JP2020507735A - 熱源ユニットおよび熱源ユニットを有する空調装置 - Google Patents

熱源ユニットおよび熱源ユニットを有する空調装置 Download PDF

Info

Publication number
JP2020507735A
JP2020507735A JP2019543404A JP2019543404A JP2020507735A JP 2020507735 A JP2020507735 A JP 2020507735A JP 2019543404 A JP2019543404 A JP 2019543404A JP 2019543404 A JP2019543404 A JP 2019543404A JP 2020507735 A JP2020507735 A JP 2020507735A
Authority
JP
Japan
Prior art keywords
heat exchanger
air conditioner
heat source
heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019543404A
Other languages
English (en)
Other versions
JP6782368B2 (ja
Inventor
ピルメ,ピーター
聡 河野
聡 河野
明治 小島
明治 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Europe NV
Original Assignee
Daikin Europe NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Europe NV filed Critical Daikin Europe NV
Publication of JP2020507735A publication Critical patent/JP2020507735A/ja
Application granted granted Critical
Publication of JP6782368B2 publication Critical patent/JP6782368B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/18Heat exchangers specially adapted for separate outdoor units characterised by their shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • F24F1/24Cooling of electric components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/46Component arrangements in separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/021Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

冷媒回路を備える空調装置(1)の熱源ユニット(2)は、冷媒回路に接続されるコンプレッサ(3)と、冷媒回路に接続され、冷媒回路に循環する冷媒と熱源(104)との間で熱を交換するように構成される熱源熱交換器(5)と、上部(31)および側壁(32〜34)を有する電気ボックス(30)と、を収容する外部筐体(10)を備える。電気ボックスは、空調装置を制御する電気部品(36)を収容し、空気吸入口(38)及び空気排出口(39)を有する空気通路(37)を有し、少なくとも一部の電気部品を冷却するため空気吸入口から空気排出口へと通路を通る気流(41)が生成される。冷却用熱交換器(22)が外部筐体に収容されるとともに冷媒回路に接続される。冷却用熱交換器(22)は、気流(41)が流れて冷媒と気流との間で熱を交換するよう配置される。冷却用熱交換器(22)は、液冷媒ライン(25)から分岐するバイパスライン(24)とガス吸引ライン(26)とに接続される。バイパスライン(24)は冷却用熱交換器の上流側に弁(20)を有する。制御器(65)は、弁(20)を閉じるOFFモードと弁(20)を開くONモードとに弁(20)を制御する。

