JP2021050385A - Vapor deposition apparatus - Google Patents

Vapor deposition apparatus Download PDF

Info

Publication number
JP2021050385A
JP2021050385A JP2019173852A JP2019173852A JP2021050385A JP 2021050385 A JP2021050385 A JP 2021050385A JP 2019173852 A JP2019173852 A JP 2019173852A JP 2019173852 A JP2019173852 A JP 2019173852A JP 2021050385 A JP2021050385 A JP 2021050385A
Authority
JP
Japan
Prior art keywords
vapor deposition
gas
deposition substrate
guide
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019173852A
Other languages
Japanese (ja)
Other versions
JP7030087B2 (en
Inventor
悠介 柏谷
Yusuke Kashitani
悠介 柏谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Technologies Co Ltd
Original Assignee
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Technologies Co Ltd filed Critical Osaka Titanium Technologies Co Ltd
Priority to JP2019173852A priority Critical patent/JP7030087B2/en
Publication of JP2021050385A publication Critical patent/JP2021050385A/en
Application granted granted Critical
Publication of JP7030087B2 publication Critical patent/JP7030087B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide an efficient vapor deposition of an evaporation source gas on an outer peripheral surface of a rotor type vapor deposition substrate.SOLUTION: A rotor type vapor deposition substrate 30 is arranged facing a gas introducing inlet 23 for introducing an evaporation source gas from a crucible 20 arranged in a deposition chamber 10 to a deposition chamber 20. In order to guide the evaporation source gas introduced from a gas introducing inlet 22 of the crucible 20 to the deposition chamber 10 to an outer peripheral surface of the vapor deposition substrate 30, a gas guide 40 reaching the outer peripheral surface of the vapor deposition substrate 30 from the gas introducing inlet 22 is arranged. A part of the outer peripheral surface of the vapor deposition substrate 30 is engaged from an outlet side of the gas guide 40 to within the gas guide 40 while leaving a gap between the part of the outer peripheral surface of the vapor deposition substrate and the gas guide 40.SELECTED DRAWING: Figure 1

Description

本発明は、リチウムイオン二次電池の負極材として使用される酸化珪素の製造等に使用される蒸着装置に関する。 The present invention relates to a thin-film deposition apparatus used for manufacturing silicon oxide used as a negative electrode material for a lithium ion secondary battery.

酸化珪素(SiOx)は電気容量が大きく、優れたリチウムイオン二次電池用負極材であることが知られている。この酸化珪素系負極材は、酸化珪素粉末、導電助剤及びバインダーを混合してスラリー化したものを、銅箔等からなる集電体上に塗布し乾燥させることにより、薄膜状の負極とされる。ここにおける酸化珪素粉末は、二酸化珪素と珪素との混合物を加熱して生成したSiOガスを、冷却された蒸着基体上に析出堆積させた後、その析出物を細かく破砕する蒸着析出法により得られる。蒸着析出法で製造される酸化珪素粉末は、非晶質の部分を多く含み、充放電時にLiイオンが均一に拡散するため、サイクル特性等の電池特性を向上させることが知られている。 Silicon oxide (SiOx) has a large electric capacity and is known to be an excellent negative electrode material for a lithium ion secondary battery. This silicon oxide-based negative electrode material is made into a thin-film negative electrode by mixing silicon oxide powder, a conductive auxiliary agent, and a binder to form a slurry, which is applied onto a current collector made of copper foil or the like and dried. To. The silicon oxide powder here is obtained by a vapor deposition deposition method in which a SiO gas generated by heating a mixture of silicon dioxide and silicon is deposited and deposited on a cooled vapor deposition substrate, and then the precipitate is finely crushed. .. The silicon oxide powder produced by the vapor deposition deposition method contains a large amount of amorphous portions, and Li ions diffuse uniformly during charging and discharging, so that it is known to improve battery characteristics such as cycle characteristics.

酸化珪素系負極材に特徴的な問題点として初期効率の低さがある。これは充放電に寄与しない不可逆容量となるLi化合物が初回充電時に生成されることにより、初回放電容量が顕著に減少する現象であり、これを解消する手法として、酸化珪素粉末にLイオンを添加するLiドープが知られている。最近では、Si、O及びLiを含有し、そのSiの一部がSi単体として存在し、Liが珪酸リチウムとして存在するSi・珪酸リチウム含有原料を減圧下で加熱することにより、SiOガスとLiガスを同時に発生させ、これを蒸着基体上に析出させることにより、Li含有酸化珪素を直接的に製造する方法も開発されている(特許文献1)。 A characteristic problem of silicon oxide-based negative electrode materials is low initial efficiency. This is a phenomenon in which the initial discharge capacity is significantly reduced due to the generation of a Li compound having an irreversible capacity that does not contribute to charging and discharging at the time of initial charging. As a method for solving this phenomenon, L ions are added to the silicon oxide powder. Li dope is known. Recently, SiO gas and Li are generated by heating a Si / lithium silicate-containing raw material containing Si, O and Li, in which a part of Si exists as a single Si, and Li exists as lithium silicate under reduced pressure. A method for directly producing Li-containing silicon oxide by simultaneously generating gas and depositing it on a vapor deposition substrate has also been developed (Patent Document 1).

そして、このような酸化珪素乃至酸化珪素粉末を工業的に安価に製造する方法の一つとして、二酸化珪素と珪素との混合物を加熱して生成したSiOガスを、冷却された蒸着基体上に析出させながら、その析出物をブレードで蒸着基体上から機械的に削り取って回収する技術が、特許文献2及び3により提示されている。 Then, as one of the methods for industrially and inexpensively producing such silicon oxide or silicon oxide powder, SiO gas produced by heating a mixture of silicon dioxide and silicon is deposited on a cooled thin-film deposition substrate. Patent Documents 2 and 3 present techniques for mechanically scraping the precipitate from the vapor-deposited substrate with a blade and recovering the precipitate.

この技術においては、蒸着源ガスであるSiOガスが導入される析出室内に、冷却された蒸着基体が、前記SiOガスの導入口に表面を対向させて配置されることにより、前記蒸着基体の表面にSiOガスを析出させると共に、その析出物をブレードで掻き取って回収することにより、SiO析出物からSiO粉末が直接的且つ連続的に製造される。なかでも、特許文献3に記載されているように、蒸着基体として回転体を使用すると、特に高い粉末製造効率が得られる。更に、特許文献3においては、析出室内に導入されるSiOガスを、誘導管と称するガスガイドを用いて回転体の表面近傍まで集中的に誘導することにより、回転体の表面における蒸着効率を高めることも行われている。 In this technique, the surface of the vapor-deposited substrate is formed by arranging the cooled vapor-deposited substrate facing the introduction port of the SiO gas in the precipitation chamber into which the SiO gas, which is the vapor deposition source gas, is introduced. By depositing SiO gas in the film and scraping the precipitate with a blade to recover it, SiO powder is directly and continuously produced from the SiO precipitate. Among them, as described in Patent Document 3, when a rotating body is used as the vapor deposition substrate, particularly high powder production efficiency can be obtained. Further, in Patent Document 3, the SiO gas introduced into the precipitation chamber is intensively guided to the vicinity of the surface of the rotating body by using a gas guide called an induction tube, thereby increasing the vapor deposition efficiency on the surface of the rotating body. Things are also being done.

しかしながら、特許文献3に示されたように、回転体形式の蒸着基体を使用しても、また、誘導管と称するガスガイドを用いて、蒸着基体の表面近傍までSiOガスを誘導したとしても、析出室内に導入されたSiOガスの多くが析出室の内壁面に付着して堆積する。このため、蒸着基体の表面における蒸着効率が低く、これがSiOガスの利用率低下、すなわち原料歩留り低下の大きな要因となっている。また、析出室の内壁面に付着するSiOを除去するために、頻繁な操業停止も必要となり、稼働率の低下も問題となる。更に、析出室の内壁面に付着するSiOは、ナノオーダーの微粉であるため、除去作業や装置解体時において発火の危険性があることも問題である。 However, as shown in Patent Document 3, even if a rotating body-type vapor-deposited substrate is used or a gas guide called an induction tube is used to induce SiO gas to the vicinity of the surface of the vapor-deposited substrate. Most of the SiO gas introduced into the precipitation chamber adheres to the inner wall surface of the precipitation chamber and deposits. Therefore, the vapor deposition efficiency on the surface of the thin-film deposition substrate is low, which is a major factor in lowering the utilization rate of SiO gas, that is, lowering the yield of raw materials. Further, in order to remove SiO adhering to the inner wall surface of the precipitation chamber, it is necessary to frequently stop the operation, and a decrease in the operating rate becomes a problem. Further, since SiO adhering to the inner wall surface of the precipitation chamber is a nano-order fine powder, there is a problem that there is a risk of ignition during removal work or disassembly of the apparatus.

