JP2020167144A - Sulfur-based active material - Google Patents

Sulfur-based active material Download PDF

Info

Publication number
JP2020167144A
JP2020167144A JP2019229492A JP2019229492A JP2020167144A JP 2020167144 A JP2020167144 A JP 2020167144A JP 2019229492 A JP2019229492 A JP 2019229492A JP 2019229492 A JP2019229492 A JP 2019229492A JP 2020167144 A JP2020167144 A JP 2020167144A
Authority
JP
Japan
Prior art keywords
sulfur
active material
based active
electrode
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019229492A
Other languages
Japanese (ja)
Other versions
JP7404852B2 (en
Inventor
久保 達也
Tatsuya Kubo
達也 久保
文哉 中条
Fumiya Nakajo
文哉 中条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to KR1020200000655A priority Critical patent/KR20200115052A/en
Priority to CN202010035284.3A priority patent/CN111755687A/en
Priority to EP20162985.4A priority patent/EP3716363B1/en
Priority to US16/825,880 priority patent/US11069893B2/en
Publication of JP2020167144A publication Critical patent/JP2020167144A/en
Application granted granted Critical
Publication of JP7404852B2 publication Critical patent/JP7404852B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/18Homopolymers or copolymers of nitriles
    • C08L33/20Homopolymers or copolymers of acrylonitrile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a sulfur-based active material manufactured by using an inexpensive polymer material as a raw material and a manufacturing method of the sulfur-based active material.SOLUTION: A sulfur-based active material is obtained by calcining a polymer containing methacrylonitrile as a monomer component and a raw material containing sulfur.SELECTED DRAWING: None

Description

本発明は、非水電解質二次電池用電極に使用する硫黄系活物質および該電極を具備した非水電解質二次電池に関する。 The present invention relates to a sulfur-based active material used for an electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery provided with the electrode.

特許文献1には、ポリアクリロニトリルと硫黄との混合原料を熱処理して得られる硫黄系活物質を正極に用いたリチウムイオン二次電池の製造方法が開示されている。また、特許文献2には、ジエン系ゴムと硫黄との混合原料を熱処理して得られる硫黄系活物質を正極に用いたリチウムイオン二次電池の製造方法が開示されている。 Patent Document 1 discloses a method for producing a lithium ion secondary battery using a sulfur-based active material obtained by heat-treating a mixed raw material of polyacrylonitrile and sulfur as a positive electrode. Further, Patent Document 2 discloses a method for manufacturing a lithium ion secondary battery using a sulfur-based active material obtained by heat-treating a mixed raw material of a diene-based rubber and sulfur as a positive electrode.

国際公開第2010/044437号International Publication No. 2010/0444437 特許第6132102号公報Japanese Patent No. 6132102

特許文献1記載の方法は、ポリアクリロニトリル原料粉末の品質(特に粒径)によって充放電容量、サイクル特性等の電池性能が大きく左右され、原料粉末の品質が一定なポリアクリロニトリルは非常に高価であるという課題がある。一方、特許文献2記載の方法は安価なジエン系ゴムを原料としているが、サイクル特性の観点から改善の余地がある。 In the method described in Patent Document 1, battery performance such as charge / discharge capacity and cycle characteristics is greatly affected by the quality (particularly particle size) of the polyacrylonitrile raw material powder, and polyacrylonitrile having a constant raw material powder quality is very expensive. There is a problem. On the other hand, the method described in Patent Document 2 uses an inexpensive diene-based rubber as a raw material, but there is room for improvement from the viewpoint of cycle characteristics.

本発明は、安価な高分子材料を原料として用い製造した硫黄系活物質および該硫黄系活物質を製造する方法を提供することを目的とする。該硫黄系活物質を含む電極を具備した
リチウムイオン二次電池等の非水電解質二次電池は、製造が簡便で、充放電容量が大きくかつ優れたサイクル特性を有する。
An object of the present invention is to provide a sulfur-based active material produced by using an inexpensive polymer material as a raw material and a method for producing the sulfur-based active material. A non-aqueous electrolyte secondary battery such as a lithium ion secondary battery provided with an electrode containing the sulfur-based active material is easy to manufacture, has a large charge / discharge capacity, and has excellent cycle characteristics.

本発明者らは、メタクリロニトリルをモノマー成分として含む重合体と硫黄とが複合した新規な活物質を用いて、安価に充放電容量が大きくかつサイクル特性に優れた非水電解質二次電池を製造できることを見出し、本発明を完成させた。 The present inventors have used a novel active material in which a polymer containing methacrylonitrile as a monomer component and sulfur are compounded to inexpensively produce a non-aqueous electrolyte secondary battery having a large charge / discharge capacity and excellent cycle characteristics. They found that they could be manufactured and completed the present invention.

