JP2020537148A - 粒子計数器の構成要素の較正 - Google Patents

粒子計数器の構成要素の較正 Download PDF

Info

Publication number
JP2020537148A
JP2020537148A JP2020520596A JP2020520596A JP2020537148A JP 2020537148 A JP2020537148 A JP 2020537148A JP 2020520596 A JP2020520596 A JP 2020520596A JP 2020520596 A JP2020520596 A JP 2020520596A JP 2020537148 A JP2020537148 A JP 2020537148A
Authority
JP
Japan
Prior art keywords
photodetector
light source
light
value
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020520596A
Other languages
English (en)
Inventor
ピーター・パーキンス・ヘアーストン
フレデリック・アール・クワント
Original Assignee
ティーエスアイ インコーポレイテッド
ティーエスアイ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ティーエスアイ インコーポレイテッド, ティーエスアイ インコーポレイテッド filed Critical ティーエスアイ インコーポレイテッド
Publication of JP2020537148A publication Critical patent/JP2020537148A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1012Calibrating particle analysers; References therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1486Counting the particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

さまざまな実施形態が、光検出器の利得を較正する方法およびシステムを含む。方法は、基準光源によって、基準光検出器に第1の光を提供するステップと、コントローラ回路によって、第1の光に応答して生成された基準光検出器からの第1の値が許容可能基準光検出器値の範囲内にあるかどうかを判定するステップと、第1の値が許容可能基準光検出器値の範囲内にあるとの判定に応じて、基準光源によって、測定光検出器に第2の光を提供するステップと、コントローラ回路によって、第2の光に応答して生成された測定光検出器からの第2の値が許容可能測定光検出器値の範囲内にあるかどうかを判定するステップと、第2の値が許容可能測定光検出器値の範囲内にないとの判定に応じて、測定光検出器の利得を調整するステップと、を含むことができる。

