JP2020500826A - Method for manufacturing hollow structure - Google Patents

Method for manufacturing hollow structure Download PDF

Info

Publication number
JP2020500826A
JP2020500826A JP2019531115A JP2019531115A JP2020500826A JP 2020500826 A JP2020500826 A JP 2020500826A JP 2019531115 A JP2019531115 A JP 2019531115A JP 2019531115 A JP2019531115 A JP 2019531115A JP 2020500826 A JP2020500826 A JP 2020500826A
Authority
JP
Japan
Prior art keywords
polystyrene
metal
group
hollow structure
functional group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019531115A
Other languages
Japanese (ja)
Other versions
JP6872099B2 (en
Inventor
ジョンウク・チョン
セ・ホ・パク
ミンチョル・チャン
ギョ・ヒョン・ファン
ウンギョン・パク
チャンフン・パク
Original Assignee
エルジー・ケム・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルジー・ケム・リミテッド filed Critical エルジー・ケム・リミテッド
Publication of JP2020500826A publication Critical patent/JP2020500826A/en
Application granted granted Critical
Publication of JP6872099B2 publication Critical patent/JP6872099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/40Carbon, graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes

Abstract

本発明は、中空構造体の製造方法に係り、より詳しくは、中空構造体を製造するための鋳型(template)として作用基が導入されたポリスチレン粒子を用いることで、多様で安定的構造を有する中空構造体を製造することができる。The present invention relates to a method for manufacturing a hollow structure, and more particularly, to using a polystyrene particle having a functional group introduced therein as a template for manufacturing a hollow structure, thereby having a diverse and stable structure. Hollow structures can be manufactured.

Description

本出願は、2017年8月31日付韓国特許出願第10−2017−0111311号に基づく優先権の利益を主張し、当該韓国特許出願の文献に開示されている全ての内容は、本明細書の一部として含む。   This application claims the benefit of priority based on Korean Patent Application No. 10-2017-0111311 dated August 31, 2017, and disclose all contents disclosed in the documents of the Korean Patent Application. Include as part.

本発明は、多様な構造の中空構造体を効率的に製造できる中空構造体の製造方法に関する。   The present invention relates to a method for manufacturing a hollow structure capable of efficiently manufacturing hollow structures having various structures.

最近、電子産業の発達によって電子装備の小型化及び軽量化が可能となるにつれ、ポータブル電子機器の使用が増えつつある。このようなポータブル電子機器の電源で高いエネルギー密度を持つ二次電池の必要性が増大し、リチウム二次電池の研究が活発に行われている。これと同時に、電気自動車用電池で適用されているリチウムイオン電池は、物理的限界(最大エネルギー密度〜250Wh/kg)によって短距離走行用自動車に採用されている。   Recently, the use of portable electronic devices has been increasing as electronic equipment has become smaller and lighter due to the development of the electronic industry. The necessity of a secondary battery having a high energy density as a power source of such a portable electronic device has increased, and research on a lithium secondary battery has been actively conducted. At the same time, lithium-ion batteries used in electric vehicle batteries have been adopted for short-distance vehicles due to physical limitations (maximum energy density-250 Wh / kg).

リチウム金属は、理論容量が3,862mAh/gで高く、標準電極電位が低いため(−3.04vsSHE)、高エネルギー密度のリチウム二次電池の負極として理想的材料である。しかし、リチウムデンドライトの成長による電池内部の短絡などによる安全性問題によって、リチウム電池の負極素材として常用化されていない。また、リチウム金属が活物質または電解質と副反応を起こして電池短絡及び寿命に大きい影響を及ぼすことがある。したがって、リチウム金属電極の安定化及びデンドライト抑制技術は、次世代リチウム二次電池の開発のために、必ず先行しなければならない核心技術である。   Since lithium metal has a high theoretical capacity of 3,862 mAh / g and a low standard electrode potential (-3.04 vs. SHE), it is an ideal material for a negative electrode of a lithium secondary battery having a high energy density. However, due to safety problems such as a short circuit inside the battery due to the growth of lithium dendrite, it has not been commonly used as a negative electrode material of a lithium battery. In addition, lithium metal may cause a side reaction with the active material or the electrolyte to greatly affect the short circuit and the life of the battery. Therefore, the stabilization and dendrite suppression technology of the lithium metal electrode is a core technology that must be preceded for the development of the next generation lithium secondary battery.

このようなリチウム金属デンドライトの成長抑制及びリチウム金属と電解液の反応を防止するために多様な形態の電極活物質に対する研究が持続してきて、最近は、中空構造体に対する関心が高まっている。   In order to suppress the growth of the lithium metal dendrite and to prevent the reaction between the lithium metal and the electrolytic solution, various types of electrode active materials have been studied, and recently, interest in hollow structures has been increasing.

例えば、中空型カプセルの内部表面にAuが蒸着され、前記Auをシードにしてリチウム金属が前記中空型カプセルの内部に満たされた負極活物質が開発されたことがある(Nature Energy1、Article number:16010(2016)、「Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth」)。前記中空型カプセル形態の負極活物質は、密閉された形状であるため、電解液内で安定性を確保することができるが、前記中空型カプセルの内部に満たされるリチウム金属の体積を調節することは容易ではなく、球状であるため、電極を構成する時、電気伝導性が低下する問題がある。   For example, a negative electrode active material in which Au is deposited on the inner surface of a hollow capsule and lithium metal is filled inside the hollow capsule using the Au as a seed has been developed (Nature Energy1, Article number: 16010 (2016), "Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth"). Since the negative electrode active material in the form of the hollow capsule has a sealed shape, it is possible to secure stability in the electrolytic solution.However, it is necessary to adjust the volume of lithium metal filled in the hollow capsule. Is not easy and has a problem that the electric conductivity is reduced when the electrodes are formed because of the spherical shape.

ここで、多様で、且つ安定的形態を有する中空構造体を効率的に大量生産できる技術開発が至急である。   Here, there is an urgent need to develop a technology capable of efficiently mass-producing hollow structures having various and stable shapes.

韓国登録特許第1155909号公報Korean Registered Patent No. 1155909

Nature Energy 1、Article number:16010(2016)、「Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth」Nature Energy 1, Article number: 16010 (2016), "Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth".

本発明者らは、前記問題点を解決するために多角的に研究した結果、中空構造体を製作するものの、作用基が導入されたポリスチレン粒子を鋳型とし、前記作用基の代わりに金属を置換し、炭素系高分子をコーティングした後、炭化させてポリスチレンを取り除くことにより、内部表面に前記金属が含まれた中空構造体を製造し、このように製造された中空構造体が多様で安定的構造を有し、大量生産できるということを確認した。   The present inventors have conducted various studies to solve the above problems, and as a result, although producing a hollow structure, using a polystyrene particle into which a functional group is introduced as a template, substituting a metal instead of the functional group Then, after coating the carbon-based polymer, carbonized to remove the polystyrene, to produce a hollow structure containing the metal on the inner surface, the hollow structure thus produced is diverse and stable It was confirmed that it had a structure and could be mass-produced.

したがって、本発明の目的は、表面に幾つかの種類の作用基が導入されたポリスチレン粒子を鋳型として使って、多様、且つ安定的構造を有する中空構造体の製造方法を提供することである。   Accordingly, an object of the present invention is to provide a method for producing a hollow structure having various and stable structures using polystyrene particles having several types of functional groups introduced on the surface as a template.

前記目的を達成するために、本発明は、(S1)スチレン単量体、作用基導入用単量体及び開始剤を反応させ、1種または2種以上の複合作用基が導入されたポリスチレンを重合する段階;(S2)金属溶液に前記ポリスチレンを添加して金属が導入されたポリスチレンを形成する段階;(S3)前記金属が導入されたポリスチレンに炭素系高分子をコーティングする段階;(S4)前記炭素系高分子でコーティングされ、金属が導入されたポリスチレンを第1熱処理して前記ポリスチレンを除去する段階;及び(S5)前記(S4)段階の結果物を第2熱処理して炭化させる段階;を含む中空構造体の製造方法を提供する。   In order to achieve the above object, the present invention provides (S1) a method of reacting a styrene monomer, a functional group-introducing monomer, and an initiator to form a polystyrene having one or more complex functional groups introduced therein. Polymerizing; (S2) adding the polystyrene to the metal solution to form a metal-introduced polystyrene; (S3) coating the metal-introduced polystyrene with a carbon-based polymer; (S4) Removing the polystyrene by performing a first heat treatment on the polystyrene coated with the metal and introducing the metal; and (S5) performing a second heat treatment on the resultant of the (S4) to carbonize; And a method for producing a hollow structure comprising:

前記作用基は、カルボキシル基(−COOH)、ヒドロキシ基(−OH)及びアミン基(−NH)からなる群から選択される1種以上であってもよい。 The functional group may be at least one selected from the group consisting of a carboxyl group (—COOH), a hydroxy group (—OH), and an amine group (—NH 2 ).

前記作用基導入用単量体は、アクリル酸(acrylic acid)、2−ヒドロキシエチルアクリレート(2−hydroxyethyl acrylate)及びアリルアミン(allyl amine)からなる群から選択される1種以上であってもよい。   The functional group-introducing monomer may be at least one selected from the group consisting of acrylic acid, 2-hydroxyethyl acrylate, and allylamine.

前記開始剤は、4,4’−アゾビス(4−シアノ吉草酸)[4,4’−azobis(4−cyanovaleric acid)]、2,2’−アゾビス(2−メチルプロピオンアミジン)ジヒドロクロリド[2,2’−Azobis(2−methylpropionamidine)dihydrochloride] 及び過硫酸カリウム(potassium persulfate)からなる群から選択される1種以上であってもよい。   The initiator is 4,4′-azobis (4-cyanovaleric acid) [4,4′-azobis (4-cyanovaleric acid)], 2,2′-azobis (2-methylpropionamidine) dihydrochloride [2 , 2'-Azobis (2-methylpropionamidine) dihydrochloride] and potassium persulfate (potassium persulfate).

前記スチレン単量体スチレン単量体60ないし95重量%;作用基導入用単量体1ないし30重量%;及び開始剤1ないし10重量%;を反応させるものであってもよい。   The styrene monomer may react with 60 to 95% by weight of a styrene monomer; 1 to 30% by weight of a monomer for introducing a functional group; and 1 to 10% by weight of an initiator.

前記金属溶液は、金属前駆体を溶媒に溶解させて製造され、濃度が0.05ないし3Mのものであってもよい。   The metal solution may be prepared by dissolving a metal precursor in a solvent, and may have a concentration of 0.05 to 3M.

前記金属前駆体は、金属を含むアルコキシド、アセチルアセテート、ナイトレート、シュウ酸塩、ハロゲン化物及びシアン化物からなる群から選択される1種以上であってもよい。   The metal precursor may be at least one selected from the group consisting of a metal-containing alkoxide, acetyl acetate, nitrate, oxalate, halide, and cyanide.