すなわち、本発明は、
〔1〕メタクリロニトリルをモノマー成分として含む重合体と硫黄とを含む原料を焼成してなる硫黄系活物質、
〔2〕前記重合体が、メタクリロニトリルを含む2種以上のモノマー成分を含む共重合体である、〔1〕記載の硫黄系活物質、
〔3〕前記重合体が、メタクリロニトリル、アクリロニトリル、およびその他の(メタ)アクリルモノマーをモノマー成分として含む共重合体である、〔1〕または〔2〕記載の硫黄系活物質、
〔4〕その他の(メタ)アクリルモノマーが、(メタ)アクリル酸エステルである、〔3〕記載の硫黄系活物質、
〔5〕ラマンスペクトルにおいて、1530cm-1付近、1320cm-1付近、940cm-1付近、470cm-1付近、370cm-1付近、および310cm-1付近にピークが存在することを特徴とする、〔1〕〜〔4〕のいずれかに記載の硫黄系活物質、
〔6〕原料を焼成する温度が250〜550℃である、〔1〕〜〔5〕のいずれかに記載の硫黄系活物質、
〔7〕原料がさらに導電助剤を含む、〔1〕〜〔6〕のいずれかに記載の硫黄系活物質。
〔8〕前記導電助剤が導電性炭素材料である、〔7〕記載の硫黄系活物質、
〔9〕〔1〕〜〔8〕のいずれかに記載の硫黄系活物質を含んでなる非水電解質二次電池用電極、
〔10〕〔9〕に記載の電極を具備した非水電解質二次電池、
〔11〕硫黄系活物質の製造方法であって、メタクリロニトリルをモノマー成分として含む重合体と硫黄とを含む原料を焼成する工程を含む製造方法、に関する。
That is, the present invention
[1] A sulfur-based active material obtained by calcining a polymer containing methacrylnitrile as a monomer component and a raw material containing sulfur.
[2] The sulfur-based active material according to [1], wherein the polymer is a copolymer containing two or more kinds of monomer components including methacrylnitrile.
[3] The sulfur-based active material according to [1] or [2], wherein the polymer is a copolymer containing methacrylonitrile, acrylonitrile, and other (meth) acrylic monomers as monomer components.
[4] The sulfur-based active material according to [3], wherein the other (meth) acrylic monomer is a (meth) acrylic acid ester.
[5] In the Raman spectrum, 1530 cm around -1 to 1320cm around -1, 940 cm around -1, 470 cm around -1, characterized 370cm around -1, and 310cm around -1 that peaks are present, [1 ] To the sulfur-based active material according to any one of [4].
[6] The sulfur-based active material according to any one of [1] to [5], wherein the temperature at which the raw material is fired is 250 to 550 ° C.
[7] The sulfur-based active material according to any one of [1] to [6], wherein the raw material further contains a conductive auxiliary agent.
[8] The sulfur-based active material according to [7], wherein the conductive auxiliary agent is a conductive carbon material.
[9] An electrode for a non-aqueous electrolyte secondary battery containing the sulfur-based active material according to any one of [1] to [8].
[10] A non-aqueous electrolyte secondary battery provided with the electrode according to [9].
[11] The present invention relates to a method for producing a sulfur-based active material, which comprises a step of calcining a polymer containing methacrylnitrile as a monomer component and a raw material containing sulfur.

本発明によれば、安価に充放電容量が大きくかつサイクル特性に優れた非水電解質二次電池を製造することができる。 According to the present invention, it is possible to inexpensively manufacture a non-aqueous electrolyte secondary battery having a large charge / discharge capacity and excellent cycle characteristics.

硫黄系活物質の製造に使用する反応装置を模式的に示す断面図である。It is sectional drawing which shows typically the reaction apparatus used for producing a sulfur-based active material. 実施例1で得られた硫黄系活物質をラマンスペクトル分析した結果を示すグラフである。It is a graph which shows the result of Raman spectrum analysis of the sulfur-based active material obtained in Example 1.

本発明の一実施形態である硫黄系活物質の製造を含む非水電解質二次電池の作製手順について、以下に詳細に説明する。但し、以下の記載は本発明を説明するための例示であり、本発明の技術的範囲をこの記載範囲にのみ限定する趣旨ではない。なお、本明細書において、「〜」を用いて数値範囲を示す場合、その両端の数値を含むものとする。 The procedure for producing a non-aqueous electrolyte secondary battery including the production of a sulfur-based active material according to an embodiment of the present invention will be described in detail below. However, the following description is an example for explaining the present invention, and does not mean that the technical scope of the present invention is limited to this description range. In this specification, when a numerical range is indicated by using "~", the numerical values at both ends thereof are included.