WO2018/074175公報WO2018 / 074175 Gazette 特開2001−220123号公報Japanese Unexamined Patent Publication No. 2001-220123 特表2016−519046号公報Special Table 2016-519046 Gazette

本発明の目的は、蒸着基体の表面における蒸着効率の向上に有効な蒸着装置を提供することにある。 An object of the present invention is to provide a thin-film deposition apparatus effective for improving the vapor deposition efficiency on the surface of a thin-film deposition substrate.

上記目的を達成するために、本発明者らは、引用文献3に示された方法の問題点、すなわち、析出室内に配置される蒸着基体として回転体を用い、かつ誘導管と称するガスガイドを用いて、その蒸着基体の表面近傍まで蒸着源ガスを誘導しても、期待するほどに蒸着効率が向上しない原因について検討した。 In order to achieve the above object, the present inventors have a problem of the method shown in Cited Document 3, that is, a gas guide that uses a rotating body as a vapor deposition substrate arranged in a precipitation chamber and is called an induction tube. The reason why the vapor deposition efficiency did not improve as expected even if the vapor deposition source gas was guided to the vicinity of the surface of the vapor deposition substrate was investigated.

その結果、ガスガイドの先端に開口するガス流出口が、蒸着基体の表面に対向しているものの、蒸着基体の表面から離間しているため、ガスガイドのガス流出口が析出室内に全面的に開放し、その結果として、ガス流出口から流出する蒸着源ガスの多くが析出室内に逸散すること、蒸着基体として回転体を用いた場合、回転体の外周面が円筒面であることに着目し、ガスガイドのガス流出口を部分的に閉塞するべく、前記回転体の外周面の円周方向の一部を、前記ガス流出口からガスガイド内へ嵌入させることにより、前記ガス流出口から排出される蒸着源ガスの析出室内への逸散が抑制され、その蒸着源ガスが高い効率で回転体の外周面に接触して、回転体の外周面における蒸着効率が飛躍的に向上することが判明した。 As a result, although the gas outlet that opens at the tip of the gas guide faces the surface of the vapor deposition substrate, it is separated from the surface of the vapor deposition substrate, so that the gas outlet of the gas guide is entirely in the precipitation chamber. Note that most of the vapor deposition source gas that flows out from the gas outlet is diffused into the deposition chamber as a result of opening, and that when a rotating body is used as the vapor deposition substrate, the outer peripheral surface of the rotating body is a cylindrical surface. Then, in order to partially block the gas outlet of the gas guide, a part of the outer peripheral surface of the rotating body in the circumferential direction is fitted into the gas guide from the gas outlet so as to be inserted from the gas outlet. Dissipation of the discharged vapor deposition source gas into the deposition chamber is suppressed, and the vapor deposition source gas comes into contact with the outer peripheral surface of the rotating body with high efficiency, and the vapor deposition efficiency on the outer peripheral surface of the rotating body is dramatically improved. There was found.

本発明の蒸着装置は、かかる知見を基礎として開発されたものであって、
蒸着源ガスが導入されるガス導入口を備えた析出室内に配置されて、前記ガス導入口から析出室内に導入された蒸着源ガスを外周面に蒸着させる回転体形式の蒸着基体と、
前記ガス導入口から前記析出室内に導入される蒸着源ガスを前記蒸着基体の外周面に誘導するべく前記ガス導入口から前記蒸着基体にかけて配置されたガスガイドとを備えており、
前記蒸着基体の外周面の円周方向の少なくとも一部分が、前記ガスガイドのガス出口側の開口部から前記ガスガイド内へ、ガスガイドとの間に隙間を残した状態で嵌入することを構成上の特徴点としている。
The vapor deposition apparatus of the present invention was developed based on such knowledge.
A rotating body type vapor deposition substrate which is arranged in a precipitation chamber provided with a gas introduction port into which a vapor deposition source gas is introduced and which vaporizes the vapor deposition source gas introduced into the precipitation chamber from the gas introduction port on the outer peripheral surface.
It is provided with a gas guide arranged from the gas introduction port to the vapor deposition substrate so as to guide the vapor deposition source gas introduced into the precipitation chamber from the gas introduction port to the outer peripheral surface of the vapor deposition substrate.
At least a part of the outer peripheral surface of the vapor-deposited substrate in the circumferential direction is fitted into the gas guide from the opening on the gas outlet side of the gas guide with a gap left between the gas guide and the gas guide. It is a feature point of.

本発明の蒸着装置においては、析出室内に開口するガス導入口から析出室内に導入された蒸着源ガスが、ガス導入口から回転体形式の蒸着基体にかけて配置されたガスガイドにより蒸着基体の外周面まで誘導される。このとき、蒸着基体の外周面の円周方向の少なくとも一部分が、前記ガスガイドの出口側の開口部から前記ガスガイド内へ、ガスガイドとの間に隙間の残した状態で嵌入することにより、前記ガスガイドのガス出口側の開口部は前記蒸着基体により部分的に閉塞されることになる。 In the vapor deposition apparatus of the present invention, the vapor deposition source gas introduced into the precipitation chamber from the gas introduction port opened in the precipitation chamber is the outer peripheral surface of the vapor deposition substrate by the gas guide arranged from the gas introduction port to the rotating body type vapor deposition substrate. Is guided to. At this time, at least a part of the outer peripheral surface of the vapor-deposited substrate in the circumferential direction is fitted into the gas guide from the opening on the outlet side of the gas guide with a gap left between the gas guide and the gas guide. The opening on the gas outlet side of the gas guide is partially closed by the vapor deposition substrate.

これにより、蒸着源ガスは、ガスガイドの出口側の開口部近傍に一次的に滞留し、その後、閉塞されていない隙間部分からガスガイドの外、すなわち析出室内に排出されていく。その結果、蒸着源ガスと蒸着基体の外周面との接触時間が長くなり、蒸着基体の外周面における蒸着効率が向上する。 As a result, the vapor deposition source gas temporarily stays in the vicinity of the opening on the outlet side of the gas guide, and then is discharged to the outside of the gas guide, that is, into the precipitation chamber through the unclosed gap portion. As a result, the contact time between the vapor deposition source gas and the outer peripheral surface of the vapor deposition substrate becomes longer, and the vapor deposition efficiency on the outer peripheral surface of the vapor deposition substrate is improved.

回転体形式の蒸着基体の配置位置については、析出室内に開口するガス導入口に蒸着基体が対向、好ましくは正対するのが、蒸着基体の外周面における蒸着効率を高める点から好ましい。また、ガス導入口は、蒸着基体の円周方向の何れの位置にあってもよい。すなわち、ガス導入口は、蒸着基体の下側、上側に限らず、円周方向のどの側から対向してもよい。 Regarding the arrangement position of the rotating body type vapor deposition substrate, it is preferable that the vapor deposition substrate faces, preferably faces, the gas introduction port opened in the precipitation chamber from the viewpoint of improving the vapor deposition efficiency on the outer peripheral surface of the vapor deposition substrate. Further, the gas introduction port may be located at any position in the circumferential direction of the vapor deposition substrate. That is, the gas introduction port is not limited to the lower side and the upper side of the vapor deposition substrate, and may face from any side in the circumferential direction.