Description

本開示は、熱源ユニットおよび熱源ユニットを有する空調装置に関する。空調装置は、一般的に、調節すべき一以上の部屋における空気を冷却および/または加熱をして調節するヒートポンプを使用する。ヒートポンプは、一般的に、コンプレッサと熱源熱交換器と膨張弁と少なくとも一の室内熱交換器とを少なくとも有する冷媒回路を備える。熱源ユニットは、熱源(空気、地面または水など)と冷媒回路に流れる冷媒との間で熱エネルギーを伝達する熱源熱交換器を備える空調装置(ヒートポンプ)のユニットとみなすことができるであろう。
既知の熱源ユニットは、一般的に、少なくとも、コンプレッサと、熱源熱交換器と、空調装置(特にヒートポンプの冷媒回路)を制御するよう構成される電気部品を収容する電気ボックスと、を収容する外部筐体を備える。
電気ボックスに収容される電気部品のうちの少なくともいくつかは、冷却を必要とする。このために、特開2016−191505号公報には、外部筐体の内部に開口する空気吸入口および空気排出口を有する空気通路と、電気部品を冷却するために空気吸入口から空気排出口への空気通路を通じて気流を生成するよう構成されるファンと、を備える電気ボックスが開示されている。
電気部品は、空気通路に流れる空気に熱を伝達する。次に、加熱された空気は、外部筐体の内部へと導入される。同様な開示は、米国特許出願公開第2016/0258636号(US2016/0258636A1)にもある。
電気部品の冷却を補助するために、米国特許出願公開第2016/0258636号は、電気部品に直接接触する第一部分と電気ボックスの外側の第二部分とを有して配置される熱放散板をさらに提案している。冷媒回路に接続される冷媒配管は、熱放散板の第二部分に連結される。保守(メンテナンス)の理由で、または電気ボックスに収容される制御器の変更を行うために電気ボックスにアクセス可能とする必要があるからであろう。米国特許出願公開第2016/0258636号においては、冷媒配管を熱放散板の第二部分から取り外さなければならない。冷媒配管は脆弱であるので、冷媒配管を損傷する虞がある。
さらに、熱源ユニットの外部筐体に収容されるコンプレッサ、液レシーバまたは油分離器などの高温冷媒部品も同様に熱を放散する。
熱源ユニットは、建物の内側の設備部屋などの設置環境または空間に位置するある環境下にある。これは、熱源として水を用いる場合に特に当てはまる。熱源ユニット全体が熱を放散するので、設備部屋の温度は上昇する場合があり、そのことは不都合であることが分かる。別の機器もまたその設備部屋に設置され、そしてその別の機器が高温の影響を受けやすい場合、設備部屋の追加の冷却さえ必要なこともある。
特開2016−191505号明細書 米国特許出願公開第2016/0258636号明細書
以上の点を考慮して、熱源ユニットによって放散される熱の量を低減するまたはなくすことさえできる空調装置のための熱源ユニットおよびこのような熱源ユニットを有する空調装置を提供することを目的とする。
この課題に対する基本的な概念は、空調装置の冷媒回路に接続されるとともに、冷媒が流れる冷却用熱交換器を提供することにある。冷却用熱交換器は、電気ボックスの空気通路を通るよう生じる気流が流れるよう配置され、これにより、空気が冷却される。この結果、熱源ユニット(特に電気部品を冷却した後に電気ボックスから放出される空気)によって放散される熱の量を低減できるまたはなくすことさえできる。さらに、ある環境では、空調装置の冷媒回路に接続される冷却用熱交換器は、空調装置の動作条件に悪影響を与える場合がある。したがって、電気ボックスの空気通路を通るよう流れる空気を冷却する冷却用熱交換器が電気部品から放散される熱を回収してその熱を空調装置の冷媒回路において用いることができる空調装置のための熱源ユニットおよびこのような熱源ユニットを備える空調装置を提供することを目的とする。これに関して、熱回収を可能とすると同時に空調装置の実現可能な容量および動作への悪影響を最小限とできるよう冷却用熱交換器が冷媒回路に配置されることが有用である。さらに、コストを最小限とするために、冷却用熱交換器を通る冷媒の流れを制御するための簡単な制御機構が望まれよう。
ある面では、上記の目的のうちの少なくとも一つの解決のために、請求項1に記載した熱源ユニットを提案する。このような熱源ユニットを備える空調装置を含むさらなる態様を、従属請求項、以下の説明および図面に示す。
一の面では、空調装置のための熱源ユニットを提案する。一般に、空調装置を、調節すべきある部屋(または複数の部屋)を冷却するための冷房動作で、そして任意選択的に調節すべきある部屋(または複数の部屋)を暖めるための暖房動作で、動作させることができる。空調装置が二つ以上の部屋用に構成されている場合、一の調節すべき部屋を冷房すると同時に他の調節すべき部屋を暖房する混合動作も考えられる。提案の空調装置は冷媒回路を備える。先に示した通り、冷媒回路はヒートポンプを構成することができ、コンプレッサと熱源熱交換器と膨張弁と少なくとも一つの室内熱交換器とを少なくとも有することができる。一の面にかかる熱源ユニットは、熱源ユニットの内部および熱源ユニットの外部を定義する外部筐体を備える。外部筐体は、コンプレッサと熱源熱交換器と電気ボックスと冷却用熱交換器とを少なくとも収容する。冷却用熱交換器は、冷媒回路において蒸発器として機能する場合があり、したがって、蒸発器という場合がある。外部筐体はさらに、冷媒回路の膨張弁、液レシーバ、油分離器およびアキュムレータを収容することもできる。外部筐体に収容される冷媒回路の部品(特にコンプレッサおよび熱源熱交換器)は、冷媒回路に接続されるためのものである。さらに、熱源熱交換器は、冷媒回路において循環する冷媒と熱源(特に水、場合によっては空気や地面に同様に考えられる)との間で熱を交換するよう構成される。電気ボックスは、空調装置(特にヒートポンプ)を制御するよう構成される電気部品を収容する。電気ボックスは、少なくとも最上部と側壁とを有する。電気ボックスの底端部は、開口させておくこともまたは底部を有することもできる。側壁は、底部から最上部へと略鉛直方向に沿って延設される。本明細書において「鉛直方向に沿って」は、側壁が鉛直に向いていることが一つの実現可能性に含まれるが、このことは必ずしも必要ではない。むしろ、側壁を鉛直方向に対して傾斜することすらできる。側壁が鉛直方向に対して45°よりも大きく角度付けされない限り、側壁は鉛直方向に沿って延設されると理解されよう。電気ボックスに収容される電気部品のうちの少なくともいくつかを冷却可能にするために、空気吸入口と空気排出口とを有する空気通路を提案する。ある面では、少なくとも空気排出口は、外部筐体の内部へと開口するよう電気ボックスに配置される。これは、後述する通り外部筐体に収容される高温冷媒部品を冷却しようとする場合に、特に好適である。さらに、空気排出口が外部筐体の外部へと開口することも考えられる。空気吸入口を、外部筐体の外部へとまたは外部筐体の内部へと開口するよう配置することもできる。空気吸入口から空気排出口への空気通路を通る気流を、自然対流によって生成することもできる。あるいは、後述する通り、気流を生成するために、ファンを空気吸入口または空気排出口のいずれかに配置することもできる。熱源ユニットの環境へと放散される電気部品からの熱の量を最小化するよう、空調装置の冷媒回路に接続されるための冷却用熱交換器を提案する。冷却用熱交換器を、電気ボックスの側壁のうちの一つに、例えば空気通路の空気排出口に、配置することができる。いずれの場合も、冷却用熱交換器は、気流が流れて冷媒と気流との間で熱を交換するよう配置される。また、冷却用熱交換器は、例えば熱源熱交換器に接続される液冷媒ラインから分岐するバイパスラインと、例えばコンプレッサの吸引側に接続されるガス吸引ラインと、に接続される。「液冷媒ライン」は、本明細書において、流れる冷媒が液相にある冷媒回路のラインとして理解される。「ガス吸引ライン」は、本明細書において、ガス状の冷媒が流れるコンプレッサの吸引側の冷媒回路のラインとして理解される。ある例では、液冷媒ラインは、熱源熱交換器と室内熱交換器とを接続するラインである。さらに、バイパスラインを、この例における液冷媒ラインに、バイパスラインと熱源熱交換器との間に配置される膨張弁によって、接続することができる。一の特定の例において、ガス吸引ラインは、間に配置され得るアキュムレータなど一以上の部品を有するコンプレッサの吸引側に接続されるラインとすることができる。言い換えれば、冷却用熱交換器は、例えば熱源熱交換器に接続される液冷媒ラインから分岐するバイパスラインと、例えばコンプレッサの吸引側に接続されるガス吸引ラインと、に接続される。さらに、アキュムレータはガス吸引ラインへのバイパスラインの接続箇所とコンプレッサの吸引側との間に配置されると考えることができる。この面の利点は、コンプレッサが動作している限り冷却用熱交換器を常に動作させることができるので、空調装置の冷媒回路に悪影響を与えることなく信頼できるシステムが得られることにある。さらに、この配置により、空調装置の暖房動作の際に冷媒回路において電気部品から放散される熱を効率的に用いることができる。
したがって、一の場合では、空気吸入口を通じて導入された空気を、空気とバイパスラインおよび冷却用熱交換器を通るよう流れる冷媒との間の伝熱によって冷却することができ、これにより、冷媒の温度は上昇し、冷媒のうちの少なくとも一部が蒸発する。このため、空気吸入口を通じて空気通路に流れ込む空気の温度は、外部筐体の内部または熱源ユニットの環境における空気の温度より低い。したがって、空気排出口を通じて放出される空気の温度は、外部筐体内または熱源ユニットの環境における空気の温度と同じ程度である。その結果、電気部品は外部筐体の内部をさらには加熱することがなく、外部(環境)へと放散される熱の量を低減することができる。
冷却用熱交換器が、空気通路において電気部品の上流側に配置される場合には、空気通路へと導入された相対的に冷たい空気および空気通路と電気ボックスとの間の大きな温度差のために水滴が電気ボックスの内部に生じることも考えられる。水滴の形成を防止するために、冷却用熱交換器を、冷却すべき電気部品の、気流の方向における下流側に配置できる。一の面では、冷却用熱交換器を、空気通路の空気排出口に配置することができる。こうして、外部筐体の内部から空気吸入口に流れ込む空気は、空気通路を通って流れ、空気通路において電気部品を冷却し、このため、空気の温度が上昇する。次に、空気は冷却用熱交換器を通って流れることにより冷却され、冷却用熱交換器を通って流れる冷媒の温度が上昇し、そして、冷媒が蒸発する。冷却用熱交換器の空気排出口から放出される空気の温度は、外部筐体の内部における空気の温度と、同一でなくとも少なくとも同じ程度であり、それより低いこともある。このため、またこの場合は、電気部品は、外部筐体の内部における空気をさらには加熱せず、したがって、外部の環境への熱放散を低減することができる。また、先に説明した通り、凝縮水が冷却用熱交換器の表面に形成される虞がある。冷却用熱交換器は、電気部品のうちの気流内につまり空気通路内に配置される電気部品および/または電気部品のうちのいくつかの電気部品に伝熱可能に接続される気流内につまり空気通路内に配置されるヒートシンクの下流側に配置されるので、凝縮水が電気部品またはヒートシンクに接触する虞が低減される。それどころか、特に気流が空気通路において電気部品およびヒートシンクから離れていくとき、気流は凝縮水を電気部品およびヒートシンクから離れるよう運ぶことになる。また、冷却すべき電気部品の下流側に冷却用熱交換器を配置することには、大量の熱を冷媒に伝達することができ、その結果、熱回収および冷媒回路における熱の使用を向上できる利点がある。
いずれにしても、冷却用熱交換器による空気通路を通るよう流れる空気の冷却を、ゼロ熱散逸制御または動作(ZED)と呼ぶことができる。
また、バイパスラインは、冷却用熱交換器の上流側にバルブを有する。そして、バルブを閉じる(例えば完全に閉じる)OFFモードと、バルブを開く(例えば完全に開く)ONモードと、にバルブを制御する制御器が備えられる。この結果、空調装置の冷媒回路において冷却用熱交換器を容易に制御し組込むことができる。バルブを閉じること(OFFモード)が可能であることにより、空気通路を通るよう流れる空気を冷却する必要性に基づいた制御と、高負荷動作における容量の低下など空調装置への悪影響を防止するまたは冷房動作の際に液冷媒ラインからバイパスラインを介してガス吸引ラインへと液冷媒が送り込まれてしまう虞を防止する安全制御と、が可能となる。
バイパスラインは膨張弁を有することができる。膨張弁の開度は制御可能である。さらに、ある態様では、バイパスラインは、バルブおよびキャピラリを、両方が冷却用熱交換器の上流側に有することができる。一の態様では、バルブはON/OFF切り換えのみである、つまり、(完全に)開くか閉じるだけであるバルブである。バルブは、ソレノイドバルブとすることができる。制御される膨張弁の使用により、より精巧な制御が可能となる。なお、これは、気流が流れる冷却用熱交換器に関してすべての環境で必要とされるものではない。例えば、膨張弁の代わりに、バルブおよびキャピラリを用いることにより、より簡単な構成を提供でき、それほどコストがかからず、膨張弁を用いる場合に必要な複雑な制御論理(ロジック)を不要とすることができる。いずれの場合も、システムおよび空調装置の動作状態などの環境の必要に応じて冷却用熱交換器の冷却性能を適応させることができる。
一の特定の実施形態において、制御器はOFFモードを手動で設定できるよう構成される。言い換えれば、人が制御器に、バルブを常に閉じゼロ熱散逸制御を実行できないよう、手動で設定することができる。これにより、人および同システムは、ある環境下では、空調装置の容量に影響を与えないよう空気通路における空気を冷却するために冷却用熱交換器を用いないようにすることができる。例えば、熱源ユニットが、温度を安定に維持する必要がない換気部屋に配置される場合、制御器をOFFモードに設定できる。
さらに、制御器を、空調装置の動作条件に基づいてOFFモードとONモードとの間で切り換えを行うよう構成できる。例えば、空調装置が冷房モードで動作される場合、制御器はバルブをOFFモードに切り換えるよう構成することができる。