<硫黄系活物質の製造>
本実施形態に係る硫黄系活物質は、メタクリロニトリルをモノマー成分として含む重合体と硫黄とを含む原料を焼成して得ることができる。また、焼成工程において、前記の原料に加硫促進剤および/または導電助剤をさらに配合してもよい。
<Manufacturing of sulfur-based active materials>
The sulfur-based active material according to the present embodiment can be obtained by calcining a polymer containing methacrylnitrile as a monomer component and a raw material containing sulfur. Further, in the firing step, a vulcanization accelerator and / or a conductive auxiliary agent may be further added to the raw material.

メタクリロニトリルをモノマー成分として含む重合体は、メタクリロニトリルの単独重合体(ポリメタクリロニトリル)であってもよいし、メタクリロニトリルとメタクリロニトリル以外の1種以上のモノマー成分との共重合体であってもよい。 The polymer containing methacrylonitrile as a monomer component may be a homopolymer of methacrylnitrile (polymethacrylonitrile), or a copolymer of methacrylnitrile and one or more monomer components other than methacryllonitrile. It may be a polymer.

メタクリロニトリル以外のモノマー成分としては、アクリロニトリル、(メタ)アクリル酸、(メタ)アクリル酸エステル、(メタ)アクリルアミド等の公知の(メタ)アクリルモノマーを好適に使用可能である。なかでも、アクリロニトリルおよび(メタ)アクリル酸エステルからなる群から選ばれる1以上が好ましく、アクリロニトリルおよびメタクリル酸メチルからなる群から選ばれる1以上がより好ましく、アクリロニトリルおよびメタクリル酸メチルがさらに好ましい。なお、本明細書において、用語「(メタ)アクリル」は、「アクリル」または「メタクリル」を意味する。 As the monomer component other than methacrylonitrile, known (meth) acrylic monomers such as acrylonitrile, (meth) acrylic acid, (meth) acrylic acid ester, and (meth) acrylamide can be preferably used. Among them, 1 or more selected from the group consisting of acrylonitrile and (meth) acrylic acid ester is preferable, 1 or more selected from the group consisting of acrylonitrile and methyl methacrylate is more preferable, and acrylonitrile and methyl methacrylate are further preferable. In addition, in this specification, the term "(meth) acrylic" means "acrylic" or "methacryl".

また、メタクリロニトリル以外のモノマー成分として、ブタジエン、イソプレン等の共役ジエン化合物も使用可能である。 In addition, conjugated diene compounds such as butadiene and isoprene can also be used as monomer components other than methacrylnitrile.

共重合体において、メタクリロニトリルの共重合比は、通常1〜99%、好ましくは10〜95%、より好ましくは20〜90%、さらに好ましくは30〜80%である。 In the copolymer, the copolymerization ratio of methacrylnitrile is usually 1 to 99%, preferably 10 to 95%, more preferably 20 to 90%, still more preferably 30 to 80%.

かかる共重合は、共重合させる順序において特に限定はなく、例えば、すべてのモノマーを一度にランダム共重合させてもよいし、あるいは、あらかじめ特定のモノマーを共重合させた後に、残りのモノマーを加えて共重合させたり、特定のモノマー毎に予め共重合させたものをブロック共重合させてもよい。 The copolymerization is not particularly limited in the order of copolymerization. For example, all the monomers may be randomly copolymerized at once, or a specific monomer may be copolymerized in advance and then the remaining monomers are added. The copolymer may be copolymerized, or those which have been copolymerized in advance for each specific monomer may be block copolymerized.

重合は、例えば、アニオン重合反応、配位重合反応等の常法により実施することができる。重合方法については特に制限はなく、溶液重合法、乳化重合法、気相重合法、バルク重合法のいずれをも用いることができる。また、重合形式は、バッチ式および連続式のいずれであってもよい。 The polymerization can be carried out by a conventional method such as an anionic polymerization reaction or a coordination polymerization reaction. The polymerization method is not particularly limited, and any of a solution polymerization method, an emulsion polymerization method, a gas phase polymerization method, and a bulk polymerization method can be used. Further, the polymerization type may be either a batch type or a continuous type.

重合体の重量平均分子量(Mw)は、1,000〜1,000,000が好ましく、10,000〜300,000よりが好ましい。なお、Mwは、ゲルパーミエーションクロマトグラフィー(GPC)(東ソー(株)製GPC−8000シリーズ、検出器:示差屈折計、カラム:東ソー(株)製のTSKGEL SUPERMALTPORE HZ−M)による測定値を基に、標準ポリスチレン換算により求めることができる。 The weight average molecular weight (Mw) of the polymer is preferably 1,000 to 1,000,000, more preferably 10,000 to 300,000. Mw is based on the measured value by gel permeation chromatography (GPC) (GPC-8000 series manufactured by Tosoh Corporation, detector: differential refractometer, column: TSKGEL SUPERMALTPORE HZ-M manufactured by Tosoh Corporation). In addition, it can be obtained by standard polystyrene conversion.

