JP2020204371A - Dynamic pressure type bearing unit and motor - Google Patents

Dynamic pressure type bearing unit and motor Download PDF

Info

Publication number
JP2020204371A
JP2020204371A JP2019112741A JP2019112741A JP2020204371A JP 2020204371 A JP2020204371 A JP 2020204371A JP 2019112741 A JP2019112741 A JP 2019112741A JP 2019112741 A JP2019112741 A JP 2019112741A JP 2020204371 A JP2020204371 A JP 2020204371A
Authority
JP
Japan
Prior art keywords
diameter surface
bearing member
housing
bearing
dynamic pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019112741A
Other languages
Japanese (ja)
Other versions
JP7313920B2 (en
Inventor
慎治 小松原
Shinji Komatsubara
慎治 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2019112741A priority Critical patent/JP7313920B2/en
Publication of JP2020204371A publication Critical patent/JP2020204371A/en
Application granted granted Critical
Publication of JP7313920B2 publication Critical patent/JP7313920B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Sealing Of Bearings (AREA)

Abstract

To provide a dynamic pressure type bearing unit capable of preventing relief of dynamic pressure to reduce loss of the dynamic pressure, and capable of securing sufficient fastening strength to enhance reliability, and provide a motor.SOLUTION: A sealing member is composed of a ring-shaped first part and a cylindrical second part hanging from the outer peripheral edge part of the first part. The second part is fitted into an opening part of a housing. A bearing member is fixed to an inner periphery of the housing via an adhesive layer formed in a radial gap between an outer diameter surface of the bearing member and an inner diameter surface of the housing. The outer diameter surface of the bearing member is fixed to an inner periphery of the sealing member via an adhesive layer formed in a radial gap between the outer diameter surface of the bearing member and an inner diameter surface of a second part.SELECTED DRAWING: Figure 1

Description

本発明は、動圧型軸受ユニット、およびモータに関する。 The present invention relates to a dynamic bearing unit and a motor.

動圧型軸受ユニットは、高回転精度、高速安定性、耐久性、低騒音性等に優れた特性を有する。従来の動圧型軸受ユニットには、特許文献1に記載されるように、ハウジング内での油とシール部材との接触を防止することにより、油漏れを防止しようとするものがある。すなわち、特許文献1に記載の動圧型軸受ユニットは、図6に示すように、含油焼結金属からなる軸受部材51と、軸受部材51が収容され、一端が開口で他端が閉じられたハウジング52と、ハウジング52の開口部をシールするシール部材53とを備える。軸受部材51は、支持すべき軸(図示省略)との間に軸受隙間を有し、軸との相対回転で軸受隙間に生じた油の動圧により軸を非接触支持する。 The dynamic pressure type bearing unit has excellent characteristics such as high rotation accuracy, high speed stability, durability, and low noise. As described in Patent Document 1, some conventional hydraulic bearing units try to prevent oil leakage by preventing oil from coming into contact with the sealing member in the housing. That is, as shown in FIG. 6, the dynamic pressure type bearing unit described in Patent Document 1 is a housing in which a bearing member 51 made of oil-impregnated sintered metal and a bearing member 51 are housed, one end is open and the other end is closed. A 52 and a sealing member 53 for sealing the opening of the housing 52 are provided. The bearing member 51 has a bearing gap between the bearing member 51 and a shaft to be supported (not shown), and the shaft is non-contactly supported by the dynamic pressure of oil generated in the bearing gap due to relative rotation with the shaft.

軸受部材51の内周面(内径面)には、ラジアル動圧発生部として、へリングボーン形状の動圧溝61が形成される。クロスハッチングで示す領域は、動圧溝61よりも内径側に盛り上がった丘部である。図示例では、ヘリングボーン形状の動圧溝61が、内周面の軸方向に隣接した2箇所の領域60,60に形成される。上下の動圧溝61は同一形状であり、各動圧溝61は軸方向で対称な形状を成している。丘部の内径面は、同一円筒面上に連続して設けられる。 A herringbone-shaped dynamic pressure groove 61 is formed on the inner peripheral surface (inner diameter surface) of the bearing member 51 as a radial dynamic pressure generating portion. The region indicated by cross-hatching is a hill portion that rises toward the inner diameter side of the dynamic pressure groove 61. In the illustrated example, a herringbone-shaped dynamic pressure groove 61 is formed in two regions 60 and 60 adjacent to each other in the axial direction of the inner peripheral surface. The upper and lower dynamic pressure grooves 61 have the same shape, and each dynamic pressure groove 61 has an axially symmetrical shape. The inner diameter surface of the hill is continuously provided on the same cylindrical surface.

また、軸、軸受部材51、およびハウジング52の底部で囲まれた密閉空間55を外気に開放する通気路56を形成している。この通気路56には、ハウジング52の内周と軸受部材51の外周との間に形成される第一通路56aを備える。そして、ハウジング52の内周と軸受部材51の外周間のハウジング開口側端部に、通気路56の第一通路56aと連通する油溜まり部57を設けている。 Further, a ventilation path 56 is formed to open the closed space 55 surrounded by the shaft, the bearing member 51, and the bottom of the housing 52 to the outside air. The ventilation passage 56 includes a first passage 56a formed between the inner circumference of the housing 52 and the outer circumference of the bearing member 51. An oil sump 57 that communicates with the first passage 56a of the ventilation passage 56 is provided at the end of the housing opening side between the inner circumference of the housing 52 and the outer circumference of the bearing member 51.

油溜まり部57等を設けることによって、「ハウジングの開口側に溜まった油とシール部材との接触を回避し、これにより油漏れを確実に防止できるので、長期間安定した軸受機能が得られる。また、シール部材と軸受部材の端面との間の隙間を小さくできるので、軸方向寸法のコンパクト化が容易であり、しかも組立コストの抑制も可能である。」というものである。 By providing the oil sump portion 57 or the like, "the contact between the oil accumulated on the opening side of the housing and the seal member can be avoided, and thus oil leakage can be reliably prevented, so that a stable bearing function can be obtained for a long period of time. Further, since the gap between the end face of the seal member and the end face of the bearing member can be reduced, the axial dimension can be easily made compact, and the assembly cost can be suppressed. "

特許第4481475号公報Japanese Patent No. 4481475

図6に示す動圧型軸受ユニットでは、ハウジング52と軸受部材51とは接着や圧入の手段で固定される。接着固定する場合、特に、嫌気性接着剤を用いて、油溜まり部57に接着剤が残ると、油溜まり部57の隙間が広いので、この油溜まり部57内の接着剤が硬化せず、未硬化の接着剤が残るおそれがある。このように、油溜まり部57内に未硬化の接着剤が残れば、油面範囲内に未硬化の接着剤が存在することになって、潤滑油に悪影響を及ぼすおそれがある。 In the dynamic pressure type bearing unit shown in FIG. 6, the housing 52 and the bearing member 51 are fixed by adhesive or press-fitting means. In the case of adhesive fixing, especially when an anaerobic adhesive is used and the adhesive remains in the oil sump portion 57, the gap in the oil sump portion 57 is wide, so that the adhesive in the oil sump portion 57 does not harden. Uncured adhesive may remain. As described above, if the uncured adhesive remains in the oil sump portion 57, the uncured adhesive exists within the oil level range, which may adversely affect the lubricating oil.

