下流側の電池モジュール20内での温度差を小さくできる。なお、上流側の電池モジュール20の冷媒通路41の通路断面積よりも下流側の電池モジュール20の通路断面積を全体的に小さくしてもよい。つまり、冷媒通路41の同じ位置に相当する場所での通路断面積が上流側よりも下流側が小さくなるようにしてもよい。
また、電池モジュール20の通路断面積が小さくなっている領域の前後方向の寸法L1は、複数の電池モジュール20のうち下流側の電池モジュール20の通路断面積が小さくなっている領域の前後方向の寸法L1より小さいことが望ましい。具体的には、突出部56が設けられている領域の前後方向の寸法L1は、上流側の方が下流側の方よりも小さくなっている。これにより、下流側の電池モジュール20の冷媒への放熱が大きくなる領域が上流側の電池モジュール20より長くなる。そのため、上流側の電池モジュール20と下流側の電池モジュール20の温度を同じぐらいにすることができる。
以上詳述した本実施形態によれば、以下の優れた効果が得られる。
電池ユニット10の冷却器40において、冷媒通路41は、冷媒流通方向(前後方向)で通路断面積が異なるように設けられており、空気冷却の度合いの小さい電池セル31を横切る通路領域では、空気冷却度合いの大きい電池セル31を横切る通路領域よりも通路断面積が小さくなっている。これにより、空気冷却の度合いの小さい電池セル31から冷却器40への放熱量が増えることで、各電池セル31の温度のばらつきを抑制できる。
空気冷却の度合いが小さく熱がこもりやすい中間部の電池セル31Cでの冷却器40への放熱が促進される。そのため、中間部の電池セル31Cでの冷却器40への放熱量が増えることで、各電池セル31の温度のばらつきを抑制できる。
冷媒通路41において、第2壁部52側に設けられた突出部56により、冷媒が第1壁部51側、つまり電池ブロック30側を流れることになる。そのため、各電池セル31において、冷媒通路41とセル端面との間の離間距離を同一にしつつ、各電池セル31で冷媒効果の差を持たせることができる。
複数の電池モジュール20の各冷媒通路41を直列に接続した場合、上流側の電池モジュール20に比べて下流側の電池モジュール20の冷媒の温度が上昇し、冷却効率が下がることになる。そこで、上流側の電池モジュール20の平均通路断面積を下流側の電池モジュール20の平均通路断面積より大きくしてある。これにより、下流側の電池モジュール20の冷媒の平均速度が上流側の電池モジュール20の平均速度より速くなる。そのため、電池モジュール20間での温度のばらつきを抑制できる。
複数の電池モジュール20の各冷媒通路41を直列に接続した場合、上流側の電池モジュール20に比べて下流側の電池モジュール20の冷媒の温度が上昇し、冷却効率が下がることになる。そこで、上流側の電池モジュール20の通路断面積が小さくなっている領域の前後方向の寸法L1が、下流側の電池モジュール20の通路断面積が小さくなっている領域の前後方向の寸法L1より小さくしてある。これにより、下流側の電池モジュール20の冷媒への放熱が大きくなる領域が上流側の電池モジュール20より長くなる。そのため、電池モジュール20間での温度のばらつきを抑制できる。
<他の実施形態>
本発明は、上記実施形態に限定されず、例えば以下のように実施してもよい。ちなみに、以下の別例の構成を、上記実施形態の構成に対して、個別に適用してもよく、また、任意に組み合わせて適用してもよい。
・図6は、他の実施形態における電池モジュール120の概略構成図である。図6では、通路断面積を断面積可変部材156により変化させている。前後方向において通路断面積が異なっていると、通路断面積が狭くなる箇所では圧損の懸念が生じる。また、電池ユニット10に流れる電流が小さいときには、各電池セル31の発熱量が小さく、空気冷却による電池セル31間の温度差が生じにくい。このような場合には、各電池セル31から冷却器40への放熱度合いを場所によって変える必要があまりない。