前記金属は、Au、Zn、Mg、Ag、Al、Pt、Si及びCaからなる群から選択される1種以上であってもよい。   The metal may be at least one selected from the group consisting of Au, Zn, Mg, Ag, Al, Pt, Si and Ca.

前記溶媒は、エタノール(ethanol)、1−プロパノール(1−propanol)、イソ−プロパノール(iso−propanol)、脱イオン水(DI−water)、NMP(Methylpyrrolidone)、DMF(Dimethylformamide)、DMAc(dimethylacetamide)、DMSO(dimethyl sulfoxide)及びTHF(Tetrahydrofuran)からなる群から選択される1種以上であってもよい。   The solvent may be ethanol (ethanol), 1-propanol (1-propanol), iso-propanol (iso-propanol), deionized water (DI-water), NMP (methylpyrrolidone), DMF (dimethylformamide), and DMAc (dimethylate). , DMSO (dimethyl sulfoxide) and THF (Tetrahydrofuran).

前記炭素系高分子は、レゾルシノール(resorcinol)、ポリアクリロニトリル(Polyacrylonitrile:PAN)、ポリアニリン(Polyaniline:PANI)、ポリピロール(Polypyrrole:PPY)、ポリイミド(Polyimide:PI)、ポリベンズイミダゾール(Polybenzimidazole:PBI)、ポリピロリドン(Polypyrrolidone:Ppy)、ポリアミド(Polyamide:PA)、ポリアミドイミド(Polyamide−imide:PAI)、ポリアラミド(Polyaramide)、メラミン(Melamine)、メラミン−ホルムアルデヒド(Melamineformaldehyde)及びフッ素雲母(Fluorine mica)からなる群から選択される1種以上であってもよい。   Examples of the carbon-based polymer include resorcinol, polyacrylonitrile (PAN), polyaniline (PANNI), polypyrrole (PPY), polyimide (Polyimide: PI), and polybenzimidizol (Polymidimizol). Polypyrrolidone (Ppy), polyamide (Polyamide: PA), polyamideimide (Polyamide-imide: PAI), polyaramid (Polyaramide), melamine (Melamine), melamine-formaldehyde (Melamineformaldehyde) and melamine-formaldehyde mica) may be one or more selected from the group consisting of:

前記第1熱処理温度は、450ないし600℃であってもよい。   The first heat treatment temperature may be in a range of 450 to 600C.

前記第1熱処理は、不活性雰囲気下で30分ないし3時間行うことができる。   The first heat treatment may be performed in an inert atmosphere for 30 minutes to 3 hours.

前記不活性雰囲気は、窒素、アルゴン、ヘリウム、ネオン、クリプトン、ゼノン及びラドンからなる群から選択される不活性ガスによって形成されてもよい。   The inert atmosphere may be formed by an inert gas selected from the group consisting of nitrogen, argon, helium, neon, krypton, xenon, and radon.

前記第2熱処理温度は、900ないし1200℃であってもよい。   The second heat treatment temperature may be in a range of 900 to 1200C.

前記不活性雰囲気は、アルゴン、ヘリウム、ネオン、クリプトン、ゼノン及びラドンからなる群から選択される不活性ガスによって形成されることであってもよい。   The inert atmosphere may be formed by an inert gas selected from the group consisting of argon, helium, neon, krypton, xenon, and radon.

本発明の中空構造体の製造方法によれば、中空構造体を製造するための鋳型でカルボキシル基、アミン基及びヒドロキシ基からなる群から選択される1種以上の作用基が導入されたポリスチレン粒子を使うので、前記作用基に中空構造体のシェルを形成する炭素系高分子が化学的結合をするようになって製造されるシェルの形成が緻密になるので、中空構造体が安定的構造を有することができる。   According to the method for producing a hollow structure of the present invention, polystyrene particles into which one or more functional groups selected from the group consisting of a carboxyl group, an amine group and a hydroxy group have been introduced as a template for producing a hollow structure Since the carbon-based polymer forming the shell of the hollow structure forms a chemical bond with the functional group, the formation of the manufactured shell becomes dense, so that the hollow structure has a stable structure. Can have.

また、前記作用基が導入されたポリスチレン粒子を金属溶液に担持させる簡単な工程によって前記作用基が金属に置換され、大量生産が可能となる。   In addition, the functional group is replaced with a metal by a simple process of supporting the polystyrene particles having the functional group introduced thereon in a metal solution, which enables mass production.

また、前記ポリスチレン粒子は、炭化によって完全に除去されるので、中空構造体に電極活物質を担持する場合、電極活物質の抵抗を減らすことができる。   In addition, since the polystyrene particles are completely removed by carbonization, when the hollow structure supports the electrode active material, the resistance of the electrode active material can be reduced.

比較製造例1−1ないし1−3で製造されたポリスチレン粒子のSEM(scanning electron microscope)写真及び模式図を示すものである。FIG. 2 shows an SEM (scanning electron microscope) photograph and a schematic diagram of the polystyrene particles produced in Comparative Production Examples 1-1 to 1-3. 製造例1−1ないし1−3で製造されたポリスチレン粒子のSEM(scanning electron microscope)、TEM(transmission electron microscope)及び模式図を示すものである。FIG. 2 shows a scanning electron microscopy (SEM), a transmission electron microscopy (TEM) and a schematic diagram of polystyrene particles produced in Production Examples 1-1 to 1-3. 比較製造例1−1で製造されたポリスチレンにAu粒子が導入された形態を観察したTEM(transmission electron microscope)写真である。5 is a transmission electron microscopic (TEM) photograph of a polystyrene produced in Comparative Production Example 1-1, in which Au particles are introduced. 比較製造例1−2で製造されたポリスチレンにAu粒子が導入された形態を観察したTEM(transmission electron microscope)写真である。5 is a transmission electron microscopic (TEM) photograph of a polystyrene produced in Comparative Production Example 1-2 in which Au particles are introduced. 製造例1−2で製造されたポリスチレンにAuを取り入れた後、炭素系高分子であるレゾルシノールがコーティングされた形態を観察したTEM(transmission electron microscope)写真である。9 is a TEM (transmission electron microscopy) photograph showing a state in which Au is incorporated into polystyrene produced in Production Example 1-2 and then coated with resorcinol, which is a carbon-based polymer. 比較製造例1−2で製造されたポリスチレンにAuを取り入れた後、炭素系高分子であるレゾルシノールがコーティングされた形態を観察したTEM(transmission electron microscope)写真である。9 is a TEM (transmission electron microscopy) photograph in which a form in which resorcinol, which is a carbon-based polymer, is coated after Au is incorporated into polystyrene prepared in Comparative Preparation Example 1-2 is observed. 製造例2−1において、作用基導入用単量体の使用量を異にして製造されたポリスチレン粒子の大きさを観察したTEM(transmission electron microscope)写真である。It is a TEM (transmission electron microscope) photograph which observed the size of the polystyrene particle manufactured by making use amount of the monomer for functional group introduction different in manufacture example 2-1. 製造例2−2において、作用基導入用単量体の使用量を異にして製造されたポリスチレン粒子の大きさを観察したTEM(transmission electron microscope)写真である。It is a TEM (transmission electron microscopy) photograph which observed the size of the polystyrene particles manufactured by making use amount of the monomer for functional group introduction different in the manufacture example 2-2. 製造例2−3において、作用基導入用単量体の使用量を異にして製造されたポリスチレン粒子の大きさを観察したTEM(transmission electron microscope)写真である。It is a TEM (transmission electron microscope) photograph which observed the size of the polystyrene particles manufactured by making use amount of the monomer for functional group introduction different in manufacture example 2-3. 実施例1の各段階別結果物の形態を観察したTEM(transmission electron microscope)写真である。3 is a TEM (transmission electron microscopy) photograph of the result of each step of Example 1. 実施例1の各段階別結果物の形態を観察したTEM(transmission electron microscope)写真である。3 is a TEM (transmission electron microscopy) photograph of the result of each step of Example 1. 実施例1の各段階別結果物の形態を観察したTEM(transmission electron microscope)写真である。3 is a TEM (transmission electron microscopy) photograph of the result of each step of Example 1.

以下、本発明に対して理解し易くするために、本発明をより詳しく説明する。   Hereinafter, the present invention will be described in more detail to facilitate understanding of the present invention.

本明細書及び請求範囲で用いられる用語や単語は、通常、又は辞典的意味で限定して解釈されてはならず、発明者は自分の発明を最善の方法で説明するために、用語の概念を適切に定義することができるという原則に基づいて、本発明の技術的思想に符合する意味と概念で解釈されなければならない。   Terms and words used in the specification and claims are not to be construed as being limited to ordinary or lexicographical meanings, and the inventor may use the concept of terms in order to best describe his invention. Must be interpreted in a meaning and concept consistent with the technical idea of the present invention, based on the principle that can be appropriately defined.

中空構造体の製造方法
本発明は、中空構造体の製造方法に係り、ポリスチレン粒子の表面に作用基を導入して前記ポリスチレン粒子の反応性を高めることにより、前記作用基が多様な金属で置換されるようにし、その結果、多様な金属が内部表面に安定的に含まれている中空構造体を製造することができる。
The present invention relates to a method for producing a hollow structure, and relates to a method for producing a hollow structure, in which a functional group is substituted with various metals by introducing a functional group onto the surface of a polystyrene particle to increase the reactivity of the polystyrene particle. As a result, a hollow structure in which various metals are stably contained on the inner surface can be manufactured.

このように製造された多様且つ安定的構造を有する中空構造体は、電極活物質担持用で使われ、電池の安全性を向上させることができる。   The hollow structure having various and stable structures manufactured as described above is used for supporting an electrode active material, and can improve the safety of a battery.

本発明は、(S1)スチレン単量体、作用基導入用単量体、及び開始剤を反応させて1種または2種以上の複合作用基が導入されたポリスチレンを重合する段階;(S2)金属溶液に前記ポリスチレンを添加して金属が導入されたポリスチレンを形成する段階;(S3)前記金属が導入されたポリスチレンに炭素系高分子をコーティングする段階;(S4)前記炭素系高分子でコーティングされ、金属が導入されたポリスチレンを第1熱処理して前記ポリスチレンを除去する段階;及び(S5)前記(S4)段階の結果物を第2熱処理して炭化させる段階;を含む中空構造体の製造方法に関する。   The present invention provides (S1) a step of reacting a styrene monomer, a functional group-introducing monomer, and an initiator to polymerize polystyrene into which one or more composite functional groups have been introduced; (S2) Forming the polystyrene into which the metal is introduced by adding the polystyrene to the metal solution; (S3) coating the polystyrene into which the metal is introduced with a carbon-based polymer; and (S4) coating with the carbon-based polymer. Producing a hollow structure comprising: performing a first heat treatment on the polystyrene into which the metal has been introduced to remove the polystyrene; and (S5) performing a second heat treatment to carbonize the product of the (S4). About the method.