Description

優先権の主張
本願は、その内容全体が参照により本明細書に組み込まれる、2017年10月9日に出願された米国仮出願第62/569726号に対する優先権の利益を主張する。
本明細書に開示される主題は、高感度光検出器(HSPD)に関し、より詳細には、HSPDの較正に関する。
光電子増倍管(PMT)、アバランシェフォトダイオード(APD)、および電荷結合素子(CCD)のようなHSPDは、フローサイトメータ、エアロゾル粒子検出器、分光計、シンチレーション検出器、比濁計、および天文機器のような、広範囲の用途において用いられている。フローサイトメータは、細胞計数、細胞選別、バイオマーカ検出およびタンパク質工学のための光ベースの技術である。粒子検出器は、光ベースの粒子分類装置である。分光計は、光の特性を記録および測定して、たとえば物質を分類する。シンチレーション検出器は、電離放射線からの励起に応答して発光を検出する。比濁計は、液体または気体中に浮遊する粒子の大きさおよび濃度を測定するための機器である。
HSPD(たとえば、APD、PMT、またはCCD)を組み込んだ機器は、その感度(たとえば、利得)におけるドリフトによって損なわれる可能性がある。PMTおよびAPDのような高感度光学デバイスは、その感度(利得)におけるドリフトによって損なわれることが分かっている。これは、ウォームアップ、保管からの回復、バイアス電圧、温度、静的変化磁場、および経年による長期的感度変化による感度変化(ドリフト)を含む。このような検出器の利得を較正するためにいくつかの方法が存在するが、これらの方法はオペレータによる介入を必要とし、完全に自動化されていない。測定光検出器(たとえば、HSPD)を較正するための現在の解決策は、既知の量の光をレーザの光路に反射させる、基準球のような物体を配置することを含む。レーザ光から反射する光は既知の量であり、測定光検出器がその既知の量を記録するまで、測定光検出器の利得が調整される。さらに、このような較正では、オペレータの介入なしで、装置が較正を必要とするときを検出することが可能でなく、したがって未較正の装置の使用に対する可能性を残している。
例として、粒子計数または分類のための装置の一実施形態を示す図である。 例として、生存度検出器の一実施形態を示す図である。 例として、較正のためのコントローラ回路を含む生存度検出器の一実施形態を示す図である。 例として、生存度検出器の一実施形態を示す上面図である。 例として、装置の一実施形態を示す側面図である。 例として、測定光検出器(たとえば、図2、図3、図4、または図5の光検出器)を較正するために用いることができる基準光源を較正するための方法を示す図である。 例として、図6の較正された基準光源を用いて測定光検出器を較正するための方法を示す図である。 例として、コンピューティングデバイスの一実施形態を示す図である。
測定光検出器の感度または利得を較正するための方法、装置、およびシステムを説明する。測定光検出器、APD、CCD、またはPMTの感度または動作は、バイアス電圧、温度、動作寿命、動作環境、過露出、および保管時間のような、1つまたは複数の物理パラメータとともに変化する。実施形態は、機器とともに基準光源および基準光検出器を含む。基準光源は、たとえばコンピューティングデバイスによって自動化された方法で制御することができる。基準光検出器は、シリコンフォトダイオード(SiPD)またはサーモパイルのような、安定した光感知検出器を含むことができる。そして基準光源を用いて、機器の測定光検出器を較正および安定化することができる。基準光源較正、および測定光検出器較正の動作は、プログラム可能なコンピューティングデバイスによって制御することができる。コンピューティングデバイスは、所定の時間間隔、日付、時刻で、動作条件が変化したとき、またはたとえばコンピューティングデバイスに1つまたは複数の命令を発行することによって要求に応じて、較正を行うように構成され得る。さらに、コンピューティングデバイスは、以前のデータが信頼できるように測定光検出器がすでに較正されていることが分かっているかどうか、および較正が成功したかどうかを報告(たとえば、これらを示す1つまたは複数の信号を提供)することができる。
いくつかの種類の機器が測定光検出器(たとえば、APD、PMT、またはCCD)を用いる。測定光検出器は、一定の感度で維持することが困難である可能性がある。この困難により、較正または較正チェックが頻繁に必要になる、機器データの変動が増える、またはデータの精度および信頼性が不確実になる可能性がある。実施形態は、より良好なデータ信頼性、較正の頻度を減らす可能性、または必要に応じてユーザがデータの精度を確認する可能性を提供する。実施形態は、フローサイトメータのような、光パルスの正確で高感度な測定を必要とする機器のような、他の機器にも適用することができる。PMT安定化の光子計数法は、粒子特性評価のような用途には適していないが、これらの用途ではいくつかの信号が十分に時間的に短く、信号強度が明るいため、個々の光子信号が「集積」して個々に分解することができない。光子計数法は、光子計数が実用的でない、単一素子APDのような、いくつかの検出器には適していない。
本実施形態を適用することができる領域は、生物学的エアロゾルモニタリングおよび検出(たとえば、製薬処理用クリーンエリアのようなクリーンエリアをモニタリングするため)、水中の細菌の検出(たとえば、特に、製薬処理用のような超純水)、粒子計数および分粒のためのAPD、CCD、またはPMTのような測定光検出器、またはレーザドップラ速度測定および粒子画像速度測定のような、流体流の測定の制御、およびフローサイトメトリを含むが、これらに限定されない。
APDは、光電効果を用いて光を電気に変換する高感度半導体デバイスである。APDは、アバランシェ増倍を用いてその感度を高める。APDは一般的に、アバランシェ増倍を用いて動作する利得段を備えた光検出器と見なすことができる。PMTは光電子放出デバイスである。PMTにおいて、光子の吸収の結果、1つまたは複数の電子が放出される。PMTは、光電陰極を用いて動作する。PMTは、1つまたは複数のダイノードを用いて電子を増倍し、最初の光電子放出に対して利得を作成して、陽極がダイノードによって増倍された結果の電子を収集する。CCDは電荷を移動させる。電荷の量は、デジタル値に変換することができる。CCDは一般的に、装置の容量性ビン間で電荷を移動させる。
自動較正手順は、初期の開始期のドリフトおよび経年の感度変化の両方に対処することができる。自動較正手順は、スケジュールされた較正チェックでのみ較正外を見つけるのではなく、装置が較正外になっているときを識別または報告するのに役立つことができる。装置が適切な較正内にあるという保証は、正確で、信頼可能に一貫性のある、反復可能な測定を必要とする用途にとって重要であり得る。したがって、自動較正機能は、装置についての用途を増やし、大きな競争力を提供することができる。加えて、このような較正は、生産を効率的にするとともに請求不可能なサービス活動を減らすことによって費用を節約することができる。
図1は、例として、粒子分類または計数のための装置10の一実施形態の図を示す。図示したような装置10は、粒子入口104、光学式粒子計数器(OPC)60、粒子濃縮器20、排出口30、空気入口40、空気フィルタ50、生存度検出器70、収集フィルタ80、および排出口90を含む。装置10の適切な動作のため、OPC60または生存度検出器70の1つまたは複数の構成要素が較正されるべきである。
粒子は、粒子入口104を通ってOPC60へ流れる。粒子入口104は、導管、パイプ、ノズルなどを含むことができる。OPC60は、粒子入口104からの粒子を数量化する(数を判定する)。OPC60は、粒子から散乱した光を用いて、粒子の数の概数を判定することができる。
粒子濃縮器20は、装置10を通る粒子の流れを減少させる。光学式粒子センサの感度は、サンプル流量に比例する。言い換えると、検出される光の量は、所与の強度の光ビームに粒子が存在する時間に比例する。微生物からの内在蛍光は、散乱光よりはるかに小さい(10−2から10−3倍)ので、蛍光を適切に検出することは、OPC60を用いて可能な高流量では実用的でない。有用に高いサンプリングされた流量および粒子蛍光の有用な測定を得るため、粒子濃縮器20を用いて、より高いOPC60のサンプル流から、生存度検出器70によって実行されるような蛍光測定のためのより低い流量へ粒子を送達することができる。粒子濃縮器20は一般的に、蛍光に対する装置10の感度を高める。
排出口30は、たとえば粒子濃縮器20が流れを減少させるのを助けるため、過剰な流体を除去する。空気入口40は、粒子濃縮器20から下流の気体または粒子に移動性を提供する。フィルタ50は、空気入口40内を流れる流体から粒子を除去する。フィルタ50は、収集フィルタ80で収集される粒子が粒子入口104からのものであることを保証するのに役立つことができる。
生存度検出器70は、粒子生存度のレーザ誘起蛍光(LIF)検出を実行することができる。不活性な粒子は、生存(たとえば、細菌のような、生きている)粒子とは異なる散乱指紋を有する。生存度検出器70は、各粒子について1つまたは複数の識別パラメータを用いることができる。たとえば、生存度検出器70は、第1の波長帯における蛍光、第2の波長帯における蛍光、および散乱光の1つまたは複数を用いることができる。生存度検出器70および生存度検出器70の構成要素の較正に関するさらなる詳細は、他の図に関して議論する。
収集フィルタ80は、生存度検出器70によって分析された粒子を収集する。収集フィルタ80は、たとえばその後の種分化のために、サンプル収集された粒子を保存することができる。排出口90は、収集フィルタ80で収集されなかった流体および粒子を装置10から除去する。
実施形態のように、装置100は、たとえば再生が可能な1つまたは複数の微生物粒子からなる、またはこれを含む、サンプリングされた各エアロゾル粒子が生存しているかどうかを判定する光学測定機構を含む。この判定は、光源(たとえば、近紫外(UV)レーザ光源)によって照射されたときの各粒子の散乱光および内在蛍光の測定に基づくことができる。散乱光強度は、APD、または他の測定光検出器を用いて測定することができる。内在蛍光は、PMTによって1つまたは複数の異なる波長帯域において測定することができる。波長帯域は、近UV遮断フィルタ、ダイクロイック色分離フィルタ(図2〜図4参照)、および照明粒子からPMTへの光路に配置された光学バンドパスフィルタ(図4参照)によって選択することができる。
初期の設計決定のため、散乱光強度および内在蛍光についての光検出器112A、112B、112C、112D、または112E(図2〜図5参照)の利得応答を、測定光検出器の所定の感度設定を用いて、さまざまな微生物について測定することができる。この所定の設定は、蛍光色素を含む標準化された較正粒子の測定に基づくことができ、較正粒子の蛍光励起および放出波長は、粒子照明光源102(たとえば、図2参照)によって放出される波長および測定光検出器112A〜112Eの検出波長帯域と重複する。光検出器112A〜112Eの利得応答を較正粒子によって設定された値に維持することは、生存粒子を非生存粒子から区別するために重要である。さらに、定期的に較正粒子で機器をチェックすることは、時間がかかり、高価で、較正粒子を用いることができないクリーンエリアに機器があるような場合においては不便である。