また、軸受部材51の内径面の動圧溝61に対向する軸受部材51の外径面が他部材により保持(当接)されていないため、軸受部材51の外径部に油溜まり部57があることで、軸受部材51の内径面の動圧溝61により発生した動圧力が、軸受部材51の内部を通って、軸受部材51の外径部より外部へ逃げるおそれがある。さらに、軸受部材51とハウジング52との締結強度を接着や圧入により確保する場合、油溜まり部57があると、締結強度アップが困難であった。 Further, since the outer diameter surface of the bearing member 51 facing the dynamic pressure groove 61 on the inner diameter surface of the bearing member 51 is not held (contacted) by another member, the oil pool portion 57 is formed in the outer diameter portion of the bearing member 51. As a result, the dynamic pressure generated by the dynamic pressure groove 61 on the inner diameter surface of the bearing member 51 may pass through the inside of the bearing member 51 and escape to the outside from the outer diameter portion of the bearing member 51. Further, when the fastening strength between the bearing member 51 and the housing 52 is secured by adhesion or press fitting, it is difficult to increase the fastening strength if there is an oil pool portion 57.

なお、このような油溜まり部57をなくすことで、このような油溜まり部57を有することによる前記問題点は解決できるが、その場合、軸受部材51の端面付近に接着剤を塗布することになり、軸受部材51の内径面に接着剤が飛散するおそれがある。 By eliminating such an oil sump portion 57, the above-mentioned problem caused by having such an oil sump portion 57 can be solved, but in that case, an adhesive is applied to the vicinity of the end face of the bearing member 51. Therefore, the adhesive may be scattered on the inner diameter surface of the bearing member 51.

そこで、本発明は、動圧力の逃げを防止できるため、動圧力の損失を低減でき、且つ、十分な締結強度を確保することが可能となるので信頼性の高い動圧型軸受ユニットやモータを提供することである。 Therefore, the present invention provides a highly reliable dynamic pressure type bearing unit and motor because it is possible to prevent the escape of the dynamic pressure, reduce the loss of the dynamic pressure, and secure sufficient fastening strength. It is to be.

本発明の動圧型軸受ユニットは、含油焼結金属からなり、支持すべき軸との間に軸受隙間を有し、軸との相対回転で軸受隙間に生じた油の動圧により軸を非接触支持する軸受部材と、軸受部材が収容され、一端が開口で他端が閉じられたハウジングと、ハウジングの開口部をシールするシール部材とを備えた動圧型軸受ユニットであって、前記シール部材は、リング状の第1部とこの第1部の外周縁部から垂下される円筒形状の第2部とからなり、第2部がハウジングの開口部に内嵌され、軸受部材が、軸受部材の外径面とハウジングの内径面との間の径方向隙間に形成された接着剤を介してハウジングの内周に固定されるとともに、軸受部材が、軸受部材の外径面と第2部の内径面との間の径方向隙間に形成された接着剤を介して軸受部材の外径面をシール部材の内周に固定されるものである。 The dynamic pressure type bearing unit of the present invention is made of oil-impregnated sintered metal, has a bearing gap with the shaft to be supported, and does not contact the shaft due to the dynamic pressure of oil generated in the bearing gap due to relative rotation with the shaft. A dynamic bearing unit including a bearing member to be supported, a housing in which the bearing member is housed, one end is open and the other end is closed, and a seal member for sealing the opening of the housing. It consists of a ring-shaped first part and a cylindrical second part hanging from the outer peripheral edge of the first part, the second part is fitted inside the opening of the housing, and the bearing member is a bearing member. It is fixed to the inner circumference of the housing via an adhesive formed in the radial gap between the outer diameter surface and the inner diameter surface of the housing, and the bearing member is fixed to the outer diameter surface of the bearing member and the inner diameter of the second part. The outer diameter surface of the bearing member is fixed to the inner circumference of the seal member via an adhesive formed in the radial gap between the surface and the bearing member.

本発明によれば、軸受部材の外径面をハウジングの内径面及びシール部材の第2部の内径面により保持することで、ハウジングの内径面と軸受部材の外径面との空間がなくなる。 According to the present invention, by holding the outer diameter surface of the bearing member by the inner diameter surface of the housing and the inner diameter surface of the second portion of the seal member, there is no space between the inner diameter surface of the housing and the outer diameter surface of the bearing member.

ハウジングの開口部の内径面と、この内径面に対向する軸受部材の外径面との間に、シール部材の第2部材が嵌入する空間を設けるのが好ましい。このように空間を設けることにより、組立時には、接着剤を塗布する塗布溜り空間を有することになり、接着剤塗布時に接着剤が軸受部材の内径面に飛散することを防止できる。さらに、接着剤塗布後に挿入するシール部材により、前記空間を塞ぐことで、未硬化接着剤が残ることを防止できる。 It is preferable to provide a space in which the second member of the seal member is fitted between the inner diameter surface of the opening of the housing and the outer diameter surface of the bearing member facing the inner diameter surface. By providing the space in this way, it is possible to have a coating pool space for applying the adhesive at the time of assembly, and it is possible to prevent the adhesive from scattering on the inner diameter surface of the bearing member at the time of applying the adhesive. Further, by closing the space with the sealing member inserted after the adhesive is applied, it is possible to prevent the uncured adhesive from remaining.

ハウジングの開口部が上方に開口している状態で注油された潤滑油の油面は、軸受部材のハウジングの開口側の端面である上端面未満とされるのが好ましい。このように構成することによって、潤滑油の油面と軸受上端面に対向するシール端面との間に一定の空間を設けることで、オイル漏れを防止する効果が期待できる。 It is preferable that the oil level of the lubricating oil lubricated with the opening of the housing opened upward is less than the upper end surface which is the end surface on the opening side of the housing of the bearing member. With such a configuration, an effect of preventing oil leakage can be expected by providing a certain space between the oil level of the lubricating oil and the seal end surface facing the upper end surface of the bearing.