ある面では、空調装置に要求される冷房容量が所定の閾値を超える場合、制御器はバルブをOFFモードに切り換えるよう構成される。この動作を「容量優先」と呼ぶこともできる。空調装置の冷房動作の際に、冷却用熱交換器もまた、空気通路における空気を冷却するために用いられ、したがって空調装置の容量の一部を必要とする。空調装置によって調節すべき部屋の冷房要求が高い場合(高負荷動作)、空調装置の容量は、冷房要求とゼロ熱散逸制御の冷却要求とを満たすには十分ではない可能性がある。この場合、優先権は部屋の冷房要求に与えられる。このように、部屋の冷房要求を満たすのに必要な冷房容量が所定の閾値(所定の冷房容量)を超える場合、バルブは閉じられ(OFFモード)、ゼロ熱散逸制御が非作動状態となる。例えば、熱源熱交換器は、ある量の熱(100%の熱負荷ともいう)を(この例においては)ある動作条件で水(水回路)に伝達することができる。ZED制御が非作動状態にある動作の際には、熱源ユニットは、100%の熱負荷に対応して調節すべき部屋から熱を取り去ることができる(冷房動作)。電子部品と高温冷媒部品からの熱損失が総熱量負荷の4%に対応すると仮定すると、熱負荷(冷房容量)の96%だけを冷房動作の際に部屋を冷房するために用いることができる。上記設定が有効である場合、ZED制御を非作動状態とでき、部屋を冷房するために100%の利用可能容量が得られる。部屋の暖房動作の際に、熱源熱交換器は、水回路において水から100%の熱を取り去り、この熱を電気部品からの4%の熱損失とともに、部屋へと伝達することになる。これにより、104%の暖房容量が得られ、その結果、空調装置の暖房性能が高まる。
他の面では、空調装置の起動および油戻し動作を含む空調装置の特定の制御モードの際に、制御器は、バルブをOFFモードに切り換えるよう構成される。こうして、これらの特定の制御モードの際にゼロ熱散逸制御が空調装置の動作に悪影響を与えることを確実に防止することができる。起動モードの際には、例えば、コンプレッサの回転速度は定格速度に上がる。低い回転速度では、循環する冷媒量は小さい。さらに、熱源ユニットと室内ユニットとの間の距離が大きい場合、熱源ユニットと室内ユニットを接続する液体ラインにおいて冷媒は比較的大きな慣性を有する。対照的に、バイパスラインは比較的短く、小さな慣性を有する。結果として、高い割合の冷媒がバイパスラインを流れ、室内ユニットに流れる冷媒が少なくなる、もしくは流れないことすらある。この結果、室内ユニットが装着される部屋における快適性が低下する。これを、バルブを閉じることによって防止できる。油戻し動作の際に、冷媒回路部品から油を流すために大流量が生成される。バルブが開いている場合、冷媒回路部品を通る流量は低下し、その結果油戻し効率が低下する。
さらなる面では、第一温度センサが外部筐体内に収容される。制御器は、第一温度センサによって測定される温度に基づいて、バルブのONモードとOFFモードとの間の切り換えを行うよう構成される。こうして、電気部品および/または外部筐体内の他の部品(例えば限定するものではないがコンプレッサ、液レシーバおよび油分離器を含む高温冷媒部品など)から散逸される熱の実際量にゼロ熱散逸制御の動作を適応させることができる。結果として、外部筐体の内部を冷却する必要がある場合だけ、ゼロ熱散逸制御が作動する(バルブがONモードにある)。
一の例では、制御器において、ユーザは、所定の温度を自由に入力するまたは複数の所定の温度から選択することができる。こうして、制御器は、第一温度センサによって測定された温度を、入力されたまたは選択された所定の温度と、比較することができる。第一温度センサによって測定される温度が所定の温度よりも高いとき、制御器は、ONモードへの切り換えを行い、バルブを開く。これにより、空気通路において空気は冷却用熱交換器によって冷却され、外部筐体内の温度が下がる。さらに、制御器において、ユーザが差温度を自由に入力可能とするまたは複数の差温度から選択可能とすることも考えられる。これによって、第一温度センサによって測定された温度が所定の温度から差温度を減算した温度より下がる場合、制御器はバルブを閉じることによりOFFモードに再び切り換わることになる。このように、熱源ユニットの冷房要求に応じて、ゼロ熱散逸を達成するまたは熱源ユニットの熱散逸を所定の量に少なくとも低減する比較的簡単な制御を得ることができる。
ある面では、第三温度センサ(好ましくはサーミスタ)が、冷却用熱交換器とコンプレッサの吸引側との間の出口ラインに配置される。一般に、出口ラインは、冷却用熱交換器をガス吸引ラインに接続するライン、つまり冷却用熱交換器の出口とガス吸引ラインへのバイパスラインの接続箇所との間のラインとして理解される。一の例において、上述の通り、アキュムレータを冷却用熱交換器とコンプレッサの吸引側との間に配置することができる。この場合、サーミスタは、冷却用熱交換器と、冷却用熱交換器とコンプレッサとの間に配置されるアキュムレータの吸引側と、の間の出口ラインに配置される。制御器は、サーミスタの出力に基づいて、出口ラインにおける冷媒の過熱度を決定するよう構成される。特に、制御器は、サーミスタによって測定される温度を、ガス吸引ラインにおける冷媒の二相温度と、比較するよう構成される。サーミスタによって測定される温度が二相温度より高い場合、出口ラインに過熱度の大きな冷媒があると決定でき、またその逆のことも決定できる。好ましくは、ガス吸引ラインに配置される圧力センサによって測定される圧力に基づいて二相温度を決定する。さらに、制御器は、過熱度に基づいてバルブのONモードとOFFモードとの間で切り換えを行うよう構成される。動作の際に、液ラインとガス吸引ラインとの間の圧力差は、熱源ユニットの動作条件に影響を受けることになる。バイパスラインに圧力低下がある場合、ガス吸引ラインからバイパスラインへの冷媒フローが生じる可能性がある。外部筐体における空気の温度によっては、冷却用熱交換器を流れる冷媒と空気の熱容量とのバランスが崩れることがあり、その結果、冷媒が完全に蒸発して起こりうる大きい過熱が付く、また冷媒が完全に蒸発せず液冷媒を含む虞がある。これらの極端な状況は、サーミスタを介して取得された過熱度に基づいてバルブを開閉すること(ON/OFFモード)によって回避できる。
一の特定の実施例において、計算された過熱度が所定の時間にわたって所定の値よりも下がる場合、制御器はOFFモードへの切り換えを行うよう構成される。所定の値および所定の期間は、制御器において手動で設定できる(自由に入力するまたは複数のある所定の値および所定の期間から選択することによって)。
ゼロ熱散逸制御が非作動状態にある(バルブが閉じられる)場合にも外部筐体内の電気部品および/または高温冷媒部品から熱を確実に散逸させるために、外部筐体はベントを有する。
また、ある面では、制御器は電気ボックスに収容される。
さらなる面は、上述したいずれかの面にかかる熱源ユニットを有する空調装置に関する。熱源ユニットは、冷媒回路を形成する室内熱交換器を有する少なくとも一の室内ユニットに接続される。上述の通り、空調装置は、ヒートポンプを構成することができる冷媒回路を有する。したがって、冷媒回路は、ヒートポンプ回路を形成するよう、コンプレッサと熱源熱交換器と膨張弁と少なくとも一つの室内熱交換器とを少なくとも備えることができる。液レシーバ、アキュムレータおよび油分離器など空調装置において知られているようなさらなる部品を同様に備えることもできる。一の面では、空調装置は熱源として水を用いる。さらなる面では、空調装置は、一以上の調節すべき部屋を備えている建物に取り付けられ、そして熱源ユニットは、建物の設備部屋などの設置環境または設置空間に設置される。
特に、熱源ユニットが部屋(設備部屋)内に設置される場合、そしてその部屋が隔絶されていてあまり換気されない場合、熱源ユニットによって散逸される熱のためにその部屋における温度が高くなる虞がある。
ある面では、空調装置はさらに、設置環境または空間(特に設備部屋)における温度を検出する第二温度センサを備える。
一の例において、制御器は、第一温度センサによって測定される温度が第二温度センサによって測定される温度よりも高いとき、ONモードへの切り換えを行うよう構成されている。これにより、外部筐体の内部と設置環境との間の温度差に応じてゼロ熱散逸制御を作動/非作動とすることができる。熱源ユニットによって設置環境が熱くなってしまう傾向がある(第一温度センサによって測定された温度が第二温度センサによって測定された温度より高い)場合にのみ、バルブはONモードに制御される。そうでなければ、バルブはOFFモードに制御される。
他の実施例において、他の(第二の)所定の温度は、いわゆる、環境(例えば部屋)の影響を受けない温度(no-environment(e.g. room)-impact-temperature)として定義される。これは、上述したように、環境の影響を受けない温度を自由にコントロールに入力することにより、または複数の所定の環境の影響を受けない温度から選択することにより、達成することができる。この場合、制御器は、第二温度センサによって測定される温度と所定の温度(環境の影響を受けない温度)との間の差分(デルタ)に基づいてONモードへの切り換えを行うよう構成される。特に、第二温度センサによって測定される温度が、環境の影響を受けない温度をある差温度(デルタ)超える場合、バルブは開かれる(ONモード)。またこの場合、差温度(第二差温度)を、制御器に自由に入力できる、または複数の既定の差温度から選択することができる。一の例では、第二温度センサによって測定される温度が、環境の影響を受けない温度よりも下がる場合、コントロールはバルブを閉じるOFFモードへの切り換えを行うよう構成される。
さらなる面では、制御器を、室内ユニット側における空調装置の第一伝熱容量Qと室内ユニット側における空調装置の第二伝熱容量Qとの間の差異Qが冷却用熱交換器の伝熱容量Qより高い場合、ONモードへの切り換えを行うよう、そして空調装置の第一伝熱容量Qと空調装置の第二伝熱容量Qとの間の差異Qが冷却用熱交換器の伝熱容量Qより低い場合、OFFモードへの切り換えを行うよう、構成することができる。空調装置の第一伝熱容量Qは、コンプレッサが第一周波数で駆動される第一動作モードにおける伝熱容量である。第一動作モードは、室内ユニット側の熱的負荷に応じてコンプレッサが可変周波数で駆動される通常モードとできる。つまり、熱的負荷が増加するとコンプレッサ周波数は増加し、熱負荷が下がるとコンプレッサ周波数は低下する。空調装置の第二伝熱容量Qは、空調装置の特定の動作条件に応じた、コンプレッサが第一周波数より小さい第二周波数で駆動される第二動作モードにおける容量である。例えば、コンプレッサを損傷から保護するために、コンプレッサの入力電流のパラメータ(インバータの温度など)が所定の値以上である場合、コンプレッサ周波数を第二周波数に低下させる。
空調装置の第一動作モードは、低下周波数モード(第二動作モード)が上述した何かの動作条件をきっかけとして行われる前の動作モードと考えることができる。このように、第一周波数は、通常では周波数の低下(第二動作モード)のきっかけとなるであろう特定の動作条件が検出される直前のコンプレッサの周波数である。一方、動作条件における伝熱容量は、周波数が直ちに低下される場合には、システムの実際の伝熱容量、またはもし必要であると考えられる場合にはさらなるパラメータに基づいてシステムに想定される低下周波数に基づく理論的な伝熱容量のいずれかである。
電気部品のうちの一つとしてのインバータの温度がある値を超える場合には、問題が生じる虞がある。その場合、インバータ温度に直接影響を与えるコンプレッサの周波数を低下させることが一般的には必要となる。しかしながら、周波数の低下によって、空調装置の利用可能システム容量が減少する。上の面では、それでも、冷却用熱交換器を用いてゼロ熱散逸制御を起動することによって、インバータを素早く冷却することができ、したがって、通常動作(第一動作モード)および全容量に短時間で戻ることができる。他の実現形態においては、冷却用熱交換器を用いてゼロ熱散逸制御を起動することによって、コンプレッサ周波数を低下させる必要を回避することすらできる。いずれの場合も、空調能力の低下による不快を低減できるまたはなくすことすらできる。
さらなる面、特徴および利点は、特定の例に関する以下の説明から理解されよう。この説明では添付図面を参照する。
オフィスビルに設置された空調装置の例を示す。 簡略化した空調装置の概略回路図を示す。 外部筐体の側壁および最上部が取り外されている熱源ユニットの概略側面図を示す。 熱源ユニットの全体的な斜視図を示す。 外部筐体の保守板が取り外された図4の熱源ユニットの斜視図を示す。 外部筐体の側壁および最上部が取り外された図4の熱源ユニットの側面図を示す。 外部筐体の側壁および最上部が取り外された図4の熱源ユニットの斜視図を示す。 外部筐体の側壁および最上部が取り外された図4の熱源ユニットの上面図を示す。 外部筐体の側壁および最上部と電気ボックスとが取り外された図4の熱源ユニットの斜視図を示す。 ある例にかかる制御機構を示すグラフを示す。 室内ユニット側における空調装置の第一伝熱容量Qと室内ユニット側の空調装置の第二伝熱容量Qとの間の差異Qと、冷却用熱交換器の伝熱容量と、の間の比較に基づいてバルブの開閉を制御する方法を示すフローチャートを示す。 図11の方法の変形例を示すフローチャートを示す。 ヒートシンクに装着されるインバータの概略的側面図を示す。 冷凍サイクルのp−h線図(モリエ線図)を示す。
以下の説明および図面においては、同じ要素には同じ参照符号を用い、異なる実施形態におけるこれらの要素の説明の繰り返しを省略する。
図1は、オフィスビルに設置された空調装置1の例を示す。オフィスビルは、会議室、受付エリアおよび従業員の作業場所など複数の調節すべき部屋105を有する。
空調装置1は、複数の室内ユニット100〜102を備える。室内ユニットは、部屋105内に配置されるとともに、壁装着室内ユニット102、天井装着室内ユニット101やダクトタイプ室内ユニット100などの種々の構成を有することができる。
空調装置はさらに、複数の熱源ユニット2を備える。熱源ユニット2は、オフィスビルの設備部屋29に設置される。サーバー(図示せず)などの他の機器を、設備部屋29に同様に設置することもできる。この例においては、熱源ユニット2は熱源として水を用いる。特定の例において、ボイラー、ドライクーラー、冷却タワー、地下ループなどに接続される水回路104が設けられる。水回路104は、同様に冷媒回路を有するヒートポンプ回路を有することもできる。このヒートポンプ回路の熱源熱交換器を備える室外ユニットを、オフィスビルの屋上に配置することができ、熱源として空気を用いることができる。なお、本開示の熱源ユニットの概念は、空気や地下など他の熱源にも適用可能である。