硫黄としては粉末硫黄、不溶性硫黄、沈降硫黄等を使用できるが、微粒子であることからコロイド硫黄が好ましい。硫黄の配合量は、充放電容量およびサイクル特性の観点から、前記重合体100質量部に対して、250質量部以上が好ましく、300質量部以上がより好ましい。一方、硫黄の配合量の上限は特に制限されないが、充放電容量が飽和しコスト的にも不利となることから、2000質量部以下が好ましく、1500質量部以下がより好ましい。 As the sulfur, powdered sulfur, insoluble sulfur, precipitated sulfur and the like can be used, but colloidal sulfur is preferable because it is fine particles. From the viewpoint of charge / discharge capacity and cycle characteristics, the amount of sulfur blended is preferably 250 parts by mass or more, and more preferably 300 parts by mass or more with respect to 100 parts by mass of the polymer. On the other hand, the upper limit of the amount of sulfur compounded is not particularly limited, but 2000 parts by mass or less is preferable, and 1500 parts by mass or less is more preferable, because the charge / discharge capacity is saturated and it is disadvantageous in terms of cost.

加硫促進剤を配合する場合の前記重合体100質量部に対する使用量は、充放電容量およびサイクル特性の観点から、3質量部以上が好ましく、10質量部以上がより好ましい。また、一方、配合量の上限は特に制限されないが、充放電容量が飽和しコスト的にも不利となることから、250質量部以下が好ましく、50質量部以下がより好ましい。 When the vulcanization accelerator is blended, the amount used with respect to 100 parts by mass of the polymer is preferably 3 parts by mass or more, more preferably 10 parts by mass or more, from the viewpoint of charge / discharge capacity and cycle characteristics. On the other hand, the upper limit of the blending amount is not particularly limited, but 250 parts by mass or less is preferable, and 50 parts by mass or less is more preferable, because the charge / discharge capacity is saturated and it is disadvantageous in terms of cost.

導電助剤は、特に制限されないが、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)、炭素粉末、カーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック(KB)、黒鉛等の導電性炭素材料を好適に使用することができる。容量密度、入出力特性、および導電性の観点からは、アセチレンブラック(AB)またはケッチェンブラック(KB)が好ましい。これらの導電助剤は、1種単独で用いてもよく、2種以上を併用してもよい。 The conductive auxiliary agent is not particularly limited, but is conductive such as vapor grown carbon fiber (VGCF), carbon powder, carbon black (CB), acetylene black (AB), Ketjen black (KB), and graphite. A carbon material can be preferably used. From the viewpoint of capacitance density, input / output characteristics, and conductivity, acetylene black (AB) or Ketjen black (KB) is preferable. These conductive aids may be used alone or in combination of two or more.

導電助剤を配合する場合の前記重合体100質量部に対する使用量は、充放電容量およびサイクル特性の観点から、1質量部以上が好ましく、3質量部以上がより好ましく、5質量部がさらに好ましい。一方、該配合量は、50質量部以下が好ましく、30質量部以下がより好ましく、20質量部以下がさらに好ましい。50質量部超では、硫黄含有化合物における硫黄を含む構造の割合が相対的に低下するため、充放電容量やサイクル特性を一層向上させるという目的を達成しがたい傾向がある。 When the conductive auxiliary agent is blended, the amount used with respect to 100 parts by mass of the polymer is preferably 1 part by mass or more, more preferably 3 parts by mass or more, still more preferably 5 parts by mass, from the viewpoint of charge / discharge capacity and cycle characteristics. .. On the other hand, the blending amount is preferably 50 parts by mass or less, more preferably 30 parts by mass or less, and further preferably 20 parts by mass or less. If it exceeds 50 parts by mass, the proportion of the sulfur-containing structure in the sulfur-containing compound is relatively low, so that it tends to be difficult to achieve the purpose of further improving the charge / discharge capacity and cycle characteristics.