前記接着剤に、嫌気性接着剤を用いるのが好ましい。嫌気性接着剤とは、空気(酸素)が遮断されるとともに、金属と接触することによって、硬化する接着剤である。ハウジングの開口部の内径面と、この内径面に対向する軸受部材の外径面との間に空間を設けることにより、組立時には、接着剤を塗布する塗布溜り空間に未硬化接着剤が残ることを防止でき、このため、接着剤として、嫌気性接着剤を用いることによって軸受部材を強固にハウジングに固定でき、高品質の動圧型軸受ユニットを提供できる。 It is preferable to use an anaerobic adhesive as the adhesive. An anaerobic adhesive is an adhesive that hardens when air (oxygen) is blocked and comes into contact with a metal. By providing a space between the inner diameter surface of the opening of the housing and the outer diameter surface of the bearing member facing the inner diameter surface, the uncured adhesive remains in the coating pool space to which the adhesive is applied during assembly. Therefore, by using an anaerobic adhesive as an adhesive, the bearing member can be firmly fixed to the housing, and a high-quality dynamic pressure type bearing unit can be provided.

本発明のモータは、前記動圧型軸受ユニットを用いたものである。 The motor of the present invention uses the dynamic pressure type bearing unit.

本発明では、軸受部材の外径面をハウジングの内径面、シール部材の内径面により保持することで、動圧力の逃げを防止できるため、動圧力の損失を低減でき、且つ、十分な締結強度を確保することが可能となるので信頼性の高い動圧型軸受ユニットやモータが得られる。 In the present invention, by holding the outer diameter surface of the bearing member by the inner diameter surface of the housing and the inner diameter surface of the seal member, it is possible to prevent the escape of the dynamic pressure, so that the loss of the dynamic pressure can be reduced and the fastening strength is sufficient. Therefore, a highly reliable dynamic pressure type bearing unit and motor can be obtained.

本発明に係る動圧型軸受ユニットを用いたLBPポリゴンスキャナモータの断面図である。It is sectional drawing of the LBP polygon scanner motor which used the dynamic pressure type bearing unit which concerns on this invention. 動圧型軸受ユニットの断面図である。It is sectional drawing of the dynamic pressure type bearing unit. 動圧型軸受ユニットで使用される軸受部材の断面図である。It is sectional drawing of the bearing member used in a dynamic pressure type bearing unit. 動圧型軸受ユニットの要部拡大断面図である。It is an enlarged sectional view of the main part of a dynamic pressure type bearing unit. 動圧型軸受ユニットの組立方法を示す断面図である。It is sectional drawing which shows the assembly method of the dynamic pressure type bearing unit. 従来の動圧型軸受ユニットの断面図である。It is sectional drawing of the conventional dynamic pressure type bearing unit.

以下、本発明の実施形態を図1〜図5に基づいて説明する。
図1は、情報機器の一種であるレーザビームプリンタ(LBP)に装備されるポリゴンスキャナモータの断面図である。このモータは、垂直姿勢の軸1を回転自在に支持する軸受部材2を有する軸受ユニット(動圧型軸受ユニット)Uと、軸1の上端に取付けられたポリゴンミラーPと、軸方向のギャップを介して対向させたステータmSおよびロータmRを主体とするモータ部Mとで構成される。軸受部材2はベース4に取付けたハウジング3の内周に固定される。6はロータハブ、7はポリゴンミラーPをロータハブ6に押付けるための予圧バネである。ステータmSに通電すると、ロータハブ6に取付けられたロータmRとの間の励磁力でロータmRが回転し、この回転に伴って軸1およびポリゴンミラーPが回転する。レーザ光源から所定の光学系を経てポリゴンミラーPに入射したレーザ光は、ポリゴンミラーPにより反射されて図示しない感光ドラム面を走査する。
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 5.
FIG. 1 is a cross-sectional view of a polygon scanner motor installed in a laser beam printer (LBP), which is a type of information device. This motor has a bearing unit (dynamic bearing unit) U having a bearing member 2 that rotatably supports the shaft 1 in a vertical posture, a polygon mirror P attached to the upper end of the shaft 1, and an axial gap. It is composed of a stator mS and a motor unit M mainly composed of a rotor mR. The bearing member 2 is fixed to the inner circumference of the housing 3 attached to the base 4. Reference numeral 6 is a rotor hub, and reference numeral 7 denotes a preload spring for pressing the polygon mirror P against the rotor hub 6. When the stator mS is energized, the rotor mR rotates due to the excitation force between the rotor mR attached to the rotor hub 6, and the shaft 1 and the polygon mirror P rotate with this rotation. The laser light incident on the polygon mirror P from the laser light source via a predetermined optical system is reflected by the polygon mirror P and scans a photosensitive drum surface (not shown).

軸受ユニットUを他の情報機器用スピンドルモータ、例えばディスク装置のスピンドルモータに用いる場合は、ディスク(光ディスク、磁気ディスク、あるいは光磁気ディスク等)が軸1に支持される。 When the bearing unit U is used for another spindle motor for information equipment, for example, a spindle motor for a disk device, a disk (optical disk, magnetic disk, magneto-optical disk, etc.) is supported by the shaft 1.

図2に示すように、軸受ユニットUは、軸1と、軸1を支持する軸受部材2と、軸受部材2を内周に固定したハウジング3とを主要構成要素とする。 As shown in FIG. 2, the bearing unit U has a shaft 1, a bearing member 2 that supports the shaft 1, and a housing 3 in which the bearing member 2 is fixed to the inner circumference as main components.

ハウジング3は一端を開口すると共に、他端を閉じた有底円筒型をなし、一端側の開口部を上にしてベース4(図1参照)に固定されている[以下の説明では、ハウジングの開口側(図面上方)を「開口側」と称し、その軸方向反対側(図面下方)を反開口側と称する]。ハウジング3の他端側には底壁3aが設けられる。この底壁3aは図示のようにハウジング3の筒状部分と一体形成する他、別部材で製作してから筒状部分の他端開口部に固定してもよい。なお、図2においては、ベース4に取り付けるための外鍔部を省略している。 The housing 3 has a bottomed cylindrical shape with one end open and the other end closed, and is fixed to the base 4 (see FIG. 1) with the opening on one end facing up [in the following description, the housing 3 The opening side (upper part of the drawing) is referred to as the "opening side", and the opposite side in the axial direction (lower part of the drawing) is referred to as the anti-opening side]. A bottom wall 3a is provided on the other end side of the housing 3. The bottom wall 3a may be integrally formed with the tubular portion of the housing 3 as shown in the drawing, or may be manufactured by a separate member and then fixed to the other end opening of the tubular portion. In FIG. 2, the outer collar portion for attaching to the base 4 is omitted.

ハウジング3内部の反開口側には、軸1をスラスト方向で支持するスラスト軸受部9が設けられる。スラスト軸受部9は、例えば底壁3aに装着したスラストワッシャ10に軸1の球面状の軸端を接触させて構成することができるが、その構造は任意である。この場合、底壁3aの内面13(ハウジング3の内底面)に凹部13aを形成し、この凹部13aにスラストワッシャ10を収容している。 A thrust bearing portion 9 that supports the shaft 1 in the thrust direction is provided on the anti-opening side inside the housing 3. The thrust bearing portion 9 can be configured by, for example, contacting the spherical shaft end of the shaft 1 with the thrust washer 10 mounted on the bottom wall 3a, but the structure is arbitrary. In this case, a recess 13a is formed on the inner surface 13 (inner bottom surface of the housing 3) of the bottom wall 3a, and the thrust washer 10 is housed in the recess 13a.