動作において、室内ユニット100〜102のうちの一つ以上は対応するそれぞれの部屋105を冷房するよう動作し、同時に他のユニットは対応するそれぞれの部屋を暖房するよう動作することができる。
空調装置の簡単な概略図を図2に示す。図2における空調装置1は、主に、室内ユニット100と熱源ユニット2とによって構成される。なお、図2における空調装置1は、複数の室内ユニット100を有することもできる。室内ユニットは、上の図1に関して記載したものなどあらゆる構成を有することができる。
さらに、図2は、ヒートポンプを構成する冷媒回路を示す。冷媒回路は、コンプレッサ3と、冷房動作と暖房動作とを切り換える四方切換弁4と、熱源熱交換器5と、膨張弁6と、任意選択的な追加の膨張弁7および室内熱交換器103と、を備える。熱源熱交換器5はさらに、熱源としての水回路104に接続される。コンプレッサ3が動作するとき、冷媒は冷媒回路内で循環する。
冷房動作の際に、高圧冷媒がコンプレッサ3から吐出され、四方切換弁4を通って凝縮器として機能する熱源熱交換器5へと流れ、その結果、冷媒温度が低下し、ガス状の冷媒が凝縮する。このように、熱は、水回路104において冷媒から水へと伝達される。次に、冷媒は膨張弁6と任意選択的な膨張弁7とを通過し、そこで、冷媒は、蒸発器として機能する室内熱交換器103へ導入される前に、膨張する。室内熱交換器103において、冷媒は蒸発し、調節すべき部屋105における空気から熱が取り出され、これにより、空気は冷却されて部屋105へと再導入される。同時に、冷媒の温度は上昇する。次に、冷媒は四方切換弁4を通過し、そしてコンプレッサ3の吸引側において低圧のガス状の冷媒としてコンプレッサ3へと導入される。前述の点から、熱源熱交換器5と室内熱交換器103とを接続するラインは、液冷媒ライン25と考えることができる。四方切換弁4とコンプレッサ3の吸引側とを接続するラインは、ガス吸引ライン26と考えることができる。
暖房動作の際に、高圧冷媒がコンプレッサ3から吐出され、四方切換弁4を通って凝縮器として機能する室内熱交換器103へと流れ(四方切換弁4の点線)、その結果、冷媒温度が低下し、ガス状の冷媒が凝縮する。このように、熱は冷媒から部屋105内の空気に伝達され、その結果、部屋が暖房される。次に、冷媒は任意選択的な膨張弁7と膨張弁6とを通過し、そこで、冷媒は、蒸発器として機能する熱源熱交換器5へと液冷媒ライン25を介して導入される前に、膨張する。熱源熱交換器5において、冷媒は蒸発し、熱が水回路104内の水から取り出される。同時に、冷媒の温度は上昇する。次に、冷媒は四方切換弁4を通過し(四方切換弁4の点線)、そしてコンプレッサ3の吸引側において低圧のガス状の冷媒としてコンプレッサ3へとガス吸引ライン26を介して導入される。
図2に示される冷媒回路はさらに、液冷媒ライン25から分岐されるとともにガス吸引ライン26に接続されるバイパスライン24を備える。特定の例において、バイパスライン24は、膨張弁6と室内熱交換器103との間の液冷媒ライン25に接続される。任意選択的な膨張弁7が備えられる場合、バイパスライン24は、膨張弁6と任意選択的な膨張弁7との間に接続される。
バイパスライン24は、開位置と閉位置と(ON/OFF)をとることができるバルブ20を備える。バルブ20は、ソレノイドバルブとすることができる。さらに、バイパスライン24はキャピラリ21を備える。特定の例において、キャピラリ21は、冷却動作の際の冷媒のフローの方向においてバルブ20の下流側に配置される。また、バルブ20をキャピラリ21の下流側に配置してもよい。
また、冷却用熱交換器22(以下でより詳細に説明)は、冷却動作の際の冷媒のフローの方向においてキャピラリ21およびバルブ20の下流側でバイパスライン24に接続される。この冷却用熱交換器22、バルブ20およびキャピラリ21の機能は以下でさらに説明する。
一の例において、図2における熱源ユニット2を示す点線の長方形に含まれる部品は、熱源ユニット2の外部筐体10(図4を参照)内に収容される。
図3に概略的に示すとともに図4〜図9により詳細に示す通り、外部筐体10は側壁15と最上部13とを有する。側壁15および最上部13の両方は点線で示している。また、外部筐体10は底部14を有する。このように、外部筐体10は、外部筐体10の内部12と、一の例において設置環境または設備空間(図1を参照)の例としての設備部屋29であってもよい外部筐体10の外部11と、を定義する。この例において、底部14は、外部筐体10に溜まった凝縮水をも集めるためのドレンパン16を有する。底部14は、以下で説明する熱源ユニット2のその他の部品を支持する。一の例では、外部筐体10に収容される部品のどれも側壁15または最上部13には固定されず、すべての部品は、直接または支持構造を介して間接的に、底部14に固定される。
例では、空調装置の冷媒回路において一般に用いられるコンプレッサ3および液レシーバ8を、外部筐体10に収容する部品として示している。さらなる部品は、油分離器9およびアキュムレータ108である(図7を参照)。本明細書において、コンプレッサ3、液レシーバ8および油分離器9は、高温冷媒部品と考えられる。これらの部品を通過する冷媒の少なくとも一部は気体であり高温であるからである。一方、アキュムレータ108は、低温冷媒部品と考えられる。低圧冷媒だけがアキュムレータ108を通過するからである。
外部筐体10は、後述するゼロ熱散逸制御が作動していない場合に内部12の換気を可能にするためのベント17を有することができる。
また、熱源ユニット2は電気ボックス30を備える。電気ボックス30は、平行六面体ケーシングの形状を有するが、他の形状も同様に考えられる。この例において、電気ボックス30は、最上部31と、側壁(この例では、四つの側壁すなわち背面32、前面33、および対向する二つの側面34)と、底部35と、を有する。他の実施形態において、底部を開口することもできる。電気ボックス30は、底端部35と最上部31との間の高さと、背面32と前面33との間の奥行きと、対向する二つの側面34間の幅と、を有する。本実施形態において、電気ボックス30は、高さが奥行きおよび幅より大きく(少なくとも二倍であり)、縦長である。
電気ボックス30は、空調装置および特にその部品(コンプレッサ3、膨張弁6,7やバルブ20など)を制御するよう構成される複数の電気部品36を収容する。図3にのみ、電気部品36を概略的に示している。
電気ボックス30はさらに、空気吸入口38と空気排出口39とを有する空気通路37を形成する。本実施形態において、空気吸入口38は、空気排出口39よりも底部35または電気ボックス30の底端部の近くに配置される。さらに特には、空気排出口39は電気ボックス30の最上部31に隣接して配置される。電気ボックス30の構成が縦長であり、そして鉛直方向に沿って縦長の延設が向けられていることにより、空気排出口39は、外部筐体10の最上部13に隣接した位置(底部14よりも最上部13に近い)にある。また、空気吸入口38および空気排出口39の両方は外部筐体10の内部12に開口している。
冷却を必要とする電気部品36はどれもが図3に示すように空気通路37に直接配置される、かつ/または、冷却すべき電気部品に伝熱可能に接続されるヒートシンクが備えられ、そのヒートシンクが空気通路37に直接配置される。
さらに、本実施形態には、空気吸入口38から空気排出口39へと空気通路37を通過する気流41を発生する(図3における矢印)ファン40を示す。このように、空気は冷却のために電気部品36を通過する。熱は、電気部品から直接または上述のヒートシンクを介して、空気通路37を通って流れる空気へと伝達される。もちろん、二つ以上のファン40を備えることもできる。
本実施形態において、ファン40は空気通路の空気排出口39に配置されており、これにより、外部筐体10の内部12からの空気は、空気吸入口38へ吸引されて空気通路37を通過し、外部筐体10の最上部13に隣接する外部筐体の内部12へと放出される。したがって、相対的に冷たい空気が最上部に放出され、底部14に向かって自然に下へと流れる自然対流が促進される。
また、図3および図6〜図9に示す通り、冷却用熱交換器22は、気流41の方向で見て電気部品36の下流側に配置される。また、特定の例において、冷却用熱交換器22は、空気通路37の空気排出口39に、さらには気流41の方向においてファン40の下流側に配置される。一の例において、冷却用熱交換器22はダクト23を介して空気排出口39に取り付けられる。ダクト23は、空気通路37の空気排出口39と冷却用熱交換器22の空気吸入口27との間に空気通路を形成する。ダクト23は、気流41の方向を変更するために、かつ/または以下に説明するように角度を付けて冷却用熱交換器22を有する公知の平行六面体熱交換器を装着するために、用いることができる。
図7からよく分かる通り、冷却用熱交換器22は、冷却用熱交換器22の端部において曲がっており図7に概略的に示す複数のフィン42を通る複数のチューブ43を有する。フィン42は、縦長板形状であり、鉛直方向に沿って(つまり底部14と最上部13との間で)縦長に延設されている。鉛直方向に沿った延設は、図3におけるような側面図においてフィン42の縦長中心線が、鉛直線と45°を超える角度で交差しない限り実現可能であることは理解されよう。フィン42は平らであり、縦長方向の延設(長さ)および幅が高さよりはるかに大きく、したがって、フィン42の主面が長さと幅とによって形成される。
特定の例において、冷却用熱交換器22は、特にフィン42の縦長方向は、鉛直方向に対して角度α(図3を参照)で角度が付けられている。したがって、気流41が高温冷媒部品に向かって、この例においてはコンプレッサ3および液レシーバ8と加えて油分離器9と(図8を参照)に向かって導かれるよう、冷却用熱交換器の空気排出口28が方向づけられる。角度αは0°〜25°の範囲とできる。その結果、冷却用熱交換器22によって冷却されて冷却用熱交換器22の空気排出口28から放出される空気はまた高温冷媒部品のうちの一つ以上を冷却するためにも用いられる。こうして、熱源ユニット2によって放散される熱の量を低減することができる。
また、冷却用熱交換器22は、底部板などの底端部分44を有する。本実施形態において、底端部分44は、冷却用熱交換器22の空気吸入口27から冷却用熱交換器22の空気排出口28に向かって下方へ傾斜する。言い換えれば、底端部分44は、外部筐体10の底部14に向かって下方へ傾斜する。
導入部分において示した通り、外部筐体10の内部12における空気の湿度と温度差のために、冷却用熱交換器22上に凝縮水が発生する虞がある。しかし、特定の例では、水が空気通路37において電気部品36またはヒートシンクと接触するのを防止するよう、凝縮水が空気通路37の空気排出口39から離れるように案内するためのいくつかの手段が備えられる。
一方、上述の通り、フィン42は、縦長方向が鉛直方向に沿うよう、方向付けられる。したがって、フィン42の主面上で生成する凝縮水も、フィン42に沿って下へと、つまり重力によって鉛直方向に流れる。一方、冷却用熱交換器22の底端部分44は、下方へ傾斜している。したがって、フィン42を下へと流れ底端部分44に達した凝縮水は、底端部分44により、冷却用熱交換器22の空気排出口28へと案内される。冷却用熱交換器22の空気排出口28の先端においては、凝縮水は、外部筐体10の底部14におけるドレンパン16内へと落下することができる。こうして、凝縮水は、空気通路37の空気排出口39から離れるよう確実に案内される。
また先に説明した通り、冷却用熱交換器22は、空気通路37の空気排出口39に、したがって空気通路37に配置される電気部品36またはヒートシンクの気流41の方向において下流側に配置される。こうして、気流41は、冷却用熱交換器22上に生じる凝縮水を空気排出口39および電気部品36から離れる方向に「吹き飛ばす」。この構成は、凝縮水が電気ボックス30の影響を受けやすい部分と接触するのを防ぐのに役立つ。
さらに、ファン40は、冷却用熱交換器22と空気通路37における電気部品36との間に配置される。したがって、ファン40は、空気通路37から冷却用熱交換器22を分離する仕切り(パーティション)と考えることもできる。このため、ファン40は、凝縮水に対するさらなるバリアであり、凝縮水が空気通路37に入るのを防止する。
電気ボックス30は、本実施形態において、回転軸46回りに回転可能に支持される。支持構造45を、図6〜図9により詳細に示す。このように、電気ボックス30は、図3に示す使用位置と、図3および図6において矢印で示す反時計回り方向に回転軸46回りに傾斜する保守位置と、の間で移動可能に支持構造45にヒンジ連結されている。回転軸46は、底部35に近いつまり最上部31とは反対側にある電気ボックスの第一端部に配置される。さらに、電気ボックス30をボルト57によって使用位置に保持するよう、電気ボックス30は最上部31で、支持構造に着脱可能に固定される(図5を参照)。
図6〜図9に示す実施形態において、支持構造45は(図9が最も見やすい)フレーム47によって構成される。フレーム47は、外部筐体10の底部14に固定される。フレーム47は、二つの直立する柱48を有する。柱48は、外部筐体10の底部14に装着される。
柱48のそれぞれは、外部筐体10の底部14に近い底端部に溝49を有する。ボス50が、電気ボックス30の一方の側34に配置され、溝49のうちの一つと係合する。図3における概略図とは異なり、図6および図7における溝49の詳細な表現では、挿入部分51を示している。挿入部分51は、ボス50を溝49に挿入するためにまたは溝49からボス50を取り外す、したがって熱源ユニット2から電気ボックス30を完全に取り外すために用いられる。挿入部分51は、一端にボス50を導入するための開口部52を有する。さらに、係合部分53が、挿入部分51の反対の端部に形成される。係合部分は、使用位置においてボス50を上向きに支持する下側部分54と、保守位置においてボス50を下向きに支持する上側部分55と、を有する。回転軸46はボス50によって形成される。また、電気ボックス30が回転軸46回りに時計回り方向につまり外部筐体10の内部12に向かって回転する傾向となるよう、電気ボックス30の重心56は配置されることは図6の側面図から明らかであろう。