そこで、冷却器40に冷媒通路141の通路断面積を可変とする断面積可変部材156を設ける。断面積可変部材156は、例えば、形状記憶合金等の温度によって記憶した形状に変化する感温材料よりなる。断面積可変部材156は、高温になる中間部の電池セル31Cに対応する通路領域(中間部155)の通路断面積が狭く、低温になる外側の電池セル31A,31Bに対応する通路領域の通路断面積が広くなるように変形する。具体的には、断面積可変部材156は、第2壁部52に設けられており、冷却器40と接する各電池セル31の温度に応じて記憶された形状に突出して通路断面積を部分的に狭くする。
これにより、電池セル31の間で温度差が生じる状態では、空気冷却の度合いが小さく、温度が高温になった中間部の電池セル31Cに対応する通路領域(中間部155)の通路断面積が相対的に狭くなる。一方、温度差が生じない、つまり一部の電池セル31が高温にならない場合には、前後方向において全ての電池セル31が低温になり、前後方向において通路断面積が変化しない。そのため、必要な場合のみ部分的に速度を変化させ、不必要な場合には、圧損が生じることを抑制できる。
・通路断面積を狭くするための形状は、他の形状であってもよい。例えば、図7に示すように、通路断面積を狭くする突出部256Aは、直線状になっていてもよい。直線状とすることで、成形が容易になる。また、図8に示すように、各電池セル31に対応する位置毎に、通路断面積が異なるようになっていてもよい。具体的には、冷媒通路241における各電池セル31に対応する領域毎に第1壁部51と突出部256Bとの間の寸法が異なるようになっていてもよい。これにより、各電池セル31の放熱量を調整しやすくなる。また、図9に示すように、圧損を低減するために、突出部256Cの角部は、R形状となっていてもよい。
・図10に示すように、冷却器340の冷媒通路341は、複数の電池セル31に対向する対向面内において、冷媒流通方向(前後方向)に直交する方向に部分的に通路断面積が狭くなっていてもよい。具体的には、冷媒通路341が中間部355において幅方向に狭くなるようになっている。これにより、上下方向で通路断面積を狭くすることができない場合にも通路断面積を変化させることができる。なお、幅方向で最も狭くなる位置でも、全ての電池セル31が冷却器340に接するように、冷却器340の幅が電池ブロック30の幅よりも大きいことが望ましい。また、冷媒通路341内に翼断面状の障害物を設けて、幅方向に通路断面積を狭くするようにしてもよい。複数の電池セル31を横切る方向(前後方向)において通路断面積を狭くした上で、直交する方向(幅方向)においても通路断面積を異ならせることができる。
・図11に示すように、電池モジュール20の近くに、ジャンクションボード、DC/DCコンバータ等の熱源Hがあって、一部の電池セル31がその熱源Hから受熱する場合には、冷却器440の冷媒通路441の熱源H付近の通路断面積が狭くなるようにしてもよい。
・上記実施形態では、複数の電池モジュール20を直列に接続して電池ユニット10を構成していたが、1つの電池モジュール20で電池ユニット10を構成してもよい。また、各電池モジュール20を並列に接続して電池ユニット10を構成してもよい。
・上記実施形態では、複数の電池モジュール20の冷媒通路41を直列に接続し、上流側の電池モジュール20を通過した冷媒が下流側の電池モジュール20に流れ込むようになっていたが、各電池モジュール20に冷媒を供給、排出するようにしてもよい。例えば、列状に並べられた複数の電池モジュール20のそれぞれに冷媒を供給する供給管を設け、供給管から各冷媒通路41に冷媒を供給する。そして、各冷媒通路41から排出された冷媒を流す排出管を設け、排出管から循環ポンプ61に冷媒を流すようにしてもよい。
10…電池ユニット、30…電池ブロック、31…電池セル、40…冷却器、41…冷媒通路。