軸受部材2は、焼結金属に潤滑油あるいは潤滑グリースを含浸させて細孔内に油を保有させた含油焼結金属で円筒状に形成される。焼結金属としては、例えば、銅鉄系の焼結金属の多孔質体からなる。軸受部材2の内周には、図3に示すように、軸1の外径面と微小な軸受隙間C(図2参照)を介して対向する軸受面14が軸方向に離隔して二箇所に形成される。双方の軸受面14には、軸方向に対して傾斜した複数の動圧溝15(へリングボーン型)が円周方向に配列形成される。動圧溝15は軸方向に対して傾斜して形成されていれば、この条件を満たす限りへリングボーン型以外の他の形状、例えばスパイラル型でもよい。なお、図3において、クロスハッチングで示す領域は、動圧溝15よりも内径側に盛り上がった丘部である。 The bearing member 2 is formed in a cylindrical shape with an oil-impregnated sintered metal in which a sintered metal is impregnated with lubricating oil or lubricating grease to retain oil in the pores. The sintered metal is, for example, a porous body of a copper-iron-based sintered metal. As shown in FIG. 3, two bearing surfaces 14 facing each other via a minute bearing gap C (see FIG. 2) and the outer diameter surface of the shaft 1 are axially separated from each other on the inner circumference of the bearing member 2. Is formed in. A plurality of dynamic pressure grooves 15 (herring bone type) inclined in the axial direction are arranged in the circumferential direction on both bearing surfaces 14. As long as the dynamic pressure groove 15 is formed so as to be inclined with respect to the axial direction, a shape other than the herringbone type, for example, a spiral type may be used as long as this condition is satisfied. In FIG. 3, the region indicated by cross-hatching is a hill portion that rises toward the inner diameter side of the dynamic pressure groove 15.

この動圧型軸受ユニットUでは、軸1の回転に伴う圧力の発生と昇温による油の熱膨張によって軸受部材2の内部の油(潤滑油、または潤滑グリースの基油)が軸受部材2の表面からにじみ出し、動圧溝15の作用により軸受面14と軸1の外径面との間の軸受隙間Cに引き込まれる。軸受隙間Cに引き込まれた油は軸受面14で潤滑油膜を形成して軸1を非接触支持する。軸受面14に正圧が発生すると、軸受面14の表面に孔(開孔部:多孔質体組織の細孔が外表面に開口した部分をいう)があるため、油は軸受部材2の内部に還流するが、次々と新たな油が軸受面14に押し込まれ続けるので油膜力および剛性は高い状態で維持される。この場合、連続して安定した油膜が形成されるので、高回転精度が得られ、軸振れやNRRO、ジッタ等が低減される。また、軸1と軸受部材2が非接触で回転するために低騒音であり、しかも低コストである。 In this dynamic pressure type bearing unit U, the oil inside the bearing member 2 (lubricating oil or base oil of lubricating grease) is transferred to the surface of the bearing member 2 due to the generation of pressure due to the rotation of the shaft 1 and the thermal expansion of the oil due to the temperature rise. It oozes out and is drawn into the bearing gap C between the bearing surface 14 and the outer diameter surface of the shaft 1 by the action of the dynamic pressure groove 15. The oil drawn into the bearing gap C forms a lubricating oil film on the bearing surface 14 to non-contactly support the shaft 1. When a positive pressure is generated on the bearing surface 14, oil is supplied to the inside of the bearing member 2 because there are holes on the surface of the bearing surface 14 (opening portion: a portion in which pores of the porous body structure are opened on the outer surface). However, new oil continues to be pushed into the bearing surface 14 one after another, so that the oil film force and rigidity are maintained in a high state. In this case, since a stable oil film is continuously formed, high rotation accuracy can be obtained, and shaft runout, NRRO, jitter, and the like can be reduced. Further, since the shaft 1 and the bearing member 2 rotate in a non-contact manner, the noise is low and the cost is low.

ところで、ハウジング3は軸受部材2を保持する部材であり、例えば真ちゅう等で円筒状に形成される。ハウジング3の内径面3bには、軸受部材2の外径面2aが接着によって固定される。接着としては、軸受部材2の外径面2aとハウジング3の内径面3bとを隙間嵌めの状態で接着した、いわゆる隙間接着が採用される。隙間接着は、ハウジング3の内周に軸受部材2をすきまばめ(JIS B 0401−1参照)することで互いに対向するハウジング3の内径面3bと軸受部材2の外径面2aとの間に径方向隙間15(図4参照)を形成し、この径方向隙間15に介在させた接着剤17を硬化させることで両者を固定する方法であり、軸受部材2の外径面2aとハウジング3の内径面2bを隙間嵌めで嵌合させた状態で、両面間の隙間に接着剤17を注入し、毛細管力で隙間の奥に引き込むことにより行われる。この他、軸受部材2の外径面2aとハウジング3の内径面2bのどちらか一方に接着剤を塗布した上で、両者を隙間嵌めで嵌合させてもよい。 By the way, the housing 3 is a member that holds the bearing member 2, and is formed in a cylindrical shape such as brass. The outer diameter surface 2a of the bearing member 2 is fixed to the inner diameter surface 3b of the housing 3 by adhesion. As the bonding, so-called gap bonding is adopted in which the outer diameter surface 2a of the bearing member 2 and the inner diameter surface 3b of the housing 3 are bonded in a gap-fitted state. Gap adhesion is performed by crevice-fitting the bearing member 2 on the inner circumference of the housing 3 (see JIS B 0401-1) between the inner diameter surface 3b of the housing 3 and the outer diameter surface 2a of the bearing member 2 facing each other. This is a method of forming a radial gap 15 (see FIG. 4) and curing the adhesive 17 interposed in the radial gap 15 to fix both of the bearing member 2 on the outer diameter surface 2a and the housing 3. This is performed by injecting the adhesive 17 into the gap between both sides with the inner diameter surface 2b fitted in the gap and pulling it into the gap by the capillary force. In addition, an adhesive may be applied to either the outer diameter surface 2a of the bearing member 2 or the inner diameter surface 2b of the housing 3, and then the two may be fitted by gap fitting.