ガスガイドは、典型的には、蒸着基体を回転中心軸に直角な2方向から挟む両側一対のガイド板を有し、両側一対のガイド板と蒸着基体の外周面との間に前記隙間を形成する。両側のガイド板は、蒸着基体の回転中心軸に平行な2方向から蒸着基体を挟む前後一対の端板により連結されてもよい。前後一対の端板により、ガイド板間が閉塞され、より効率的にガスが蒸着基体の外周面に誘導される。前後一対の端板は、蒸着源ガスの逸散防止の観点から蒸着基体の両端面に出来るだけ接近させるのがよい。前後一対の端板を設ける代わりに、析出室の内壁面を蒸着基体の両端面に接近させてもよい。その場合、ガイド板と析出室の内壁面を接触、若しくは出来るだけ接近させることが望ましい。 The gas guide typically has a pair of guide plates on both sides that sandwich the vapor deposition substrate from two directions perpendicular to the central axis of rotation, and forms the gap between the pair of guide plates on both sides and the outer peripheral surface of the vapor deposition substrate. To do. The guide plates on both sides may be connected by a pair of front and rear end plates that sandwich the vapor deposition substrate from two directions parallel to the rotation center axis of the vapor deposition substrate. The pair of front and rear end plates closes between the guide plates, and gas is more efficiently guided to the outer peripheral surface of the vapor deposition substrate. The pair of front and rear end plates should be as close as possible to both end faces of the vapor deposition substrate from the viewpoint of preventing the vapor deposition source gas from spilling. Instead of providing a pair of front and rear end plates, the inner wall surface of the precipitation chamber may be brought close to both end surfaces of the vapor deposition substrate. In that case, it is desirable that the guide plate and the inner wall surface of the precipitation chamber are in contact with each other or as close as possible to each other.

両側のガイド板は又、平行な平板でも、ガスガイドの入側から出側に向かって外側又は内側へ傾斜した平板でもよく、また、平板に限らず、途中で折れ曲がったり、全体または一部が湾曲した形状でもよく、特にその形状、形態を問うものではない。典型的な形状、形態は、ガスガイドの入側から外側に向かって外側へ傾斜した平板、又は平板の途中で外側又は内側へ傾斜した折曲板である。また、ガイド板は複数枚を組み合わせることで形状を調整してもよい。 The guide plates on both sides may also be parallel flat plates, flat plates inclined outward or inward from the entry side to the exit side of the gas guide, and are not limited to the flat plates, and may be bent in the middle or may be bent in whole or in part. It may have a curved shape, and its shape and form are not particularly important. A typical shape and form is a flat plate inclined outward from the entry side of the gas guide toward the outside, or a bent plate inclined outward or inward in the middle of the flat plate. Further, the shape of the guide plate may be adjusted by combining a plurality of guide plates.

本発明の蒸着装置における重要因子の一つは、ガスガイドの出口側の端部内に円周方向の一部を嵌入させる蒸着基体の嵌入深さDであり、より具体的には、蒸着基体を回転中心軸に直角な2方向から挟む両側のガイド板と蒸着基体との最接近位置から、蒸着基体の最奥部までのレベル差である。この嵌入深さDは、蒸着基体によるガス閉塞効果を得る観点から、蒸着基体の回転半径をRとして、1/10R以上、とりわけ1/5R以上が望ましい。 One of the important factors in the thin-film deposition apparatus of the present invention is the fitting depth D of the vapor-deposited substrate that fits a part in the circumferential direction into the end on the outlet side of the gas guide. This is the level difference from the closest position between the guide plates on both sides sandwiched from two directions perpendicular to the center of rotation axis and the vapor-deposited substrate to the innermost part of the vapor-deposited substrate. The fitting depth D is preferably 1/10 R or more, particularly 1 / 5R or more, where the radius of gyration of the vapor-deposited substrate is R from the viewpoint of obtaining the gas blocking effect of the vapor-deposited substrate.

蒸着基体の嵌入深さDの上限については、蒸着基体によるガス閉塞効果の観点からは特に規定の必要はないが、蒸着基体がガスガイド内に必要以上に深く嵌入すると、ガイド板のガス出口側の端縁が必要以上に長く突出し、蒸着基体の外周面に堆積した析出物を掻き取るスクレーパ等の附帯設備との干渉等を招くので、1/2R以下に制限することが望まれる。 The upper limit of the fitting depth D of the vapor deposition substrate is not particularly specified from the viewpoint of the gas blocking effect of the vapor deposition substrate, but when the vapor deposition substrate is fitted deeper than necessary into the gas guide, the gas outlet side of the guide plate It is desirable to limit the amount to 1 / 2R or less because the edge of the film protrudes longer than necessary and causes interference with ancillary equipment such as a scraper that scrapes off the deposits deposited on the outer peripheral surface of the vapor deposition substrate.

他の重要因子としては、蒸着基体の外周面とガスガイドの隙間の大きさGであり、より具体的には、蒸着基体を回転中心軸に直角な2方向から挟む両側のガイド板から蒸着基体の外周面までの最短距離、すなわち最接近位置における隙間の大きさGがある。この隙間の大きさGは、蒸着基体の回転半径Rを用いて表して1mm以上、1/5R以下が好ましく、2mm以上、1/10R以下がより好ましく、5mm以上、1/20R以下が特に好ましい。この隙間の大きさGが小さすぎると、ガイド板が蒸着基体の外周面やその外周面に堆積した析出物と接触することで破損するおそれがあり、大きすぎる場合は蒸着基体による閉塞効果が不足する。 Another important factor is the size G of the gap between the outer peripheral surface of the vapor deposition substrate and the gas guide, and more specifically, the vapor deposition substrate is sandwiched between the guide plates on both sides of the vapor deposition substrate from two directions perpendicular to the center axis of rotation. There is a size G of the gap at the shortest distance to the outer peripheral surface of the above, that is, the closest position. The size G of this gap is preferably 1 mm or more and 1 / 5R or less, more preferably 2 mm or more and 1 / 10R or less, and particularly preferably 5 mm or more and 1 / 20R or less in terms of the radius of gyration R of the vapor deposition substrate. .. If the size G of this gap is too small, the guide plate may come into contact with the outer peripheral surface of the vapor-deposited substrate and the precipitates deposited on the outer peripheral surface, and may be damaged. To do.

本発明の蒸着装置は、析出室内に配置された回転体形式の蒸着基体の外周面に、ガス導入口から導入された蒸着源ガスを接触させて蒸着させる際に、前記ガス導入口から前記蒸着基体にかけて配置されたガスガイドにより、蒸着源ガスを蒸着基体の外周面に誘導するのみならず、蒸着基体の外周面の円周方向の少なくとも一部分を、前記ガスガイドの出口側の開口部から前記ガスガイド内へ嵌入させて、前記ガスガイドのガス出口側の開口部を部分的に閉塞することにより、蒸着源ガスの析出室内への逸散が抑制され、蒸着源ガスが蒸着基体の外周面に効率的に接触して、蒸着源ガスの利用率が上がり、蒸着コストを引き下げることができる。 In the thin-film deposition apparatus of the present invention, when the vapor deposition source gas introduced from the gas introduction port is brought into contact with the outer peripheral surface of a rotating body-type thin-film deposition substrate arranged in the precipitation chamber to be vapor-deposited, the vapor deposition is carried out from the gas introduction port. The gas guide arranged over the substrate not only guides the vapor deposition source gas to the outer peripheral surface of the vapor deposition substrate, but also guides at least a part of the outer peripheral surface of the vapor deposition substrate in the circumferential direction from the opening on the outlet side of the gas guide. By fitting it into the gas guide and partially closing the opening on the gas outlet side of the gas guide, the diffusion of the vapor deposition source gas into the precipitation chamber is suppressed, and the vapor deposition source gas is discharged from the outer peripheral surface of the vapor deposition substrate. The utilization rate of the vapor deposition source gas can be increased and the vapor deposition cost can be reduced.

また、析出室の内壁面に蒸着源ガスが接触析出するのを抑制することにより、析出室の内壁面における析出物の除去作業の頻度を低下させ、装置の稼働効率を高めることができると共に、析出物の除去作業や装置解体時における微粉発火の危険性を軽減し、作業の安全性を高めることができる。 Further, by suppressing the contact precipitation of the vapor deposition source gas on the inner wall surface of the precipitation chamber, the frequency of the precipitation removal work on the inner wall surface of the precipitation chamber can be reduced, and the operating efficiency of the apparatus can be improved. It is possible to reduce the risk of fine powder ignition during the work of removing precipitates and dismantling the equipment, and improve the safety of the work.