図2は、例として、粒子計数または分類のための装置100の一実施形態の図を示す。装置100は、OPC60または生存度検出器70(図1参照)のような、装置10に含めることができる1つまたは複数の構成要素を含む。図示したような装置100は、粒子照明光源102、粒子入口104、ダイクロイックミラー106、第1の測定光検出器112A、および第2の測定光検出器112Bを含む。粒子照明光源102は、近紫外(UV)レーザのようなレーザ、または他の光源を含むことができる。測定光検出器は、装置100の動作を実行する際に用いられるべきデータを生成するために用いられるものである。基準光検出器(図3〜図5参照)は、測定光検出器の較正専用のものである。
粒子入口104は、装置100の選択された構成要素を収容するチャンバ内へサンプルを導入することができる空洞を提供する(チャンバの図については図5参照)。粒子照明光源102からの光118は、入口104を通して導入された粒子119と接触すると散乱することができ、散乱光121を作成する。粒子は、さまざまな大きさ、形状、反射特性などを有する。粒子におけるこれらの違いは、粒子に散乱指紋を提供する。この指紋は、粒子119から散乱した光121の特有の量の蛍光、波長、または角度を含むことができる。
ダイクロイックミラー106は散乱光121を受け取る。ダイクロイックミラー106は、第1の範囲の色(波長)の光124がこれを通過して第1の測定光検出器112Aに達することを可能にするとともに、第2の異なる範囲の色の光120を第2の測定光検出器112Bに向け直す。
測定光検出器112Aまたは112Bは、たとえば、PMT、APD、またはCCDを含むことができる。測定光検出器112Aまたは112Bは、電気信号に一定値を掛けてより検出可能な信号を生成する利得段を含むことができる。測定光検出器112Aまたは112Bによって生成される電気信号の量は、そこに入射する光の量に定数(利得または感度)を掛けたものに等しくなり得る。測定光検出器112Aまたは112Bは、たとえばアナログデジタル変換器を用いることによって、それぞれ、光124または120の蛍光振幅、または他の特性を測定することを可能にする電気信号を生成することができる。少なくとも部分的には、測定光検出器112Aまたは112Bによる生存粒子と非生存粒子との間の区別は、それぞれ、測定光検出器112Aまたは112Bの感度に依存する。測定光検出器112Aまたは112Bの感度は、時間、温度、経年、保管時間、または他の内因性または外因性の影響とともに変化する可能性がある。装置100の適切な動作のため、測定光検出器112Aまたは112Bは、制御された感度を有するべきである。
図3は、例として、基準光源218、基準光検出器220、およびコントローラ回路222のような自動化較正回路を含む装置200の一実施形態の図を示す。光線および粒子は、装置200の構成要素間の接続の表示を不明瞭にしないように図3には示していない。装置200は装置100と同様であるが、装置200は、基準光源218、基準光検出器220、コントローラ回路222、および光フィルタ224を含む。
基準光源218は、1つまたは複数の発光ダイオード(LED)を含むことができる。基準光源218は、パルス幅制御デジタルアナログ変換器を含むことができるようなコントローラ回路222によって制御されて、PMTによって感知されるとともにアナログデジタル変換器によって測定され、蛍光較正粒子に一致する信号に一致させることができる振幅、持続時間、または波長帯域を有する光パルス信号を放出することができる。基準光源218によって放出される光学強度は、温度および経年に依存する可能性がある。外部フィードバック制御がなければ、基準光源218は、信頼可能に反復可能な光源を提供しない。したがって、実施形態は、SiPD、または保護されたCCDのような他の安定した、または保護された光検出器のような基準光検出器220を含む。保護された光検出器は、被覆された、さもなければ外部環境から保護されているSiPDまたはCCDを含むことができる。保護された光検出器は、コントローラ回路222によって制御することができるようなシャッタを含むことができる。シャッタは、測定光検出器112Aまたは112Bを露光させる、または測定光検出器112Aまたは112Bから光を遮断するために開閉する装置である。
基準光検出器220は、基準光源218からの光のような、そこに入射する光の強度に比例する電気信号を生成することができる。基準光検出器220の信号は、コントローラ回路222のアナログデジタル変換器によって測定されて、コントローラ回路222に制御入力を提供することができる。基準光源218および基準光検出器220は、装置200の内側に取り付けることができる。SiPDは安定した光検出器であり、温度、経年、または他の内的または外的要因に対する感度がほとんどなく、正確な光感度を必要とする光パワーメータおよび他の装置において一般的に用いられている。APDおよびPMTとは異なり、SiPDおよびCCDは、最初の光電子放出後の信号増加を有さない。PMT、CCD、およびAPDとは異なり、SiPDは、フローストリームにおける小さな(1から10マイクロメートル)微生物粒子からの内在蛍光のような低強度信号には適していない。しかしながら、その限定された感度にもかかわらず、SiPDは、基準光源218からの適切な信号が基準光検出器220に入射するように基準光源218の近くに配置することによって実施形態において有用になっている。基準光源218は、たとえばエアロゾル入口ノズルおよび光学チャンバの内部からの光を散乱させることによって、測定光検出器112A〜112E(図2〜図5参照)を間接的に照明することができる。基準光源218は、測定光検出器112A〜112Eで低強度光信号を生成することができる。
基準光源218と測定光検出器112A〜112Bまたは112D〜112Eとの間に、中性濃度フィルタのような光学フィルタ224を配置することができ、たとえば測定光検出器112A〜112Bまたは112D〜112Eに低強度光信号を提供するのに役立つ。フィルタ224は、そこに入射する光を調節する1つまたは複数の光学フィルタを含む。フィルタ224は、特定の波長の光を選択的に透過させる。フィルタ224は、測定光検出器112A〜112Bによって検出されるべき光がこれを通過してダイクロイックミラー106に達することを可能にする一方、他の光を遮断することができる。
コントローラ回路222は、粒子照明光源102または基準光源218に電気信号を送信するとともに基準光検出器218および測定光検出器112A〜112Eから電気信号を受信することができる限り、装置200内、これに接して、これの近く、またはより遠隔に配置することができる。コントローラ回路222が、測定光検出器112A〜112Eによる通常の使用のために用いられるアナログデジタル変換器からの出力を受信することは有利であり得る。コントローラ回路222は、マイクロコントローラ、またはフィールドプログラマブルゲートアレイ(FPGA)のような、他のプログラム可能デジタル処理回路を含むことができる。コントローラ回路222は、デジタルアナログ変換器または同等物を介して、基準光源218に信号を提供し、基準光源218によって生成される光の強度、パルス持続時間、または基準光源218からの発光のデューティサイクルを含め、基準光源218を制御することができる。コントローラ回路222は、測定光検出器112A〜112Eの1つまたは複数に1つまたは複数の信号を提供してその利得を制御することができる。コントローラ回路222は、たとえば複数のLEDの1つのLEDを選択して光を生成するため、1つまたは複数の信号を基準光源218に提供することができる。複数のLEDは、異なる色の光を生成するLEDを含むことができる。
動作中、基準光源218は、基準光検出器220が配置され、測定光検出器112A〜112Bに光を伝達することができる装置200の領域を照明する。基準光源218の波長は、測定光検出器112A〜112Bの波長帯域内にあり得る。基準光源218の振幅(たとえば、強度、電力など)は、経年、提供される電力、温度などに敏感であり得る。基準光検出器220は、基準光源218を感知し、(基準光源218から)そこに入射する光の強度を示す1つまたは複数の信号をコントローラ回路222に提供することができる。コントローラ回路222は、基準光検出器220からの信号に応答して、基準光源218の強度を調整し、たとえば基準光検出器220によって検出された強度を強度の指定範囲内(たとえば、目標強度値の指定範囲のような、目標値±指定パーセンテージ)に収めることができる。基準光源218はこのとき、較正された強度で光を生成することになる。測定光検出器112A〜112Bは、基準光源218からの較正された強度での光によって照明することができる。測定光検出器112A〜112Bは、そこに入射する光の量を示す信号を生成することができる。コントローラ回路222は、測定光検出器112A〜112Bが、較正された強度での光に応じて、信号値の指定範囲(たとえば、目標光検出器値の範囲)内の信号を生成するよう、測定光検出器112A〜112Bの利得を調整する信号を生成することができる。コントローラ回路222は、たとえばデジタルアナログ変換器によって、測定光検出器112A〜112Bの利得を調整することができ、これは次に測定光検出器112A〜112Bの高電圧バイアスを制御する。PMTの一般的なバイアス電圧は、約400から1000ボルトである。高電圧バイアスの値は、測定光検出器112A〜112Bの増倍利得、または感度を制御する。たとえば電圧制御増幅器によって、利得を制御する代替手段も可能であり、制御電圧はマイクロコントローラに接続されたデジタルアナログ変換器によって提供される。このように、測定光検出器112A〜112Bを較正することができる。較正により、測定光検出器112A〜112Bは、光源218に応答して、指定された値の範囲内の信号値を生成する。基準光源218からの光は、(フィルタ224を含む実施形態において)フィルタ224を通過することができるので、較正により、フィルタ224における変化を説明することもできる。
装置200を較正するプロセスは、各測定光検出器112A〜112E(図2〜図5参照)について繰り返すことができる。1つまたは複数の実施形態において、測定光検出器112A〜112Bは、異なる波長の光を検出するように構成されている。たとえば、光検出器112Aは主に黄色のスペクトル領域における波長を検出することができ、光検出器112Bは主に青色のスペクトル領域における波長を検出することができる。この例において、基準光源218は2つのLEDを含むことができ、一方は黄色光を発し、他方は青色光を発する。同じパッケージで複数の色のLEDが利用可能である。
