JP2020172716A - Manufacturing method of fluororesin staple fiber - Google Patents

Manufacturing method of fluororesin staple fiber Download PDF

Info

Publication number
JP2020172716A
JP2020172716A JP2019074096A JP2019074096A JP2020172716A JP 2020172716 A JP2020172716 A JP 2020172716A JP 2019074096 A JP2019074096 A JP 2019074096A JP 2019074096 A JP2019074096 A JP 2019074096A JP 2020172716 A JP2020172716 A JP 2020172716A
Authority
JP
Japan
Prior art keywords
fluororesin
fiber
manufacturing
solvent
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019074096A
Other languages
Japanese (ja)
Other versions
JP7293825B2 (en
Inventor
松葉 隆雄
Takao Matsuba
隆雄 松葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2019074096A priority Critical patent/JP7293825B2/en
Publication of JP2020172716A publication Critical patent/JP2020172716A/en
Application granted granted Critical
Publication of JP7293825B2 publication Critical patent/JP7293825B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Fiber Materials (AREA)
  • Artificial Filaments (AREA)

Abstract

To provide a manufacturing method of fluororesin staple fiber.SOLUTION: A manufacturing method of fluororesin staple fiber comprises dissolving fluororesin fiber produced by electrostatic spinning in a solvent to be subjected to ultrasonic treatment at a temperature equal to or below the glass transition temperature.SELECTED DRAWING: Figure 1

Description

本発明は、フッ素樹脂短繊維の製造方法に関する。 The present invention relates to a method for producing fluororesin short fibers.

PVDFなどの繊維はタンパク質の吸着が高いことから、タンパク質などを固定化する材料として利用することができるが、特許文献1で使用する繊維状物質は、不織布のままではなく、何らかの方法で繊維を切断する必要があった。特許文献2には、極細樹脂を超音波処理することで、樹脂が切断され樹脂製極細短繊維が調製できる旨が開示されているが、フッ素樹脂を超音波処理しても、繊維の切断は起こらず、不織布が丸まった固まりが得られるだけで、短く切断されたフッ素樹脂は得られなかった。 Since fibers such as PVDF have high protein adsorption, they can be used as materials for immobilizing proteins and the like. However, the fibrous substance used in Patent Document 1 is not a non-woven fabric, but fibers can be used in some way. I had to disconnect. Patent Document 2 discloses that the resin can be cut to prepare resin-made ultrafine short fibers by ultrasonically treating the ultrafine resin, but even if the fluororesin is ultrasonically treated, the fibers cannot be cut. It did not occur, only a curled mass of the non-woven fabric was obtained, and a short-cut fluororesin could not be obtained.

WO2018/030295号公報WO2018 / 03295 特許第4883312号公報Japanese Patent No. 4883312

本発明の課題は、フッ素樹脂短繊維の製造方法を提供する。 An object of the present invention is to provide a method for producing a fluororesin short fiber.

上記課題を解決するために、本発明者は鋭意検討した結果、本発明に到達した。 In order to solve the above problems, the present inventor has arrived at the present invention as a result of diligent studies.

すなわち本発明の一態様は、
静電紡糸法により得られたフッ素樹脂繊維を、ガラス転移温度以下で超音波処理することを特徴とするフッ素樹脂短繊維の製造方法である。
That is, one aspect of the present invention is
This is a method for producing a fluororesin short fiber, which comprises ultrasonically treating a fluororesin fiber obtained by an electrostatic spinning method at a glass transition temperature or lower.

以下に、本発明を詳細に説明する。 The present invention will be described in detail below.

フッ素樹脂繊維としては、ポリテトラフルオロエチレン(PTFE)などの完全フッ素化樹脂、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)などの部分フッ素化樹脂、ペルフルオロアルコキシフッ素樹脂(PFA)、四フッ化エチレン・六フッ化プロピレン共重合体(FEP)、エチレン・四フッ化エチレン共重合体(ETFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)などのフッ素化樹脂共重合体などが挙げられるが、ポリフッ化ビニリデン(PVDF)が好適である。 Fluororesin fibers include fully fluorinated resins such as polytetrafluoroethylene (PTFE), partially fluorinated resins such as polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), and polyvinyl fluoride (PVF), and perfluoro. Alkane fluoride resin (PFA), ethylene tetrafluoride / propylene hexafluoride copolymer (FEP), ethylene / ethylene tetrafluoride copolymer (ETFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE), etc. Examples thereof include fluorinated resin copolymers, but polyvinylidene fluoride (PVDF) is preferable.