先に説明した通り、電気ボックス30を、ボルト57によってフレーム47に着脱可能に固定することができる(図5を参照)。以下でより詳細に説明する通り、電気ボックス30の最上部31の近くの上端においてフレーム47からボルト57を取り外すと、電気ボックスは回転軸46回りにすなわちボス50回りに反時計回り方向に回転することができる。電気ボックス30を回転させるために、電気ボックス30の外面内または外面にハンドル64(図5を参照)を配置することも考えられる。
冷却用熱交換器22は、この例において、ダクト23とともにボルトによってフレーム47に固定される。図9からよく分かるであろう通り、空気排出口39、特に空気通路37の空気排出口39に面するフレーム47の開口部59は、弾性封止部60によって囲繞される。弾性封止部60も同様にフレーム47に固定される。封止部、特に、電気ボックス30に面する封止部の接触面は、平面61を定義する。重心56は、側面図(図6)において、平面61と回転軸46(ボス50によって形成される)との間に位置する。こうして、電気ボックス30は、重力によって封止部60の接触面に向かって回転する傾向があり、これにより、排出口39と冷却用熱交換器22とその任意選択的なダクト23との間の空気排出口39において封止部との適切な接触が保証される。もちろん、排出口39と冷却用熱交換器22とその任意選択的なダクト23との間を封止する他のまたは追加的な可能性も考えられる。例えば、封止が得られるよう、正確な寸法取りおよび合わせ面間の十分な固定点の追加を行うこともできよう。また、別体の締め付け要素を用いて、合わせ面を一体するよう押圧することもできる。
電気ボックス30内の電気部品36を、外部筐体10に収容される冷媒回路の部品のうちのいくつかに接続する必要がある。このために、電気ボックス30は開口した底部を有するか、または開口部が底部35に形成される。電気ボックス30における第一電気部品に接続される第一電線62は、電気ボックス30の底端部を通じて電気ボックスから出ていき、ソレノイドバルブ20などの第一電気部品に接続される(図2および図8を参照)。このために、図3に概略的に示す電線62は、底部35から外部筐体10の底部14へと、底部14に沿ってそして底部14から第一電気部品(例においてはバルブ20)へと、案内される。
ある環境では、そしてEMC(電磁環境適合性)の理由で、いくつかの電線を他の電線から離しておく必要がある。したがって、電気ボックス30の底部35と最上部31との間の開口部70(図7を参照)を通じて第二電線63が電気ボックス30から出ていくことも考えられる。また、第二電線63は、外部筐体10の底部14へと、そしてその底部からコンプレッサ3などの部品へと案内される。例において、第一電線62および第二電線63はどちらも、外部筐体10の底部14に固定されていない。
電気部品36または冷媒部品または電気ボックス30のファン40の保守が必要な場合、外部筐体10の保守用壁106(図4を参照)を取り外さなければならない。このために、ボルト107が取り外され、次に、図5に示すように保守用壁106を取り外すことができる。保守用壁106を取り外すと、電気ボックス30の最上端部におけるボルト57(図5)を緩めることができ、そしてボス50によって形成される回転軸46回りに、保守用壁106を取り除くことにより形成される開口部を通じて外側に、電気ボックス30を回動することができる。この工程の際に、ボス50は、溝49の係合部分53の下側部分54から溝49の係合部分53の上側部分55へと移動する。このように、電気ボックス30を、溝49に確実に保持し、容易に回動させることができる。
上の説明から明らかな通り、電気ボックス30と冷却用熱交換器22とは、支持構造45(フレーム47)に独立して固定される。冷却用熱交換器22への電気ボックス30の取り付け(アタッチメント)はない。したがって、保守位置(図示せず)へと電気ボックス30を移動させることは、冷却用熱交換器22とその冷媒配管24には影響しない。冷却用熱交換器22とダクト23(備えられている場合)と封止部60とは、フレーム47上にそれらの位置に装着された状態のままであり、電気ボックス30とは一緒に移動しない。これに関連して、損傷したファン40の保守または取り替えを容易に行うために、ファン40を電気ボックス30に同様に固定でき、電気ボックス30とともに保守位置へと回動できる。
電気ボックス30が保守位置へと移動されると、電気ボックス30の底部35を通じて案内される第一電線62は、外部筐体10の内側に向かって、したがって、接続される電気部品20に向かう方向に移動する。このため、保守位置へと電気ボックス30を移動させることによって、第一電線62に引っ張られることはない。
開口部70を通って電気ボックスから出ていく第二電線63は、外部筐体10の底部13へとまず案内される。このように、開口部70とコンプレッサ3への接続との間の第二電線63にはある程度の自由な長さがある。このため、この場合も、保守位置へと電気ボックス30を移動させるときに、第二電線63が引っ張られるのを回避することができる。
上記の構成により、電気ボックスへのアクセスが容易となり、冷却用熱交換器22およびその冷媒配管24の取り外し/取り付け作業を必要としない。この理由で、冷却用熱交換器22およびその冷媒配管24への破損を防止することができる。
保守の後、電気ボックス30を、回転軸46(ボス50)回りに、反対方向(図3および図6における時計回り)に図に示す使用位置へと回動する。この工程の際に、ボス50は、溝49の係合部分53の下側部分54へと戻るよう再び移動し、電気ボックス30は、鉛直方向にしっかりと支持される。重心56が、側面図において回転軸46(ボス50)よりも封止部60の接触面によって形成される平面61に近いので、電気ボックス30の重量により、電気ボックス30は、封止部60の接触面に向かってしっかりと押圧され、ボルト57なしであっても保守開口部から「脱落」しないことが保証される。次に、ボルト57が再度挿入され、保守用壁106が再度装着される。
さらに、図2に概略的に示す制御器(コントローラ)65が備えられる。制御器65は、空調装置1を特に冷媒回路を制御することを意図するものである。制御器65を、電気ボックス30内に収容することができる。
制御器65を、種々のセンサから取得されるパラメータに基づいて空調装置1を制御するよう構成することができる。
例えば、第一温度センサ66が外部筐体10の内部12に配置される。こうして、第一温度センサ66は、外部筐体10の内部12における温度を検出する。これに関連して、第一温度センサ66の位置は、他の部品の位置と比較して外部筐体において比較的安定した代表的な温度を測定することができる位置に決定される。したがって、この位置は、実験によって決定しなければならない。
第二温度センサ67を、熱源ユニット2が設置される設備部屋29に配置することができる。第二温度センサ67は、したがって、設備部屋29における温度を、言い換えれば外部筐体10の環境(外部)の温度を測定する。
制御器65によって用いられる他のパラメータは、冷却用熱交換器22とコンプレッサ3の吸引側との間の出口ライン69におけるサーミスタ68(第三温度センサ)である(図2を参照)。一の実施形態において、アキュムレータ108を、冷却用熱交換器22とコンプレッサ3の吸入口(吸引側)との間のラインに配置することも考えられる。一般に、出口ライン69は、冷却用熱交換器22をガス吸引ライン26に接続するライン、つまり冷却用熱交換器22の出口とガス吸引ライン26へのバイパスライン24の接続箇所との間のラインとして理解される。サーミスタ68は、出口ライン69における冷媒の温度を測定する。さらに、圧力センサ71が、ガス吸引ライン26における冷媒の圧力を測定するために配置・構成される。
冷却用熱交換器22に関する空調装置の動作を以下により詳細に説明する。またこの動作を、ゼロ熱散逸制御(ZED=zero energy dissipation)と呼ぶこともできる。
基本的に、より詳細に説明するとともに下の表に示す三つの設定間で選択することができる。
Figure 2020507735
設定「0」において、バルブ20は完全に閉じられ、冷媒は冷却用熱交換器22を流れない。この設定において、電気部品36を、ファンを動作させることによって冷却することもできるが、熱は外部筐体10の内部12に散逸され、したがって外部筐体10および熱源ユニット2は設備部屋29へと熱を散逸する。ゼロ熱散逸制御はオフ(OFF)に切り換えられる。
設定「1」が選択されている場合、ゼロ熱散逸制御はオン(ON)である。さらに、この設定においては、空調装置の冷房容量がゼロ熱散逸制御よりも優先される。特に調節すべき部屋105において測定された温度がその部屋105における空調装置の設定温度をある値超えている場合、そしてゼロ熱散逸制御が非作動状態にあるときにのみ空調装置はこのさらなる冷房要求を満たすことができる場合、バルブ20が閉じられることになる。言い換えれば、空調装置の要求される冷房容量が所定の閾値を超える場合、バルブ20は閉じられる。例えば、熱源熱交換器5は、ある動作条件で、ある量の熱(100%の熱負荷ともいう)を(この例においては)水(水回路104)に伝達することができる。ZED制御が非作動状態にある動作の際には、熱源ユニット4は、100%の熱負荷に対応して部屋(105)から熱を取り去ることができる(冷房動作)。電子部品と高温冷媒部品からの熱損失が総熱量負荷の4%に対応すると仮定すると、熱負荷(冷房容量)の96%だけを冷房動作の際に部屋105を冷房するために用いることができる。上記設定が有効である場合、ZED制御を非作動状態とでき、部屋105を冷房するために100%の利用可能容量が得られる。部屋105の暖房動作の際に、熱源熱交換器5は、水回路104において水から100%の熱を取り去り、この熱を電気部品36からの4%の熱損失とともに、部屋105へと伝達することになる。これにより、104%の暖房容量が得られ、その結果、空調装置1の暖房性能が高まる。
設定「2」が選択されている場合、空調装置の冷房容量に関わらずゼロ熱散逸制御はオン(ON)である。しかしながら、起動時や油戻し時などのある特定の制御動作では、コンプレッサ3へと戻るよう流れる液冷媒によるコンプレッサ3の損傷を回避するために、ゼロ熱散逸制御は非作動状態にある(バルブ20が閉じられる)。起動モードの際には、例えば、コンプレッサの回転速度は定格速度に上がる。低い回転速度では、循環する冷媒量は小さい。さらに、熱源ユニット2と室内ユニット100との間の距離が大きい場合、熱源ユニット2と室内ユニット100を接続する液ラインにおいて冷媒は比較的大きな慣性を有する。対照的に、バイパスライン24は比較的短く、小さな慣性を有する。結果として、高い割合の冷媒がバイパスライン24を流れ、室内ユニット100に流れる冷媒が少なくなる、もしくは流れないことすらある。この結果、室内ユニット100が装着される部屋105における快適性が低下する。これを、バルブ20を閉じることによって防止できる。油戻し動作の際に、冷媒回路部品から油を流すために大流量が生成される。バルブ20が開いている場合、冷媒回路部品を通る流量は低下し、その結果油戻し効率が低下する。
いずれにせよ、ゼロ熱散逸制御を種々のパラメータに基づいて実行することができる。
第一の可能性では、外部筐体10の内部12の温度が第一温度センサ66によって測定され、そして制御器65が第一温度センサ66によって測定された温度に基づいてバルブ20を制御する。
特に、制御器65は、第一温度センサ66によって測定された温度を所定の温度と比較する。本実施形態において、所定の温度を、人が自由に入力するか、または所定の温度を定義するために下の表に示す種々の設定から選択可能とすることが好ましい。
Figure 2020507735
また、差温度を人が自由に入力するか、または差温度を定義するために下の表に示す種々の設定から差温度を選択可能とする。
Figure 2020507735
この制御では、制御器65は、第一温度センサ66によって測定された温度を所定の温度と比較する。第一温度センサ66によって測定された温度が所定の温度を超える場合、制御器65はゼロ熱散逸制御を作動させてバルブ20を(完全に)開くよう構成される。
この場合再び図10に示す通り、第一温度センサ66によって測定された温度が所定の温度から選択された差温度を減算した温度よりも下がる場合、制御器65はゼロ熱散逸制御を非作動としバルブ20を(完全に)閉じるように構成される。
例えば、設定「3」が所定の温度に関して選択されている場合、所定の温度は31℃である。また、設定「0」が差温度に関して選択されている場合、差温度は3℃である。例えば、外部筐体10の内部12の第一温度センサ66によって測定された温度が31℃を超える場合、バルブ20は制御器65によって開かれる。したがって、冷媒はキャピラリ21を通って流れて、膨張し、その後、冷却用熱交換器22へと流れ込む。冷却用熱交換器において、冷媒は熱交換によって気流41から熱を取り去り、これにより、気流41は冷却され、冷却された空気が外部筐体10の内部12へと放出される。したがって、また、角度が付けられた冷却用熱交換器22の空気排出口28の向きによって、コンプレッサ3、液レシーバ8および油分離器9などの高温冷媒部品は冷却される。特に、冷却された気流41は高温冷媒部品の方向に導かれ、こうして高温冷媒部品が冷却される。どのような場合でも、外部筐体10の内部12における空気より冷たい空気が、冷却用熱交換器22から内部12へと放出される。その結果、外部筐体10における温度は低下する。第一温度センサ66によって測定された温度が28℃(31℃−3℃)より下がると、制御器65はバルブ20を閉じ、冷媒は冷却用熱交換器22を通って流れない。この工程が図10に示す通りに繰り返される。
あるいはまたは上記の制御に加えて、設備部屋29に配置される第二温度センサ67を用いて、設備部屋29における温度を測定してバルブ20を制御することが考えられる。
これに関連して、第一温度センサ66によって検出された温度が第二温度センサ67によって測定された温度より高い場合、ゼロ熱散逸制御を作動させる(バルブ20を開く)ことが考えられる。例えば、制御器65は、第二温度センサ67によって測定された温度が第一温度センサ66によって検出された温度より低い場合に、第一温度センサ66と関係する上記の制御を無効にし、第一温度センサ66によって測定された温度が所定の温度より高いという事実があったとしても、バルブ20を閉じることもできる。
さらなる可能性は、第一温度センサ66を用いる代わりに、第二温度センサ67のみを用い、第二温度センサ67によって測定された温度と所定の温度との間の比較に基づいてバルブ20を制御することにある。所定の温度は、部屋の影響を受けない温度(no-room-impact-temperature)とできる。所定の温度は、第一温度センサ66に関して上述したのと同様に選択できる。