以下、各段階別に本発明による中空構造体の製造方法をより詳しく説明する。   Hereinafter, a method for manufacturing a hollow structure according to the present invention will be described in more detail for each step.

(S1)段階
(S1)段階では、スチレン単量体、作用基導入用単量体及び開始剤を反応させ、1種または2種以上の複合作用基が導入されたポリスチレンを重合することができる。
(S1) Step In the (S1) step, a styrene monomer, a functional group-introducing monomer and an initiator are reacted to polymerize polystyrene into which one or more complex functional groups have been introduced. .

具体的に、前記開始剤溶液を昇温させた後、前記スチレン単量体及び作用基導入用単量体を添加して反応させ、作用基が導入されたポリスチレンを重合することができる。   Specifically, after raising the temperature of the initiator solution, the styrene monomer and the functional group-introducing monomer are added and reacted to polymerize the polystyrene into which the functional group has been introduced.

この時、前記開始剤溶液は、開始剤水溶液であってもよく、昇温温度は70ないし90℃、好ましくは、73ないし88℃、より好ましくは、75ないし85℃であってもよい。前記昇温温度が前記範囲未満であれば、重合反応が起きないことがあって、前記範囲を超過すれば、反応させる物質、つまり、開始剤、スチレン単量体及び作用基導入用単量体の物性が変性することがある。   At this time, the initiator solution may be an aqueous initiator solution, and the temperature rise temperature may be 70 to 90 ° C, preferably 73 to 88 ° C, and more preferably 75 to 85 ° C. If the heating temperature is less than the above range, the polymerization reaction may not occur, and if it exceeds the above range, the substance to be reacted, that is, an initiator, a styrene monomer, and a monomer for introducing a functional group. Properties may be altered.

本発明において、前記スチレン単量体は、ポリスチレンを重合するにあって必須的単量体である。   In the present invention, the styrene monomer is an essential monomer in polymerizing polystyrene.

本発明において、開始剤は、ラジカルを導入することによってポリスチレン重合反応を誘導するために必要な物質であって、本発明で用いる開始剤は、4,4’−アゾビス(4−シアノ吉草酸)[4,4’−azobis(4−cyanovaleric acid)]、2,2’−アゾビス(2−メチルプロピオンアミジン)ジヒドロクロリド[2,2’−Azobis(2−methylpropionamidine)dihydrochloride] 及び過硫酸カリウム(potassium persulfate)からなる群から選択される1種以上であってもよい。   In the present invention, the initiator is a substance necessary for inducing a polystyrene polymerization reaction by introducing a radical, and the initiator used in the present invention is 4,4′-azobis (4-cyanovaleric acid). [4,4'-azobis (4-cyanovaleric acid)], 2,2'-azobis (2-methylpropionamidine) dihydrochloride [2,2'-Azobis (2-methylpropionamidine) dihydrochloride] and potassium persulfate (potassium) Persulfate) may be one or more selected from the group consisting of:

また、前記開始剤は、ポリスチレンの表面に作用基を取り入れてもよく、開始剤の種類に応じて前記ポリスチレンの表面にそれぞれカルボキシル基(−COOH)、アミン基(−NH)及びスルフェート基(−SO)の中で選択される1種の作用基が導入されてもよい。 In addition, the initiator may incorporate a functional group on the surface of polystyrene, and a carboxyl group (—COOH), an amine group (—NH 2 ), and a sulfate group ( One functional group selected from —SO 4 ) may be introduced.

このように、開始剤によってポリスチレン粒子の表面に形成された上記のような1種の作用基によっては、反応性が大きいAu粒子はよくローディングされるが、炭素材はポリスチレン粒子表面との反応性によってコーティング性が低下することがあるし、これによって中空構造体のシェルの安定性が低下することがある。   As described above, the Au particles having high reactivity are often loaded by the above-mentioned one kind of functional group formed on the surface of the polystyrene particles by the initiator, but the carbon material is not reactive with the polystyrene particles. As a result, the coating property may be reduced, and the stability of the shell of the hollow structure may be reduced.

よって、金属はもとより、中空構造体のシェルを成す炭素材とも反応性が良くなるよう、ポリスチレン粒子の表面を改質する必要があり、ここで作用基導入用単量体を用いてポリスチレン表面に1種以上の作用基を取り入れることができる。   Therefore, it is necessary to modify the surface of the polystyrene particles so that the reactivity with the carbon material forming the shell of the hollow structure becomes good, as well as the metal.Here, the functional group-introducing monomer is used to modify the polystyrene surface. One or more functional groups can be incorporated.

本発明において、前記作用基導入用単量体は、ポリスチレン粒子の表面に作用基を取り入れて表面を改質するための単量体であって、重合されるポリスチレン粒子の大きさのような物理的性質を制御する役目をすることができる。前記ポリスチレン粒子の表面に作用基を安定的に取り入れるために、前記スチレン単量体より親水性(hidrophilic)の特性を有することが有利である。具体的に、前記作用基導入用単量体は、スチレンに比べて親水性の特徴があり、水溶液系反応で合成されるポリスチレン粒子の表面に主に存在し、ポリスチレン粒子の表面に作用基を取り入れることができる。   In the present invention, the functional group-introducing monomer is a monomer for incorporating a functional group into the surface of a polystyrene particle to modify the surface, and is a physical material such as a size of a polystyrene particle to be polymerized. It can serve to control strategic properties. In order to stably incorporate a functional group on the surface of the polystyrene particles, it is advantageous that the polystyrene particles have a more hydrophilic property than the styrene monomer. Specifically, the functional group-introducing monomer has a hydrophilic property compared to styrene, and is mainly present on the surface of polystyrene particles synthesized by an aqueous reaction, and has a functional group on the surface of the polystyrene particles. Can be incorporated.

例えば、前記作用基導入用単量体は、アクリル酸(acrylic acid)、2−ヒドロキシエチルアクリレート(2−hydroxyethyl acrylate)及びアリルアミン(allyl amine)からなる群から選択される1種以上であってもよく、これらの作用基導入用単量体を用いる場合、ポリスチレン粒子の表面にそれぞれカルボキシル基(−COOH)、ヒドロキシ基(−OH)及びアミン基(−NH)を取り入れ、前記開始剤とともに使用することで、ポリスチレン粒子の表面に金属とともに炭素材がローディングできるよう、1種以上の作用基を形成して表面を改質することができる。 For example, the functional group-introducing monomer may be at least one selected from the group consisting of acrylic acid, 2-hydroxyethyl acrylate, and allylamine. When these functional group-introducing monomers are used, a carboxyl group (—COOH), a hydroxy group (—OH) and an amine group (—NH 2 ) are respectively incorporated into the surface of the polystyrene particles and used together with the initiator. By doing so, one or more types of functional groups can be formed to modify the surface so that the carbon material can be loaded together with the metal on the surface of the polystyrene particles.

前記作用基の中でもカルボキシル基(−COOH)を取り入れる場合、ポリスチレン粒子の反応性側面で有利であるため、これによって、前記作用基導入用単量体としてアクリル酸を用いることが有利なこともある。   Incorporation of a carboxyl group (—COOH) among the functional groups is advantageous in terms of the reactivity of the polystyrene particles, and thus, it may be advantageous to use acrylic acid as the functional group-introducing monomer. .

本発明において、開始剤はラジカルの導入によってポリスチレン重合反応を誘導するために必要な物質であって、本発明で用いる開始剤は、4,4’−アゾビス(4−シアノ吉草酸)[4,4’−azobis(4−cyanovaleric acid)]、2,2’−アゾビス(2−メチルプロピオンアミジン)ジヒドロクロリド[2,2’−Azobis(2−methylpropionamidine)dihydrochloride]及び過硫酸カリウム(potassium persulfate)からなる群から選択される1種以上であってもよい。   In the present invention, the initiator is a substance necessary for inducing a polystyrene polymerization reaction by introducing a radical, and the initiator used in the present invention is 4,4′-azobis (4-cyanovaleric acid) [4, 4'-azobis (4-cyanovaleric acid)], 2,2'-azobis (2-methylpropionamidine) dihydrochloride [2,2'-Azobis (2-methylpropionamidine) dihydrochloride] and potassium persulfate (potassium sulphate) One or more selected from the group may be used.

本発明において、前記スチレン単量体60ないし95重量%;作用基導入用単量体1ないし30重量%;及び開始剤1ないし10重量%;を反応させて重合してもよい。   In the present invention, 60 to 95% by weight of the styrene monomer; 1 to 30% by weight of a monomer for introducing a functional group; and 1 to 10% by weight of an initiator may be reacted and polymerized.

前記スチレン単量体は、60ないし95重量%、好ましくは、70ないし85重量%、より好ましくは、70ないし80重量%を使用してもよい。前記範囲未満であれば、ポリスチレン粒子自体が形成されないこともあって、前記範囲を超過すれば、作用基導入用単量体及び開始剤の使用量が相対的に低下して作用基導入が難しいことがある。   The styrene monomer may be used in an amount of 60 to 95% by weight, preferably 70 to 85% by weight, more preferably 70 to 80% by weight. If the amount is less than the above range, the polystyrene particles themselves may not be formed.If the amount exceeds the above range, the amounts of the functional group-introducing monomer and the initiator are relatively reduced, and it is difficult to introduce the functional group. Sometimes.

前記作用基導入用単量体は、1ないし30重量%、好ましくは、3ないし20重量%、より好ましくは、3ないし15重量%であってもよい。前記範囲未満であれば、作用基導入用単量体が前記範囲未満であれば、ポリスチレン粒子表面に作用基が導入され難いことがあって、前記範囲を超過すれば、作用基導入用単量体の重量を追加することに対する実益がないことがある。本発明において、前記作用基導入用単量体の添加の割合によってポリスチレン粒子の大きさが調節されてもよい。よって、前記範囲内で作用基導入用単量体の添加量を調節してポリスチレン粒子の大きさを調節し、結果的に中空構造体に形成された中空の大きさを調節することができる。   The functional group-introducing monomer may be 1 to 30% by weight, preferably 3 to 20% by weight, more preferably 3 to 15% by weight. If it is less than the above range, if the functional group-introducing monomer is less than the above range, it may be difficult for the functional group to be introduced to the surface of the polystyrene particles. There may be no benefit to adding body weight. In the present invention, the size of the polystyrene particles may be adjusted according to the ratio of the addition of the functional group-introducing monomer. Therefore, the size of the polystyrene particles can be controlled by controlling the amount of the functional group-introducing monomer to be added within the above range, and consequently the size of the hollow formed in the hollow structure can be controlled.