Claims (7)

  1. 複数の電池セル(31)を並べて設けられる電池ブロック(30)と、
    前記複数の電池セルに各々対向する状態で設けられ、前記複数の電池セルを横切る方向に冷媒を流す冷媒通路(41,141,241,341)を有する冷却器(40,140,240,340)と、を備え、
    前記冷媒通路は、冷媒流通方向において通路断面積が異なるように設けられており、空気冷却の度合いの小さい電池セル(31C)を横切る通路領域では、空気冷却の度合いの大きい電池セル(31A,31B)を横切る通路領域よりも通路断面積が小さい電池ユニット(10)。
  2. 前記冷媒通路において、通路入口(53)と通路出口(54)との間の中間部(55,155,355)で前記通路断面積が小さくなっている請求項1に記載の電池ユニット。
  3. 前記冷却器は、前記電池ブロック側の第1壁部(51)と、前記第1壁部に対向する第2壁部(52)とを有し、それらの間に前記冷媒通路が形成されており、
    前記第2壁部に、前記第1壁部に向けて突出する突出部(56,256)が設けられ、その突出部により通路断面積が狭められている請求項1又は請求項2に記載の電池ユニット。
  4. 前記冷媒通路は、前記複数の電池セルに対向する対向面内において、前記冷媒流通方向に直交する方向に通路断面積が狭くなっている請求項1〜請求項3のいずれか一項に記載の電池ユニット。
  5. 前記冷却器は、前記冷媒通路の通路断面積を可変とする断面積可変部材(156)を有し、
    前記断面積可変部材は、温度に応じて変形可能であり、高温の前記電池セルに対応する通路領域の通路断面積が狭く、低温の前記電池セルに対応する通路領域の通路断面積が広くなるように変形する請求項1〜請求項4のいずれか一項に記載の電池ユニット。
  6. 前記電池ブロックと前記冷却器とを有する複数の電池モジュール(20)を備え、
    前記複数の電池モジュールは、各々の前記冷却器の前記冷媒通路が直列に接続されるように構成されており、
    前記複数の電池モジュールのうち上流側の前記電池モジュールの平均通路断面積は、前記複数の電池モジュールのうち下流側の前記電池モジュールの平均通路断面積より大きい請求項1〜請求項5のいずれか一項に記載の電池ユニット。
  7. 前記電池ブロックと前記冷却器とを有する複数の電池モジュール(20)を備え、
    前記複数の電池モジュールは、各々の前記冷却器の前記冷媒通路が直列に接続されるように構成されており、
    前記複数の電池モジュールのうち上流側の前記電池モジュールの通路断面積が小さくなっている領域の冷媒流通方向の寸法は、前記複数の電池モジュールのうち下流側の前記電池モジュールの通路断面積が小さくなっている領域の冷媒流通方向の寸法より小さい請求項1〜請求項5のいずれか一項に記載の電池ユニット。
JP2019173441A 2019-09-24 2019-09-24 電池ユニット Pending JP2021051883A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019173441A JP2021051883A (ja) 2019-09-24 2019-09-24 電池ユニット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019173441A JP2021051883A (ja) 2019-09-24 2019-09-24 電池ユニット

Publications (1)

Publication Number Publication Date
JP2021051883A true JP2021051883A (ja) 2021-04-01

Family

ID=75156290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019173441A Pending JP2021051883A (ja) 2019-09-24 2019-09-24 電池ユニット

Country Status (1)