図4は、例として、測定光検出器(たとえば、HSPD)を較正するためのシステム400の一実施形態の上面図を示す。システム400は装置200のような構成要素を含むが、システム400は、第1のミラー部分302Aおよび302B、第2のミラー部分304Aおよび304B、測定光検出器の具体的な一例であるAPD112C、およびコリメート(視準)装置308を含む。システム400はUVレーザ102Aを含み、これは粒子照明光源102の具体的な一例である。システム400はLED218Aを含み、これは基準光源218の具体的な一例である。システム400はPMT112Dおよび112Eを含み、これらは測定光検出器112A〜Bの具体的な例である。システム400はSiPD220Aを含み、これは基準光検出器220の具体的な一例である。粒子は「紙面内へ向かって(into the page)」提供することができ、粒子は、第1のミラー部分302Aおよび302Bと第2のミラー部分304Aおよび304Bとの間を通過するUVレーザ102Aからの光によって照射される。
図4において、線上の異なる記号は異なる光を示す。たとえば、「v」はUVレーザ102Aからの光を示し、「x」は粒子119から散乱した後のUVレーザ102Aからの光を示し、「w」はLED218Aからの光を示し、以下同様である。
第1のミラー部分302Aおよび302Bは、粒子によって散乱されたUVレーザ102Aからの光をAPD112Cへ向ける。APD112Cの利得は、コントローラ回路222によって調整することができる。第1のミラー部分302Aおよび302Bは、光が通過することができる穴が中にある単一の楕円形ミラーの一部であってもよい。
第2のミラー304Aおよび304Bは、粒子によって散乱されたUVレーザ102Aからの光をフィルタ224へ向ける。フィルタ224は、UVレーザ102Aによって生成された色(または色の範囲)での光を遮断することができる。フィルタ224は、蛍光波長の光をダイクロイックミラー106へ通すことができる。第2のミラー部分304A〜304Bは、第1のミラー部分302A〜302B同様、光が通過することができる穴が中にある単一の楕円形ミラーの一部であってもよい。
コリメート(視準)装置308は、フィルタ224からフィルタリングされた、または(フィルタ224を含まない実施形態において)ミラー部分302A〜302Bを通過した光を受け取る。コリメート(視準)装置308は平行光線を生成する。コリメート(視準)装置308は、そこから出る光が広がることができる量を制限する。
ダイクロイックミラー106は、それぞれのPMT112Dおよび112Eによる検出のためにコリメート(視準)装置308からの光を2つの発光波長帯域に分離する。各粒子について取得され、PMT112Dまたは112E、またはAPD112Cによって提供される信号は、コントローラ回路222のアナログデジタル変換器によってデジタル化することができる。コントローラ回路222は、この信号に基づいて粒子の生存度を判定することができる。
較正のため、特定の強度、パルス幅、またはデューティサイクルで光を生成するように、コントローラ回路222はLED218Aに命令することができる。SiPD220Aは、LED218Aから光を受け取り、そこに入射する光の強度を示す1つまたは複数の信号を生成することができる。実際の粒子からの信号が較正を妨害しないよう、自動化較正プロセスの持続中、コントローラ回路222がUVレーザ102Aをオフにすることが有利であり得る。コントローラ回路222は、SiPD220Aから信号を受信し、この信号が十分な強度の光(目標強度値の1%、2%、3%、4%以内などの光)を示すかどうかを判定することができる。強度値が十分な強度でなければ、コントローラ回路222は、SiPD220Aが十分な強度の光を記録するまで、LED218Aの動作電力、または他のパラメータを調整することができる。LED218Aはこのとき、十分な強度で信号を生成することができる。LED218A、通常は1つまたは複数のLEDからの光は、光学チャンバ(第1のミラー部分302A〜302Bと第2のミラー部分304A〜304Bとの間の領域)内で散乱し、このためこの間接光路は較正粒子からの信号と同等の低レベル信号を生成する。APD112Cの応答は、たとえばコントローラ回路222によって、所望の応答と比較することができる。コントローラ回路222は、APD112Cがその所望の応答の閾値パーセンテージ内にある応答を提供するまで、高電圧バイアスを介してAPD112Cの感度を調整することができる。
コントローラ回路222は(まだそうしていなければ)、フィルタ224またはダイクロイックミラー106(フィルタ224またはダイクロイックミラー106を含む実施形態において)を通過してPMT112Dに達する波長の光を生成するようにLED218Aを設定することができる。コントローラ回路222は、先に議論した方法でLED218Aの強度を較正することができる。LED218Aが適切な色および強度で光を生成した後、LED218Aからの光に対するPMT112Dの応答をコントローラ回路222に提供することができる。コントローラ回路222は、PMT112Dの応答が所望の応答の閾値パーセンテージ内にあるかどうかを判定することができる。コントローラ回路222は、PMT112Dの応答が所望の応答の閾値パーセンテージ内になるまで、PMT112Dの利得を調整することができる。
コントローラ回路222は、フィルタ224およびダイクロイックミラー106(フィルタ224またはダイクロイックミラー106を含む実施形態において)を通過してPMT112Eに達する色の光を発するようにLED218Aを設定することができる。PMT112Eの較正は、PMT112Dと同様の方法で進めることができる。PMT112C〜112Eのいずれかの所望の応答は、少なくとも図6および図7に関して議論するような基準物質を用いて決定することができる。
図5は、例として、装置500の一実施形態の側面図を示す。装置500は、粒子照明光源102および基準光源218(基準光源218Aおよび218Bは基準光源218の具体的な例である)、光学チャンバ324、および光停止アセンブリ326の相対位置を示す。装置500は、基準光源218(基準光源218Aおよび基準光源218Bとして示す)の代替位置を示す。基準光源218Aのための1つの位置は、光学チャンバ324および光停止アセンブリ326の外部である。基準光源218Bのための他の可能な位置は、光停止アセンブリ326の内部である。基準光検出器220は、光停止アセンブリ326の内部にあるとして示している。
光学チャンバ324は、粒子照明光源102からの光が散乱する領域、および粒子入口104を通して粒子が導入される領域である。光学チャンバ324は、図4に示すような第1のミラー部分302A〜302Bおよび第2のミラー部分304A〜304Bのようなミラーを含むことができる(図示する構成要素の表示を不明瞭にしないように図5においては省略している)。コントローラ回路222は、外部にあるが、装置500の選択された構成要素に結合することができる。コントローラ回路222は、装置500の較正を制御する回路を含むことができる。1つまたは複数の実施形態において、別個のコントローラを用いて、粒子照明光源102の動作または基準光源218の動作を制御することができる。
コントローラ回路222の回路は、1つまたは複数のデジタルアナログ変換器(DAC)を含むことができ、基準光源218Aまたは218Bに制御信号を提供することができる。コントローラ回路222の回路は、基準光源218Aまたは218Bからの信号を、コントローラ回路222の処理回路によって理解可能な形式に変換する1つまたは複数のアナログデジタルコントローラ(ADC)を含むことができる。処理回路は、装置500の1つまたは複数の構成要素の動作を制御するように構成された、1つまたは複数の抵抗、トランジスタ、インダクタ、コンデンサ、発振器、レギュレータ、論理ゲート(たとえば、AND、OR、NAND、NOR、EXOR、否定、または他の論理ゲート)、増幅器、マルチプレクサ、バッファ、メモリ、スイッチ、加算デバイスなどを含むことができる。処理回路は、1つまたは複数の実施形態においてマイクロコントローラ、フィールドプログラマブルゲートアレイ(FPGA)などを含むことができる。
図2〜図5に関して、基準光源218、測定光検出器112A〜112E、または基準光検出器220に結合されたプログラム可能コントローラ(たとえば、コントローラ回路222)を用い、従来の較正技術を用いて可能であるよりも迅速、正確に、および/または効率的に測定光検出器112A〜112Eまたは基準光源218を較正することが可能である。以下は、基準光源218、または光検出器112A〜112Eの1つまたは複数を較正するための方法600および700の説明である。
図6は、例として、測定光検出器(たとえば、測定光検出器112A〜112E)、および基準光源(たとえば、基準光源218)を較正するための方法600の一実施形態の図を示す。方法600において言及する測定光検出器利得は、測定光検出器112A〜112Eの利得を指す。方法600において言及する基準光検出器は、基準光検出器220である。概して、方法600は、参照標準に対する測定光検出器応答に基づいて目標光源強度を判定する。図示したような方法600は、動作402で、基準物質を用いて測定光検出器利得を較正するステップと、動作404で、測定光検出器応答値(粒子照明光源102から発せられ、基準物質から放出された光に対する)を測定光検出器目標応答として保存するステップと、動作406で、初期基準光源オン時間および制御電力(基準光源218のための)を選択するステップと、動作408で、選択された電力で選択されたオン時間に対して基準光源を制御するステップと、動作410で、基準光源からの光に対する測定光検出器および基準光検出器の応答を測定するステップと、動作412で、測定光検出器応答を測定光検出器目標値と比較するステップと、動作412での測定光検出器応答が測定光検出器目標値(+許容可能デルタ値)より大きい(またはこれに等しい)との判定に応じて、動作414で、基準光源電力を減少させるステップと、動作412での測定光検出器応答が測定光検出器目標値(マイナス許容可能デルタ値)より小さいとの判定に応じて、動作416で、基準光源電力を増加させるステップと、動作412での測定光検出器応答が測定光検出器目標値(±許容可能デルタ値)に等しいとの判定に応じて、動作418で、光源強度、光源オン時間、または制御電力に対する応答のために基準光検出器目標値として基準光検出器読み取り値を保存するステップと、を含む。
動作402からの基準物質は、粒子照明光源102によって生成される光から既知の光散乱または蛍光応答を引き起こす1つまたは複数のマイクロビーズを含むことができる。動作408は、たとえば基準光源をパルス化することなどによって、複数回実行することができる。動作410は、たとえば動作408で生成された各パルスについて、複数回実行することができる。動作410からの測定光検出器および基準光検出器の応答は、平均化して読み取りの精度を向上させることができ、外れ値を除去することを含むことができる。