前記開始剤は、1ないし10重量%、好ましくは、1ないし8重量%、より好ましくは、1ないし5重量%であってもよい。前記範囲未満であれば、ポリスチレン重合反応が行われないこともあり、前記範囲を超過すれば、重合されて形成されたポリスチレンに影響を及ぼしてポリスチレンの耐久性が低下することがある。   The initiator may be 1 to 10% by weight, preferably 1 to 8% by weight, more preferably 1 to 5% by weight. If the amount is less than the above range, the polystyrene polymerization reaction may not be performed. If the amount exceeds the range, the polystyrene formed by polymerization may be affected and the durability of the polystyrene may be reduced.

上述したような(S1)段階の工程によって、作用基が導入されたポリスチレン粒子を得ることができる。   By the above-described step (S1), polystyrene particles having a functional group introduced therein can be obtained.

(S2)段階
(S2)段階では、金属溶液または金属粒子溶液に前記ポリスチレンを添加して金属が導入されたポリスチレンを形成することができる。
(S2) Step In the (S2) step, the polystyrene may be added to a metal solution or a metal particle solution to form polystyrene into which a metal has been introduced.

本発明において、前記金属溶液は、金属前駆体を溶媒に溶解して製造されたものであってもよく、前記金属溶液の濃度は0.05ないし3M、好ましくは、0.08ないし2M、より好ましくは、1ないし1.5Mであってもよい。前記金属溶液の濃度が前記範囲未満であれば、ポリスチレン粒子表面の作用基を金属で十分置換し難いことがあって、前記範囲を超過すれば、作用基を金属で置換する反応が逆に遅くなることがある。   In the present invention, the metal solution may be prepared by dissolving a metal precursor in a solvent, and the concentration of the metal solution may be 0.05 to 3M, preferably 0.08 to 2M, Preferably, it may be 1 to 1.5M. If the concentration of the metal solution is less than the above range, it may be difficult to sufficiently substitute the functional group on the surface of the polystyrene particles with the metal.If the concentration exceeds the above range, the reaction of replacing the functional group with the metal may be slow. May be.

前記金属は、中空構造体の内部表面に形成され、電極活物質が成長するためのシード金属の役目をすることができる。例えば、前記金属は、電極活物質と合金を形成することができる金属が好ましく、Au、Zn、Mg、Ag、Al、Pt、Si及びCaからなる群から選択される1種以上であってもよく、より好ましくは、Auであってもよい。   The metal may be formed on the inner surface of the hollow structure and serve as a seed metal for growing the electrode active material. For example, the metal is preferably a metal capable of forming an alloy with the electrode active material, and may be at least one selected from the group consisting of Au, Zn, Mg, Ag, Al, Pt, Si and Ca. Alternatively, more preferably, it may be Au.

前記金属前駆体は、金属のアルコキシド、金属のアセチルアセテート、金属のナイトレート、金属のシュウ酸塩、金属のハロゲン化物及び金属のシアン化物からなる群から選択される1種以上であってもよく、反応性側面で金属のハロゲン化物を使用することが有利である。   The metal precursor may be at least one selected from the group consisting of metal alkoxides, metal acetyl acetates, metal nitrates, metal oxalates, metal halides and metal cyanides. It is advantageous to use metal halides on the reactive side.

また、前記溶媒はエタノール(ethanol)、1−プロパノール(1−propanol)、イソ−プロパノール(iso−propanol)、DI−water、NMP(Methylpyrrolidone)、DMF(Dimethylformamide)、DMAc(dimethylacetamide)、DMSO(dimethyl sulfoxide)及びTHF(Tetrahydrofuran)からなる群から選択される1種以上であってもよく、金属前駆体の溶解性側面でDI−waterを使用することが有利である。   Further, the solvent is ethanol (ethanol), 1-propanol (1-propanol), iso-propanol (iso-propanol), DI-water, NMP (methylpyrrolidone), DMF (dimethylformamide), DMAc (dimethylmethylsodium dimethylamide) It may be at least one selected from the group consisting of sulfoxide and THF (tetrahydrofuran), and it is advantageous to use DI-water in terms of solubility of the metal precursor.

上述したような(S2)段階の工程によって、前記作用基が導入されたポリスチレンを金属溶液及び金属粒子溶液に担持しておくだけで別途コーティング工程なく、金属が導入されたポリスチレン粒子を得ることができる。   According to the above-described step (S2), it is possible to obtain metal-introduced polystyrene particles without carrying out a separate coating process only by supporting the polystyrene into which the functional group is introduced in a metal solution and a metal particle solution. it can.

一方、前記作用基が導入されたポリスチレン粒子の作用基の種類によって前記金属溶液に担持して反応させる時間は、5分ないし16時間であってもよく、前記範囲未満の場合、ポリスチレン粒子の表面に金属が導入されるほど時間が十分ではなく、前記範囲を超える場合も金属による作用基の置換率が減少することがある。好ましくは、前記反時間は5分ないし10時間、より好ましくは、5分ないし5時間であってもよい。   Meanwhile, depending on the type of the functional group of the polystyrene particles into which the functional group has been introduced, the time for supporting the metal solution and reacting it may be 5 minutes to 16 hours. The time is not enough for the metal to be introduced into the metal, and when the amount exceeds the above range, the substitution ratio of the functional group by the metal may decrease. Preferably, the anti-time may be between 5 minutes and 10 hours, more preferably between 5 minutes and 5 hours.

前記ポリスチレン粒子の表面に導入された作用基は、その種類によって金属粒子との反応性に差があり得る。例えば、前記作用基の中でアミン基は、Au粒子との反応性が高くて二つの成分を混合して直ぐ反応が進められ、カルボキシル基はアミン基ほど反応性が高くないため、反応時にオーバーナイトで進めることがある。   The functional group introduced on the surface of the polystyrene particles may have different reactivity with the metal particles depending on the type. For example, among the functional groups, the amine group has a high reactivity with the Au particles and the two components are mixed and the reaction proceeds immediately, and the carboxyl group is not as reactive as the amine group. May proceed at night.

(S3)段階
(S3)段階では、前記金属が導入されたポリスチレンに炭素系高分子をコーティングすることができる。
Step (S3) In step (S3), the metal-introduced polystyrene may be coated with a carbon-based polymer.

前記炭素系高分子は、中空構造体のシェルを形成するための原料物質であってもよく、炭素系高分子を用いることで、中空構造体の耐久性、電気伝導性及びリチウムイオン伝導性の側面で有利である。   The carbon-based polymer may be a raw material for forming a shell of the hollow structure, and by using the carbon-based polymer, the durability, electric conductivity, and lithium ion conductivity of the hollow structure are reduced. It is advantageous in aspects.

前記中空構造体の担持される電極活物質がリチウムである場合、リチウムが炭素からなるシェルの表面で成長するものの、Auのような金属が前記シェルの表面に形成されていることによって、前記Auがリチウム成長の触媒の役目をするシード金属で作用してリチウムの成長を促進し、中空構造体の形態的特性によってリチウムデンドライトの成長を防止することができる。   When the electrode active material supported on the hollow structure is lithium, although the lithium grows on the surface of the shell made of carbon, the metal such as Au is formed on the surface of the shell, whereby the Au is formed. Acts on the seed metal, which acts as a catalyst for lithium growth, to promote the growth of lithium, and to prevent the growth of lithium dendrites due to the morphological characteristics of the hollow structure.

具体的に、前記炭素系高分子溶液を製造してコーティングすることができるし、前記炭素系高分子溶液は、炭素系高分子5ないし25重量%及び溶媒は75ないし95重量%を混合して製造されてもよい。   Specifically, the carbon-based polymer solution may be prepared and coated, and the carbon-based polymer solution may be prepared by mixing 5 to 25% by weight of the carbon-based polymer and 75 to 95% by weight of the solvent. It may be manufactured.

前記炭素系高分子が前記範囲未満であれば、形成される中空構造体の耐久性が低下することがあるし、前記範囲を超過すれば、コーティング性が良くない場合があり、コーティングされずに副産物で形成される炭素粒子を形成することがある。前記炭素系高分子は、好ましくは、5ないし20重量%、より好ましくは、5ないし15重量%であってもよい。   If the carbon-based polymer is less than the above range, the durability of the formed hollow structure may be reduced, and if it exceeds the above range, the coating property may not be good, and the coating may not be performed. By-products can form carbon particles. The carbon-based polymer may preferably be 5 to 20% by weight, more preferably 5 to 15% by weight.

前記溶媒が前記範囲未満であれば、溶液の濃度が高くてコーティング性が良くないことがあるし、前記範囲を超過すれば、溶液が希釈され過ぎて製造される中空構造体の耐久性が低下することがある。また、前記溶媒は、好ましくは、80ないし90重量%、より好ましくは、82ないし88重量%であってもよい。   If the solvent is less than the above range, the concentration of the solution may be high and coating properties may not be good, and if it exceeds the above range, the durability of the hollow structure manufactured by diluting the solution is reduced. May be. In addition, the solvent may preferably be 80 to 90% by weight, more preferably 82 to 88% by weight.

前記炭素系高分子は、レゾルシノール(resorcinol)、ポリアクリロニトリル(Polyacrylonitrile:PAN)、ポリアニリン(Polyaniline:PANI)、ポリピロール(Polypyrrole:PPY)、ポリイミド(Polyimide:PI)、ポリベンズイミダゾール(Polybenzimidazole:PBI)、ポリピロリドン(Polypyrrolidone:Ppy)、ポリアミド(Polyamide:PA)、ポリアミドイミド(Polyamide−imide:PAI)、ポリアラミド(Polyaramide)、メラミン(Melamine)、メラミン−ホルムアルデヒド(Melamineformaldehyde)及びフッ素雲母(Fluorine mica)からなる群から選択される1種以上であってもよいが、炭化された後の耐久性、電気伝導性及びリチウムイオン伝導性を考慮すると、レゾルシノールが好ましい。   Examples of the carbon-based polymer include resorcinol, polyacrylonitrile (PAN), polyaniline (PANNI), polypyrrole (PPY), polyimide (Polyimide: PI), and polybenzimidizol (Polymidimizol). Polypyrrolidone (Ppy), polyamide (Polyamide: PA), polyamideimide (Polyamide-imide: PAI), polyaramid (Polyaramide), melamine (Melamine), melamine-formaldehyde (Melamineformaldehyde) and melamine-formaldehyde mica), but resorcinol is preferred in view of durability after carbonization, electrical conductivity and lithium ion conductivity.