隙間接着により、軸受部材2の外径面2aとハウジング3の内径面3bの間に、硬化した接着剤17からなる接着剤層18(図4参照)が形成される。接着剤層18は、軸受部材2の外径面2aとハウジング3の内径面3bの間の隙間の全域にわたって形成する他、当該隙間の一部領域(軸方向の一部領域、あるいは円周方向の一部領域等)に限って形成してもよい。 Due to the gap adhesion, an adhesive layer 18 (see FIG. 4) made of the cured adhesive 17 is formed between the outer diameter surface 2a of the bearing member 2 and the inner diameter surface 3b of the housing 3. The adhesive layer 18 is formed over the entire area of the gap between the outer diameter surface 2a of the bearing member 2 and the inner diameter surface 3b of the housing 3, and also a part of the gap (a part of the axial direction or the circumferential direction). It may be formed only in a part of the region, etc.).

また、ハウジング3の開口部には、図2と図3に示すように、樹脂あるいは金属製のシール部材20が装着されている。シール部材20は、リング状の第1部20aとこの第1部の外周縁部から垂下される円筒形状の第2部20bとからなる。この場合、ハウジング3の孔部の開口部側には、大径部21が形成され、この大径部21にシール部材20が内嵌される。 Further, as shown in FIGS. 2 and 3, a resin or metal sealing member 20 is attached to the opening of the housing 3. The seal member 20 includes a ring-shaped first portion 20a and a cylindrical second portion 20b hanging from the outer peripheral edge portion of the first portion. In this case, a large diameter portion 21 is formed on the opening side of the hole portion of the housing 3, and the seal member 20 is internally fitted in the large diameter portion 21.

そして、シール部材20の第2部20bの内径面20b1には、軸受部材2の外径面2aが接着によって固定される。接着としては、軸受部材2の外径面2aとハウジング3の内径面3bと同様、隙間接着が採用される。軸受部材2の開口側外径面2a1とシール部材20の第2部20bの内径面20b1を隙間嵌めで嵌合させた状態で、両面間の隙間に接着剤17を注入し、毛細管力で隙間の奥に引き込むことにより行われる。 Then, the outer diameter surface 2a of the bearing member 2 is fixed to the inner diameter surface 20b1 of the second portion 20b of the seal member 20 by adhesion. As the bonding, gap bonding is adopted as in the case of the outer diameter surface 2a of the bearing member 2 and the inner diameter surface 3b of the housing 3. With the outer diameter surface 2a1 on the opening side of the bearing member 2 and the inner diameter surface 20b1 of the second portion 20b of the seal member 20 fitted by gap fitting, the adhesive 17 is injected into the gap between both sides, and the gap is formed by capillary force. It is done by pulling it into the back of.

すなわち、図5に示すように、ハウジング23の開口部の内径面21a(大径部の内径面)と、この内径面21aに対向する軸受部材2の開口側外径面2a1との間に空間30を設け、この空間30にシール部材20の第2部材20bを嵌入させている。 That is, as shown in FIG. 5, there is a space between the inner diameter surface 21a (inner diameter surface of the large diameter portion) of the opening of the housing 23 and the opening side outer diameter surface 2a1 of the bearing member 2 facing the inner diameter surface 21a. 30 is provided, and the second member 20b of the seal member 20 is fitted in this space 30.

この他、軸受部材2の外径面2a1とシール部材20の第2部20bの内径面20b1のどちらか一方に接着剤を塗布した上で、両者を隙間嵌めで嵌合させてもよい。このように隙間接着することにより、軸受部材2の外径面2a1とシール部材20の第2部20bの内径面20b1との間に、硬化した接着剤17からなる接着剤層18(図4参照)が形成される。また、シール部材20の第2部20bの外径面20b2とハウジング3の大径部21の内径面21aとは、圧入もしくはルーズな嵌合とする。 In addition, an adhesive may be applied to either the outer diameter surface 2a1 of the bearing member 2 or the inner diameter surface 20b1 of the second portion 20b of the seal member 20, and then the two may be fitted by gap fitting. By the gap adhesion in this way, the adhesive layer 18 made of the cured adhesive 17 is formed between the outer diameter surface 2a1 of the bearing member 2 and the inner diameter surface 20b1 of the second portion 20b of the seal member 20 (see FIG. 4). ) Is formed. Further, the outer diameter surface 20b2 of the second portion 20b of the seal member 20 and the inner diameter surface 21a of the large diameter portion 21 of the housing 3 are press-fitted or loosely fitted.

軸受部材2の外径面2aとハウジング3の内径面3bとの接着および軸受部材2の外径面2a1とシール部材20の第2部20bの内径面20b1との接着に用いる接着剤17としては、空気との遮断により硬化する嫌気性の接着剤、エポキシ系等のような加熱硬化型の接着剤、紫外線の照射で硬化する紫外線硬化型の接着剤等が知られている。本実施形態では、公知の接着剤を任意に使用することができる。 The adhesive 17 used for bonding the outer diameter surface 2a of the bearing member 2 and the inner diameter surface 3b of the housing 3 and the outer diameter surface 2a1 of the bearing member 2 and the inner diameter surface 20b1 of the second portion 20b of the sealing member 20 , Anaerobic adhesives that cure by blocking from air, heat-curable adhesives such as epoxy-based adhesives, and UV-curable adhesives that cure by irradiation with ultraviolet rays are known. In this embodiment, a known adhesive can be used arbitrarily.

また、シール部材20が、大径部21に嵌着された際には、第1部20aの表面(上面20a1)がハウジング3の開口端面3cと同一平面上に形成される。この場合、第2部20bのハウジング奥側の端面20b3が大径部21の端面21bに当接した状態となっている。そして、第1部20aと軸受部材2の開口側(ハウジング3の開口側)の端面2cとの間に空間25が設けられる。 Further, when the seal member 20 is fitted to the large diameter portion 21, the surface (upper surface 20a1) of the first portion 20a is formed on the same plane as the opening end surface 3c of the housing 3. In this case, the end surface 20b3 on the back side of the housing of the second portion 20b is in contact with the end surface 21b of the large diameter portion 21. Then, a space 25 is provided between the first portion 20a and the end surface 2c on the opening side (opening side of the housing 3) of the bearing member 2.