図7は、例として、基準光源(たとえば、基準光源218)を用いて測定光検出器(たとえば、光検出器112A〜112E)を較正するための方法700の一実施形態の図を示す。方法700において言及する測定光検出器利得は、光検出器112A〜112Eの利得を指す。方法700の基準光検出器は、光検出器220を含むことができる。概して、方法700は、方法600の結果に基づくことができるような、検出された基準光源強度に基づいて目標基準光源強度および測定光検出器利得を(自動的に)較正する。図示したような方法700は、動作502で、較正コマンドを受信するステップと、動作504で、基準光検出器目標値、基準光源オン時間、基準光源制御電力、および測定光検出器目標値を取得するステップと、動作506で、取得された電力で取得されたオン時間に対して基準光源を制御するステップと、動作508で、基準光源光に対する基準光検出器応答を測定するステップと、動作510で、基準光検出器応答を基準光検出器目標値と比較するステップと、動作510での基準光検出器応答が基準光検出器目標値(+許容可能デルタ値)より大きいとの判定に応じて、動作512で、基準光源電力を減少させるステップと、動作510での基準光検出器応答が基準光検出器目標値(マイナス許容可能デルタ値)より小さい(またはこれに等しい)との判定に応じて、動作514で、基準光源電力を増加させるステップと、動作510での基準光検出器応答が基準光検出器目標値(±許容可能デルタ値)に等しいとの判定に応じて、動作516で、基準光源光に対する測定光検出器応答を測定するステップと、動作518で、取得された測定光検出器目標値と測定光検出器応答を比較するステップと、動作518での測定光検出器応答が測定光検出器目標値(+許容可能デルタ値)より大きい(またはこれに等しい)との判定に応じて、動作520で、測定光検出器利得を減少させるステップと、動作518での測定光検出器応答が測定光検出器目標値(マイナス許容可能デルタ値)より小さいとの判定に応じて、動作522で、測定光検出器利得を増加させるステップと、動作518での測定光検出器応答が測定光検出器目標値(±許容可能デルタ値)に等しいとの判定に応じて、動作524で、基準光源のオン時間または制御電力を保存するステップと、を含む。
動作506は、たとえば基準光源をパルス化することなどによって、複数回実行することができる。動作508は、たとえば動作506で生成された各パルスについて、複数回実行することができる。動作508からの基準光検出器応答は、外れ値を除去した後などに平均化することができる。動作516は、たとえば動作510で基準光検出器応答が許容範囲内にあるという結果をもたらした、取得された光源電力またはオン時間で基準光源によって生成された各パルスについて、複数回実行することができる。測定光検出器112A〜112Eの応答は、外れ値を除去した後などに平均化することができる。
初期の、または定期的な較正は、たとえば方法600の一部を実行することによって、参照標準蛍光マイクロビーズを用いて較正を実行すること、および測定光検出器112A〜112Eのバイアス電圧(たとえば、利得)を設定することを含むことができる。バイアス電圧は、コントローラ回路222に提供することができる。自動較正を実行すべき時間枠は、コントローラ回路222に対してリモートまたはローカルであり得るような、コントローラ回路222によってアクセス可能なメモリに格納することができる。バイアス電圧、基準光源オン時間、基準光源制御電力、測定光検出器目標値、または基準光検出器目標値は、メモリに保存することができる。動作の1つまたは複数または動作の結果は、装置10、100、200、300、または500のユーザインターフェイスを通してユーザに提供することができる。
方法600または700は、粒子照明光源(たとえば、粒子照明光源102)をオフにするステップを含むことができる。方法600または700は、対応する基準光源を固定幅でN回パルス化するステップ、および測定光検出器112A〜112Eによって読み取られた中央パルス振幅を計算するステップを含むことができる。方法600または700は、繰り返された測定光検出器測定をフィードバックとして用いて光源パルス振幅を調整し、較正粒子について得られた測定光検出器目標値を達成するステップを含むことができる。方法600または700は、較正が完了した後などに、粒子照明光源をオンにするステップを含むことができる。方法700は、スケジュールされた時間、指定された時間が経過した後、ルーチン粒子サンプリングの開始または終了時など、指定された機器機能が実行されたとき、またはさもなければ機器のコントロールパネルから、または遠隔地からの通信リンクを介した機器のマイクロコントローラへのコマンドから較正を実行するコマンドを受け取った後、に実行することができる。コントローラ回路222は、たとえば指定された時間が経過した、指定された日付または時間が過ぎたとの判定に応じて、または較正プロセスの開始を命令する信号のユーザインターフェイスからの受信に応じて、較正プロセスを開始することができる。
図8は、例として、コンピューティングデバイスの一実施形態の図を示す。コントローラ回路222または他の回路または装置の前述の実施形態の1つまたは複数は、図8のコンピューティングデバイスのようなコンピューティングデバイスの少なくとも一部を含むことができる。測定光検出器目標値、基準光検出器目標値、測定光検出器利得、基準光源オン時間、基準光源電力、基準光源電力を調整する量、測定光検出器利得を調整する量などのようなパラメータは、メモリ604のようなメモリに保存することができる。1つまたは複数の実施形態において、複数のこのようなコンピュータシステムが分散型ネットワークにおいて利用され、トランザクションベースの環境において複数のコンポーネントを実装する。オブジェクト指向、サービス指向、または他のアーキテクチャを用いてこのような機能を実装し、複数のシステムおよびコンポーネント間で通信することができる。コンピュータ610の形態の一例のコンピューティングデバイスは、処理ユニット602、メモリ604、取り外し可能記憶装置612、および取り外し不能記憶装置614を含むことができる。メモリ604は、揮発性メモリ606および不揮発性メモリ608を含むことができる。コンピュータ610は、揮発性メモリ606および不揮発性メモリ608、取り外し可能記憶装置612および取り外し不能記憶装置614のような、さまざまなコンピュータ可読媒体を含むコンピューティング環境を含む、またはこれへのアクセスを有することができる。コンピュータ記憶装置は、ランダムアクセスメモリ(RAM)、読み取り専用メモリ(ROM)、消去可能なプログラム可能読み取り専用メモリ(EPROM)および電気的に消去可能なプログラム可能読み取り専用メモリ(EEPROM)、フラッシュメモリまたは他のメモリ技術、コンパクトディスク読み取り専用メモリ(CD ROM)、デジタル多用途ディスク(DVD)または他の光ディスク記憶装置、磁気カセット、磁気テープ、磁気ディスク記憶装置または他の磁気記憶デバイス、またはコンピュータ読み取り可能命令を格納することが可能な任意の他の媒体を含む。コンピュータ610は、入力616、出力618、および通信接続620を含むコンピューティング環境を含む、またはこれへのアクセスを有することができる。コンピュータは、データベースサーバのような、1つまたは複数のリモートコンピュータに接続する通信接続を用いるネットワーク化環境において動作することができる。リモートコンピュータは、パーソナルコンピュータ(PC)、サーバ、ルータ、ネットワークPC、ピアデバイスまたは他の一般的なネットワークノードなどを含むことができる。通信接続は、ローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(WAN)または他のネットワークを含むことができる。
機械可読記憶デバイスに格納されたコンピュータ可読命令は、コンピュータ610の処理ユニット602によって実行可能である。ハードドライブ、CD‐ROM、およびRAMは、非一時的コンピュータ可読媒体を含む物品のいくつかの例である。たとえば、コンピュータプログラム625は命令を提供することが可能であり、命令は、処理ユニット602または命令を実行することが可能な他の機械によって実行されるとき、展開されているスモールセルのようなスモールセルの位置に基づいてPCIの割り当てまたは配置を処理ユニットに実行させる。命令は、CD‐ROMに保存してCD‐ROMからコンピュータ610のハードドライブへロードすることができる。コンピュータ可読命令により、コンピュータ610(たとえば、処理ユニット602)が、競合検出、競合回避、位置判定、警告発行、または他の動作または方法を実装することが可能になり得る。
追記および例。以下の例は、先に議論した詳細とともに、または独立して用いることができる実施形態の詳細を提供する。
例1は、第1の光を生成する粒子照明光源と、第2の光を生成する基準光源と、第1の光の経路内へ粒子を導入するように配置された粒子入口と、第2の光を受け取る基準光検出器と、粒子によって散乱された第1の光を受け取るとともに第2の光を受け取る測定光検出器と、基準光検出器からの信号に基づいて、基準光源の強度が目標強度値の指定範囲内にあるかどうかを判定し、第2の光の強度が目標強度値の指定範囲内にあって基準光源が較正された第2の光を生成しているとの判定に応じて、測定光検出器の較正された第2の光に対する応答が目標光検出器値の指定範囲内にあるかどうかを判定するコントローラ回路と、を含む光学式粒子特性評価装置を含む。
例2において、例1は、粒子照明光源はレーザを含み、基準光源は発光ダイオードを含むことをさらに含む。
例3において、例1〜例2のうちの少なくとも1つは、基準光検出器はシリコンフォトダイオード(SiPD)を含み、測定光検出器は、アバランシェフォトダイオード(APD)、光電子増倍管(PMT)、および電荷制御素子(CCD)のうちの1つを含むことをさらに含む。
例4において、例1〜例3のうちの少なくとも1つは、コントローラ回路はさらに、基準光源の動作電力および基準光源のデューティサイクルのうちの少なくとも1つを制御し、第2の光の強度が目標強度値の指定範囲外であるとの判定に応じて、基準光源の動作電力および基準光源のデューティサイクルのうちの少なくとも1つを制御するものであることをさらに含む。
例5において、例1〜例4のうちの少なくとも1つは、コントローラ回路はさらに、測定光検出器からの1つまたは複数の信号に基づいて測定光検出器の利得を調整するものであることをさらに含む。
例6において、例1〜例5のうちの少なくとも1つは、測定光検出器は第1の測定光検出器であり、この装置は、第2の測定光検出器と、入射する光を別個の第1および第2の発光波長に分離するダイクロイックミラーと、をさらに含み、ダイクロイックミラーは、第1の発光波長を第1の測定光検出器に、第2の発光波長を第2の測定光検出器に提供するように配置され、コントローラ回路はさらに、基準光源の較正前に、第1の色の光を発する基準光源の第1の発光ダイオードを選択するコマンドを基準光源に提供し、第1の発光ダイオードが第1の色の光を発する間に基準光源および第1の測定光検出器を較正し、第2の色の光を発する基準光源の第2の発光ダイオードを選択するコマンドを基準光源に提供し、基準光検出器からの信号に基づいて基準光源の強度を較正し、第2の発光ダイオードの強度が較正されているとの判定に応じて、較正された第2の発光ダイオードを用いて第2の測定光検出器の利得を較正するものであることをさらに含む。