前記の成分を配合した原料の焼成は、非酸化性雰囲気下で原料を加熱することにより実施される。非酸化性雰囲気とは、酸素を実質的に含まない雰囲気をいい、構成成分の酸化劣化や過剰な熱分解を抑制するために採用されるものである。具体的には、窒素やアルゴン等の不活性ガスを充填した、不活性ガス雰囲気下の石英管中で、加熱処理する。焼成の温度は、250℃以上が好ましく、300℃以上がより好ましい。250℃未満であると、硫化反応が不十分で、目的物の充放電容量が低くなる傾向がある。一方、焼成の温度は、550℃以下が好ましく、500℃以下がより好ましく、450℃以下がさらに好ましい。550℃を超えると、原料化合物の分解が多くなり、収率が低下したり、充放電容量が低下したりする傾向がある。 Firing of the raw material containing the above components is carried out by heating the raw material in a non-oxidizing atmosphere. The non-oxidizing atmosphere refers to an atmosphere that does not substantially contain oxygen, and is adopted to suppress oxidative deterioration and excessive thermal decomposition of constituent components. Specifically, the heat treatment is carried out in a quartz tube in an inert gas atmosphere filled with an inert gas such as nitrogen or argon. The firing temperature is preferably 250 ° C. or higher, more preferably 300 ° C. or higher. If the temperature is lower than 250 ° C., the sulfurization reaction is insufficient and the charge / discharge capacity of the target product tends to be low. On the other hand, the firing temperature is preferably 550 ° C. or lower, more preferably 500 ° C. or lower, and even more preferably 450 ° C. or lower. If the temperature exceeds 550 ° C., the decomposition of the raw material compound increases, and the yield tends to decrease or the charge / discharge capacity tends to decrease.

焼成後に得られる硫化物中には、焼成時に昇華した硫黄が冷えて析出したもの等、いわゆる未反応硫黄が残留している。硫黄は絶縁体であるため、電極内部において電気抵抗として働き、電池性能の低下を引き起こす可能性がある。未反応硫黄はサイクル特性を低下させる要因となるため、未反応硫黄を除去する必要がある。未反応硫黄の除去方法は減圧加熱乾燥、温風乾燥、溶媒洗浄等の方法で行うことができる。 In the sulfide obtained after calcination, so-called unreacted sulfur such as sulfur sublimated during calcination that has cooled and precipitated remains. Since sulfur is an insulator, it acts as an electrical resistance inside the electrode and may cause deterioration of battery performance. Since unreacted sulfur causes a decrease in cycle characteristics, it is necessary to remove unreacted sulfur. The method for removing unreacted sulfur can be carried out by a method such as vacuum heating drying, warm air drying, and solvent washing.

得られた硫黄系活物質は、所定の粒度となるように粉砕し、分級して、電極の製造に適したサイズの粒子とすることができる。粒子の好ましい粒度分布としては、メジアン径で5〜25μm程度である。なお、二軸押出機を用いた焼成方法では、混練時のせん断によって、硫黄系活物質の製造と同時に、製造した硫黄系活物質の粉砕も行うことができる。 The obtained sulfur-based active material can be pulverized to have a predetermined particle size and classified into particles having a size suitable for manufacturing an electrode. The preferred particle size distribution of the particles is about 5 to 25 μm in median diameter. In the firing method using a twin-screw extruder, the produced sulfur-based active material can be pulverized at the same time as the sulfur-based active material is produced by shearing during kneading.

硫黄系活物質における硫黄の総含有量が多いほど、非水電解質二次電池のサイクル特性が向上する傾向にあるため、硫黄系活物質における元素分析による硫黄の総含有量は35質量%以上が好ましく、40質量%以上がより好ましい。また、硫黄系活物質における元素分析による酸素の総含有量は3質量%以上が好ましく、4質量%以上がより好ましい。 The higher the total sulfur content in the sulfur-based active material, the more the cycle characteristics of the non-aqueous electrolyte secondary battery tend to improve. Therefore, the total sulfur content in the sulfur-based active material by elemental analysis is 35% by mass or more. It is preferable, and 40% by mass or more is more preferable. Further, the total content of oxygen in the sulfur-based active material by elemental analysis is preferably 3% by mass or more, more preferably 4% by mass or more.

本実施形態に係る硫黄系活物質は、ラマンスペクトルにおいて、200cm-1〜1800cm-1の範囲で1530cm-1付近、1320cm-1付近、940cm-1付近、470cm-1付近、370cm-1付近、および310cm-1付近にピークが存在することを特徴とする。これらのラマンシフトのピークについては、前記重合体に対する硫黄原子の比率を変更した場合にも同様のピーク位置に観測されるものであり、本実施形態に係る硫黄系活物質を特徴づけるものである。上記した各ピークは、上記したピーク位置を中心として、ほぼ±8cm-1の範囲内に存在することができる。なお、前記のラマンシフトは、ナノフォトン(株)製のRAMANtouch(励起波長λ=532nm、グレーチング:1200gr/mm、分解能:1.2cm-1)で測定したものである。 Sulfur-based active material according to the present embodiment, in the Raman spectrum, 200 cm around -1 ~1800Cm 1530 cm -1 in the range of -1, 1320 cm around -1, 940 cm around -1, 470 cm around -1, 370 cm around -1, It is characterized by the presence of a peak near 310 cm -1 . These Raman shift peaks are observed at the same peak positions even when the ratio of sulfur atoms to the polymer is changed, which characterizes the sulfur-based active material according to the present embodiment. .. Each of the above peaks can exist within a range of approximately ± 8 cm -1 with the above peak position as the center. The Raman shift was measured by RAMANtouch (excitation wavelength λ = 532 nm, grating: 1200 gr / mm, resolution: 1.2 cm -1 ) manufactured by Nanophoton Corporation.