前記溶媒は、エタノール(ethanol)、1−プロパノール(1−propanol)、イソ−プロパノール(iso−propanol)、DI−water、NMP(Methylpyrrolidone)、DMF(Dimethylformamide)、DMAc(dimethylacetamide)、DMSO(dimethyl sulfoxide)、THF(Tetrahydrofuran)及びこれらの混合物からなる群から選択される1種以上であってもよい。   Examples of the solvent include ethanol, 1-propanol, 1-propanol, iso-propanol, DI-water, NMP (methylpyrrolidone), DMF (dimethylformamide, DMAc (dimethylethylamide), and DMAc (dimethylmethodamide). ), THF (Tetrahydrofuran) and a mixture thereof.

上述したような(S3)段階の工程によって、前記金属が導入されたポリスチレンに炭素系高分子でコーティングされた中空構造体の前駆体を得ることができる。   The precursor of the hollow structure obtained by coating the polystyrene into which the metal has been introduced with the carbon-based polymer can be obtained by the step (S3) as described above.

(S4)段階
(S4)段階では、前記炭素系高分子でコーティングされた、金属が導入されたポリスチレンを第1熱処理して前記ポリスチレンを取り除きながら金属前駆体を金属で還元することができる。
(S4) Step In the (S4) step, the metal precursor may be reduced with the metal while removing the polystyrene by performing a first heat treatment on the polystyrene coated with the carbon-based polymer and into which the metal has been introduced.

本発明において、前記第1熱処理温度は、450〜600℃、好ましくは、480〜600℃、より好ましくは、500〜600℃であってもよく、昇温しながら熱処理してもよい。前記第1熱処理温度が前記範囲未満であれば、ポリスチレンが除去されずに金属前駆体が還元されないことがあるし、前記範囲内でポリスチレンの除去と金属前駆体の還元がいずれも行われることがあるので、前記範囲を超過すれば、シェルの内部表面だけでなく、シェルの外部表面上にも金属が形成される問題点がある。   In the present invention, the first heat treatment temperature may be 450 to 600C, preferably 480 to 600C, more preferably 500 to 600C, and the heat treatment may be performed while increasing the temperature. If the first heat treatment temperature is less than the above range, the metal precursor may not be reduced without removing the polystyrene, and both the removal of the polystyrene and the reduction of the metal precursor may be performed within the above range. Therefore, if the above range is exceeded, metal is formed not only on the inner surface of the shell but also on the outer surface of the shell.

また、前記第1熱処理は、不活性雰囲気下で30分ないし3時間、好ましくは、1ないし2時間30分、より好ましくは、1時間30分ないし2時間行われても良い。   The first heat treatment may be performed in an inert atmosphere for 30 minutes to 3 hours, preferably for 1 to 2 hours and 30 minutes, more preferably for 1 hour and 30 minutes to 2 hours.

前記第1熱処理時間が前記範囲未満であれば、ポリスチレンが完全に除去されないため、製造される中空構造体に電極活物質が担持される場合、電極活物質が抵抗が増加することがあるし、前記範囲を超過すれば、ポリスチレンは完全に除去されるが、中空構造体の物性が低下することがある。   If the first heat treatment time is less than the above range, polystyrene is not completely removed, and when the electrode active material is supported on the manufactured hollow structure, the electrode active material may increase in resistance, If it exceeds the above range, the polystyrene is completely removed, but the physical properties of the hollow structure may be reduced.

この時、前記不活性雰囲気は、窒素、アルゴン、ヘリウム、ネオン、クリプトン、ゼノン及びラドンからなる群から選択される不活性ガスによって形成されてもよい。好ましくは、前記不活性ガスはアルゴンであってもよい。   At this time, the inert atmosphere may be formed by an inert gas selected from the group consisting of nitrogen, argon, helium, neon, krypton, xenon, and radon. Preferably, the inert gas may be argon.

(S5)段階
(S5)段階では、前記(S4)段階の結果物を第2熱処理して炭化させることができる。
(S5) Step In the (S5) step, the result of the (S4) step may be carbonized by a second heat treatment.

本発明において、前記第2熱処理温度は、900〜1200℃、好ましくは、900〜1100℃、より好ましくは、900〜1000℃であってもよく、第2熱処理温度が前記範囲が前記範囲未満であれば、炭化が完全に行われないこともあるし、前記範囲を超過すれば、高温熱処理によって形成される中空構造体の物性が低下されることがある。   In the present invention, the second heat treatment temperature may be 900 to 1200 ° C., preferably 900 to 1100 ° C., and more preferably 900 to 1000 ° C., and the second heat treatment temperature is less than the above range. If it is, carbonization may not be completely performed, and if it exceeds the above range, the physical properties of the hollow structure formed by the high-temperature heat treatment may be reduced.

上述したような(S1)ないし(S5)段階を通して製造された中空構造体は、シェルの内部表面に多様な金属が形成されてもよく、多様且つ安定的構造を有する中空構造体の製造が可能である。   In the hollow structure manufactured through steps (S1) to (S5) as described above, various metals may be formed on the inner surface of the shell, and a hollow structure having various and stable structures can be manufactured. It is.

また、前記中空構造体の製造方法によると、中空構造体を大量で合成することができるので、商業化に有利である。   Further, according to the method for producing a hollow structure, a large amount of the hollow structure can be synthesized, which is advantageous for commercialization.

また、前記中空構造体を製造する時用いられたポリスチレン鋳型は、熱処理工程によって完全に除去され、前記中空構造体に電極型活物質を担持する時、電極活物質の抵抗を減少させることができる。   In addition, the polystyrene template used when manufacturing the hollow structure is completely removed by a heat treatment process, and when the electrode type active material is supported on the hollow structure, the resistance of the electrode active material can be reduced. .

また、前記中空構造体に電極活物質を担持して電極に適用する場合、電極活物質がデンドリチックに成長することを防いで電極活物質と電解液の接触を阻んで電池の安全性を強化することができる。   Further, when the hollow structure supports an electrode active material and is applied to an electrode, the electrode active material is prevented from growing dendritic, and the contact between the electrode active material and the electrolyte is prevented to enhance the safety of the battery. be able to.

以下、本発明を理解し易くするために、好ましい実施例を提示するが、下記実施例は、本発明を例示することに過ぎず、本発明の範疇及び技術思想範囲内で多様な変更及び修正可能であることは当業者とって明白であり、このような変更及び修正が添付の特許請求範囲に属することも当然である。   Hereinafter, preferred embodiments will be presented to facilitate understanding of the present invention. However, the following embodiments are merely illustrative of the present invention, and various changes and modifications may be made within the scope and spirit of the present invention. The possibilities are apparent to a person skilled in the art and it is obvious that such changes and modifications fall within the scope of the appended claims.

比較製造例1−1ないし1−3:開始剤の種類によるポリスチレン粒子合成
<比較製造例1−1>
下記表1に記載されたように、単量体としてスチレン(styrene)、開始剤を用いて、ポリスチレン鋳型を製造した。
Comparative Production Examples 1-1 to 1-3: Synthesis of Polystyrene Particles by Type of Initiator <Comparative Production Example 1-1>
As shown in Table 1 below, a polystyrene mold was prepared using styrene as a monomer and an initiator.

DI−water 500mlに開始剤の4,4’−アゾビス(4−シアノ吉草酸)1gを溶かした後、80℃に昇温させた後、単量体であるスチレン30gを点滴してオーバーナイト(overnight)反応を実施し、カルボキシル基(−COOH)が導入されたポリスチレン(PS)鋳型を製造した。   After dissolving 1 g of 4,4'-azobis (4-cyanovaleric acid) as an initiator in 500 ml of DI-water and raising the temperature to 80 ° C., 30 g of styrene, which is a monomer, is instilled overnight ( An overnight reaction was performed to produce a polystyrene (PS) template into which a carboxyl group (—COOH) was introduced.

<比較製造例1−2>
前記比較製造例1−1と同様に実施するが、開始剤として2,2’−アゾビス(2−メチルプロピオンアミジン)ジヒドロクロリド[2,2’−Azobis(2−methylpropionamidine)dihydrochloride]を用いて、アミン基(−NH)が導入されたポリスチレン(PS)鋳型を製造した。
<Comparative Production Example 1-2>
Performed in the same manner as in Comparative Production Example 1-1, but using 2,2′-azobis (2-methylpropionamidine) dihydrochloride [2,2′-Azobis (2-methylpropionamidine) dihydrochloride] as an initiator. amine group (-NH 2) was prepared the introduced polystyrene (PS) mold.

<比較製造例1−3>
前記比較製造例1−1と同様に実施するが、開始剤として過硫酸カリウム(potassium persulfate)を用いて、スルフェート基(−SO)が導入されたポリスチレン(PS)鋳型を製造した。
<Comparative Production Example 1-3>
Was carried out according to the method Comparative Production Example 1-1, using potassium persulfate (potassium persulfate) as the initiator, sulfate groups (-SO 4) was prepared the introduced polystyrene (PS) mold.

製造例1−1ないし1−3:作用基導入用単量体の種類による、作用基が導入されたポリスチレン粒子合成
<製造例1−1>
下記表2に記載されたように、単量体スチレン(styrene)、カルボキシル基を取り入れるための作用基導入用単量体として2−ヒドロキシエチルアクリレート(2−hydroxyethyl acrylate)、開始剤として2,2’−アゾビス(2−メチルプロピオンアミジン)ジヒドロクロリド[2,2’−Azobis(2−methylpropionamidine)dihydrochloride]を利用してヒドロキシ基(−OH)及びカルボキシル基(−COOH)が導入されたポリスチレン鋳型を製造した。
Production Examples 1-1 to 1-3: Synthesis of polystyrene particles having a functional group introduced therein, depending on the type of the monomer for introducing a functional group <Production Example 1-1>
As shown in Table 2 below, monomer styrene, 2-hydroxyethyl acrylate as a functional group-introducing monomer for incorporating a carboxyl group, and 2,2 as an initiator. A polystyrene template into which a hydroxy group (-OH) and a carboxyl group (-COOH) have been introduced using '-azobis (2-methylpropionamidine) dihydrochloride [2,2'-Azobis (2-methylpropionamidine) dihydrochloride]. Manufactured.

DI−water 500mlに開始剤の2,2’−アゾビス(2−メチルプロピオンアミジン)ジヒドロクロリド1gを溶かした後、80℃に昇温させた後、単量体であるスチレン30g、作用基導入用単量体である2−ヒドロキシエチルアクリレート8gを点滴してオーバーナイト(overnight)反応を実施し、ヒドロキシ基(−OH)及びアミン基(NH)が導入された粒子形態のポリスチレン(PS)粒子を製造した。 After dissolving 1 g of 2,2'-azobis (2-methylpropionamidine) dihydrochloride as an initiator in 500 ml of DI-water, and heating the mixture to 80 ° C., 30 g of styrene as a monomer and 30 g of a functional group are introduced. Polystyrene (PS) particles in the form of particles into which hydroxy groups (—OH) and amine groups (NH 2 ) have been introduced by instilling 8 g of 2-hydroxyethyl acrylate as a monomer and performing an overnight reaction. Was manufactured.