また、ハウジング3の内部には、軸方向に延びる軸方向通油路11および径方向に延びる径方向通路12が形成される。図2に示す実施形態において、軸方向通油路11は、軸受部材2の外径面2aとハウジング3の内径面3bとの間に形成される。この場合、軸受部材2の外径面に軸方向に延びる軸方向溝2a1を設け、軸方向溝2a1とハウジング3の内径面3bとで画成された隙間により、軸受部材2の外径面に沿う軸方向通油路11が形成されている。軸受部材2の下側端面には、環状溝2b1と環状溝2b1の内径側に位置する複数の半径方向溝2b2とが設けられ、環状溝2b1および半径方向溝2b2と、ハウジング3の底面(底壁3aの内面)とで形成される隙間により、軸受部材2の下側端面に沿う半径方向通油路12が形成されている。また、軸受部材2の上端面には、径方向溝2cが形成されている。 Further, inside the housing 3, an axial oil passage 11 extending in the axial direction and a radial passage 12 extending in the radial direction are formed. In the embodiment shown in FIG. 2, the axial oil passage 11 is formed between the outer diameter surface 2a of the bearing member 2 and the inner diameter surface 3b of the housing 3. In this case, an axial groove 2a1 extending in the axial direction is provided on the outer diameter surface of the bearing member 2, and a gap defined by the axial groove 2a1 and the inner diameter surface 3b of the housing 3 is formed on the outer diameter surface of the bearing member 2. Along the axial oil passage 11 is formed. An annular groove 2b1 and a plurality of radial grooves 2b2 located on the inner diameter side of the annular groove 2b1 are provided on the lower end surface of the bearing member 2, the annular groove 2b1 and the radial groove 2b2, and the bottom surface (bottom) of the housing 3. A radial oil passage 12 along the lower end surface of the bearing member 2 is formed by the gap formed by the inner surface of the wall 3a). Further, a radial groove 2c is formed on the upper end surface of the bearing member 2.

なお、軸方向通油路11および半径方向通油路12は、図2および図3に示す形態には限定されない。例えば軸方向溝をハウジング3の内径面に形成してもよい。 The axial oil passage 11 and the radial oil passage 12 are not limited to the modes shown in FIGS. 2 and 3. For example, an axial groove may be formed on the inner diameter surface of the housing 3.

ところで、軸受部材2は、金属粉末を含む原料粉を金属内で圧縮成形することによって圧粉体を形成し、この圧粉体を所定条件で焼結することによって焼結体を形成し、この焼結体に、サイジング(再圧縮)、洗浄等を施した後、潤滑剤(潤滑油)を含油させることになる。すなわち、軸受部材2の内部に潤滑油を含油するが、通常、軸受部材2の内部が密封された流体動圧軸受装置に潤滑油を含浸する際、一度、軸受部材2の内部を減圧して、圧力差により軸受部材2の内部に潤滑油を含浸する。 By the way, in the bearing member 2, a green compact is formed by compression molding a raw material powder containing a metal powder in a metal, and a sintered body is formed by sintering the green compact under predetermined conditions. After sizing (recompressing), cleaning, etc., the sintered body is impregnated with a lubricant (lubricating oil). That is, the inside of the bearing member 2 is impregnated with lubricating oil. Normally, when the fluid dynamic bearing device in which the inside of the bearing member 2 is sealed is impregnated with the lubricating oil, the inside of the bearing member 2 is depressurized once. , The inside of the bearing member 2 is impregnated with lubricating oil due to the pressure difference.

次に前記のように構成される動圧型軸受ユニットの組立方法を説明する。まず、ハウジング3の底壁3aの凹部13aにスラストワッシャ10を配置して、軸受部材2をハウジング3に挿入する。このとき、ハウジング3の内径面3bと軸受部材2の外径面2aとはすきまばめとする。その後、ハウジング3の開口部の内径面21a(大径部21の内径面)と、この内径面21aに対向する軸受部材2の開口側外径面3b1との間に形成される空間30に接着剤17を塗布(供給)する。このため、ハウジング3の内径面3bと軸受部材2の外径面2aのすきまの毛細管現象により、接着剤17が前記すきまに満たされるが、軸受部材2の内径面から吸引することで、接着剤17を前記すきま内に満たすこともでき、ハウジング3の内径面3bと軸受部材2の外径面2aとが接着剤層18を介して接着される。 Next, a method of assembling the dynamic pressure type bearing unit configured as described above will be described. First, the thrust washer 10 is arranged in the recess 13a of the bottom wall 3a of the housing 3, and the bearing member 2 is inserted into the housing 3. At this time, the inner diameter surface 3b of the housing 3 and the outer diameter surface 2a of the bearing member 2 are crevice-fitted. After that, it adheres to the space 30 formed between the inner diameter surface 21a of the opening of the housing 3 (the inner diameter surface of the large diameter portion 21) and the opening side outer diameter surface 3b1 of the bearing member 2 facing the inner diameter surface 21a. The agent 17 is applied (supplied). Therefore, the adhesive 17 fills the gap due to the capillary phenomenon between the inner diameter surface 3b of the housing 3 and the outer diameter surface 2a of the bearing member 2, but the adhesive is sucked from the inner diameter surface of the bearing member 2. 17 can be filled in the gap, and the inner diameter surface 3b of the housing 3 and the outer diameter surface 2a of the bearing member 2 are adhered to each other via the adhesive layer 18.

その後、シール部材20を挿入する。この際、シール部材20の第2部20bの内径面20b1と軸受部材2の外径面2a1とはすきまばめとし、シール部材20の第2部20bの外径面20b2とハウジング3の開口側内径面21aとは圧入もしくはルーズとする。これによって、シール部材20の内径面20b1と軸受部材2の外径面2a1のすきまの毛細管現象により、接着剤17がこのすきまに満たされ、シール部材20の内径面20b1と軸受部材2の外径面2a1とが接着剤層18を介して接着される。 After that, the seal member 20 is inserted. At this time, the inner diameter surface 20b1 of the second part 20b of the seal member 20 and the outer diameter surface 2a1 of the bearing member 2 are crevice-fitted, and the outer diameter surface 20b2 of the second part 20b of the seal member 20 and the opening side of the housing 3 are used. The inner diameter surface 21a is press-fitted or loose. As a result, the adhesive 17 is filled in the gap due to the capillary phenomenon between the inner diameter surface 20b1 of the seal member 20 and the outer diameter surface 2a1 of the bearing member 2, and the inner diameter surface 20b1 of the seal member 20 and the outer diameter of the bearing member 2 are filled. The surfaces 2a1 are adhered to each other via the adhesive layer 18.

次に、軸受部材2の内径に潤滑油を注油し、軸1を挿入すると、軸受ユニットの組立を完了する。その際、潤滑油の油面は、軸受部材2の上端面未満となるような注油量とする。 Next, the inner diameter of the bearing member 2 is lubricated with lubricating oil, and the shaft 1 is inserted to complete the assembly of the bearing unit. At that time, the oil level of the lubricating oil is set to be less than the upper end surface of the bearing member 2.

本発明によれば、ハウジング3の内径面3bと軸受部材2の外径面2aとの空間がなくなるので、動圧力の逃げが無くなり、さらに軸受部材2とハウジング3間の十分な締結強度を確保することができる。 According to the present invention, since there is no space between the inner diameter surface 3b of the housing 3 and the outer diameter surface 2a of the bearing member 2, there is no escape of dynamic pressure, and sufficient fastening strength between the bearing member 2 and the housing 3 is ensured. can do.