メタクリロニトリルをモノマー成分として含む重合体と硫黄とを混合して前記所定の温度で加熱すると、閉環反応が起こり、前記重合体に硫黄が取り込まれて三次元的に架橋した構造が形成される。このようにして得られた、本実施形態に係る硫黄系活物質は、充放電サイクルにおいて電解液への溶出が抑制される。このことから、該硫黄系活物質を電極に使用した非水電解質二次電池は、サイクル特性が向上する。 When a polymer containing methacrylnitrile as a monomer component and sulfur are mixed and heated at the predetermined temperature, a ring closure reaction occurs, and sulfur is incorporated into the polymer to form a three-dimensionally crosslinked structure. .. The sulfur-based active material according to the present embodiment thus obtained is suppressed from elution into the electrolytic solution in the charge / discharge cycle. From this, the non-aqueous electrolyte secondary battery using the sulfur-based active material for the electrode has improved cycle characteristics.

<電極の構成>
本実施形態に係る非水電解質二次電池用電極(正極および負極)は、一般的な非水電解質蓄電デバイスと同様の構造とすることができる。例えば、本実施形態に係る非水電解質二次電池用電極は、前記の硫黄系活物質、バインダ、導電助剤、および溶媒を混合した電極スラリーを集電体に塗布することにより作製することができる。また、その他の方法として、硫黄系活物質、導電助剤およびバインダの混合物を、乳鉢やプレス機等で混練しかつフィルム状にし、フィルム状の混合物をプレス機等で集電体に圧着することにより作製することもできる。
<Electrode configuration>
The electrodes (positive electrode and negative electrode) for the non-aqueous electrolyte secondary battery according to the present embodiment can have the same structure as a general non-aqueous electrolyte power storage device. For example, the electrode for a non-aqueous electrolyte secondary battery according to the present embodiment can be produced by applying an electrode slurry in which the above-mentioned sulfur-based active material, binder, conductive auxiliary agent, and solvent are mixed to a current collector. it can. As another method, a mixture of a sulfur-based active material, a conductive auxiliary agent and a binder is kneaded and formed into a film by a mortar or a press machine, and the film-like mixture is crimped to a current collector by a press machine or the like. It can also be produced by.

(集電体)
集電体としては、リチウムイオン二次電池用の電極として一般に用いられるものを使用することができる。集電体の具体例としては、例えば、アルミ箔、アルミニウムメッシュ、パンチングアルミニウムシート、アルミニウムエキスパンドシート等のアルミニウム系集電体;ステンレススチール箔、ステンレススチールメッシュ、パンチングステンレススチールシート、ステンレススチールエキスパンドシート等のステンレス系集電体;発泡ニッケル、ニッケル不織布等のニッケル系集電体;銅箔、銅メッシュ、パンチング銅シート、銅エキスパンドシート等の銅系集電体;チタン箔、チタンメッシュ等のチタン系集電体;カーボン不織布、カーボン織布等の炭素系集電体が挙げられる。なかでも、機械的強度、導電性、質量密度、コスト等の観点から、アルミニウム系集電体が好ましい。
(Current collector)
As the current collector, one generally used as an electrode for a lithium ion secondary battery can be used. Specific examples of the current collector include aluminum-based current collectors such as aluminum foil, aluminum mesh, punched aluminum sheet, and aluminum expanded sheet; stainless steel foil, stainless steel mesh, punched stainless steel sheet, stainless steel expanded sheet, and the like. Stainless steel current collectors; Nickel-based current collectors such as nickel foam and nickel non-woven fabrics; Copper-based current collectors such as copper foil, copper mesh, punching copper sheet, and copper expanding sheet; Titanium-based collectors such as titanium foil and titanium mesh. Current collector: Carbon-based current collectors such as carbon non-woven fabric and carbon woven fabric can be mentioned. Of these, an aluminum-based current collector is preferable from the viewpoints of mechanical strength, conductivity, mass density, cost, and the like.

集電体の形状には特に制約はないが、例えば、箔状基材、三次元基材等を用いることができる。三次元基材(発泡メタル、メッシュ、織布、不織布、エキスパンド等)を用いると、集電体との密着性に欠けるようなバインダであっても高い容量密度の電極が得られるとともに、高率充放電特性も良好になる傾向がある。 The shape of the current collector is not particularly limited, but for example, a foil-like base material, a three-dimensional base material, or the like can be used. By using a three-dimensional base material (foam metal, mesh, woven fabric, non-woven fabric, expand, etc.), an electrode with high capacitance density can be obtained even with a binder that lacks adhesion to the current collector, and the rate is high. The charge / discharge characteristics also tend to be good.