本発明の一実施形態を示す蒸着装置の模式図で縦断正面図である。It is a schematic view of the vapor deposition apparatus which shows one Embodiment of this invention, and is a longitudinal front view. 同蒸着装置の模式図で縦断側面図である。It is a schematic view of the vapor deposition apparatus and is a vertical sectional side view. 同蒸着装置の模式図で横断平面図であり、蒸着基体を省略して示している。It is a cross-sectional plan view in the schematic view of the vapor deposition apparatus, and the vapor deposition substrate is omitted. 本発明の別の実施形態を示す蒸着装置の模式図で縦断正面図である。FIG. 5 is a schematic front view of a vapor deposition apparatus showing another embodiment of the present invention. 本発明の更に別の実施形態を示す蒸着装置の模式図で縦断正面図である。FIG. 5 is a schematic front view of a vapor deposition apparatus showing still another embodiment of the present invention.

以下に本発明の実施形態を図面に基づいて説明する。本実施形態の蒸着装置は、リチウムイオン二次電池の負極材として用いられる酸化珪素粉末、乃至金属元素含有酸化珪素粉末の製造に使用される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The thin-film deposition apparatus of this embodiment is used for producing silicon oxide powder or silicon oxide powder containing a metal element, which is used as a negative electrode material for a lithium ion secondary battery.

本実施形態の蒸着装置は、内部が析出室10とされたチャンバ11と、蒸着源ガスを発生させるために析出室10内に配置されたルツボ20と、外周面に蒸着源ガスを析出させるためにルツボ20と共に析出室10内に配置された回転体形式の蒸着基体30と、ルツボ20で発生する蒸着源ガスを蒸着基体30の外周面に誘導するガスガイド40とを備えている。 The vapor deposition apparatus of the present embodiment has a chamber 11 having a precipitation chamber 10 inside, a rut 20 arranged in the precipitation chamber 10 to generate a vapor deposition source gas, and a vapor deposition source gas on the outer peripheral surface. It is provided with a rotating body type vapor deposition substrate 30 arranged in the precipitation chamber 10 together with the rutsubo 20 and a gas guide 40 for guiding the vapor deposition source gas generated in the rutsubo 20 to the outer peripheral surface of the vapor deposition substrate 30.

ルツボ20は、ここでは縦向きに配置された円筒形状の耐熱容器であり、その周囲を包囲するヒータ21と共に円筒形状の断熱容器22内に収容されている。ルツボ20は、析出室10内に蒸着源ガスを導入するためのガス導入口23を備えている。ガス導入口23は、ここでは丸孔状のノズルであり、ルツボ20の円板状の天板部の中央部分に上方を向けて開口している。 The crucible 20 is a cylindrical heat-resistant container arranged vertically here, and is housed in a cylindrical heat-insulating container 22 together with a heater 21 surrounding the crucible 20. The crucible 20 includes a gas introduction port 23 for introducing a vapor deposition source gas into the precipitation chamber 10. The gas introduction port 23 is a round hole-shaped nozzle here, and is opened upward toward the central portion of the disk-shaped top plate portion of the crucible 20.

回転体形式の蒸着基体30は、円筒形状の水平ドラムであり、図示されない駆動機構により一方向に回転駆動される。蒸着基体30は、外周面を一定温度に保つための温度調節機構を内蔵していることが望ましい。典型的には、外部から供給される冷却媒体により、その外周面が蒸着源ガスの蒸着に適した表面温度に冷却される。この蒸着基体30は、その中心軸方向の中央部をガス導入口23に正対させた状態で、ルツボ20の真上に配置されている。 The rotating body type vapor deposition substrate 30 is a cylindrical horizontal drum, and is rotationally driven in one direction by a drive mechanism (not shown). It is desirable that the vapor deposition substrate 30 has a built-in temperature control mechanism for keeping the outer peripheral surface at a constant temperature. Typically, an externally supplied cooling medium cools the outer peripheral surface to a surface temperature suitable for vapor deposition of the vapor deposition source gas. The vapor deposition substrate 30 is arranged directly above the crucible 20 with its central portion in the central axis direction facing the gas introduction port 23.

ルツボ20で発生する蒸着源ガスを蒸着基体30の外周面に誘導するガスガイド40は、当該ガスガイド40のガス出口側から当該ガスガイド40の内側に蒸着基体30の下部を嵌入させるべく、ルツボ20の上に断熱容器22を貫通して設置されている。ここにおけるガスガイド40は、蒸着基体30の回転中心軸に直角な2方向から蒸着基体30の下部を挟むべく、蒸着基体30の両側に対称的に配置されたガイド板41,41を有している。両側のガイド板41,41は、上方の蒸着基体30の側へ向かって外側へ約45度の角度で対称的に傾斜しており、それぞれが蒸着基体30の下部外周面に斜め下から所定の隙間44,44をあけて対向することにより、ガイド板41,41間に蒸着基体30の下部を非接触状態で収容する。 The gas guide 40 that guides the vapor deposition source gas generated in the crucible 20 to the outer peripheral surface of the vapor deposition substrate 30 is a crucible so that the lower portion of the vapor deposition substrate 30 is fitted inside the gas guide 40 from the gas outlet side of the gas guide 40. It is installed on the 20 through the heat insulating container 22. The gas guide 40 here has guide plates 41, 41 symmetrically arranged on both sides of the vapor deposition substrate 30 so as to sandwich the lower portion of the vapor deposition substrate 30 from two directions perpendicular to the rotation center axis of the vapor deposition substrate 30. There is. The guide plates 41 and 41 on both sides are symmetrically inclined outward at an angle of about 45 degrees toward the upper vapor deposition substrate 30 side, and each of them is predetermined on the lower outer peripheral surface of the vapor deposition substrate 30 from diagonally below. By facing each other with gaps 44 and 44, the lower portion of the vapor deposition substrate 30 is accommodated between the guide plates 41 and 41 in a non-contact state.

ガイド板41,41間の空間は、蒸着基体30の両端面側においては前後一対の端板42,42により閉止されており、下面側においてはルツボ20の円板状の天板部によりガス導入口23の部分を残して閉止されている。前後の端板42,42は、蒸着源ガスの逸散を防止するために、蒸着基体30の回転を妨げない範囲内で蒸着基体30の両端面に接近している。 The space between the guide plates 41 and 41 is closed by a pair of front and rear end plates 42 and 42 on both end faces of the vapor deposition substrate 30, and gas is introduced by a disk-shaped top plate of the crucible 20 on the lower surface side. It is closed leaving the part of the mouth 23. The front and rear end plates 42, 42 are close to both end faces of the vapor deposition substrate 30 within a range that does not hinder the rotation of the vapor deposition substrate 30 in order to prevent the vapor deposition source gas from escaping.

なお、蒸着基体30の周囲には、その外周面に堆積した蒸着析出物を掻き取るための、図示されないスクレーパがガスガイド40と干渉しない状態で対向配置されており、ここでは、蒸着基体30の直上位置から回転方向下流側へほぼ90度変位した位置に配置されている。 A scraper (not shown) for scraping the vapor deposition deposits deposited on the outer peripheral surface of the vapor deposition substrate 30 is arranged to face the vapor deposition substrate 30 so as not to interfere with the gas guide 40. Here, the vapor deposition substrate 30 is arranged. It is arranged at a position displaced by approximately 90 degrees from the position directly above to the downstream side in the rotation direction.

本実施形態の蒸着装置で重要な因子は、ガスガイド40の特に両側のガイド板41,41間に嵌入する蒸着基体30の嵌入深さDであり、より具体的には、両側のガイド板41,41間に嵌入する蒸着基体30が両側のガイド板41,41に最も接近する最接近位置から蒸着基体30の最奥部(ここでは最下部)までのレベル差である。今一つの重要な因子は、両側のガイド板41,41間に嵌入する蒸着基体30が両側のガイド板41,41に最も接近する最接近位置における隙間44,44の大きさGである。 An important factor in the vapor deposition apparatus of the present embodiment is the fitting depth D of the vapor deposition substrate 30 to be fitted between the guide plates 41 and 41 on both sides of the gas guide 40, and more specifically, the guide plates 41 on both sides. This is the level difference from the closest position where the thin-film deposition substrate 30 fitted between the, 41 and the guide plates 41 and 41 on both sides is closest to the innermost portion (here, the lowermost portion) of the vapor deposition substrate 30. Another important factor is the size G of the gaps 44, 44 at the closest position where the thin-film deposition substrate 30 fitted between the guide plates 41, 41 on both sides is closest to the guide plates 41, 41 on both sides.