フッ素樹脂繊維の作製方法は通常報告されている静電紡糸(エレクトロスピニング)法で作製することができ、一例をあげると、フッ素樹脂を有機溶媒で溶解したポリマー溶液を用いて作製する。ポリマー溶液の濃度は2〜30%が好ましく、5〜15%がより好ましい。繊維径を細くするために、TBAC(テトラブチルアンモニウムクロライド)などの電荷を有する物質をポリマー溶液に添加してもよい。樹脂を溶解する溶剤は、ポリマーが完全に溶解できれば特に限定されず、例えば、ジメチルホルムアミド、アセトン、ジメチルスルホキシドやそれらの混合溶剤が使用可能である。フッ素樹脂繊維の紡糸方法も不織布状に紡糸する、配向性を持たせて紡糸するなど特に限定されない。 The method for producing the fluororesin fiber can be produced by an electrostatic spinning (electrospinning) method that is usually reported. For example, it is produced by using a polymer solution in which a fluororesin is dissolved in an organic solvent. The concentration of the polymer solution is preferably 2 to 30%, more preferably 5 to 15%. A charged substance such as TBAC (tetrabutylammonium chloride) may be added to the polymer solution in order to reduce the fiber diameter. The solvent for dissolving the resin is not particularly limited as long as the polymer can be completely dissolved, and for example, dimethylformamide, acetone, dimethyl sulfoxide or a mixed solvent thereof can be used. The spinning method of the fluororesin fiber is not particularly limited, such as spinning in the form of a non-woven fabric or spinning with orientation.

上述した方法によって得られたフッ素樹脂繊維は溶剤に溶解させ、繊維のガラス転移温度以下の温度で超音波処理する。溶剤はガラス転移温度で凍結せず、樹脂を溶解し樹脂に損傷をあたえないものであれば特に限定されず、水系の溶剤であればポリエチレングリコールなどを添加して、凝固点をガラス転移温度以下まで下げた溶液であれば使用可能であり、メチルアルコール、エチルアルコール、イソプロピルアルコールなどのアルコール系の溶剤も使用可能であるが、繊維表面への影響を考慮するとイソプロピルアルコールが特に好ましい。 The fluororesin fiber obtained by the above method is dissolved in a solvent and sonicated at a temperature equal to or lower than the glass transition temperature of the fiber. The solvent is not particularly limited as long as it does not freeze at the glass transition temperature and dissolves the resin and does not damage the resin. If it is an aqueous solvent, polyethylene glycol or the like is added to bring the freezing point to below the glass transition temperature. Any lowered solution can be used, and alcohol-based solvents such as methyl alcohol, ethyl alcohol, and isopropyl alcohol can also be used, but isopropyl alcohol is particularly preferable in consideration of the effect on the fiber surface.

ガラス転移温度以下に冷却する方法は特に限定されず、チラーなどの装置で冷却する方法、液体窒素などで冷却する方法、ドライアイスを溶剤中に投入する方法などが挙げられるが、簡便に目的の温度を維持できるためドライアイスを溶剤中に投入する方法が好ましい。 The method of cooling below the glass transition temperature is not particularly limited, and examples thereof include a method of cooling with a device such as a chiller, a method of cooling with liquid nitrogen, a method of putting dry ice into a solvent, and the like. Since the temperature can be maintained, a method of putting dry ice in a solvent is preferable.

超音波処理を長くすれば当然、繊維の切断が進むため短い繊維が多くなってゆくため、超音波処理の時間や超音波の強度によって繊維長を調整することが可能である。つまり、長い繊維が必要な場合は超音波処理の時間を短めに、短い繊維が必要な場合は超音波処理時間を長くとればよい。超音波発生器の強度によって処理時間は大きく異なるが、数分から数時間程度の処理時間が考えられる。 Naturally, if the ultrasonic treatment is lengthened, the number of short fibers increases due to the progress of fiber cutting, so that the fiber length can be adjusted by the time of the ultrasonic treatment and the intensity of the ultrasonic waves. That is, when long fibers are required, the ultrasonic treatment time may be shortened, and when short fibers are required, the ultrasonic treatment time may be long. The processing time varies greatly depending on the strength of the ultrasonic generator, but the processing time can be considered to be several minutes to several hours.

どの程度の長さの繊維が有用かについては目的に応じて変わるが、例えば繊維の均一な分散性を期待する場合は平均繊維長が20μm以下の繊維が好ましく、ろ過してファイバーを分離する事を考えると平均繊維径は20μmより長い繊維の方が好ましい。しかし、あまり長いとファイバーが絡み合うため、20μm以上1mm以下であることが好ましく、30μm以上500μm以下がより好ましく、50μmから100μmが特に好ましい。 The length of the fiber that is useful depends on the purpose. For example, when the uniform dispersibility of the fiber is expected, the fiber having an average fiber length of 20 μm or less is preferable, and the fiber is separated by filtration. Considering the above, fibers having an average fiber diameter longer than 20 μm are preferable. However, if it is too long, the fibers will be entangled, so it is preferably 20 μm or more and 1 mm or less, more preferably 30 μm or more and 500 μm or less, and particularly preferably 50 μm to 100 μm.