(バインダ)
バインダとしては、電極に用いられる公知のバインダが使用可能であるが、水との親和性および環境負荷低減の観点から、水性バインダが好適に用いられる。水性バインダとしては、例えば、ヒドロキシプロピルセルロース(HPC)、カルボキシメチルセルロース(CMC)、ポリビニルアルコール(PVA)、アクリル樹脂、スチレン−ブタジエンゴム(SBR)、水溶性ポリイミド(PI)、水溶性ポリアミドイミド(PAI)、メタクリル樹脂(PMA)、ポリエチレンオキシド(PEO)、ウレタン等が挙げられる。これらのバインダは1種単独で用いてもよいし、2種以上を併用してもよい。
(Binder)
As the binder, a known binder used for the electrode can be used, but an aqueous binder is preferably used from the viewpoint of affinity with water and reduction of environmental load. Examples of the aqueous binder include hydroxypropyl cellulose (HPC), carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), acrylic resin, styrene-butadiene rubber (SBR), water-soluble polyimide (PI), and water-soluble polyamide-imide (PAI). ), Methacrylic resin (PMA), polyethylene oxide (PEO), urethane and the like. These binders may be used alone or in combination of two or more.

(導電助剤)
導電助剤としては、前記の硫黄系活物質の製造において使用可能な導電助剤を同様に使用できる。
(Conductive aid)
As the conductive auxiliary agent, a conductive auxiliary agent that can be used in the production of the sulfur-based active material can be similarly used.

(溶媒)
電極スラリーの作製において、硫黄系活物質、バインダ、導電助剤等の固形成分を分散させるために使用される溶媒としては、水を含む溶媒(水系溶媒)好ましく、水が好ましい。水以外の有機溶媒を使用すると、硫黄系活物質から充放電反応に寄与する硫黄成分が溶出し、電池の充放電容量が低下する傾向がある。また、環境負荷低減の観点からも、水系溶媒が好ましい。なお、本発明の効果を損なわない範囲(例えば、水以外の有機溶媒が20質量%未満)であれば、N−メチル−2−ピロリドン(NMP)、N,N−ジメチルホルムアルデヒド、低級アルコール等の水と混和する溶媒を混合してもよい。
(solvent)
In the preparation of the electrode slurry, the solvent used for dispersing the solid components such as the sulfur-based active material, the binder, and the conductive additive is preferably a solvent containing water (aqueous solvent), and water is preferable. When an organic solvent other than water is used, the sulfur component that contributes to the charge / discharge reaction elutes from the sulfur-based active material, and the charge / discharge capacity of the battery tends to decrease. In addition, an aqueous solvent is preferable from the viewpoint of reducing the environmental load. As long as the effect of the present invention is not impaired (for example, organic solvent other than water is less than 20% by mass), N-methyl-2-pyrrolidone (NMP), N, N-dimethylformaldehyde, lower alcohol, etc. A solvent that is miscible with water may be mixed.

電極スラリー中の固形成分(特に、硫黄系活物質、バインダ、および導電助剤。以下同じ。)100質量%に対する硫黄系活物質の含有量は、85質量%以上が好ましく、87質量%以上がより好ましく、90質量%以上がさらに好ましい。また、硫黄系活物質の含有量の上限は特に制限されないが、99質量%以下が好ましく、97質量%以下がより好ましく、95質量%以下がさらに好ましい。 The content of the sulfur-based active material with respect to 100% by mass of the solid components (particularly the sulfur-based active material, the binder, and the conductive auxiliary agent; the same applies hereinafter) in the electrode slurry is preferably 85% by mass or more, preferably 87% by mass or more. More preferably, 90% by mass or more is further preferable. The upper limit of the content of the sulfur-based active material is not particularly limited, but is preferably 99% by mass or less, more preferably 97% by mass or less, and further preferably 95% by mass or less.

電極スラリー中の固形成分100質量%に対するバインダの含有量は、0.1〜10.0質量%が好ましく、0.5〜8.0質量%がより好ましく、1.0〜6.0質量%がさらに好ましく、2.0〜5.0質量%が特に好ましい。 The content of the binder in the electrode slurry with respect to 100% by mass of the solid component is preferably 0.1 to 10.0% by mass, more preferably 0.5 to 8.0% by mass, and 1.0 to 6.0% by mass. Is more preferable, and 2.0 to 5.0% by mass is particularly preferable.