<製造例1−2>
前記製造例1−1と同様に実施するが、作用基導入用単量体としてアクリル酸を使用し、カルボキシル基(−COOH)及びアミン基(−NH)が導入されたポリスチレン(PS)粒子を製造した。
<Production Example 1-2>
Performed in the same manner as in Production Example 1-1, except that acrylic acid is used as a functional group-introducing monomer, and polystyrene (PS) particles into which a carboxyl group (—COOH) and an amine group (—NH 2 ) have been introduced. Was manufactured.

<製造例1−3>
前記製造例1−1と同様に実施するが、作用基導入用単量体としてアリルアミンを使用し、アミン基(−NH)が導入されたポリスチレン(PS)粒子を製造した。
<Production Example 1-3>
Was carried out according to the method in Production Example 1-1, using allylamine as monomer for introducing the functional group, amine group (-NH 2) was prepared the introduced polystyrene (PS) particles.

製造例2−1ないし2−3:作用基導入用単量体の含量による、作用基が導入されたポリスチレン粒子合成
製造例1−1と同様の方法で実施するが、重合に用いられたスチレン単量体、作用基導入用単量体及び開始剤の使用量を下記表3に記載したように変更し、ポリスチレン粒子を合成した。
Preparation Examples 2-1 to 2-3: Synthesis of polystyrene particles having a functional group introduced therein, depending on the content of the monomer for introducing a functional group. The synthesis is carried out in the same manner as in Preparation Example 1-1, but the styrene used for the polymerization is used. The amounts of the monomer, the monomer for introducing a functional group, and the initiator were changed as shown in Table 3 below, and polystyrene particles were synthesized.

実施例1:作用基が導入されたポリスチレンを利用した中空構造体製造
(1)ポリスチレン粒子
製造例1−2で製造され、カルボキシル基(−COOH)及びアミン基(−NH)が導入されたポリスチレン粒子を鋳型で使用した。
Example 1: manufactured by hollow structural member production (1) polystyrene particles Production Example 1-2 using polystyrene functional group is introduced, a carboxyl group (-COOH) and amine groups (-NH 2) is introduced Polystyrene particles were used as a template.

(2)ポリスチレンの作用基を金属粒子に置換
Sodium citrate 0.97gを150mlのDI−waterに溶かした後、100℃に昇温させた。その後、HAuClをDI−waterに溶かして製造された0.1M HAuCl溶液1mlを添加した後、5分後に反応を終了し、10〜20nm大きさのAu粒子を含むAu溶液を得た。
(2) Substituting the functional group of polystyrene with metal particles 0.97 g of sodium citrate was dissolved in 150 ml of DI-water, and then heated to 100 ° C. Thereafter, 1 ml of a 0.1 M HAuCl 4 solution prepared by dissolving HAuCl 4 in DI-water was added, and after 5 minutes, the reaction was terminated to obtain an Au solution containing Au particles having a size of 10 to 20 nm.

前記Au溶液を前記ポリスチレン粒子溶液に1時間添加し、Auが導入されたポリスチレン粒子を製造した(PS@Au)。   The Au solution was added to the polystyrene particle solution for one hour to produce Au-introduced polystyrene particles (PS @ Au).

(3)炭素系高分子コーティング
DI−water 300mlに前記Auが導入されたポリスチレン粒子0.4gを分散させた後、CTAB(Cetyltrimethylammonium bromide)0.04g、NHOH 1.6mlを添加して30分間撹拌した。レゾルシノール(resorcinol)0.6gとホルムアルデヒド(formaldehyde)0.84mlを添加した後、16時間常温で撹拌し、前記Auが導入されたポリスチレン粒子に炭素系高分子をコーティングした(PS@Au@C)。
(3) Carbon-based polymer coating After dispersing 0.4 g of the Au-introduced polystyrene particles in 300 ml of DI-water, 0.04 g of CTAB (Cetyltrimethylammonium bromide) and 1.6 ml of NH 4 OH were added thereto. Stirred for minutes. After adding 0.6 g of resorcinol and 0.84 ml of formaldehyde, the mixture was stirred at room temperature for 16 hours, and the Au-introduced polystyrene particles were coated with a carbon-based polymer (PS @ Au @ C). .

(4)ポリスチレン除去
前記炭素系高分子がコーティングされたポリスチレン粒子をDI−waterで3回洗浄、70で5時間乾燥させた後、Ar雰囲気で昇温速度1℃/min、熱処理温度600℃でポリスチレン粒子を除去した。
(4) Removal of polystyrene The polystyrene particles coated with the carbon-based polymer were washed three times with DI-water, dried at 70 for 5 hours, and then heated at a rate of 1 ° C./min in an Ar atmosphere at a heat treatment temperature of 600 ° C. The polystyrene particles were removed.

(5)炭化
その後、昇温速度10℃/min、熱処理温度900℃で1時間塑性し、レゾルシノールを内部表面にAuが形成された中空構造体を製造した(Au@C)。
(5) Carbonization Thereafter, plasticization was performed at a heating rate of 10 ° C./min and a heat treatment temperature of 900 ° C. for 1 hour to produce a hollow structure having Au formed on the inner surface of resorcinol (Au @ C).

比較例1:ポリスチレンを利用した中空構造体製造
実施例1と同様に実施するが、製造例1−2で製造されてカルボキシル基(−COOH)及びアミン基(−NH)が導入されたポリスチレン粒子の代わりに、比較製造例1−2で製造されたポリスチレン粒子を鋳型で使用し、内部表面にAuが形成された中空構造体を製造した。
Comparative Example 1 Production of Hollow Structure Using Polystyrene The same procedure as in Example 1 was carried out, but polystyrene produced in Production Example 1-2 and into which a carboxyl group (—COOH) and an amine group (—NH 2 ) were introduced. Instead of the particles, the polystyrene particles produced in Comparative Production Example 1-2 were used as a template to produce a hollow structure having Au formed on the inner surface.

実験例1:開始剤及び作用基導入用単量体の種類によるポリスチレン粒子観察
(1)開始剤を異にして製造された比較製造例1−1ないし1−3のポリスチレン粒子を観察した。
Experimental Example 1: Observation of polystyrene particles by type of initiator and monomer for introducing a functional group (1) The polystyrene particles of Comparative Production Examples 1-1 to 1-3 produced using different initiators were observed.

図1は、比較製造例1−1ないし1−3で製造されたポリスチレン粒子のSEM写真及び模式図を示すものである。   FIG. 1 shows a SEM photograph and a schematic diagram of the polystyrene particles produced in Comparative Production Examples 1-1 to 1-3.

図1を参照すれば、開始剤の種類によってポリスチレンに導入された作用基の種類が変わることが分かる。   Referring to FIG. 1, it can be seen that the type of the functional group introduced into the polystyrene changes depending on the type of the initiator.

(2)作用基導入用単量体を異にして製造された製造例1−1ないし1−3のポリスチレン粒子を観察した。   (2) The polystyrene particles of Production Examples 1-1 to 1-3 produced using different functional group-introducing monomers were observed.

図2は、製造例1−1ないし1−3で製造されたポリスチレン粒子のSEM(scanning electron microscope)、TEM(transmission electron microscope)写真及び模式図を示すものである。   FIG. 2 shows a scanning electron microscopy (SEM), a transmission electron microscopy (TEM) photo and a schematic diagram of the polystyrene particles produced in Production Examples 1-1 to 1-3.

図2を参照すれば、作用基導入用単量体の種類によってポリスチレン粒子の大きさとポリスチレンに導入された作用基の種類が変わることが分かる。   Referring to FIG. 2, it can be seen that the size of the polystyrene particles and the type of the functional group introduced into the polystyrene vary depending on the type of the functional group-introducing monomer.

実験例2:ポリスチレン粒子の作用基の有無による、ポリスチレン粒子表面のAu粒子導入形態観察
Sodium citrate 0.97gを150mlのDI−waterに溶かした後で100℃ に昇温させた。その後、HAuClをDI−waterに溶かして製造された0.1M HAuCl溶液1mlを添加した後、5分後に反応を終了し、10〜20nm大きさのAu粒子を含むAu溶液を得た。
Experimental Example 2: Observation of Au particle introduction form on polystyrene particle surface depending on presence or absence of functional group of polystyrene particle 0.97 g of sodium citrate was dissolved in 150 ml of DI-water, and then heated to 100 ° C. Thereafter, 1 ml of a 0.1 M HAuCl 4 solution prepared by dissolving HAuCl 4 in DI-water was added, and after 5 minutes, the reaction was terminated to obtain an Au solution containing Au particles having a size of 10 to 20 nm.

前記Au溶液を比較製造例1−1で製造されたカルボキシル基(−COOH)が導入されたポリスチレン(PS)、及び比較製造例1−2で製造されたアミン基(−NH2)が導入されたポリスチレン溶液に、それぞれ1時間点滴添加した後、各々16時間、1時間反応させ、Auが導入されたポリスチレン粒子を製造した。   The Au solution was introduced with the polystyrene (PS) into which the carboxyl group (-COOH) prepared in Comparative Preparation Example 1-1 was introduced and the amine group (-NH2) prepared in Comparative Preparation Example 1-2. After instillation for 1 hour each to the polystyrene solution, each was reacted for 16 hours for 1 hour to produce polystyrene particles into which Au had been introduced.

図3a及び3bは、それぞれ比較製造例1−1及び比較製造例1−2でそれぞれ製造されたポリスチレンにAu粒子が導入された形態を観察したTEM(transmission electron microscope)写真である。   FIGS. 3A and 3B are TEM (transmission electron microscopic) photographs of the polystyrene prepared in Comparative Preparation Example 1-1 and Comparative Preparation Example 1-2, respectively, in which Au particles are introduced.

図3aは、比較製造例1−1で製造されたポリスチレンにAu粒子が導入されたTEM(transmission electron microscope)写真であって、複数のAu粒子がポリスチレン粒子表面に形成されたことが分かる。   FIG. 3A is a TEM (transmission electron microscopic) photograph in which Au particles are introduced into the polystyrene prepared in Comparative Preparation Example 1-1, and it can be seen that a plurality of Au particles are formed on the surface of the polystyrene particles.

一方、図3bは、比較製造例1−2で製造されたポリスチレンにAu粒子が導入されたTEM(transmission electron microscope)写真であって、図3aに比べて反応時間がもっと長くなってからAu粒子が形成された。   Meanwhile, FIG. 3B is a TEM (transmission electron microscopy) photograph in which Au particles are introduced into the polystyrene prepared in Comparative Preparation Example 1-2, and the reaction time is longer than that of FIG. Was formed.