Country Link
JP (1) JP2021051883A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114122562A (zh) * 2022-01-25 2022-03-01 河南工学院 一种大容量锂电池的防爆保护结构
JP2022550024A (ja) * 2020-08-24 2022-11-30 エルジー エナジー ソリューション リミテッド 電池モジュールおよびこれを含む電池パック
CN116632428A (zh) * 2023-06-16 2023-08-22 广州市型腔模具制造有限公司 一种新能源汽车电池托盘及一体成型铸造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042647A (ja) * 2005-07-29 2007-02-15 Samsung Sdi Co Ltd 電池モジュール
JP2010262870A (ja) * 2009-05-08 2010-11-18 Sanyo Electric Co Ltd バッテリシステム
JP2012069725A (ja) * 2010-09-24 2012-04-05 Toyota Motor Corp 冷却装置
JP2012084314A (ja) * 2010-10-08 2012-04-26 Hino Motors Ltd 電装収納箱の内部冷却構造
JP2018170211A (ja) * 2017-03-30 2018-11-01 株式会社東芝 組電池、組電池モジュール

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042647A (ja) * 2005-07-29 2007-02-15 Samsung Sdi Co Ltd 電池モジュール
JP2010262870A (ja) * 2009-05-08 2010-11-18 Sanyo Electric Co Ltd バッテリシステム
JP2012069725A (ja) * 2010-09-24 2012-04-05 Toyota Motor Corp 冷却装置
JP2012084314A (ja) * 2010-10-08 2012-04-26 Hino Motors Ltd 電装収納箱の内部冷却構造
JP2018170211A (ja) * 2017-03-30 2018-11-01 株式会社東芝 組電池、組電池モジュール

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022550024A (ja) * 2020-08-24 2022-11-30 エルジー エナジー ソリューション リミテッド 電池モジュールおよびこれを含む電池パック
JP7378876B2 (ja) 2020-08-24 2023-11-14 エルジー エナジー ソリューション リミテッド 電池モジュールおよびこれを含む電池パック
CN114122562A (zh) * 2022-01-25 2022-03-01 河南工学院 一种大容量锂电池的防爆保护结构
CN114122562B (zh) * 2022-01-25 2022-04-19 河南工学院 一种大容量锂电池的防爆保护结构
CN116632428A (zh) * 2023-06-16 2023-08-22 广州市型腔模具制造有限公司 一种新能源汽车电池托盘及一体成型铸造方法
CN116632428B (zh) * 2023-06-16 2023-11-07 广州市型腔模具制造有限公司 一种新能源汽车电池托盘及一体成型铸造方法

Similar Documents

Publication Publication Date Title
US8785024B2 (en) Combination of heat pipe and louvered fins for air-cooling of Li-Ion battery cell and pack
CN215299360U (zh) 用于电池热调节的热管理***和热交换器
JP2021051883A (ja) 電池ユニット
US11223081B2 (en) Serpentine counter flow cold plate for a vehicle battery module
US8833435B2 (en) Microscale cooling apparatus and method
JP6168070B2 (ja) 燃料電池用給気を冷却する方法およびシステム
US20100147488A1 (en) Heat exchanger for temperature control of vehicle batteries
US10801789B2 (en) Heat exchangers with improved fluid distribution
JP2013120054A (ja) 車両用熱交換器
US11254236B2 (en) High performance uniform temperature cold plate
EP1341995A1 (en) High/low temperature water cooling system
US9509018B2 (en) Expanded battery cooling fin
US10690233B2 (en) Bypass control for U-flow transmission oil coolers
US20080041559A1 (en) Heat exchanger for vehicle
US20150380780A1 (en) Battery system and temperature controlling unit thereof
JP4891617B2 (ja) 水冷式ヒートシンク
JP5145981B2 (ja) 部品冷却構造
US10935330B2 (en) Heat exchangers capable of bidirectional fluid flow
CN111710933B (zh) 电池包及具有其的车辆
KR102392920B1 (ko) 에너지 저장 유닛의 냉각 모듈
JP4085559B2 (ja) 冷却流体冷却型回路装置
JP2002009477A (ja) 電動機制御用パワーモジュール冷却装置
US20210278149A1 (en) Heat exchanger and method of operating a heat exchanger
CN118103240A (zh) 具有至少两个具有不同基面的热交换器的冷却装置、具有冷却装置的机动车
CN111554851B (zh) 电池包及其散热方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240130