本発明により、フッ素樹脂繊維を簡便に短繊維化することができる。 According to the present invention, the fluororesin fiber can be easily shortened.

切断されたPVDFナノファイバーの透過型電子顕微鏡写真Transmission electron micrograph of cut PVDF nanofibers 切断されずに固まったPVDFナノファイバーPVDF nanofibers that hardened without being cut

以下、実施例及び比較例を用いて本発明をさらに詳細に説明するが、本発明はこれらの例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these examples.

実施例1 PVDF繊維の作製と冷却下での切断
PVDF(SOLEF社製)を7wt%、TBAC(東京化成社製)を0.04%になるようにDMF/アセトン(60/40)で溶解し、NANON−1(MECC製)を用い、3,000rpmで回転するΦ200ドラムコレクターを用いて、配向性ナノファイバーをエレクトロスピニング法により作製した(20KV、1.0ml/hr)。繊維径は120nm±13nmで厚みは約10μmに紡糸した。
得られたナノファイバーシート(28cmx25cm)を、30mlのイソプロピルアルコール中に投入し、ドライアイスを投入したエチルアルコール浴に浸して冷却した。その後、5分間放置し、サンプルが十分に冷却したことを確認した後、RANSON社製SONIFER 450を用いて、OUT PUT6、Duty cycle50%の目盛で1時間超音波処理を行った。PVDFの固まりが無くなったことを確認した後に、日新EM株式会社製のメッシュ(6511銅製の200メッシュ)を用いて、透過型電子顕微鏡(日本電子 JEM1400Plus)で繊維の状態を確認した。その結果を図1に示した。ここに示す様に、切断されたPVDFが確認された。
Example 1 Preparation of PVDF fiber and cutting under cooling PVDF (manufactured by SOLEF) is dissolved in DMF / acetone (60/40) so as to be 7 wt% and TBAC (manufactured by Tokyo Kasei Co., Ltd.) to be 0.04%. , NANON-1 (manufactured by MECC) was used, and oriented nanofibers were prepared by an electrospinning method using a Φ200 drum collector rotating at 3,000 rpm (20 KV, 1.0 ml / hr). The fiber diameter was 120 nm ± 13 nm and the thickness was about 10 μm.
The obtained nanofiber sheet (28 cm x 25 cm) was put into 30 ml of isopropyl alcohol and immersed in an ethyl alcohol bath containing dry ice to cool it. Then, the sample was left to stand for 5 minutes, and after confirming that the sample was sufficiently cooled, ultrasonic treatment was performed for 1 hour on a scale of OUT PUT 6 and Duty cycle 50% using SONIFER 450 manufactured by RANSON. After confirming that the PVDF mass had disappeared, the state of the fibers was confirmed with a transmission electron microscope (JEOL JEM1400Plus) using a mesh manufactured by Nissin EM Co., Ltd. (200 mesh made of 6511 copper). The result is shown in FIG. As shown here, cut PVDF was confirmed.

比較例1 PVDF繊維の作製と切断
実施例1と同じ方法でナノファイバー繊維を調製し、イソプロピルアルコール中で、RANSON社製SONIFER 450を用いて、OUT PUT6、Duty cycle50%の目盛で1時間超音波処理を行った。その結果ナノファイバーは分散せずに図2に示す様な固まりになった。
Comparative Example 1 Preparation and cutting of PVDF fibers Nanofiber fibers were prepared in the same manner as in Example 1, and sonicated in isopropyl alcohol for 1 hour on a scale of OUT PUT6, Duty cycle 50% using SONIFER 450 manufactured by RANSON. Processing was performed. As a result, the nanofibers did not disperse and became a mass as shown in FIG.

Claims (3)

静電紡糸法により得られたフッ素樹脂繊維を溶剤に溶解させ、ガラス転移温度以下で超音波処理することを特徴とするフッ素樹脂短繊維の製造方法。 A method for producing fluororesin short fibers, which comprises dissolving fluororesin fibers obtained by an electrostatic spinning method in a solvent and performing sonication at a glass transition temperature or lower. フッ素樹脂繊維がポリフッ化ビニリデン樹脂であることを特徴とする請求項1記載の製造方法。 The production method according to claim 1, wherein the fluororesin fiber is a polyvinylidene fluoride resin. 溶剤がイソプロピルアルコールであることを特徴とする請求項1又は2に記載の製造方法。 The production method according to claim 1 or 2, wherein the solvent is isopropyl alcohol.
JP2019074096A 2019-04-09 2019-04-09 Method for producing fluororesin staple fiber Active JP7293825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019074096A JP7293825B2 (en) 2019-04-09 2019-04-09 Method for producing fluororesin staple fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019074096A JP7293825B2 (en) 2019-04-09 2019-04-09 Method for producing fluororesin staple fiber