これにより、ポリスチレンの作用基がAu粒子の導入に重要な役目をすることが分かる。   This indicates that the functional group of polystyrene plays an important role in introducing Au particles.

実験例3:ポリスチレン粒子の作用基の有無によって、Au粒子が導入されたポリスチレン粒子表面に炭素系高分子がコーティングされた形態観察
製造例1−2で製造されたカルボキシル基(−COOH)とアミン基(−NH)が導入されたポリスチレンと比較製造例1−2で製造されたポリスチレンに対して実験例2と同様の方法でAu粒子を取り入れた。
Experimental Example 3: Observation of morphology in which a carbon-based polymer was coated on the surface of polystyrene particles into which Au particles had been introduced, depending on the presence or absence of a functional group on the polystyrene particles Carboxyl group (-COOH) and amine produced in Production Example 1-2 Au particles were introduced into the polystyrene into which the group (—NH 2 ) was introduced and the polystyrene produced in Comparative Production Example 1-2 in the same manner as in Experimental Example 2.

DI−water 300mlに前記Auが導入されたポリスチレン粒子0.4gを分散させた後、CTAB 0.04g、NHOH 1.6mlを添加し、30分間撹拌した。レゾルシノール(resorcinol)0.6gとホルムアルデヒド(formaldehyde)0.84mlを添加した後、16時間常温撹拌して、前記Auが導入されたポリスチレン粒子にレゾルシノールをコーティングし、前記レゾルシノールがコーティングされた形態を観察した。 After dispersing 0.4 g of the Au-introduced polystyrene particles in 300 ml of DI-water, 0.04 g of CTAB and 1.6 ml of NH 4 OH were added and stirred for 30 minutes. After adding 0.6 g of resorcinol and 0.84 ml of formaldehyde, the mixture was stirred at room temperature for 16 hours to coat the Au-introduced polystyrene particles with resorcinol and observe the resorcinol-coated form. did.

図4a及び4bは、それぞれ製造例1−2及び比較製造例1−2でそれぞれ製造されたポリスチレンにAuを取り入れた後、炭素系高分子であるレゾルシノールがコーティングされた形態を観察したTEM(transmission electron microscope)写真である。   FIGS. 4A and 4B show TEM (transmission) observations in which Au was incorporated into polystyrenes prepared in Preparation Example 1-2 and Comparative Preparation Example 1-2, respectively, and then coated with resorcinol, which is a carbon-based polymer. Electron microscopy).

図4aは、製造例1−2のポリスチレンにAuを取り入れた後、レゾルシノールがコーティングされた形態を観察したTEM写真で、レゾルシノールがAu粒子を全て覆うほどの厚さで均一にコーティングされたことを確認することができた。   FIG. 4a is a TEM photograph showing a state in which resorcinol is coated after incorporating Au into polystyrene of Production Example 1-2, and shows that resorcinol was uniformly coated to a thickness enough to cover all the Au particles. I was able to confirm.

一方、図4bは、比較製造例1−2のポリスチレンにAuを取り入れた後、レゾルシノールがコーティングされた形態を観察したTEM写真で、レゾルシノールがポリスチレン表面と反応しないため、均一なコーティングが難しいことが分かる。   On the other hand, FIG. 4b is a TEM photograph of a form in which resorcinol was coated after Au was incorporated into the polystyrene of Comparative Production Example 1-2. As resorcinol did not react with the polystyrene surface, uniform coating was difficult. I understand.

実験例4:作用基導入用単量体の使用量によるポリスチレン粒子の大きさ観察
作用基導入用単量体の使用量によって合成されるポリスチレン粒子の大きさがどのように変化されるのかを観察した。
Experimental Example 4: Observation of the size of polystyrene particles based on the amount of the monomer for introducing a functional group Observation of how the size of the synthesized polystyrene particles changes depending on the amount of the monomer for introducing a functional group. did.

図5aないし5cは、それぞれ製造例2−1ないし製造例2−3で、作用基導入用単量体の使用量を異にしてそれぞれ製造されたポリスチレン粒子の大きさを観察したTEM(transmission electron microscope)写真である。   FIGS. 5a to 5c are TEMs (Transmission Electron) in which the sizes of the polystyrene particles produced in Production Examples 2-1 to 2-3 were different with different amounts of the monomer for introducing a functional group. (microscope) photograph.

図5aないし図5cを参照すれば、作用基導入用単量体を使わずに、合成したポリスチレン粒子に比べて作用基導入用単量体の使った場合、粒子の大きさが小さくなることを確認し、使用量を増加させるほどポリスチレン粒子の大きさが小くなることが分かる。   Referring to FIGS. 5a to 5c, when the functional group-introducing monomer is used without using the functional group-introducing monomer and the synthesized polystyrene particles are used, the particle size is reduced. It is confirmed that the size of the polystyrene particles decreases as the amount used increases.

実験例5:中空構造体の製造段階別形態観察
実施例1で中空構造体を製造する場合の各段階別の結果物の形態を観察した。
Experimental Example 5: Observation of Morphology at Each Stage of Manufacturing Hollow Structure In the manufacturing of the hollow structure in Example 1, the shape of the product at each stage was observed.

図6aないし6cは、それぞれ実施例1の各段階別結果物の形態を観察したTEM(transmission electron microscope)写真である。   FIGS. 6A to 6C are TEM (transmission electron microscopic) photographs showing the morphology of the result of each step of Example 1. FIG.

図6aは、ヒドロキシ基(−OH)及びアミン基(−NH)が導入されたポリスチレン粒子にAu粒子が導入された形態を示す写真で、Au粒子がポリスチレン粒子の表面によく導入されたことが分かった。 FIG. 6A is a photograph showing a form in which Au particles are introduced into polystyrene particles into which hydroxy groups (-OH) and amine groups (-NH 2 ) have been introduced, showing that Au particles are well introduced into the surface of the polystyrene particles. I understood.

また、図6bは、前記Au粒子が導入されたポリスチレン粒子の表面をレゾルシノールでコーティングされた形態を示す写真であって、レゾルシノールが均一によくコーティングされたことが分かる。   FIG. 6B is a photograph showing the surface of the polystyrene particles having the Au particles introduced therein coated with resorcinol, indicating that the resorcinol was uniformly and well coated.

また、図6cは、レゾルシノールがコーティングされたポリスチレン粒子が炭化された後の形態を示す写真であって、ポリスチレンが完全に除去されて中空が形成されたことが分かる。   FIG. 6c is a photograph showing the polystyrene particles coated with resorcinol after being carbonized. It can be seen that the polystyrene was completely removed and a hollow was formed.

Claims (14)

(S1)スチレン単量体、作用基導入用単量体及び開始剤を反応させて1種または2種以上の複合作用基が導入されたポリスチレンを重合する段階;
(S2)金属溶液に前記ポリスチレンを添加して金属が導入されたポリスチレンを形成する段階;
(S3)前記金属が導入されたポリスチレンに炭素系高分子をコーティングする段階;
(S4)前記炭素系高分子でコーティングされ、金属が導入されたポリスチレンを第1熱処理して前記ポリスチレンを除去する段階;及び
(S5)前記(S4)段階の結果物を第2熱処理して炭化させる段階;
を含む、中空構造体の製造方法。
(S1) reacting a styrene monomer, a functional group-introducing monomer, and an initiator to polymerize polystyrene into which one or more composite functional groups have been introduced;
(S2) adding the polystyrene to a metal solution to form a metal-introduced polystyrene;
(S3) coating the metal-introduced polystyrene with a carbon-based polymer;
(S4) removing the polystyrene by performing a first heat treatment on the polystyrene coated with the carbon-based polymer and introducing the metal; and (S5) performing a second heat treatment on the resulting product of the (S4) to carbonize. Causing;
A method for producing a hollow structure, comprising:
前記作用基は、カルボキシル基(−COOH)、ヒドロキシル基(−OH)及びアミン基(−NH)からなる群から選択される1種以上である、請求項1に記載の中空構造体の製造方法。 The functional group is a carboxyl group (-COOH), a is a hydroxyl group (-OH) and one or more selected from the group consisting of an amine group (-NH 2), the production of a hollow structural member according to claim 1 Method. 前記作用基導入用単量体は、アクリル酸(acrylic acid)、2−ヒドロキシエチルアクリレート(2−hydroxyethyl acrylate)及びアリルアミン(allyl amine)からなる群から選択される1種以上である、請求項1に記載の中空構造体の製造方法。   2. The functional group-introducing monomer is at least one selected from the group consisting of acrylic acid, 2-hydroxyethyl acrylate, and allylamine. 3. The method for producing a hollow structure according to item 1. 前記開始剤は、4,4’−アゾビス(4−シアノ吉草酸)[4,4’−azobis(4−cyanovaleric acid)]、2,2’−アゾビス(2−メチルプロピオンアミジン)ジヒドロクロリド[2,2’−Azobis(2−methylpropionamidine)dihydrochloride]及び過硫酸カリウム(potassium persulfate)からなる群から選択される1種以上である、請求項1に記載の中空構造体の製造方法。   The initiator is 4,4′-azobis (4-cyanovaleric acid) [4,4′-azobis (4-cyanovaleric acid)], 2,2′-azobis (2-methylpropionamidine) dihydrochloride [2 , 2′-Azobis (2-methylpropionamidine) dihydrochloride] and potassium persulfate (potassium persulfate). 前記(S1)段階の重合時、スチレン単量体60ないし95重量%;作用基導入用単量体1ないし30重量%;及び開始剤1ないし10重量%;を反応させることである、請求項1に記載の中空構造体の製造方法。   The method of claim 1, wherein 60 to 95% by weight of a styrene monomer, 1 to 30% by weight of a functional group-introducing monomer, and 1 to 10% by weight of an initiator are reacted during the polymerization in the step (S1). 2. The method for producing a hollow structure according to 1. 前記金属溶液は、金属前駆体を溶媒に溶解させて製造され、濃度が0.05ないし3Mである、請求項1に記載の中空構造体の製造方法。   The method of claim 1, wherein the metal solution is prepared by dissolving a metal precursor in a solvent, and has a concentration of 0.05 to 3M. 前記金属前駆体は、金属のアルコキシド、金属のアセチルアセテート、金属のナイトレート、金属のシュウ酸塩、金属のハロゲン化物及び金属のシアン化物からなる群から選択される1種以上である、請求項6に記載の中空構造体の製造方法。   The metal precursor is at least one selected from the group consisting of metal alkoxides, metal acetyl acetates, metal nitrates, metal oxalates, metal halides and metal cyanides. 7. The method for producing a hollow structure according to item 6. 前記金属は、Au、Zn、Mg、Ag、Al、Pt、Si及びCaからなる群から選択される1種以上である、請求項7に記載の中空構造体の製造方法。   The method according to claim 7, wherein the metal is at least one selected from the group consisting of Au, Zn, Mg, Ag, Al, Pt, Si and Ca. 前記溶媒は、エタノール(ethanol)、1−プロパノール(1−propanol)、イソ−プロパノール(iso−propanol)、脱イオン水(DI−water)、NMP(Methylpyrrolidone)、DMF(Dimethylformamide)、DMAc(dimethylacetamide)、DMSO(dimethyl sulfoxide)及びTHF(Tetrahydrofuran)からなる群から選択される1種以上である、請求項6に記載の中空構造体の製造方法。   The solvent may be ethanol (ethanol), 1-propanol (1-propanol), iso-propanol (iso-propanol), deionized water (DI-water), NMP (methylpyrrolidone), DMF (dimethylformamide), and DMAc (dimethylate). The method for producing a hollow structure according to claim 6, wherein the hollow structure is at least one selected from the group consisting of DMSO (dimethyl sulfoxide) and THF (tetrahydrofuran). 前記炭素系高分子は、レゾルシノール(resorcinol)、ポリアクリロニトリル(Polyacrylonitrile:PAN)、ポリアニリン(Polyaniline:PANI)、ポリピロール(Polypyrrole:PPY)、ポリイミド(Polyimide:PI)、ポリベンズイミダゾール(Polybenzimidazole:PBI)、ポリピロリドン(Polypyrrolidone:Ppy)、ポリアミド(Polyamide:PA)、ポリアミドイミド(Polyamide−imide:PAI)、ポリアラミド(Polyaramide)、メラミン(Melamine)、メラミンホルムアルデヒド(Melamineformaldehyde)及びフッ素雲母(Fluorine mica)からなる群から選択される1種以上である、請求項1に記載の中空構造体の製造方法。   Examples of the carbon-based polymer include resorcinol, polyacrylonitrile (PAN), polyaniline (PANNI), polypyrrole (PPY), polyimide (Polyimide: PI), and polybenzimidizol (Polymidimizol). Polypyrrolidone (Ppy), polyamide (Polyamide: PA), polyamideimide (Polyamide-imide: PAI), polyaramid (Polyaramide), melamine (Melamine), melamine formaldehyde (Melamineformaldehyde) At least one selected from the group consisting of ica), manufacturing method of hollow structural member of claim 1. 前記第1熱処理温度は、450ないし600℃である、請求項1に記載の中空構造体の製造方法。   The method according to claim 1, wherein the first heat treatment temperature is 450 to 600C. 前記第1熱処理は、不活性雰囲気下で30分ないし3時間行われることである、請求項1に記載の中空構造体の製造方法。   The method of claim 1, wherein the first heat treatment is performed in an inert atmosphere for 30 minutes to 3 hours. 前記不活性雰囲気は、窒素、アルゴン、ヘリウム、ネオン、クリプトン、ゼノン及びラドンからなる群から選択される不活性ガスによって形成されることである、請求項12に記載の中空構造体の製造方法。   The method for manufacturing a hollow structure according to claim 12, wherein the inert atmosphere is formed by an inert gas selected from the group consisting of nitrogen, argon, helium, neon, krypton, xenon, and radon. 前記第2熱処理温度は、900ないし1200℃である、請求項1に記載の中空構造体の製造方法。   The method according to claim 1, wherein the second heat treatment temperature is 900 to 1200C.
JP2019531115A 2017-08-31 2018-08-28 Manufacturing method of hollow structure Active JP6872099B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020170111311A KR102093969B1 (en) 2017-08-31 2017-08-31 Method for Preparing Hollow Type Structure
KR10-2017-0111311 2017-08-31
PCT/KR2018/009896 WO2019045404A1 (en) 2017-08-31 2018-08-28 Method for manufacturing hollow structure