第一例では、所定の温度を第二温度センサ67によって測定された温度と比較し、第二温度センサ67の温度が選択された所定の温度を超える場合バルブ20はゼロ熱散逸制御を作動するよう開くことで十分であろう。次に、第二温度センサ67によって測定された温度が、所定の温度から差温度を減算した温度よりも下がる場合、バルブ20は再び閉じる。
第二例では、第一差温度と同様に、第二差温度を定義することも考えられる。第二温度センサ67によって測定された温度が所定の温度(部屋の影響を受けない温度)より高く、かつ第二温度センサ67によって測定された温度と所定の温度との間の差分(デルタ)が第二差温度より高い場合、バルブ20が開く。上述した通り、第一の可能性では、第二温度センサ67によって測定される温度が所定の温度より第一差温度下がる場合、バルブ20が閉じられ、ゼロ熱散逸制御が非作動状態となる。あるいは、第二温度センサ67によって測定される温度が所定の温度(部屋の影響を受けない温度)よりも下がる場合、第一差温度を用いることなく、バルブ20を閉じることもできる。
さらなる制御機構は、出口ライン69に配置されるサーミスタ68に、特にサーミスタ68によって測定された出口ライン69における冷媒の温度に、基づいてゼロ熱散逸制御を作動/非作動とする(バルブ20を開く/閉じる)こともできる。さらに、制御器65は、ガス吸引ライン26に配置される圧力センサ71によって測定される圧力を用いる。特に、制御器65は、圧力センサ71によって測定された圧力に基づいて、二相温度(液体から気体への相転移が生じる温度)を決定する。次に、制御器65は、この二相温度とサーミスタ68によって測定された温度とを比較する。サーミスタ68によって測定された温度が二相温度より高い場合、過熱ガス冷媒が冷却用熱交換器22から出て行っていると決定される。サーミスタ68の出力は、このように、制御器65によって、ガス吸引ライン26における圧力と冷却用熱交換器22の出口(冷却用熱交換器ガス出口)における温度とに基づいて過熱度を決定するまたは計算するために用いられる。次に、過熱度に応じて、バルブ20が開くまたは閉じる。この制御は、特に、液冷媒が出口ライン26に残ったままとなることかつ/またはアキュムレータ108(備えられている場合)またはコンプレッサ3へと供給されることを防止するための安全対策である。特に、計算された過熱度が所定の時間にわたって所定の値よりも下がる場合、制御器65はバルブ20のOFFモードへの切り換えを行うよう構成される。動作の際に、液ライン25とガス吸引ライン26との間の圧力差は、熱源ユニット2の動作条件に影響を受けることになる。バイパスライン24に圧力低下がある場合、ガス吸引ライン26からバイパスライン24への冷媒フローが生じる可能性がある。外部筐体10における空気の温度によっては、冷却用熱交換器22を流れる冷媒と空気の熱容量とのバランスが崩れることがあり、その結果、冷媒が完全に蒸発して起こりうる大きい過熱が付く、また冷媒が完全に蒸発せず液冷媒を含む虞がある。これらの極端な状況は、サーミスタを介して取得された過熱度に基づいてバルブ20を開閉することによって回避できる。
さらなる面として、図11および図12を参照して以下に説明するバルブ20の開閉を制御する方法のうちの一つを、先に説明した実施形態のうちのいずれかで実現することができる。
特に、空調装置1は、可変容量空調装置1である。また、コンプレッサ3はインバータ駆動コンプレッサとすることができる。コンプレッサ3の周波数は、インバータ110(図13を参照)を介して変えることができる。上述した電気部品36は、インバータ110を備えることができる。
インバータ110は、抵抗器回路部品111とダイオードモジュール112とパワートランジスタモジュール113とを備えることができる。
インバータ110を、本体115と本体から延設される複数のフィン116とを備える先に説明したヒートシンク114に装着することができる。
空気通路37を通るよう流れる空気は、インバータ110を、特にパワートランジスタモジュール113を直接かつまたはヒートシンク114のフィン116を介して間接的に冷却するために用いられる。
また、温度センサ117を、インバータ110の特にパワートランジスタモジュール113の温度を検出するために備えることができる。一の例において、温度センサ117を、ヒートシンク114の本体115の中央位置にかつ/またはパワートランジスタモジュール113に隣接して装着することができる。このように、インバータ110の、特にはパワートランジスタモジュール113の温度を決定するために、温度センサ117は参照温度としてヒートシンク114の温度を実際に測定することができる。また温度センサ117は、パワートランジスタモジュールの温度を直接測定することもできる。
これに関連して、コンプレッサ3の周波数が高いほど、インバータ110のパワートランジスタモジュール113の温度は高くなり、そして温度センサ117によって測定される温度も高くなることを記載しておく。
第一ステップS01において、温度センサ117によって測定された温度Tが第一参照温度Tと比較される。参照温度Tは例えば80℃とすることができる。温度センサ117によって測定された温度Tが参照温度Tを超える場合、システムはインバータ110の温度を下げる必要があると判断する。
温度を下げる第一対策は、通常動作(第一動作モード)における第一周波数から所定の周波数または可変の周波数だけ低下させて、第一周波数より低い第二周波数(第二動作モード)とすることである。先に示した通り、コンプレッサ3の周波数は、インバータ110のパワートランジスタモジュール113の温度に正比例する。
第二対策は、先に記載した通り、空気通路37を通過する空気を介してインバータ110を特にパワートランジスタモジュール113を冷却するためにバルブ20を開くことである。
どのように温度を下げるかを決定するために、両方の方法は、図11および図12を参照して説明する通り、空調装置1および冷却用熱交換器22の伝熱容量を計算するかつ/または決定する。これに関連して、空調装置の伝熱容量は、空調装置が一つのまたは複数の室内熱交換器に熱交換を提供できる伝熱容量である。したがって、空調装置1の伝熱容量を、空調装置1のシステムの伝熱容量すなわちシステム容量と考えることができる。空調装置1の伝熱容量(Q,Q)および冷却用熱交換器22の伝熱容量(Q)を、図14のモリエ線図(冷凍サイクルのp−h線図)を参照して以下で説明する通り、冷房動作の際に計算することができる。
=(コンプレッサの第一周波数における冷媒循環量)×(点Aにおける比エンタルピー ― 点Eにおける比エンタルピー)
=(コンプレッサの第二周波数における冷媒循環量)×(点Aにおける比エンタルピー ― 点Eにおける比エンタルピー)
Q3=27.09×CV1×[(PL−LP)/(1/ρL)]1/2
CV1:冷却用熱交換器22の流量係数値
PL:液冷媒パイプに流れる液冷媒温度を検出するTL温度センサの温度から計算される飽和圧力
LP:ガス吸引ライン26に配置される低圧センサによって検出される低圧値
ρL:PLから計算される飽和液体密度
この点に関して、空調装置の第一動作モード(通常動作)におけるコンプレッサ3の第一周波数における第一伝熱容量Q、および低下させた周波数動作(第二動作モード、例えばコンプレッサ保護モード)におけるコンプレッサ3の第二周波数における第二伝熱容量Qが決定され、そして第一伝熱容量Qと第二伝熱容量Qとの間の差異Qが計算される(Q=Q−Q)。この点に関して、第一伝熱容量Qは、周波数を所定の量低下させる動作条件が生じる(例えばインバータ110の温度がある値を超える)前の空調装置1の実際の伝熱容量である。第二伝熱容量Qは、実際の周波数のまたは理論的な周波数が所定量低下した後の空調装置1の伝熱容量である。また、特に、周波数の低下は他のパラメータにも依存する場合があり、その場合には、理論低下周波数容量が計算される。この点に関して、周波数を低下させるための動作条件に応じて、周波数を低下させる量を異なる量とすることができる。
また、冷却用熱交換器22の伝熱容量Qが決定される。
続く工程において、差異Qは、冷却用熱交換器22の伝熱容量Qと比較される。この比較は、以下により詳細に説明する通り、バルブ20を開く(開いたままとする)か、閉じる(閉じたままとする)か、を決定するために用いられる。
まず、図11に示す方法をより詳細に説明する。
コンプレッサ3が第一周波数に駆動される空調装置の通常動作(例えば冷房動作)に関して先に示した通り、工程S01において、温度センサ117によって測定された温度Tが参照温度T(例えば80℃)と比較される。温度Tが参照温度Tより小さい場合、一定時間間隔が経過した後、コントロールは再び温度Tを参照温度Tと比較する。温度Tが参照温度Tより大きい場合、方法は工程S02に移行する。
工程S02において、空調装置の制御器65は、コンプレッサ3の周波数を第一周波数より低い所定の周波数(第二周波数)に低下させる。これは、コンプレッサ周波数を低下する特定の動作条件と考えることもできる。周波数の低下を、一段階で行うことも、または二つの周波数間で滑らかに移行させるために複数の段階で行うこともできる。したがって、インバータ110の特にパワートランジスタモジュール113の温度は、周波数の低下により、下がることになる。
温度Tの低下を早めるために、方法は、第一伝熱容量Qと第二伝熱容量Qとの間の差異Q(Q=Q−Q)と、冷却用熱交換器22の伝熱容量Qと、を計算または決定する(工程S03)。
工程S04において、差異Qは伝熱容量Qと比較される。差異Qが伝熱容量Qより小さい場合、方法は工程にS03に戻る。差異Qが伝熱容量Qより大きい場合、制御器65はバルブ20を開く、したがって上記ゼロ熱散逸制御を開始するよう構成される(工程S05)。
差異Qと伝熱容量Qとの比較が引き続き継続され、工程S06において容量Qが伝熱容量Qより小さくなるとバルブ20が閉じられ、ゼロ熱散逸制御が停止される(工程S07)。
次に、方法は工程S03に戻る。
上記の制御方法において、温度センサ117によって測定された温度Tが所定の第二参照温度T(例えば75℃)よりも下がる場合(工程S08)、空調装置は、コンプレッサ3が第一周波数で動作する通常動作に戻り、そして制御方法は工程S01に戻る。
この制御方法により、インバータ110の効果的な冷却を実行できる。つまり、システム容量が低減されるモード(周波数低下モードすなわち第二動作モード)を最小限に抑えることができる。
図11における方法を、他の選択肢としてまたは上記制御方法に加えて空調装置1に組み込むことができることは明らかであろう。
他の方法を図12を参照して説明する。この他の方法もまた工程S01を含む。しかしながら、工程S01において、温度Tが参照温度Tより大きいと制御器65が判断した場合、制御器は上に説明した工程S03に対応する工程S03へと移行する。
続いて、差異Qは、冷却用熱交換器22の伝熱容量Qと比較される(工程S09)。
差異Qが伝熱容量Qより大きい場合、バルブ20が開かれ(または開いたままの状態であり)、ゼロ熱散逸制御が開始される(または継続される)。また、コンプレッサ3の周波数は維持される、例えば第一周波数に維持される(工程S10)。
差異Qが伝熱容量Qより小さい場合、バルブ20が閉じられ(または閉じたままの状態であり)、ゼロ熱散逸制御が停止される(または開始されない)。また、コンプレッサ3の周波数が、インバータ110を介して所定の第二周波数に低下させる。
再び、上記の制御方法において、温度センサ117によって測定された温度Tが所定の第二参照温度T(例えば75℃)よりも下がる場合(工程S08)、空調装置は、コンプレッサ3が第一周波数で動作する通常動作(第一動作モード)に戻り、そして制御方法は工程S01に戻る。
先の実施形態と比較して、図12におけるこの他の方法は、コンプレッサ周波数を第二周波数に低下する必要を回避する可能性があり、したがって、インバータ110の十分な冷却をなお可能とする空調装置1の最大システム容量を維持することができる。
また、この他の方法を、先に説明した制御方法のいずれによっても実現することができる。
さらに、図11および図12を参照して説明した方法はいずれも、周波数を低下させるきっかけとなる動作条件はインバータ110の温度である。したがって、図12を参照して説明した方法のように周波数低下が実行されていなかった場合であっても、実際に周波数を低下させなければならないか否かを判断するために、制御器は空調装置1の伝熱容量Qを理論上計算しておくことができる。
1 空調装置
2 熱源ユニット
3 コンプレッサ
4 四方切換弁
5 熱源熱交換器
6 膨張弁
7 任意選択的な膨張弁
8 液レシーバ
9 油分離器
10 外部筐体
11 外部筐体の外部
12 外部筐体の内部
13 外部筐体の最上部
14 外部筐体の底部
15 外部筐体の側壁
16 ドレンパン
17 ベント
20 バルブ
21 キャピラリ
22 冷却用熱交換器
23 ダクト
24 バイパスライン
25 液冷媒ライン
26 ガス吸引ライン
27 冷却用熱交換器の空気吸入口
28 冷却用熱交換器の空気排出口
29 設備部屋
30 電気ボックス
31 電気ボックスの最上部
32 電気ボックスの背面
33 電気ボックスの正面
34 電気ボックスの側面
35 電気ボックスの底部
36 電気部品
37 空気通路
38 空気通路の空気吸入口
39 空気通路の空気排出口
40 ファン
41 気流
42 フィン
43 チューブ
44 冷却用熱交換器の底端部分
45 支持構造
46 回転軸
47 フレーム
48 柱
49 溝
50 ボス
51 挿入部分
52 挿入部分の開口部
53 係合部分
54 下側部分
55 上側部分
56 重心
57 ボルト
59 開口部
60 封止部
61 封止部の接触面の平面
62 第一電線
63 第二電線
64 ハンドル
65 制御器
66 第一温度センサ
67 第二温度センサ
68 サーミスタ
69 出口ライン
70 開口部
71 圧力センサ
100〜102 室内ユニット
103 室内熱交換器
104 水回路
105 部屋
106 保守用壁
107 ボルト
108 アキュムレータ
109 室外ユニット
110 インバータ
111 抵抗器回路部品
112 ダイオードモジュール
113 パワートランジスタモジュール
114 ヒートシンク
115 本体
116 フィン
117 温度センサ