例7において、例1〜例6のうちの少なくとも1つは、粒子照明光源とダイクロイックミラーとの間にフィルタをさらに含み、フィルタは、粒子照明光源によって生成された色の光を遮断し、粒子から散乱した光を通過させる。
例8において、例1〜例7のうちの少なくとも1つは、基準光検出器を囲む環境から基準光検出器を保護するように配置されたハウジングまたはシャッタをさらに含む。
例9において、例1〜例8のうちの少なくとも1つは、コントローラ回路はさらに、指定された時間が経過した後、指定された時間に、または較正が実行されるべきであることを示すコマンドのユーザインターフェイスを通しての受信に応じて、基準光源に基準光検出器を照明させる信号を自動的に生成するものであることをさらに含む。
例10は、装置を較正する方法を含み、この方法は、装置の基準光源によって、装置の基準光検出器に第1の光を提供するステップと、装置のコントローラ回路によって、第1の光に応答して生成された基準光検出器からの第1の値が許容可能基準光検出器値の範囲内にあるかどうかを判定するステップと、第1の値が許容可能基準光検出器値の範囲内にあるとの判定に応じて、基準光源によって、測定光検出器に第2の光を提供するステップと、コントローラ回路によって、第2の光に応答して生成された測定光検出器からの第2の値が許容可能測定光検出器値の範囲内にあるかどうかを判定するステップと、第2の値が許容可能測定光検出器値の範囲内にないとの判定に応じて、測定光検出器の利得を調整するステップと、を含む。
例11において、例10は、装置の粒子照明光源の光路に基準物質を配置するステップと、装置のメモリで、基準物質によって散乱された光に対する測定光検出器の応答を許容可能測定光検出器値として記録するステップと、をさらに含み、許容可能測定光検出器値の範囲は、許容可能測定光検出器値±指定パーセンテージを含む。
例12において、例10〜例11のうちの少なくとも1つは、基準光源からの第3の光で測定光検出器を照明するステップと、第3の光に対する測定光検出器の応答が許容可能測定光検出器値の範囲内にあるかどうかを判定するステップと、測定光検出器の応答が許容可能測定光検出器値の範囲内にあるとの判定に応じて、基準光源の動作電力およびデューティサイクルおよび基準光検出器の応答を許容可能基準光検出器値として装置のメモリに記録するステップと、をさらに含み、許容可能基準光検出器値の範囲は、許容可能基準光検出器値±指定パーセンテージを含む。
例13において、例10〜例12のうちの少なくとも1つは、コントローラ回路によって、基準光源に第2の色の光を生成させるコマンドを提供するステップと、第2の色の光を用いて第2の測定光検出器を較正するステップと、をさらに含む。
例14において、例10〜例13のうちの少なくとも1つは、基準光源は発光ダイオードを含み、粒子照明光源はレーザを含むことをさらに含む。
例15において、例10〜例14のうちの少なくとも1つは、基準光検出器はシリコン光検出器(SiPD)を含み、測定光検出器は、光電子増倍管(PMT)またはアバランシェフォトダイオード(APD)を含むことをさらに含む。
例16において、例10〜例15のうちの少なくとも1つは、装置の基準光源によって、装置の基準光検出器に第1の光を提供するステップは、記録された動作電力およびデューティサイクルで基準光源を動作させるコマンドを提供するステップを含むことをさらに含む。
例17において、例10〜例16のうちの少なくとも1つは、コントローラ回路によって、指定された時間が経過した後、指定された時間に、または較正が実行されるべきであることを示すコマンドのユーザインターフェイスを通しての受信に応じて、基準光源に基準光検出器を照明させる信号を自動的に生成するステップをさらに含む。
例18は、機械によって実行されたとき、較正するための動作を実行するようにその機械を設定する命令が格納された非一時的機械可読記憶装置を含み、この動作は、装置の基準光検出器に入射する第1の光を生成するように装置の基準光源を設定する第1のコマンドを提供する動作と、第1の光に応答して生成された基準光検出器からの第1の値が許容可能基準光検出器値の範囲内にあるかどうかを判定する動作と、第1の値が許容可能基準光検出器値の範囲内にあるとの判定に応じて、測定光検出器に入射する第2の光を生成するように基準光源を設定する第2のコマンドを提供する動作と、第2の光に応答して生成された測定光検出器からの第2の値が許容可能測定光検出器値の範囲内にあるかどうかを判定する動作と、第2の値が許容可能測定光検出器値の範囲内にないとの判定に応じて、測定光検出器の利得を調整する第3のコマンドを提供する動作と、を含む。
例19において、例18は、この動作は、基準物質から散乱した粒子照明光源からの光に対する測定光検出器の応答を許容可能測定光検出器値として記録する動作をさらに含み、許容可能測定光検出器値の範囲は、許容可能測定光検出器値±指定パーセンテージを含むことをさらに含む。
例20において、例18〜例19のうちの少なくとも1つは、この動作は、測定光検出器の応答が許容可能測定光検出器値の範囲内にあるとの判定に応じて、基準光源の動作電力およびデューティサイクルおよび基準光検出器の応答を許容可能基準光検出器値として装置のメモリに記録する動作をさらに含み、許容可能基準光検出器値の範囲は、許容可能基準光検出器値±指定パーセンテージを含むことをさらに含む。
例21において、例18〜例20のうちの少なくとも1つは、第1の光は第1の色であり、この動作は、基準光源に第2の色の光を生成させるコマンドを提供する動作と、第2の色の光を用いて第2の測定光検出器を較正する動作と、をさらに含むことをさらに含む。
例22において、例18〜例21のうちの少なくとも1つは、基準光源は発光ダイオードを含み、粒子照明光源はレーザを含み、基準光検出器はシリコン光検出器(SiPD)を含み、測定光検出器は、光電子増倍管(PMT)またはアバランシェフォトダイオード(APD)を含むことをさらに含む。
例23において、例18〜例22のうちの少なくとも1つは、第1の光を生成するように装置の基準光源を設定する第1のコマンドを提供する動作は、記録された動作電力およびデューティサイクルで基準光源を動作させるコマンドを提供する動作を含むことをさらに含む。
例24において、例18〜例23のうちの少なくとも1つは、この動作は、指定された時間が経過した後、指定された時間に、または較正が実行されるべきであることを示すコマンドのユーザインターフェイスを通しての受信に応じて、基準光源に基準光検出器を照明させる信号を自動的に生成する動作をさらに含むことをさらに含む。
本明細書に提供された開示された主題には、粒子状物質センサ較正システムのさまざまな実施形態を説明するさまざまなシステムおよび方法の図が含まれる。したがって、上の説明は、開示された主題を実施する例示的な例、装置、システム、および方法を含む。説明において、説明の目的のため、本発明の主題のさまざまな実施形態の理解を提供するために多くの具体的な詳細を記載した。しかしながら、本発明の主題のさまざまな実施形態がこれらの具体的な詳細なしで実施することができるということは、当業者には明らかであろう。さらに、周知の構造、材料、および技術は、さまざまな例示された実施形態を不明瞭にしないよう、詳細には示していない。
本明細書で用いたように、「or(または)」という用語は、包括的または排他的な意味で解釈することができる。加えて、本明細書で議論したさまざまな例示的な実施形態は、粒子計数器を較正する方法に焦点を合わせているが、提供された開示を読んで理解すると、当業者によって他の実施形態が理解されるであろう。さらに、本明細書に提供された開示を読んで理解すると、当業者は、本明細書に提供された技術および例のさまざまな組合せがすべてさまざまな組合せで適用され得ることを容易に理解するであろう。
さまざまな実施形態を別個に議論しているが、これらの別個の実施形態は、独立した技術または設計として見なされることを意図していない。上記のように、さまざまな部分のそれぞれは相互に関連していてもよく、それぞれを別個に、または本明細書で議論した他の粒子計数器または他のシステムの実施形態と組み合わせて用いることができる。
したがって、本明細書に提供された開示を読んで理解すると当業者には明らかとなるように、多くの修正および変更を行うことができる。本開示の範囲内の機能的に同等の方法および装置が、本明細書に列挙されたものに加えて、前述の説明から当業者には明らかであろう。いくつかの実施形態の一部および特徴が、他のものに含まれ、または置換され得る。このような修正および変更は、添付の特許請求の範囲内にあることが意図されている。したがって、本開示は、添付の請求項の用語、ならびにこのような請求項が権利を与えられている均等物の全範囲によってのみ限定されるべきである。また、本明細書で用いた用語は、実施形態を説明するためのみのものであり、限定することを意図するものではないことも理解されるべきである。
開示の要約は、技術的開示の性質を読者が迅速に確認することが可能になるように提供されている。要約は、請求項を解釈または限定するために用いられることがないという理解で提出されている。加えて、前述の詳細な説明において、開示を合理化するため、さまざまな特徴を単一の実施形態にまとめてグループ化することができるということが分かる。この開示の方法は、特許請求の範囲を限定するものとして解釈されるべきではない。このように、以下の請求項はここで詳細な説明に組み込まれ、各請求項は別個の実施形態としてそれ自体で成立する。
10 装置
20 粒子濃縮器
30 排出口
40 空気入口
50 空気フィルタ
60 光学式粒子計数器
70 生存度検出器
80 収集フィルタ
90 排出口
100 装置
102 粒子照明光源
102A UVレーザ
104 粒子入口
106 ダイクロイックミラー
112A 第1の測定光検出器
112B 第2の測定光検出器
112C APD
112D PMT
112E PMT
118 光
119 粒子
120 第2の異なる範囲の色の光
121 散乱光
124 第1の範囲の色(波長)の光
200 装置
218 基準光源
218A LED
220 基準光検出器
220A SiPD
222 コントローラ回路
224 光フィルタ
302A 第1のミラー部分
302B 第1のミラー部分
304A 第2のミラー部分
304B 第2のミラー部分
308 コリメート(視準)装置
324 光学チャンバ
326 光停止アセンブリ
400 システム
500 装置
602 処理ユニット
604 メモリ
606 揮発性メモリ
608 不揮発性メモリ
610 コンピュータ
612 取り外し可能記憶装置
614 取り外し不能記憶装置
616 入力
618 出力
620 通信接続
625 コンピュータプログラム