Publications (2)

Publication Number Publication Date
JP2020500826A true JP2020500826A (en) 2020-01-16
JP6872099B2 JP6872099B2 (en) 2021-05-19

Family

ID=65527483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019531115A Active JP6872099B2 (en) 2017-08-31 2018-08-28 Manufacturing method of hollow structure

Country Status (9)

Country Link
US (1) US11349112B2 (en)
EP (1) EP3546424B1 (en)
JP (1) JP6872099B2 (en)
KR (1) KR102093969B1 (en)
CN (1) CN110177760B (en)
ES (1) ES2927235T3 (en)
HU (1) HUE060115T2 (en)
PL (1) PL3546424T3 (en)
WO (1) WO2019045404A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112038648B (en) * 2020-09-04 2022-07-26 北京化工大学 Hollow-structure transition metal cobalt and nitrogen co-doped carbon oxygen reduction catalyst and preparation method and application thereof
CN115172757B (en) * 2021-04-01 2024-01-26 宁德时代新能源科技股份有限公司 Current collector, preparation method thereof, secondary battery and device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002074431A1 (en) 2001-03-21 2002-09-26 Max-Planck-Gesellschaft Zur Förderung Der Wissenschaften Hollow spheres from layered precursor deposition on sacrificial colloidal core particles
KR100645675B1 (en) 2003-11-25 2006-11-13 주식회사 엘지화학 Emulsion Polymer having hollow structure and Method for Preparing the Same
TWI344969B (en) * 2005-04-08 2011-07-11 Nat Defence University Functional composite nanoparticles and their preparation
US9278866B2 (en) * 2005-08-10 2016-03-08 The Procter & Gamble Company Hollow silica particles, compositions comprising them, and methods for making same
CN101323444B (en) * 2007-06-15 2011-05-25 中国科学院化学研究所 Carbon or carbon composite hollow ball and preparation thereof
KR100932979B1 (en) 2007-11-28 2009-12-21 삼성에스디아이 주식회사 Hollow capsule structure and manufacturing method thereof
KR100949762B1 (en) 2007-12-10 2010-03-25 한국과학기술연구원 Composite electrolyte and the fabrication method thereof, and dye-sensitized solar cell based on electrolyte with hollow particles of metal oxides using the same
IE20080211A1 (en) * 2008-03-20 2009-11-25 Nat Univ Ireland Biodegradable nanoshells for delivery of therapeutic and/or imaging molecules
KR101155909B1 (en) 2010-01-07 2012-06-20 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
CN102167309A (en) * 2011-03-04 2011-08-31 北京化工大学 Preparation method of shape-controllable hollow carbon microsphere
CN102716702B (en) * 2012-06-27 2014-03-26 北京科技大学 Preparation method of layered porous carbon particles in yolk-shell structure
KR101831018B1 (en) * 2014-06-26 2018-02-22 롯데첨단소재(주) Method for producing styrene-based hollow bead regardless of pH
KR101851424B1 (en) 2014-08-19 2018-04-25 주식회사 엘지화학 Carrier-nano particles complex and method for fabricating the same
KR101783446B1 (en) * 2014-09-30 2017-09-29 주식회사 엘지화학 Method for preparation of hollow carbon capsule
KR101611744B1 (en) * 2014-10-31 2016-04-14 한양대학교 산학협력단 Electrochemical capacitor using electrode including hollow carbon fiber, method for fabricating the same, and electrode for electrochemical device
KR101672532B1 (en) 2015-04-27 2016-11-07 계명대학교 산학협력단 Syntehtic method of core material for mesoporous hollow sillica spheres, and core meterial manufactured by it
KR20170111311A (en) 2016-03-28 2017-10-12 이유석 Tie cap for decoration
KR101867683B1 (en) * 2016-08-18 2018-06-15 주식회사 포스코 Hollow structured ceramic nanoparticles, and method for preparing the same

Also Published As

Publication number Publication date
EP3546424A1 (en) 2019-10-02
JP6872099B2 (en) 2021-05-19
CN110177760B (en) 2022-09-06
US20200099040A1 (en) 2020-03-26
PL3546424T3 (en) 2022-10-31
KR102093969B1 (en) 2020-03-26
CN110177760A (en) 2019-08-27
KR20190024371A (en) 2019-03-08
WO2019045404A1 (en) 2019-03-07
US11349112B2 (en) 2022-05-31
HUE060115T2 (en) 2023-01-28
EP3546424A4 (en) 2019-10-02
EP3546424B1 (en) 2022-08-17
ES2927235T3 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
JP6169260B2 (en) Negative electrode active material for lithium ion secondary battery and preparation method thereof, negative electrode piece for lithium ion secondary battery, and lithium ion secondary battery
US10131544B2 (en) Graphene/porous iron oxide nanorod composite and manufacturing method thereof
JP2016526262A5 (en)
TW201633586A (en) Method and material for lithium ion battery anodes
US10186707B2 (en) Methods of manufacturing graphene based material
CN101352760A (en) Method for manufacturing nickel nanoparticles
CN109728299B (en) Preparation method of slurry for battery and slurry for battery
TWI594945B (en) Metal tin-carbon composite, use thereof, negative electrode active material for non-aqueous lithium battery using the same, negative electrode containing non-aqueous lithium-ion battery and non-aqueous lithium secondary battery
JP2014523613A (en) Lithium ion battery using discrete carbon nanotubes, method for producing the same, and product obtained therefrom
CN109103443B (en) Silicon-based negative electrode material and preparation method thereof
WO2019114373A1 (en) Composite-coated nano-tin negative electrode material, preparation method therefor and use thereof
JP2013139371A (en) Method for producing sulfur-graphene composite material
TW201348536A (en) Silicon nanocomposite nanofibers
CN115663151B (en) Pre-magnesium silica composite material, silicon-based anode material, preparation method and secondary battery
Ma et al. Recent progress on zeolitic imidazolate frameworks and their derivatives in alkali metal–chalcogen batteries
WO2015014120A1 (en) Negative active material of lithium-ion secondary battery and preparation method therefor, negative plate of lithium-ion secondary battery, and lithium-ion secondary battery
JP6872099B2 (en) Manufacturing method of hollow structure
JP7062152B2 (en) Electrodes and lithium secondary batteries containing them
KR101414536B1 (en) Preparation of bimetallic alloys loaded activated carbon nanotubes as anode materials for secondary batteries
WO2019034982A1 (en) Methods of preparing core-shell graphene/polyacrylonitrile-based carbon nanospheres
WO2022237545A1 (en) Lithium iron phosphate, preparation method therefor, and application thereof
JP7062149B2 (en) Structure manufacturing method
KR20200023841A (en) Method for Preparing Hollow Type Structure
CN106784759A (en) A kind of silicon/activated carbon composite negative pole material and preparation method thereof
CN111599966A (en) Lithium battery diaphragm material and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210222

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210323

R150 Certificate of patent or registration of utility model

Ref document number: 6872099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250