Claims (15)

  1. 冷媒回路を備える空調装置(1)のための熱源ユニット(2)であって、
    前記冷媒回路に接続されるコンプレッサ(3)と
    前記冷媒回路に接続され、前記冷媒回路において循環する冷媒と熱源(104)との間で熱を交換するように構成される熱源熱交換器(5)と、
    最上部(31)および側壁(32〜34)を有する電気ボックス(30)であって、前記電気ボックスは、前記空調装置を制御するよう構成される電気部品(36)を収容するとともに、空気吸入口(38)および空気排出口(39)を有する空気通路(37)を有しており、前記電気部品のうちの少なくともいくつかを冷却するために前記空気吸入口から前記空気排出口へと前記空気通路を通る気流(41)が生成される電気ボックス(30)と、
    を収容する外部筐体(10)を備える熱源ユニットにおいて、
    前記外部筐体に収容され、前記冷媒回路に接続される冷却用熱交換器(22)であって、前記冷却用熱交換器(22)は、前記気流(41)が流れて前記冷媒と前記気流との間で熱を交換するよう配置され、前記冷却用熱交換器(22)は、液冷媒ライン(25)から分岐するバイパスライン(24)と、ガス吸引ライン(26)と、に接続され、前記バイパスライン(24)は、前記冷却用熱交換器の上流側にバルブ(20)、好ましくはソレノイドバルブ、を有する冷却用熱交換器(22)と、
    前記バルブ(20)を閉じるOFFモードと、前記バルブ(20)を開くONモードと、に前記バルブ(20)を制御するよう構成される制御器(65)と、
    を備える、熱源ユニット。
  2. 前記バイパスライン(24)における前記冷却用熱交換器(22)の上流側にキャピラリ(21)と前記バルブ(20)とが配置されている、
    請求項1に記載の熱源ユニット。
  3. 前記制御器(65)は、前記OFFモードを手動で設定できるよう構成されている、
    請求項1または2に記載の熱源ユニット。
  4. 前記制御器(65)は、前記空調装置の動作条件に基づいて前記OFFモードと前記ONモードとの間で切り換えを行うよう構成されている、
    請求項1から3のいずれか1項に記載の熱源ユニット。
  5. 前記空調装置(1)に要求される冷房容量が所定の閾値を超える場合、前記制御器(65)は前記バルブ(20)を前記OFFモードに切り換えるよう構成されている、
    請求項4に記載の熱源ユニット。
  6. 前記空調装置の起動および油戻し動作を含む前記空調装置(10)の特定の制御モードの際に、前記制御器(65)は、前記バルブ(20)を前記OFFモードに切り換えるよう構成されている、
    請求項4または5に記載の熱源ユニット。
  7. 前記外部筐体(10)内に収容される第一温度センサ(66)をさらに備え、
    前記制御器(65)は、前記第一温度センサ(66)によって測定される温度に基づいて前記バルブ(20)の前記ONモードと前記OFFモードとの間の切り換えを行うよう構成されている、
    請求項1から6のいずれか1項に記載の熱源ユニット。
  8. 前記制御器(65)は、前記第一温度センサ(66)によって測定される温度が所定温度よりも高いとき、前記ONモードへの切り換えを行うよう構成されている、
    請求項7に記載の熱源ユニット。
  9. 前記冷却用熱交換器(22)の出口と前記ガス吸引ライン(26)への前記バイパスライン(24)の接続箇所との間の出口ライン(69)に、第三温度センサ、好ましくはサーミスタ(68)をさらに備え、
    前記制御器(65)は、前記第三温度センサによって検出される温度に基づいて前記出口ラインにおける冷媒の過熱度を決定し、前記過熱度に基づいて前記バルブ(20)の前記ONモードと前記OFFモードとの間の切り換えを行うよう構成されている、
    請求項1から8のいずれか1項に記載の熱源ユニット。
  10. 計算された前記過熱度が所定の時間にわたって所定の値よりも下がる場合、前記制御器(65)は前記バルブ(20)の前記OFFモードへの切り換えを行うよう構成されている、
    請求項9に記載の熱源ユニット。
  11. 前記外部筐体はベント(17)を有する、
    請求項1から10のいずれか1項に記載の熱源ユニット。
  12. 前記冷媒回路を形成する室内熱交換器(103)を有する、少なくとも一の室内ユニット(100〜102)に接続される請求項1から11のいずれか1項に記載の熱源ユニットを備える、空調装置。
  13. 前記熱源ユニット(2)は、設備空間、特に設備部屋(29)に設置される、
    請求項12に記載の空調装置。
  14. 前記設備空間(29)に配置される第二温度センサ(67)をさらに備え、
    前記制御器(65)は、前記第二温度センサ(67)によって測定される温度と所定の温度との間の差分に基づいて、前記ONモードへの切り換えを行うよう構成されている、
    請求項13に記載の空調装置。
  15. 前記制御器(65)は、室内ユニット側における前記空調装置の第一伝熱容量(Q)と室内ユニット側における前記空調装置の第二伝熱容量(Q)との間の差異(Q)が前記冷却用熱交換器(22)の伝熱容量(Q)より高い場合、前記ONモードへの切り換えを行い、前記空調装置の前記第一伝熱容量(Q)と前記空調装置の前記第二伝熱容量(Q)との間の差異(Q)が前記冷却用熱交換器(22)の前記伝熱容量(Q)より低い場合、前記OFFモードへの切り換えを行うよう、構成されており、
    前記空調装置の前記第一伝熱容量(Q)は、前記コンプレッサ(3)が第一周波数で駆動される第一動作モードにおける伝熱容量であり、前記空調装置の前記第二伝熱容量(Q)は、前記コンプレッサ(3)が前記第一周波数より小さい第二周波数で駆動される第二動作モードにおける容量である、
    請求項12から14のいずれか1項に記載の空調装置。
JP2019543404A 2017-02-10 2018-02-09 熱源ユニットおよび熱源ユニットを有する空調装置 Active JP6782368B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP17155598 2017-02-10
EP17155598.0 2017-02-10
EP17182313.1 2017-07-20
EP17182313.1A EP3361192B1 (en) 2017-02-10 2017-07-20 Heat source unit and air conditioner having the heat source unit
PCT/JP2018/004607 WO2018147414A1 (en) 2017-02-10 2018-02-09 Heat source unit and air conditioner having the heat source unit