そして、蒸着基体30の嵌入深さDは、蒸着基体30の回転半径をRとして1/10R以上1/2以下、とりわけ1/5R以上1/2以下が望ましく、ここでは約1/4Rに設定されている。また、蒸着基体30と両側のガイド板41,41との最接近位置における隙間44,44の大きさGは、蒸着基体30の回転半径Rを用いて表して、1mm以上1/5R以下が好ましく、2mm以上1/10R以下がより好ましく、5mm以上1/20以下が特に好ましく、ここでは0.05Rに設定されている。また、ガス導入口23から蒸着基体30までの距離は0.3に設定されている。 The fitting depth D of the thin-film deposition substrate 30 is preferably 1/10 R or more and 1/2 or less, particularly 1 / 5R or more and 1/2 or less, with the radius of gyration of the vapor deposition substrate 30 as R, and is set to about 1 / 4R here. Has been done. The size G of the gaps 44, 44 at the closest positions between the vapor deposition substrate 30 and the guide plates 41, 41 on both sides is preferably 1 mm or more and 1 / 5R or less, expressed using the radius of gyration R of the vapor deposition substrate 30. It is more preferably 2 mm or more and 1/10 R or less, particularly preferably 5 mm or more and 1/20 or less, and is set to 0.05 R here. Further, the distance from the gas introduction port 23 to the vapor deposition substrate 30 is set to 0.3.

次に、本実施形態の蒸着装置の機能を、リチウムイオン二次電池用負極材に使用される酸化珪素粉末、乃至金属元素含有酸化珪素粉末を製造する場合について説明する。 Next, the function of the vapor deposition apparatus of the present embodiment will be described in the case of producing silicon oxide powder or silicon oxide powder containing a metal element, which is used as a negative electrode material for a lithium ion secondary battery.

析出室10内に設置されたルツボ20に原料を装填する。原料は、SiOガス発生原料としてのSiとSiOの混合粉末である。そして、析出室10内を減圧しながら、ルツボ20内を周囲のヒータ21により加熱する。 The raw material is loaded into the crucible 20 installed in the precipitation chamber 10. The raw material is a mixed powder of Si and SiO 2 as a raw material for generating SiO gas. Then, while depressurizing the inside of the precipitation chamber 10, the inside of the crucible 20 is heated by the surrounding heater 21.

析出室10内の圧力は、高すぎると原料からSiOガスが発生する反応が起こりにくくなるので、100Pa以下が望ましく、750Pa以下がより望ましく、20Pa以下が特に望ましい。析出室10内の温度は、SiOの反応速度に影響し、低すぎると反応速度が遅く、高すぎると原料の融解による副反応進行や、エネルギー効率低下などの恐れがあるまた、ルツボ20の損傷も問題となる。この観点から、析出室10内の温度は、1000〜1600℃が望ましく、1100〜1500℃がより望ましく、1100〜1400℃が特に望ましい。 If the pressure in the precipitation chamber 10 is too high, the reaction of generating SiO gas from the raw material is unlikely to occur. Therefore, 100 Pa or less is desirable, 750 Pa or less is more preferable, and 20 Pa or less is particularly desirable. The temperature in the precipitation chamber 10 affects the reaction rate of SiO. If it is too low, the reaction rate is slow, and if it is too high, there is a risk that side reactions may proceed due to melting of the raw material and energy efficiency may decrease. Further, the crucible 20 may be damaged. Is also a problem. From this point of view, the temperature in the precipitation chamber 10 is preferably 1000 to 1600 ° C, more preferably 1100 to 1500 ° C, and particularly preferably 1100 to 1400 ° C.

この減圧加熱により、ルツボ20内のSiOガス発生原料からSiOガスが発生し、ガス導入口23から析出室10内に導入される。このとき、ルツボ20の上では、ドラム状回転体からなる蒸着基体30が回転している。析出基体30の温度は、析出室10内の温度より低く設定されており、より詳しくはSiOガスの凝縮温度より低く設定されている。これにより、ルツボ20から発生するSiOガスが、回転する蒸着基体30の外周面に蒸着し析出して堆積する。 By this decompression heating, SiO gas is generated from the SiO gas generating raw material in the crucible 20 and introduced into the precipitation chamber 10 from the gas introduction port 23. At this time, the vapor deposition substrate 30 made of a drum-shaped rotating body is rotating on the crucible 20. The temperature of the precipitation substrate 30 is set lower than the temperature in the precipitation chamber 10, and more specifically, it is set lower than the condensation temperature of SiO gas. As a result, the SiO gas generated from the crucible 20 is deposited and deposited on the outer peripheral surface of the rotating vapor deposition substrate 30.

このとき、ルツボ20内で発生したSiOガスは、回転する蒸着基体30の下部外周面までガスガイド40により誘導される。特に、回転する蒸着基体30の下部外周面は、ガスガイド40における両側のガイド板41,41間に、両側の隙間44,44を残して嵌入している。このため、SiOガスは、回転する蒸着基体30の下部外周面近傍に滞留し、その下部外周面に効率よく蒸着する。その結果、蒸着基体30の外周面に蒸着せずに析出室10内に逸散するSiOガスの量が減少する。 At this time, the SiO gas generated in the crucible 20 is guided by the gas guide 40 to the lower outer peripheral surface of the rotating vapor deposition substrate 30. In particular, the lower outer peripheral surface of the rotating vapor deposition substrate 30 is fitted between the guide plates 41 and 41 on both sides of the gas guide 40, leaving gaps 44 and 44 on both sides. Therefore, the SiO gas stays in the vicinity of the lower outer peripheral surface of the rotating vapor deposition substrate 30, and is efficiently vapor-deposited on the lower outer peripheral surface thereof. As a result, the amount of SiO gas that dissipates into the precipitation chamber 10 without vapor deposition on the outer peripheral surface of the vapor deposition substrate 30 is reduced.

そして、蒸着基体30の外周面に対しては、その直上位置から回転方向下流側へほぼ90度移動いた位置において、外周側からブレード(図示せず)が対向しており、これにより、析出基体30の外周面に堆積するSiO析出物がブレードにより順次削り取られ、SiO粉末として受皿(図示せず)に回収される。 The blade (not shown) faces the outer peripheral surface of the vapor deposition substrate 30 from the outer peripheral side at a position moved about 90 degrees from the position directly above the vapor deposition substrate 30 to the downstream side in the rotation direction. The SiO precipitates deposited on the outer peripheral surface of 30 are sequentially scraped off by the blade and collected as SiO powder in a saucer (not shown).

ブレードの材質は製品粉末の不純物汚染に影響する。その影響を抑制する観点から、この材質はステンレス鋼やセラミックスが好ましく、セラミックスが特に好ましい。また、このブレードは、蒸着基体30の外周面に接触させないのがよい。これにより、回収されるSiO粉末においては、蒸着基体30とブレードの直接接触による不純物汚染が防止されると共に、蒸着基体30上に堆積したSiO析出物をブレードにて削り取る際に、蒸着基体30上に堆積したSiO析出物の一部が蒸着基体30上に残り、その残ったSiO析出物の上に新たなSiO析出物が堆積し、これが次に削り取られて回収されるため、そのSiO粉末が、角がとれた円形度が高くて粒径も小さい高品質粉末となる。 The material of the blade affects the impurity contamination of the product powder. From the viewpoint of suppressing the influence, stainless steel and ceramics are preferable as this material, and ceramics are particularly preferable. Further, it is preferable that the blade does not come into contact with the outer peripheral surface of the vapor deposition substrate 30. As a result, in the recovered SiO powder, impurity contamination due to direct contact between the vapor deposition substrate 30 and the blade is prevented, and when the SiO precipitates deposited on the vapor deposition substrate 30 are scraped off by the blade, the deposition substrate 30 is topped. A part of the SiO precipitates deposited on the vapor deposition substrate 30 remains on the vapor deposition substrate 30, and new SiO precipitates are deposited on the remaining SiO precipitates, which are then scraped off and recovered, so that the SiO powder is produced. It is a high-quality powder with rounded corners and a small particle size.