すなわち、本発明では、軸受部材2の外径面2aをハウジング3の内径面3b及びシール部材20の第2部20bの内径面20b1により保持することで、ハウジング3の内径面3bと軸受部材2の外径面2aとの空間がなくなる。このため、動圧力の逃げを防止できるため、動圧力の損失を低減でき、且つ、十分な締結強度を確保することが可能となるので信頼性の高い動圧型軸受ユニットが得られる。 That is, in the present invention, the outer diameter surface 2a of the bearing member 2 is held by the inner diameter surface 3b of the housing 3 and the inner diameter surface 20b1 of the second portion 20b of the sealing member 20, so that the inner diameter surface 3b of the housing 3 and the bearing member 2 are held. There is no space with the outer diameter surface 2a of. Therefore, since the escape of the dynamic pressure can be prevented, the loss of the dynamic pressure can be reduced, and a sufficient fastening strength can be secured, so that a highly reliable dynamic pressure type bearing unit can be obtained.

前記実施形態では、ハウジング3の開口部の内径面21aと、この内径面21aに対向する軸受部材2の外径面2a1との間に、シール部材20の第2部材20bが嵌入する空間30を設けることができる。このように空間30を設けることにより、組立時には、接着剤17を塗布する塗布溜り空間を有することになり、接着剤塗布時に接着剤17が軸受部材2の内径面2bに飛散することを防止できる。さらに、接着剤塗布後に挿入するシール部材20により、前記空間30を塞ぐことで、未硬化接着剤が残ることを防止できる。ハウジング3と軸受部材2とを接着剤17を使用して固定する場合においても、未硬化接着剤が潤滑油と触れることが無いので、潤滑油を劣化させることが無い。 In the above embodiment, a space 30 in which the second member 20b of the seal member 20 is fitted is provided between the inner diameter surface 21a of the opening of the housing 3 and the outer diameter surface 2a1 of the bearing member 2 facing the inner diameter surface 21a. Can be provided. By providing the space 30 in this way, it is possible to have a coating pool space for applying the adhesive 17 at the time of assembly, and it is possible to prevent the adhesive 17 from scattering on the inner diameter surface 2b of the bearing member 2 at the time of applying the adhesive. .. Further, by closing the space 30 with the sealing member 20 inserted after the adhesive is applied, it is possible to prevent the uncured adhesive from remaining. Even when the housing 3 and the bearing member 2 are fixed by using the adhesive 17, the uncured adhesive does not come into contact with the lubricating oil, so that the lubricating oil does not deteriorate.

ハウジング3の開口部が上方に開口している状態で注油された潤滑油の油面は、軸受部材2のハウジング3の開口側の端面である上端面未満とされるのが好ましい。このように構成することによって、潤滑油の油面と軸受部材2の上端面2cに対向するシール端面との間に一定の空間を設けることで、オイル漏れを防止する効果が期待できる。 The oil level of the lubricating oil lubricated with the opening of the housing 3 open upward is preferably less than the upper end surface which is the end surface of the bearing member 2 on the opening side of the housing 3. With such a configuration, an effect of preventing oil leakage can be expected by providing a certain space between the oil level of the lubricating oil and the seal end surface facing the upper end surface 2c of the bearing member 2.

前記接着剤17に、嫌気性接着剤を用いるのが好ましい。嫌気性接着剤とは、空気(酸素)が遮断されるとともに、金属と接触することによって、硬化する接着剤である。すきまはめによる固定を可能にし、組立作業の簡素化と精度緩和による機械加工費低減に貢献する。特に、空間30にシール部材20の第2部が嵌入されるので、接着剤17が空気(酸素)から遮断されて、軸受部材2が強固にハウジング3に固定でき、高品質の動圧型軸受ユニットを提供できる。 It is preferable to use an anaerobic adhesive as the adhesive 17. An anaerobic adhesive is an adhesive that hardens when air (oxygen) is blocked and comes into contact with a metal. It enables fixing by clearance fitting, and contributes to the reduction of machining costs by simplifying assembly work and reducing accuracy. In particular, since the second portion of the seal member 20 is fitted into the space 30, the adhesive 17 is blocked from air (oxygen), the bearing member 2 can be firmly fixed to the housing 3, and a high-quality dynamic pressure type bearing unit. Can be provided.

以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、動圧型軸受ユニットとして、情報機器用スピンドルモータのスピンドル支持用に用いることができる。ここで、情報機器用スピンドルモータには、例えば、CD−R/RW、DVD−ROM/RAMなどの光ディスク、MOなどの光磁気ディスク、HDDなどの磁気ディスクを駆動するスピンドルモータ、あるいはレーザビームプリンタ(LBP)や複写機のポリゴンスキャナモータなどが含まれる。 Although the embodiment of the present invention has been described above, the present invention is not limited to the above embodiment and can be variously modified, and is used as a dynamic pressure type bearing unit for supporting a spindle of a spindle motor for information equipment. be able to. Here, the spindle motor for information equipment includes, for example, a spindle motor for driving an optical disk such as a CD-R / RW, a DVD-ROM / RAM, a magneto-optical disk such as an MO, a magnetic disk such as an HDD, or a laser beam printer. (LBP) and polygon scanner motors of copiers are included.

銅鉄系の焼結金属の多孔質体からなる軸受部材2を使用したが、銅を含むその他の焼結金属(例えば、銅−ステンレス鋼系の焼結金属や、銅−鉄−ステンレス鋼系の焼結金属)で形成された軸受部材2を使用する場合や、焼結金属以外の多孔質体、例えば多孔質樹脂で形成された軸受部材2を使用する場合にも好ましく適用することができる。また、本発明は、黄銅等の軟質金属や樹脂材料等、非多孔質材料で形成された軸受部材2を使用する場合にも適用することができる。 Although the bearing member 2 made of a porous body of a copper-iron-based sintered metal was used, other sintered metals containing copper (for example, a copper-sintered steel-based sintered metal or a copper-iron-stainless steel-based) was used. It can also be preferably applied when the bearing member 2 made of (sintered metal) is used, or when a porous body other than the sintered metal, for example, a bearing member 2 made of a porous resin is used. .. The present invention can also be applied to the case where a bearing member 2 made of a non-porous material such as a soft metal such as brass or a resin material is used.

また、本発明は、軸1を回転側、軸受部材2を静止側とした動圧型軸受ユニットのみならず、軸1を静止側、軸受部材2を回転側とした動圧型軸受ユニットにも好ましく適用することができる。 Further, the present invention is preferably applied not only to a dynamic pressure type bearing unit in which the shaft 1 is on the rotating side and the bearing member 2 is on the stationary side, but also on a dynamic pressure type bearing unit in which the shaft 1 is on the stationary side and the bearing member 2 is on the rotating side. can do.