Claims (24)

  1. 第1の光を生成する粒子照明光源と、
    第2の光を生成する基準光源と、
    前記第1の光の経路内へ粒子を導入するように配置された粒子入口と、
    前記第2の光を受け取る基準光検出器と、
    前記粒子によって散乱された前記第1の光を受け取るとともに前記第2の光を受け取る測定光検出器と、
    コントローラ回路と、を含み、前記コントローラ回路が、
    前記基準光検出器からの信号に基づいて、前記基準光源の強度が目標強度値の指定範囲内にあるかどうかを判定し、
    前記第2の光の強度が前記目標強度値の指定範囲内にあって前記基準光源が較正された第2の光を生成しているとの判定に応じて、前記測定光検出器の較正された前記第2の光に対する応答が目標光検出器値の指定範囲内にあるかどうかを判定する、光学式粒子特性評価装置。
  2. 前記粒子照明光源はレーザを含み、前記基準光源は発光ダイオードを含む、請求項1に記載の光学式粒子特性評価装置。
  3. 前記基準光検出器はシリコンフォトダイオード(SiPD)を含み、前記測定光検出器は、アバランシェフォトダイオード(APD)、光電子増倍管(PMT)、および電荷制御素子(CCD)のうちの1つを含む、請求項1に記載の光学式粒子特性評価装置。
  4. 前記コントローラ回路はさらに、
    前記基準光源の動作電力および前記基準光源のデューティサイクルのうちの少なくとも1つを制御し、
    前記第2の光の強度が前記目標強度値の指定範囲外であるとの判定に応じて、前記基準光源の動作電力および前記基準光源のデューティサイクルのうちの少なくとも1つを制御する、請求項1に記載の光学式粒子特性評価装置。
  5. 前記コントローラ回路はさらに、前記測定光検出器からの1つまたは複数の信号に基づいて前記測定光検出器の利得を調整する、請求項1に記載の光学式粒子特性評価装置。
  6. 前記測定光検出器は第1の測定光検出器であり、前記光学式粒子特性評価装置は、
    第2の測定光検出器と、
    入射する光を別個の第1および第2の発光波長に分離するダイクロイックミラーであって、前記第1の発光波長を前記第1の測定光検出器に、前記第2の発光波長を前記第2の測定光検出器に提供するように配置された、ダイクロイックミラーと、をさらに含み、
    前記コントローラ回路はさらに、
    前記基準光源の較正前に、第1の色の光を発する前記基準光源の第1の発光ダイオードを選択するコマンドを前記基準光源に提供し、
    前記第1の発光ダイオードが前記第1の色の光を発する間に前記基準光源および前記第1の測定光検出器を較正し、
    第2の色の光を発する前記基準光源の第2の発光ダイオードを選択するコマンドを前記基準光源に提供し、
    前記基準光検出器からの信号に基づいて前記基準光源の強度を較正し、
    前記第2の発光ダイオードの強度が較正されているとの判定に応じて、較正された前記第2の発光ダイオードを用いて前記第2の測定光検出器の利得を較正する、請求項1に記載の光学式粒子特性評価装置。
  7. 前記粒子照明光源と前記ダイクロイックミラーとの間にフィルタをさらに含み、前記フィルタは、前記粒子照明光源によって生成された色の光を遮断し、前記粒子から散乱した光を通過させる、請求項6に記載の光学式粒子特性評価装置。
  8. 前記基準光検出器を囲む環境から前記基準光検出器を保護するように配置されたハウジングまたはシャッタをさらに含む請求項1に記載の光学式粒子特性評価装置。
  9. 前記コントローラ回路はさらに、
    指定された時間が経過した後、指定された時間に、または較正が実行されるべきであることを示すコマンドのユーザインターフェイスを通しての受信に応じて、前記基準光源に前記基準光検出器を照明させる信号を自動的に生成する、請求項1に記載の光学式粒子特性評価装置。
  10. 装置を較正する方法であって、
    前記装置の基準光源によって、前記装置の基準光検出器に第1の光を提供するステップと、
    前記装置のコントローラ回路によって、前記第1の光に応答して生成された前記基準光検出器からの第1の値が許容可能基準光検出器値の範囲内にあるかどうかを判定するステップと、
    前記第1の値が前記許容可能基準光検出器値の範囲内にあるとの判定に応じて、前記基準光源によって、測定光検出器に第2の光を提供するステップと、
    前記コントローラ回路によって、前記第2の光に応答して生成された前記測定光検出器からの第2の値が許容可能測定光検出器値の範囲内にあるかどうかを判定するステップと、
    前記第2の値が前記許容可能測定光検出器値の範囲内にないとの判定に応じて、前記測定光検出器の利得を調整するステップと、を含む方法。
  11. 前記装置の粒子照明光源の光路に基準物質を配置するステップと、
    前記装置のメモリで、前記基準物質によって散乱された光に対する前記測定光検出器の応答を許容可能測定光検出器値として記録するステップと、をさらに含み、
    前記許容可能測定光検出器値の範囲は、前記許容可能測定光検出器値±指定パーセンテージを含む、請求項10に記載の方法。
  12. 前記基準光源からの第3の光で前記測定光検出器を照明するステップと、
    前記第3の光に対する前記測定光検出器の応答が前記許容可能測定光検出器値の範囲内にあるかどうかを判定するステップと、
    前記測定光検出器の応答が前記許容可能測定光検出器値の範囲内にあるとの判定に応じて、前記基準光源の動作電力およびデューティサイクルおよび前記基準光検出器の応答を許容可能基準光検出器値として前記装置のメモリに記録するステップと、をさらに含み、
    前記許容可能基準光検出器値の範囲は、前記許容可能基準光検出器値±指定パーセンテージを含む、請求項10に記載の方法。
  13. 前記コントローラ回路によって、前記基準光源に第2の色の光を生成させるコマンドを提供するステップと、
    前記第2の色の光を用いて第2の測定光検出器を較正するステップと、をさらに含む、請求項10に記載の方法。
  14. 前記基準光源は発光ダイオードを含み、前記粒子照明光源はレーザを含む、請求項10に記載の方法。
  15. 前記基準光検出器はシリコン光検出器(SiPD)を含み、前記測定光検出器は、光電子増倍管(PMT)またはアバランシェフォトダイオード(APD)を含む、請求項10に記載の方法。
  16. 前記装置の基準光源によって、前記装置の基準光検出器に第1の光を提供するステップは、記録された前記動作電力および前記デューティサイクルで前記基準光源を動作させるコマンドを提供するステップを含む、請求項10に記載の方法。
  17. 前記コントローラ回路によって、指定された時間が経過した後、指定された時間に、または較正が実行されるべきであることを示すコマンドのユーザインターフェイスを通しての受信に応じて、前記基準光源に前記基準光検出器を照明させる信号を自動的に生成するステップをさらに含む請求項10に記載の方法。
  18. 機械によって実行されたとき、較正するための動作を実行するように前記機械を設定する命令が格納された非一時的機械可読記憶装置であって、前記動作は、
    装置の基準光検出器に入射する第1の光を生成するように前記装置の基準光源を設定する第1のコマンドを提供する動作と、
    前記第1の光に応答して生成された前記基準光検出器からの第1の値が許容可能基準光検出器値の範囲内にあるかどうかを判定する動作と、
    前記第1の値が前記許容可能基準光検出器値の範囲内にあるとの判定に応じて、測定光検出器に入射する第2の光を生成するように前記基準光源を設定する第2のコマンドを提供する動作と、
    前記第2の光に応答して生成された前記測定光検出器からの第2の値が許容可能測定光検出器値の範囲内にあるかどうかを判定する動作と、
    前記第2の値が前記許容可能測定光検出器値の範囲内にないとの判定に応じて、前記測定光検出器の利得を調整する第3のコマンドを提供する動作と、を含む、非一時的機械可読記憶装置。
  19. 前記動作は、基準物質から散乱した粒子照明光源からの光に対する前記測定光検出器の応答を許容可能測定光検出器値として記録する動作をさらに含み、前記許容可能測定光検出器値の範囲は、前記許容可能測定光検出器値±指定パーセンテージを含む、請求項18に記載の非一時的機械可読記憶装置。
  20. 前記動作は、前記測定光検出器の応答が前記許容可能測定光検出器値の範囲内にあるとの判定に応じて、前記基準光源の動作電力およびデューティサイクルおよび前記基準光検出器の応答を許容可能基準光検出器値として前記装置のメモリに記録する動作をさらに含み、前記許容可能基準光検出器値の範囲は、前記許容可能基準光検出器値±指定パーセンテージを含む、請求項18に記載の非一時的機械可読記憶装置。
  21. 前記第1の光は第1の色であり、前記動作は、
    前記基準光源に第2の色の光を生成させるコマンドを提供する動作と、
    前記第2の色の光を用いて第2の測定光検出器を較正する動作と、をさらに含む、請求項18に記載の非一時的機械可読記憶装置。
  22. 前記基準光源は発光ダイオードを含み、前記粒子照明光源はレーザを含み、前記基準光検出器はシリコン光検出器(SiPD)を含み、前記測定光検出器は、光電子増倍管(PMT)またはアバランシェフォトダイオード(APD)を含む、請求項18に記載の非一時的機械可読記憶装置。
  23. 第1の光を生成するように装置の基準光源を設定する前記第1のコマンドを提供する動作は、記録された前記動作電力および前記デューティサイクルで前記基準光源を動作させるコマンドを提供する動作を含む、請求項18に記載の非一時的機械可読記憶装置。
  24. 前記動作は、指定された時間が経過した後、指定された時間に、または較正が実行されるべきであることを示すコマンドのユーザインターフェイスを通しての受信に応じて、前記基準光源に前記基準光検出器を照明させる信号を自動的に生成する動作をさらに含む、請求項18に記載の非一時的機械可読記憶装置。
JP2020520596A 2017-10-09 2018-10-08 粒子計数器の構成要素の較正 Pending JP2020537148A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762569726P 2017-10-09 2017-10-09
US62/569,726 2017-10-09
PCT/US2018/054869 WO2019074849A1 (en) 2017-10-09 2018-10-08 CALIBRATION OF PARTICLE COUNTER COMPONENT