蒸着基体30の外周面温度は、蒸着基体上に残ったSiO析出物の上に堆積するSiO析出物の結晶性に影響を与える。この温度が低すぎると、SiOの組織構造が疎になりすぎ、反対に高すぎると不均化反応によるSi結晶成長が進行する。この観点から、この温度は、900℃以下が望ましく、150℃以上800℃以下がより望ましく、150℃以上700℃以下が特に望ましい。 The temperature of the outer peripheral surface of the vapor deposition substrate 30 affects the crystallinity of the SiO precipitates deposited on the SiO precipitates remaining on the vapor deposition substrate. If this temperature is too low, the structure of SiO becomes too sparse, and if it is too high, Si crystal growth due to the disproportionation reaction proceeds. From this viewpoint, the temperature is preferably 900 ° C. or lower, more preferably 150 ° C. or higher and 800 ° C. or lower, and particularly preferably 150 ° C. or higher and 700 ° C. or lower.

かくして、本実施形態の蒸着装置においては、高品質なSiO粉末が、歩留り良く経済的に製造される。また、析出室10の内壁面に蒸着源ガスが蒸着析出するのが抑制されることにより、析出室10の内壁面における析出物の除去作業の頻度が低下し、装置の稼働効率が向上する。更に、析出物の除去作業や装置解体時における微粉発火の危険性が軽減され、作業の安全性が向上する。 Thus, in the vapor deposition apparatus of the present embodiment, high-quality SiO powder is produced economically with good yield. Further, since the vapor deposition source gas is suppressed from being deposited and deposited on the inner wall surface of the precipitation chamber 10, the frequency of the work of removing the precipitates on the inner wall surface of the precipitation chamber 10 is reduced, and the operating efficiency of the apparatus is improved. Further, the risk of fine powder ignition during the work of removing precipitates and the dismantling of the device is reduced, and the safety of the work is improved.

金属元素含有酸化珪素粉末を製造する場合は、ルツボ20に装填するSiOガス発生原料としてSiとLiSi等の珪酸塩等との混合粉末を用いる。これにより、金属元素含有SiOガスが発生して析出室10内に導入され、析出室10内の蒸着基体30の外周面に蒸着する。金属元素としては、Li、Na等のアルカリ金属、Mg、Ca等のアルカリ土類金属といった、SiOを還元し酸素を安定化することのできる元素を含有させることが好ましい。 When producing silicon oxide powder containing a metal element, a mixed powder of Si and a silicate such as Li 2 Si 2 O 5 is used as a raw material for generating SiO gas to be loaded into the crucible 20. As a result, a metal element-containing SiO gas is generated and introduced into the precipitation chamber 10, and is deposited on the outer peripheral surface of the vapor deposition substrate 30 in the precipitation chamber 10. As the metal element, it is preferable to contain an element capable of reducing SiO and stabilizing oxygen, such as an alkali metal such as Li and Na and an alkaline earth metal such as Mg and Ca.

上記実施形態ではルツボ20として円筒形状の耐熱容器を用いたが、図4に示すように角筒形状の耐熱容器を用いてもよい。 In the above embodiment, a cylindrical heat-resistant container is used as the crucible 20, but as shown in FIG. 4, a square cylinder-shaped heat-resistant container may be used.

ガスガイド40における両側のガイド板41,41は、上記実施形態ではルツボ20の直径とほぼ同じ長さであり、ガイド板41,41間の両端部は一対の端板42,42により閉止されているが、図4に示すように、析出室10の対向する両壁面を用いて、ガイド板41,41間の両端部を閉止してもよく、その場合、蒸着基体30は析出室10の対向する両壁面間に懸け渡される。また、ガイド板41,41間の底面側は、図4に示すように専用の底板43により、ガス導入口23の部分を残して閉止してもよい。 The guide plates 41 and 41 on both sides of the gas guide 40 have substantially the same length as the diameter of the crucible 20 in the above embodiment, and both ends between the guide plates 41 and 41 are closed by a pair of end plates 42 and 42. However, as shown in FIG. 4, both opposite wall surfaces of the precipitation chamber 10 may be used to close both ends between the guide plates 41 and 41, in which case the vapor deposition substrate 30 faces the precipitation chamber 10. It is hung between both walls. Further, as shown in FIG. 4, the bottom surface side between the guide plates 41 and 41 may be closed by a dedicated bottom plate 43, leaving the portion of the gas introduction port 23.

また、ガス導入口23の位置は、上記実施形態では上向きとしたが、図5に示すように下向きでもよく、また横向きでもよく、その向きを問うものではない。ガス導入口23が下向きの場合は、図5に示すように、そのルツボ20を二重構造にして、上面が開放した内ルツボで蒸着源ガスを発生させると共に、発生した蒸着源ガスを内ルツボと外ルツボの間を経由して、外ルツボの底面に設けたガス導入口23から析出室10内に導入するのがよい。そして、ルツボ20の下方に配置した蒸着基体30の外周面に下向きのガスガイド40により誘導する。 Further, although the position of the gas introduction port 23 is upward in the above embodiment, it may be downward or horizontal as shown in FIG. 5, and the direction is not questioned. When the gas introduction port 23 faces downward, as shown in FIG. 5, the crucible 20 has a double structure, and the inner crucible having an open upper surface generates the vapor deposition source gas, and the generated vapor deposition source gas is used as the inner crucible. It is preferable to introduce the gas into the precipitation chamber 10 from the gas introduction port 23 provided on the bottom surface of the outer crucible via between the outer crucible and the outer crucible. Then, the gas guide 40 is guided downward to the outer peripheral surface of the vapor deposition substrate 30 arranged below the crucible 20.

蒸着源ガスを析出室10内に導入するガス導入口23は、図5に示すように、ノズル形式でもよく、その形式を問うものではない。また、そのガス導入口23は、蒸着基体30の回転中心軸に沿って複数設けてもよく、また、蒸着基体30の回転中心軸に沿ったスリット形状でもよい。 As shown in FIG. 5, the gas introduction port 23 for introducing the vapor deposition source gas into the precipitation chamber 10 may be of a nozzle type, and the type does not matter. Further, a plurality of gas introduction ports 23 may be provided along the rotation center axis of the vapor deposition substrate 30, or may have a slit shape along the rotation center axis of the vapor deposition substrate 30.

また、図5に示すように、ルツボ20内にガス発生原料をチャージする原料供給装置50を付設して、長時間の連続操業を行うことも可能である。 Further, as shown in FIG. 5, it is also possible to provide a raw material supply device 50 for charging the gas generating raw material in the crucible 20 to perform continuous operation for a long time.

以下に本発明の実施例及び比較例を説明する。 Examples and comparative examples of the present invention will be described below.

(実施例1)
図1〜図3に示す蒸着装置を用いて実際にリチウムイオン二次電池用負極材に使用される酸化珪素粉末を製造した。この蒸着装置は、前述したとおり、内部が析出室10とされたチャンバ11と、蒸着源ガスを発生させるために析出室10内に配置されたルツボ20と、外周面に蒸着源ガスを析出させるためにルツボ20と共に析出室10内に配置された回転体形式の蒸着基体30と、ルツボ20で発生する蒸着源ガスを蒸着基体30の外周面に誘導するガスガイド40とを備えている。ガスガイド40は蒸着基体を回転中心軸に直角な2方向から挟む両側一対のガイド板41,41を有し、両側のガイド板41,41は、蒸着基体の回転中心軸に平行な2方向から蒸着基体を挟む前後一対の端板42,42により連結されている。
(Example 1)
Using the thin-film deposition apparatus shown in FIGS. 1 to 3, silicon oxide powder actually used as a negative electrode material for a lithium ion secondary battery was produced. As described above, this thin-film deposition apparatus deposits the vapor deposition source gas on the outer peripheral surface of the chamber 11 having the deposition chamber 10 inside, the ruts 20 arranged in the precipitation chamber 10 to generate the vapor deposition source gas, and the outer peripheral surface. Therefore, it is provided with a rotating body type vapor deposition substrate 30 arranged in the precipitation chamber 10 together with the rutsubo 20 and a gas guide 40 for guiding the vapor deposition source gas generated in the rutsubo 20 to the outer peripheral surface of the vapor deposition substrate 30. The gas guide 40 has a pair of guide plates 41 and 41 on both sides that sandwich the vapor deposition substrate from two directions perpendicular to the rotation center axis, and the guide plates 41 and 41 on both sides are from two directions parallel to the rotation center axis of the vapor deposition substrate. It is connected by a pair of front and rear end plates 42, 42 that sandwich the vapor deposition substrate.