Publications (2)

Publication Number Publication Date
JP2020172716A true JP2020172716A (en) 2020-10-22
JP7293825B2 JP7293825B2 (en) 2023-06-20

Family

ID=72830107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019074096A Active JP7293825B2 (en) 2019-04-09 2019-04-09 Method for producing fluororesin staple fiber

Country Status (1)

Country Link
JP (1) JP7293825B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137212A (en) * 1979-04-11 1980-10-25 Nichibi:Kk Method of splitting extremely fine polyvinyl alcohol synthetic fiber
JPS63210145A (en) * 1987-02-25 1988-08-31 Nitto Electric Ind Co Ltd Porous polytetrafluoroethylene material, its production and directional resistor prepared therefrom
JPH04194068A (en) * 1990-11-21 1992-07-14 Nippon Oil Co Ltd Fibrillated polyolefin material and its production
JPH09276707A (en) * 1996-04-11 1997-10-28 Masahiro Watanabe Thin film semiconductor photocatalyst element and reaction device using it
JP2009114560A (en) * 2007-11-02 2009-05-28 Nisshinbo Ind Inc Ultra-fine staple fiber made of resin and method for producing the same
JP2017185422A (en) * 2016-04-01 2017-10-12 Jnc株式会社 Depth filter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137212A (en) * 1979-04-11 1980-10-25 Nichibi:Kk Method of splitting extremely fine polyvinyl alcohol synthetic fiber
JPS63210145A (en) * 1987-02-25 1988-08-31 Nitto Electric Ind Co Ltd Porous polytetrafluoroethylene material, its production and directional resistor prepared therefrom
JPH04194068A (en) * 1990-11-21 1992-07-14 Nippon Oil Co Ltd Fibrillated polyolefin material and its production
JPH09276707A (en) * 1996-04-11 1997-10-28 Masahiro Watanabe Thin film semiconductor photocatalyst element and reaction device using it
JP2009114560A (en) * 2007-11-02 2009-05-28 Nisshinbo Ind Inc Ultra-fine staple fiber made of resin and method for producing the same
JP2017185422A (en) * 2016-04-01 2017-10-12 Jnc株式会社 Depth filter

Also Published As

Publication number Publication date
JP7293825B2 (en) 2023-06-20

Similar Documents

Publication Publication Date Title
Lu et al. Gelatin nanofibers prepared by spiral-electrospinning and cross-linked by vapor and liquid-phase glutaraldehyde
CN107596928B (en) Homogeneous fiber reinforced PVDF hollow fiber membrane and preparation method thereof
KR100871440B1 (en) Blended nanofibers of pan/pvdf and preparation method of the same
JP2011153397A (en) Method for producing separately openable nano-filament or microfiber
CN102766270B (en) Polyimide nano-fiber membrane with crosslinked structure and preparation thereof
KR20170121504A (en) Method for preparing graphene oxide fibers, graphene fibers or their composite fibers by using wet spinning induced by electric field
JP2010281024A (en) Method for producing conductive composite fiber having high nanotube ratio
JP6442160B2 (en) Method for producing carbon nanotube composite material
KR102063100B1 (en) The Fabrication Method of Eco-friendly and High Strength Nanocellulose Longfiber Using the Magnetic and Electric Field
JP4883312B2 (en) Resin-made ultrafine short fiber and method for producing the same
JP2020172716A (en) Manufacturing method of fluororesin staple fiber
JP4612432B2 (en) Nonwoven fabric and method for producing nonwoven fabric
JP4773902B2 (en) Nanofiber nonwoven fabric and method for producing the same
JP2011032613A (en) Method for producing ultrafine fiber nonwoven fabric, and ultrafine fiber nonwoven fabric
JP2008308780A (en) Electrospun chitosan and cellulose extra fine fibers
CN108993164A (en) A kind of Pvdf Microporous Hollow Fiber Membrane and preparation method thereof
JP2008013864A (en) Method for producing nanofiber nonwoven fabric
KR20150039967A (en) Method for Preparing High Strength Electrospun Nanofiber by Microwave Treatment and the Nanofiber thereof
CN115012061B (en) Preparation method of high-strength and high-toughness graphene composite fiber
JP2017066540A (en) Production method of carbon fiber and carbon fiber sheet
JP2017522465A5 (en)
CN104818539A (en) Regeneration spider silk fiber based on ionic liquid and preparation method of regeneration spider silk fiber
JP2012067432A (en) Method for manufacturing carbon fibers
CN106531474A (en) Linear electrode and preparation method therefor by adopting electrospinning technique
JP2016065351A (en) Porous carbon fiber and carbon fiber-reinforced composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230522

R151 Written notification of patent or utility model registration

Ref document number: 7293825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151