Publications (1)

Publication Number Publication Date
JP2020537148A true JP2020537148A (ja) 2020-12-17

Family

ID=66101679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020520596A Pending JP2020537148A (ja) 2017-10-09 2018-10-08 粒子計数器の構成要素の較正

Country Status (6)

Country Link
US (1) US20200256782A1 (ja)
EP (1) EP3695204A4 (ja)
JP (1) JP2020537148A (ja)
KR (1) KR20200055134A (ja)
CN (1) CN111344550A (ja)
WO (1) WO2019074849A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2959506T3 (es) 2014-03-18 2024-02-26 Univ California Citómetro de flujo paralelo que usa multiplexación por radiofrecuencia, y método
AU2016339956B2 (en) 2015-10-13 2021-07-01 Omega Biosystems Incorporated Multi-modal fluorescence imaging flow cytometry system
JP7003258B2 (ja) * 2018-06-22 2022-02-04 三菱電機株式会社 粒子検出装置
WO2021007075A1 (en) 2019-07-10 2021-01-14 Becton, Dickinson And Company Reconfigurable integrated circuits for adjusting cell sorting classification
EP4139656A4 (en) * 2020-04-20 2023-11-01 Becton, Dickinson and Company DEVICE AND METHOD FOR THE QUANTITATIVE CHARACTERIZATION OF A LIGHT DETECTOR
CN115917315A (zh) 2020-05-05 2023-04-04 贝克顿·迪金森公司 用于确定流式细胞仪中检测器增益的方法
US11676466B2 (en) * 2020-08-19 2023-06-13 Honeywell International Inc. Self-calibrating fire sensing device
WO2022093931A1 (en) * 2020-10-30 2022-05-05 Becton, Dickinson And Company Method and systems for characterizing and encoding a light detection system
CN112730203B (zh) * 2020-12-29 2023-06-16 深圳市科曼医疗设备有限公司 血球分析仪的光学***、光学增益校准方法和存储介质

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5048524A (en) * 1989-03-03 1991-09-17 Camino Laboratories, Inc. Blood parameter measurement
US5317156A (en) * 1992-01-29 1994-05-31 Sri International Diagnostic tests using near-infrared laser absorption spectroscopy
US5331958A (en) * 1992-03-31 1994-07-26 University Of Manitoba Spectrophotometric blood analysis
US5334841A (en) * 1993-01-22 1994-08-02 Minnesota Mining And Manufacturing Company Method and apparatus for detecting fluorescence
US6583424B2 (en) * 2001-06-25 2003-06-24 Agilent Technologies Inc. Scanning system with calibrated detection and method
GB2409036B (en) * 2002-06-24 2006-02-15 Tsi Inc Analysis systems detecting particle size and fluorescence
EP1862793A1 (en) * 2006-05-29 2007-12-05 Biotest AG High throughput particle counter
CN101354287B (zh) * 2007-07-24 2010-12-22 杭州远方光电信息有限公司 一种光谱仪及其校正方法
CN101911139B (zh) * 2007-11-16 2013-03-20 粒子监测***有限公司 用于光学粒子计数器的校准验证的***和方法
US8022355B2 (en) * 2009-08-04 2011-09-20 Thermo Fisher Scientific Inc. Scintillation detector gain control system using reference radiation
US9335244B2 (en) * 2011-08-09 2016-05-10 Tsi Incorporated System and method for converting optical diameters of aerosol particles to mobility and aerodynamic diameters
JPWO2015012004A1 (ja) * 2013-07-23 2017-03-02 ソニー株式会社 粒子分析装置及び粒子分析方法
CN104122211B (zh) * 2014-08-12 2016-08-31 无锡创想分析仪器有限公司 一种全谱直读光谱仪的实时校正方法
JP6719203B2 (ja) * 2015-12-25 2020-07-08 リオン株式会社 生物粒子計数器の校正方法および生物粒子計数器の校正装置
JP6731250B2 (ja) * 2015-12-25 2020-07-29 リオン株式会社 生物粒子計数器校正用の標準粒子懸濁液の製造方法、及び、生物粒子計数器の校正方法
EP4098984A1 (en) * 2017-09-19 2022-12-07 Beckman Coulter Inc. Analog light measuring and photon counting in chemiluminescence measurements

Also Published As

Publication number Publication date
US20200256782A1 (en) 2020-08-13
KR20200055134A (ko) 2020-05-20
CN111344550A (zh) 2020-06-26
EP3695204A1 (en) 2020-08-19
WO2019074849A1 (en) 2019-04-18
EP3695204A4 (en) 2021-07-07

Similar Documents

Publication Publication Date Title
JP2020537148A (ja) 粒子計数器の構成要素の較正
JP5873831B2 (ja) フロー・サイトメータ・タイプ測定システムの1つまたは複数のパラメータを制御するための方法
CN107202903B (zh) 样本分析仪及其样本分析方法
US20180149578A1 (en) Devices, systems and methods for detecting particles
KR101601699B1 (ko) 미소 입자의 광학적 측정 방법 및 광학적 측정 장치
KR20170046706A (ko) 입자 검출을 위한 장치, 시스템 및 방법
KR20100087104A (ko) 유동 입자를 식별하는 시스템과 저장매체 및 방법
JP2019527839A (ja) フローサイトメーターのための光学検出システム、フローサイトメーターのシステムおよび使用方法
JP2014503073A (ja) 生物学的分析又は他のシステムにおける計量線量照明のためのシステム及び方法
US9581494B2 (en) Method and device for analyzing small particles in gas
US10976235B2 (en) Optical particle sensor and sensing method
JP2020122803A (ja) 微小粒子測定装置、情報処理装置及び情報処理方法
US11119028B2 (en) Optical particle sensor and sensing method
JP4902582B2 (ja) 蛍光検出装置
US20230117469A1 (en) Particulate detection, counting, and identification
US20210181080A1 (en) Particle sensor and method
JP4566743B2 (ja) 分光光度計
JP2017142142A (ja) 粒子検出センサ、携帯型気体モニタ、及び、粒子検出方法
EP3543678A1 (en) Particle sensor and method

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under section 34 (pct)

Free format text: JAPANESE INTERMEDIATE CODE: A529

Effective date: 20200608