前記蒸着基体30の回転半径Rは100mmであり、蒸着基体30の嵌入深さDは25mm(0.25R)であり、蒸着基体30の外周面と両側のガイド板41,41との隙間の大きさGは5mm(1/20R)であり、ガス導入口23から前記蒸着基体30までの距離は30mm(0.3R)である。また、ガス導入口23の内径は20mmとし、蒸着基体30の長さ及びルツボ20の内径を100mmとした。両側のガイド板41,41は長さ110mmとし、図2のように端板42,42で蒸着基体30を両端側から挟みこんでいる。両側のガイド板41,41の外側への傾斜角度は、それぞれ約49度である。 The turning radius R of the vapor deposition substrate 30 is 100 mm, the fitting depth D of the vapor deposition substrate 30 is 25 mm (0.25R), and the size of the gap between the outer peripheral surface of the vapor deposition substrate 30 and the guide plates 41 and 41 on both sides is large. The G is 5 mm (1 / 20R), and the distance from the gas introduction port 23 to the vapor deposition substrate 30 is 30 mm (0.3R). The inner diameter of the gas introduction port 23 was set to 20 mm, and the length of the vapor deposition substrate 30 and the inner diameter of the crucible 20 were set to 100 mm. The guide plates 41 and 41 on both sides have a length of 110 mm, and the vapor deposition substrate 30 is sandwiched between the end plates 42 and 42 from both ends as shown in FIG. The outward inclination angles of the guide plates 41 and 41 on both sides are about 49 degrees, respectively.

原料としてSiとSiO2の混合粉末をルツボ20内に仕込み、10Paの減圧雰囲気にて1300℃に加熱し、SiOガスを発生させ、25℃に冷却した蒸着基体30にSiOを蒸着させた。蒸着したSiOをブレードでかき取り、SiOを回収した。反応で減少したルツボ内原料に対する、回収したSiOの比率は92%だった。 A mixed powder of Si and SiO2 was charged into the crucible 20 as a raw material, heated to 1300 ° C. in a reduced pressure atmosphere of 10 Pa to generate SiO gas, and SiO was vapor-deposited on the vapor-deposited substrate 30 cooled to 25 ° C. The vapor-deposited SiO was scraped off with a blade to recover the SiO. The ratio of recovered SiO to the raw material in the crucible decreased by the reaction was 92%.

(実施例2)
図4で示すように、ルツボ20の形状を1辺が100mmの角型、両側のガイド板41,41及び蒸着基体30の長さを200mmとし、ガイド板41,41の両端をチャンバ外壁に近接させることにより、ガスガイド40の端板42,42を取り除いた。それ以外の条件は実施例1と同等とし、SiOを蒸着回収した。反応で減少したルツボ内原料に対する、回収したSiOの比率は93%だった。
(Example 2)
As shown in FIG. 4, the shape of the crucible 20 is a square shape with a side of 100 mm, the lengths of the guide plates 41 and 41 on both sides and the vapor deposition substrate 30 are 200 mm, and both ends of the guide plates 41 and 41 are close to the outer wall of the chamber. The end plates 42 and 42 of the gas guide 40 were removed by allowing the gas guide 40 to be removed. The other conditions were the same as in Example 1, and SiO was vapor-deposited and recovered. The ratio of recovered SiO to the raw material in the crucible decreased by the reaction was 93%.

(実施例3)
実施例1において、蒸着基体30の嵌入深さDを10mm(1/10R)、ガス導入口23から前記蒸着基体30までの距離を20mm(0.2R)とした。両側のガイド板41,41の外側への傾斜角度は、それぞれ約56度に広がった。それ以外の条件は実施例1と同等として、SiOを蒸着回収した。反応で減少したルツボ内原料に対する、回収したSiOの比率は91%だった。
(Example 3)
In Example 1, the fitting depth D of the vapor deposition substrate 30 was 10 mm (1 / 10R), and the distance from the gas introduction port 23 to the vapor deposition substrate 30 was 20 mm (0.2R). The outward inclination angles of the guide plates 41 and 41 on both sides were widened to about 56 degrees, respectively. The other conditions were the same as in Example 1, and SiO was vapor-deposited and recovered. The ratio of recovered SiO to the raw material in the crucible decreased by the reaction was 91%.

(実施例4)
実施例1において、蒸着基体30の外周面と両側のガイド板41,41との隙間の大きさGを10mm(1/10R)に広げた。両側のガイド板41,41の外側への傾斜角度は約52度に広がった。それ以外の条件は実施例1と同等として、SiOを蒸着回収した。反応で減少したルツボ内原料に対する、回収したSiOの比率は86%だった。
(Example 4)
In Example 1, the size G of the gap between the outer peripheral surface of the vapor deposition substrate 30 and the guide plates 41 and 41 on both sides was widened to 10 mm (1 / 10R). The outward inclination angle of the guide plates 41 and 41 on both sides widened to about 52 degrees. The other conditions were the same as in Example 1, and SiO was vapor-deposited and recovered. The ratio of recovered SiO to the raw material in the crucible decreased by the reaction was 86%.

(比較例1)
実施例1において、ガスガイド40を取り除き、代わりにガス導入口23に導入口と同径のガス導入管を取り付けて、その先端を蒸着基体30の外周面に臨ませた。ガス導入管の長さを25mmとし、蒸着基体30との隙間の大きさGを5mmとした(嵌入深さD=−5mm)。その他の条件を実施例1と同等とし、SiOを蒸着回収した。反応で減少したルツボ内原料に対する、回収したSiOの比率は71%となり、蒸着基体30との隙間の大きさは実施例1と同じであるにも関わらず、回収率が低下した。
(Comparative Example 1)
In the first embodiment, the gas guide 40 was removed, and instead, a gas introduction pipe having the same diameter as the introduction port was attached to the gas introduction port 23, and the tip thereof was made to face the outer peripheral surface of the vapor deposition substrate 30. The length of the gas introduction pipe was set to 25 mm, and the size G of the gap with the vapor deposition substrate 30 was set to 5 mm (fitting depth D = −5 mm). Other conditions were the same as in Example 1, and SiO was vapor-deposited and recovered. The ratio of recovered SiO to the raw material in the crucible decreased by the reaction was 71%, and the recovery rate was lowered even though the size of the gap with the vapor deposition substrate 30 was the same as in Example 1.

(比較例2)
実施例1において、ガスガイド40を取り除き、ガス導入管を取り付けることもしなかっかた。それ以外の条件は実施例1と同等として、SiOを蒸着回収した。反応で減少したルツボ内原料に対する、回収したSiOの比率は、比較例1より更に低い54%に低下した。
(Comparative Example 2)
In the first embodiment, the gas guide 40 was removed and the gas introduction pipe was not attached. The other conditions were the same as in Example 1, and SiO was vapor-deposited and recovered. The ratio of recovered SiO to the raw material in the crucible decreased by the reaction was further reduced to 54%, which was lower than that of Comparative Example 1.