Publications (2)

Publication Number Publication Date
JP2020507735A true JP2020507735A (ja) 2020-03-12
JP6782368B2 JP6782368B2 (ja) 2020-11-11

Family

ID=58017963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019543404A Active JP6782368B2 (ja) 2017-02-10 2018-02-09 熱源ユニットおよび熱源ユニットを有する空調装置

Country Status (5)

Country Link
US (1) US11199349B2 (ja)
EP (1) EP3361192B1 (ja)
JP (1) JP6782368B2 (ja)
CN (1) CN110249190B (ja)
WO (1) WO2018147414A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020506362A (ja) * 2017-02-10 2020-02-27 ダイキン工業株式会社 熱源ユニットおよび熱源ユニットを有する空調装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6678738B2 (ja) * 2016-05-31 2020-04-08 三菱電機株式会社 空気調和装置の室内機
US11131466B2 (en) * 2017-02-10 2021-09-28 Daikin Industries, Ltd. Heat source unit and air conditioner having the heat source unit
GB2571111B (en) * 2018-02-16 2020-05-27 Jaguar Land Rover Ltd System and method for refrigerant management in an electric vehicle
KR102570579B1 (ko) * 2018-07-13 2023-08-24 엘지전자 주식회사 냉동기
CN109178691A (zh) * 2018-10-17 2019-01-11 珠海格力电器股份有限公司 变频装置及设有其的集装箱用空调与集装箱
JPWO2021044548A1 (ja) * 2019-09-04 2021-03-11
CN111457557A (zh) * 2019-12-26 2020-07-28 江苏哪凉快网络科技有限公司 一种基于无线控制的空调节电装置
CN111256292B (zh) * 2020-02-13 2021-12-14 海信(山东)空调有限公司 一种空调及其控制方法
US11655896B2 (en) 2021-03-24 2023-05-23 Emerson Climate Technologies, Inc. Sealing egress for fluid heat exchange in the wall of a structure
CN113507820B (zh) * 2021-07-02 2023-09-19 智行新能科技(安徽)有限公司 一种共享电池充电柜温控***

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375424A (ja) * 1989-08-17 1991-03-29 Daikin Ind Ltd ヒートポンプシステム及びその運転方法
JP2007285544A (ja) * 2006-04-13 2007-11-01 Matsushita Electric Ind Co Ltd 空気調和機
US20130247603A1 (en) * 2012-03-21 2013-09-26 Bitzer Kuehlmaschinenbau Gmbh Refrigeration system
US20130255932A1 (en) * 2012-03-30 2013-10-03 Emerson Climate Technologies, Inc. Heat sink for a condensing unit and method of using same
JP2013213670A (ja) * 2013-07-17 2013-10-17 Mitsubishi Heavy Ind Ltd インバータ冷却装置およびインバータ冷却方法ならびに冷凍機
JP2014066410A (ja) * 2012-09-25 2014-04-17 Denso Corp 冷凍サイクル装置
JP5516602B2 (ja) * 2009-12-22 2014-06-11 ダイキン工業株式会社 冷凍装置
JP2014109410A (ja) * 2012-12-03 2014-06-12 Samsung R&D Institute Japan Co Ltd 空気調和機、室外機、及び、空気調和機用プログラム
JP2014114982A (ja) * 2012-12-07 2014-06-26 Mitsubishi Electric Corp 圧縮機ユニット及び冷凍サイクル装置
JP2014153019A (ja) * 2013-02-12 2014-08-25 Sharp Corp ヒートポンプ機器の室外機
US20140250929A1 (en) * 2011-10-21 2014-09-11 Toyota Jidosha Kabushiki Kaisha Cooling device and method of controlling cooling device
JP2014202398A (ja) * 2013-04-03 2014-10-27 パナソニック アプライアンス エア − コンディショニング アール アンド ディー マレーシア エスディーエヌ.ビーエイチディー. 空気調和機の制御ボックス用の冷却システム及びそれが組み込まれた空気調和機
JP2020506362A (ja) * 2017-02-10 2020-02-27 ダイキン工業株式会社 熱源ユニットおよび熱源ユニットを有する空調装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60332823D1 (de) * 2002-04-08 2010-07-15 Daikin Ind Ltd Kühlvorrichtung
CN102575882B (zh) * 2009-10-20 2014-09-10 三菱电机株式会社 热泵装置
KR101324935B1 (ko) * 2011-10-11 2013-11-01 엘지전자 주식회사 공기조화기
KR102166764B1 (ko) 2013-10-10 2020-10-19 삼성전자주식회사 컨트롤박스 및 이를 포함하는 공기조화기의 실외기
AU2015201010A1 (en) * 2014-03-05 2015-09-24 Embertec Pty Ltd Load control system
JP6339036B2 (ja) * 2015-03-17 2018-06-06 ヤンマー株式会社 ヒートポンプ
JP6565272B2 (ja) 2015-03-31 2019-08-28 ダイキン工業株式会社 冷凍装置の熱源ユニット

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375424A (ja) * 1989-08-17 1991-03-29 Daikin Ind Ltd ヒートポンプシステム及びその運転方法
JP2007285544A (ja) * 2006-04-13 2007-11-01 Matsushita Electric Ind Co Ltd 空気調和機
JP5516602B2 (ja) * 2009-12-22 2014-06-11 ダイキン工業株式会社 冷凍装置
US20140250929A1 (en) * 2011-10-21 2014-09-11 Toyota Jidosha Kabushiki Kaisha Cooling device and method of controlling cooling device
US20130247603A1 (en) * 2012-03-21 2013-09-26 Bitzer Kuehlmaschinenbau Gmbh Refrigeration system
US20130255932A1 (en) * 2012-03-30 2013-10-03 Emerson Climate Technologies, Inc. Heat sink for a condensing unit and method of using same
JP2014066410A (ja) * 2012-09-25 2014-04-17 Denso Corp 冷凍サイクル装置
JP2014109410A (ja) * 2012-12-03 2014-06-12 Samsung R&D Institute Japan Co Ltd 空気調和機、室外機、及び、空気調和機用プログラム
JP2014114982A (ja) * 2012-12-07 2014-06-26 Mitsubishi Electric Corp 圧縮機ユニット及び冷凍サイクル装置
JP2014153019A (ja) * 2013-02-12 2014-08-25 Sharp Corp ヒートポンプ機器の室外機
JP2014202398A (ja) * 2013-04-03 2014-10-27 パナソニック アプライアンス エア − コンディショニング アール アンド ディー マレーシア エスディーエヌ.ビーエイチディー. 空気調和機の制御ボックス用の冷却システム及びそれが組み込まれた空気調和機
JP2013213670A (ja) * 2013-07-17 2013-10-17 Mitsubishi Heavy Ind Ltd インバータ冷却装置およびインバータ冷却方法ならびに冷凍機
JP2020506362A (ja) * 2017-02-10 2020-02-27 ダイキン工業株式会社 熱源ユニットおよび熱源ユニットを有する空調装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020506362A (ja) * 2017-02-10 2020-02-27 ダイキン工業株式会社 熱源ユニットおよび熱源ユニットを有する空調装置

Also Published As

Publication number Publication date
US20190376733A1 (en) 2019-12-12
WO2018147414A1 (en) 2018-08-16
EP3361192B1 (en) 2019-09-04
US11199349B2 (en) 2021-12-14
CN110249190B (zh) 2021-06-11
EP3361192A1 (en) 2018-08-15
JP6782368B2 (ja) 2020-11-11
CN110249190A (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
JP6782368B2 (ja) 熱源ユニットおよび熱源ユニットを有する空調装置
JP6782367B2 (ja) 熱源ユニットおよび熱源ユニットを有する空調装置
EP2320151B1 (en) Air-conditioning device
JP5734427B2 (ja) 可変冷媒流ヒートポンプのための低周囲気温時冷房用キット
WO2013001829A1 (ja) 冷却装置およびそれを備えた空気調和機
JP7012732B2 (ja) 熱源ユニットおよび熱源ユニットを有する空調装置
EP3361173B1 (en) Heat source unit and air conditioner having the heat source unit
JP2010025515A (ja) 空気調和機
CN111065868B (zh) 热交换器单元以及制冷循环装置
JP2017096564A (ja) 冷凍サイクルシステムおよび液バック防止方法
KR100791963B1 (ko) 실외기일체형에어컨
KR20070052547A (ko) 공기조화기
EP3361168B1 (en) Heat source unit and air conditioner having the heat source unit
JP6956903B2 (ja) 空気調和装置およびその制御方法
EP3361166A1 (en) Heat source unit and air conditioner having the heat source unit
KR20130048305A (ko) 공기조화기
JP7071613B2 (ja) 冷凍装置
JP2024035308A (ja) 空気調和装置
KR100593083B1 (ko) 공기조화기의 실외기 시스템
KR200161182Y1 (ko) 분리형 룸에어컨의 실외기 구조
JP2010231491A (ja) 電子機器冷却装置
KR20160039954A (ko) 공기조화기 및 공기조화기용 방열장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201019

R150 Certificate of patent or registration of utility model

Ref document number: 6782368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150