1 軸
2 軸受部材
2a 外径面
2c 端面
3 ハウジング
17 接着剤
18 接着剤層
20 シール部材
20a 第1部
20b 第2部
20b1 内径面
1 Shaft 2 Bearing member 2a Outer diameter surface 2c End surface 3 Housing 17 Adhesive 18 Adhesive layer 20 Sealing member 20a Part 1 20b Part 2 20b1 Inner diameter surface

Claims (5)

含油焼結金属からなり、支持すべき軸との間に軸受隙間を有し、軸との相対回転で軸受隙間に生じた油の動圧により軸を非接触支持する軸受部材と、軸受部材が収容され、一端が開口で他端が閉じられたハウジングと、ハウジングの開口部をシールするシール部材とを備えた動圧型軸受ユニットであって、
前記シール部材は、リング状の第1部とこの第1部の外周縁部から垂下される円筒形状の第2部とからなり、第2部がハウジングの開口部に内嵌され、軸受部材が、軸受部材の外径面とハウジングの内径面との間の径方向隙間に形成された接着剤層を介してハウジングの内周に固定されるとともに、軸受部材が、軸受部材の外径面と第2部の内径面との間の径方向隙間に形成された接着剤層を介して軸受部材の外径面をシール部材の内周に固定されることを特徴とする動圧型軸受ユニット。
A bearing member made of oil-impregnated sintered metal, having a bearing gap with the shaft to be supported, and supporting the shaft in a non-contact manner by the dynamic pressure of oil generated in the bearing gap due to relative rotation with the shaft, and a bearing member A dynamic bearing unit including a housing that is housed and has an opening at one end and a closing at the other end, and a sealing member that seals the opening of the housing.
The sealing member is composed of a ring-shaped first portion and a cylindrical second portion hanging from the outer peripheral edge portion of the first portion, and the second portion is fitted in the opening of the housing to form a bearing member. The bearing member is fixed to the inner circumference of the housing via an adhesive layer formed in the radial gap between the outer diameter surface of the bearing member and the inner diameter surface of the housing, and the bearing member is attached to the outer diameter surface of the bearing member. A dynamic pressure type bearing unit characterized in that the outer diameter surface of the bearing member is fixed to the inner circumference of the seal member via an adhesive layer formed in a radial gap between the inner diameter surface and the second part.
ハウジングの開口部の内径面と、この内径面に対向する軸受部材の外径面との間に、シール部材の第2部材が嵌入する空間を設けたことを特徴とする請求項1に記載の動圧型軸受ユニット。 The first aspect of the present invention, wherein a space is provided between the inner diameter surface of the opening of the housing and the outer diameter surface of the bearing member facing the inner diameter surface so that the second member of the seal member can be fitted. Dynamic pressure type bearing unit. ハウジングの開口部が上方に開口している状態での注油された潤滑油の油面は、軸受部材のハウジングの開口側の端面である上端面未満とされることを特徴とする請求項1又は請求項2に記載の動圧型軸受ユニット。 Claim 1 or claim 1, wherein the oil level of the lubricated lubricating oil in a state where the opening of the housing is opened upward is less than the upper end surface which is the end surface on the opening side of the housing of the bearing member. The dynamic pressure type bearing unit according to claim 2. 前記接着剤に、嫌気性接着剤を用いることを特徴とする請求項1〜請求項3のいずれか1項に記載の動圧型軸受ユニット。 The dynamic pressure type bearing unit according to any one of claims 1 to 3, wherein an anaerobic adhesive is used as the adhesive. 請求項1〜請求項4のいずれか1項に記載の動圧型軸受ユニットを用いたことを特徴とするモータ。 A motor using the dynamic pressure type bearing unit according to any one of claims 1 to 4.
JP2019112741A 2019-06-18 2019-06-18 Hydrodynamic bearing unit and motor Active JP7313920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019112741A JP7313920B2 (en) 2019-06-18 2019-06-18 Hydrodynamic bearing unit and motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019112741A JP7313920B2 (en) 2019-06-18 2019-06-18 Hydrodynamic bearing unit and motor

Publications (2)

Publication Number Publication Date
JP2020204371A true JP2020204371A (en) 2020-12-24
JP7313920B2 JP7313920B2 (en) 2023-07-25

Family

ID=73837551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019112741A Active JP7313920B2 (en) 2019-06-18 2019-06-18 Hydrodynamic bearing unit and motor

Country Status (1)

Country Link
JP (1) JP7313920B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009180294A (en) * 2008-01-30 2009-08-13 Mitsumi Electric Co Ltd Dynamic pressure bearing motor
JP2010048309A (en) * 2008-08-20 2010-03-04 Ntn Corp Fluid bearing device and motor equipped with the same
JP2010096208A (en) * 2008-10-14 2010-04-30 Ntn Corp Fluid bearing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009180294A (en) * 2008-01-30 2009-08-13 Mitsumi Electric Co Ltd Dynamic pressure bearing motor
JP2010048309A (en) * 2008-08-20 2010-03-04 Ntn Corp Fluid bearing device and motor equipped with the same
JP2010096208A (en) * 2008-10-14 2010-04-30 Ntn Corp Fluid bearing device

Also Published As

Publication number Publication date
JP7313920B2 (en) 2023-07-25

Similar Documents

Publication Publication Date Title
JP5274820B2 (en) Hydrodynamic bearing device
JP2006194400A (en) Spindle motor and rotating device
US20090080819A1 (en) Fluid dynamic bearing having a recirculation channel
JP2008008368A (en) Hydrodynamic bearing device
JP2007263228A (en) Dynamic pressure bearing device
US20100166346A1 (en) Dynamic bearing device
JP6422755B2 (en) Fluid dynamic bearing device and motor including the same
JP2001271828A (en) Dynamic pressure type oil-impregnated sintered bearing unit
JP3996436B2 (en) Hydrodynamic bearing motor
JP3686630B2 (en) Hydrodynamic bearing device
JP7313920B2 (en) Hydrodynamic bearing unit and motor
JP4948908B2 (en) Hydrodynamic bearing device
JP2000320542A (en) Dynamic pressure type bearing unit and manufacture thereof
JP4633388B2 (en) Hydrodynamic bearing device
JP2006194384A (en) Dynamic pressure bearing device
JP2006112614A (en) Dynamic pressure bearing device
JP2005163903A (en) Dynamic bearing device
JP4579218B2 (en) Manufacturing method of hydrodynamic bearing unit
JP2007040527A (en) Fluid bearing device
JP4949216B2 (en) Hydrodynamic bearing device
JP2020139608A (en) Hydrodynamic pressure bearing device and motor including the same
JP4134058B2 (en) Spindle motor for information equipment
JP4605168B2 (en) DYNAMIC PRESSURE BEARING DEVICE AND METHOD FOR PRODUCING DYNAMIC PRESSURE BEARING DEVICE
JP4738835B2 (en) Hydrodynamic bearing device
JP5214401B2 (en) Hydrodynamic bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230712

R150 Certificate of patent or registration of utility model

Ref document number: 7313920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150