10 析出室
11 チャンバ
20 ルツボ
21 ヒータ
22 断熱容器
23 ガス導入口
30 蒸着基体
40 ガスガイド
41 ガイド板
42 端板
43 底板
44 隙間
50 原料供給装置
10 Sedimentation chamber 11 Chamber 20 Crucible 21 Heater 22 Insulation container 23 Gas inlet 30 Evaporation base 40 Gas guide 41 Guide plate 42 End plate 43 Bottom plate 44 Gap 50 Raw material supply device

Claims (5)

蒸着源ガスが導入されるガス導入口を備えた析出室内に配置されて、前記ガス導入口から析出室内に導入された蒸着源ガスを外周面に蒸着させる回転体形式の蒸着基体と、
前記ガス導入口から前記析出室内に導入される蒸着源ガスを前記蒸着基体の外周面に誘導するべく前記ガス導入口から前記蒸着基体にかけて配置されたガスガイドとを備えており、
前記蒸着基体の外周面の円周方向の少なくとも一部分が、前記ガスガイドのガス出口側の開口部から前記ガスガイド内へ、ガスガイドとの間に隙間を残した状態で嵌入した蒸着装置。
A rotating body type vapor deposition substrate which is arranged in a precipitation chamber provided with a gas introduction port into which a vapor deposition source gas is introduced and which vaporizes the vapor deposition source gas introduced into the precipitation chamber from the gas introduction port on the outer peripheral surface.
It is provided with a gas guide arranged from the gas introduction port to the vapor deposition substrate so as to guide the vapor deposition source gas introduced into the precipitation chamber from the gas introduction port to the outer peripheral surface of the vapor deposition substrate.
A vapor deposition apparatus in which at least a part of the outer peripheral surface of the vapor deposition substrate in the circumferential direction is fitted into the gas guide from an opening on the gas outlet side of the gas guide with a gap left between the gas guide and the gas guide.
請求項1に記載の蒸着装置において、
前記ガスガイドのガス出口側から外周面の少なくとも一部を前記ガスガイド内に嵌入させた蒸着基体の嵌入深さDは、前記蒸着基体の回転半径をRとして1/10R以上である蒸着装置。
In the vapor deposition apparatus according to claim 1,
A vapor deposition apparatus in which at least a part of the outer peripheral surface of the gas guide is fitted into the gas guide from the gas outlet side, and the fitting depth D of the vapor deposition substrate is 1/10 R or more with the radius of gyration of the vapor deposition substrate as R.
請求項1に記載の蒸着装置において、
前記ガスガイドは、前記蒸着基体を回転中心軸に直角な2方向から挟む両側一対のガイド板を有し、両側一対のガイド板と蒸着基体の外周面との間に前記隙間を形成する蒸着装置。
In the vapor deposition apparatus according to claim 1,
The gas guide has a pair of guide plates on both sides that sandwich the vapor deposition substrate from two directions perpendicular to the rotation center axis, and forms the gap between the pair of guide plates on both sides and the outer peripheral surface of the vapor deposition substrate. ..
請求項3に記載の蒸着装置において、
前記隙間は、前記蒸着基体の回転半径Rを用いて表して1mm以上1/5R以下である蒸着装置。
In the vapor deposition apparatus according to claim 3,
The gap is a vapor deposition apparatus having a radius of gyration R of the vapor deposition substrate of 1 mm or more and 1 / 5R or less.
請求項1に記載の蒸着装置において、
前記蒸着基体は、前記ガス導入口に正対する位置に配置された蒸着装置。
In the vapor deposition apparatus according to claim 1,
The vapor deposition substrate is a vapor deposition apparatus arranged at a position facing the gas introduction port.
JP2019173852A 2019-09-25 2019-09-25 Thin film deposition equipment Active JP7030087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019173852A JP7030087B2 (en) 2019-09-25 2019-09-25 Thin film deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019173852A JP7030087B2 (en) 2019-09-25 2019-09-25 Thin film deposition equipment

Publications (2)

Publication Number Publication Date
JP2021050385A true JP2021050385A (en) 2021-04-01
JP7030087B2 JP7030087B2 (en) 2022-03-04

Family

ID=75157126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019173852A Active JP7030087B2 (en) 2019-09-25 2019-09-25 Thin film deposition equipment

Country Status (1)

Country Link
JP (1) JP7030087B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5876683A (en) * 1995-11-02 1999-03-02 Glumac; Nicholas Combustion flame synthesis of nanophase materials
JP2005048244A (en) * 2003-07-30 2005-02-24 Nippon Biitec:Kk Molecular beam source for depositing organic thin film
JP2008265232A (en) * 2007-04-24 2008-11-06 Toppan Printing Co Ltd Gas barrier laminate
US20130112288A1 (en) * 2011-11-04 2013-05-09 First Solar, Inc. System and method providing a heater-orifice and heating zone controls for a vapor deposition system
JP2016519046A (en) * 2013-05-16 2016-06-30 エルジー・ケム・リミテッド SiO manufacturing apparatus and method
US20170067146A1 (en) * 2015-09-08 2017-03-09 Boe Technology Group Co., Ltd. Evaporation crucible and evaporation device
JP2019019399A (en) * 2017-07-21 2019-02-07 マシン・テクノロジー株式会社 Metal oxide thin piece production device and metal oxide thin piece production method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5876683A (en) * 1995-11-02 1999-03-02 Glumac; Nicholas Combustion flame synthesis of nanophase materials
JP2005048244A (en) * 2003-07-30 2005-02-24 Nippon Biitec:Kk Molecular beam source for depositing organic thin film
JP2008265232A (en) * 2007-04-24 2008-11-06 Toppan Printing Co Ltd Gas barrier laminate
US20130112288A1 (en) * 2011-11-04 2013-05-09 First Solar, Inc. System and method providing a heater-orifice and heating zone controls for a vapor deposition system
JP2016519046A (en) * 2013-05-16 2016-06-30 エルジー・ケム・リミテッド SiO manufacturing apparatus and method
US20170067146A1 (en) * 2015-09-08 2017-03-09 Boe Technology Group Co., Ltd. Evaporation crucible and evaporation device
JP2019019399A (en) * 2017-07-21 2019-02-07 マシン・テクノロジー株式会社 Metal oxide thin piece production device and metal oxide thin piece production method

Also Published As

Publication number Publication date
JP7030087B2 (en) 2022-03-04

Similar Documents

Publication Publication Date Title
JP7030185B2 (en) Manufacturing method of silicon oxide powder and negative electrode material
US20140004473A1 (en) Method for calcining electrode materials using a rotary kiln
US8431996B2 (en) Plasma processing apparatus and method of producing amorphous silicon thin film using same
WO2014034689A1 (en) Apparatus for manufacturing negative-electrode carbon material, and method for manufacturing negative-electrode carbon material using same
WO2018074175A1 (en) Silicon oxide negative electrode material and production method therefor
WO2021244234A1 (en) Thermal field structure for single crystal furnace, single crystal furnace, and crystal bar
JPH03111578A (en) Method for forming thin film and device for forming thin film
JP7030087B2 (en) Thin film deposition equipment
KR101508166B1 (en) Device for nano particle generation by using icp
JP2011520760A (en) Skull reactor
US1450464A (en) Crystal formation
CN103572253A (en) Reaction cavity and semiconductor device with same
CN114180585A (en) Method and device for preparing high-purity silicon monoxide in batches
JP7251915B2 (en) Powder for negative electrode material and method for producing negative electrode material
KR102299178B1 (en) Devices and methods for silicon oxide and anode material of silicon oxide
CN113005512A (en) Silicon carbide single crystal ingot growth equipment and method
JP3824047B2 (en) Method for producing amorphous silicon oxide powder
EP3922601A1 (en) Apparatus and method for producing silicon oxides, and silicon oxide negative electrode material
US20230202850A1 (en) Silicon monoxide gas generating raw material and method for continuously generating silicon monoxide gas
WO2021134195A1 (en) Silicon-based lithium-storage material and preparation method therefor
JP2022049185A (en) Generation method for lithium silicate and silicon
WO2021235057A1 (en) Silicon-based active material particles, silicon-based active material precursor particles and method for producing same
CN116949561B (en) Sapphire crystal growth furnace and sapphire crystal growth method
WO2023181542A1 (en) Halide material production method and halide material
CN114367371A (en) Electronic grade polycrystalline silicon thermal crushing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220221

R150 Certificate of patent or registration of utility model

Ref document number: 7030087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150