電極スラリー中に導電助剤を配合する場合の固形成分100質量%に対する含有量は、0.1〜10.0質量%が好ましく、0.5〜8.0質量%がより好ましく、1.0〜6.0質量%がさらに好ましく、2.0〜5.0質量%が特に好ましい。 When the conductive additive is blended in the electrode slurry, the content with respect to 100% by mass of the solid component is preferably 0.1 to 10.0% by mass, more preferably 0.5 to 8.0% by mass, and 1.0. ~ 6.0% by mass is more preferable, and 2.0 to 5.0% by mass is particularly preferable.

(電極材料)
本実施形態に係る硫黄系活物質を正極に用いる場合、負極材料としては、例えば、金属リチウム、黒鉛等の炭素系材料;シリコン薄膜、SiO等のシリコン系材料;銅−スズやコバルト−スズ等のスズ合金系材料等の公知の負極材料が挙げられる。負極材料としてリチウムを含まない材料、例えば、炭素系材料、シリコン系材料、スズ合金系材料等を用いた場合には、デンドライトの発生による正負極間の短絡を生じにくくでき、非水電解質二次電池の長寿命化を図ることができる。なかでも、高容量の負極材料であるシリコン系材料が好ましく、電極厚さを小さくでき、体積当りの容量の点で有利となる薄膜シリコンがより好ましい。
(Electrode material)
When the sulfur-based active material according to the present embodiment is used for the positive electrode, examples of the negative electrode material include carbon-based materials such as metallic lithium and graphite; silicon-based materials such as silicon thin film and SiO; copper-tin, cobalt-tin and the like. Examples thereof include known negative electrode materials such as tin alloy-based materials. When a lithium-free material such as a carbon-based material, a silicon-based material, or a tin alloy-based material is used as the negative electrode material, a short circuit between the positive and negative electrodes due to dendrite generation can be less likely to occur, and a non-aqueous electrolyte secondary material can be used. The life of the battery can be extended. Among them, a silicon-based material which is a high-capacity negative electrode material is preferable, and thin-film silicon which can reduce the electrode thickness and is advantageous in terms of capacity per volume is more preferable.

ただし、リチウムを含まない負極材料を、本実施形態に係る正極と組み合わせて用いる場合には、正極および負極がいずれもリチウムを含まないことになるため、いずれか一方、または両方に、あらかじめリチウムを挿入するプリドープの処理が必要となる。 However, when a lithium-free negative electrode material is used in combination with the positive electrode according to the present embodiment, neither the positive electrode nor the negative electrode contains lithium. Therefore, lithium is previously added to either or both of them. It is necessary to process the pre-dope to be inserted.

プリドープの方法としては、公知の方法を利用することができる。例えば、負極にリチウムをドープする場合は、対極として金属リチウムを用いて半電池を組んで電気化学的にリチウムをドープする電解ドープ法や、金属リチウム箔を電極に貼り付けた状態で電解液中に放置して電極へのリチウムの拡散によってドープする貼り付けプリドープ法等が挙げられる。なお、正極にリチウムをプリドープする場合にも、上述した電解ドープ法を採用することができる。 As a predoping method, a known method can be used. For example, when the negative electrode is doped with lithium, an electrolytic doping method in which a semi-battery is assembled using metallic lithium as a counter electrode and the lithium is electrochemically doped, or in an electrolytic solution with a metallic lithium foil attached to the electrode. Examples thereof include a pasting pre-doping method in which the electrode is left in the electrode and doped by diffusion of lithium to the electrode. The above-mentioned electrolytic doping method can also be adopted when lithium is pre-doped into the positive electrode.

本実施形態に係る硫黄系活物質を負極に用いる場合、正極材料としては、例えば、リチウムと遷移金属の複合酸化物(特に、コバルト系複合酸化物、ニッケル系複合酸化物、マンガン系複合酸化物、コバルト・ニッケル・マンガンの3元素から成る三元系複合酸化物)が挙げられる。また、オリビン型の結晶構造を有するリチウム遷移金属リン酸塩(特にリン酸鉄リチウム、リン酸マンガンリチウム)等も使用可能である。なお、リチウムを含有する遷移金属リチウム複合酸化物系の化合物を活物質に用いて作製される電極を正極とし、本実施形態に係る電極スラリーを使用した電極を負極として組み合せる場合は、正極にリチウムが含まれるため、リチウムプリドープ処理は必ずしも必要ではない。 When the sulfur-based active material according to the present embodiment is used for the negative electrode, the positive electrode material may be, for example, a composite oxide of lithium and a transition metal (particularly, a cobalt-based composite oxide, a nickel-based composite oxide, or a manganese-based composite oxide. , A ternary composite oxide composed of three elements of cobalt, nickel and manganese). Further, a lithium transition metal phosphate having an olivine type crystal structure (particularly lithium iron phosphate, lithium manganese phosphate) and the like can also be used. When the electrode produced by using a lithium-containing transition metal lithium composite oxide-based compound as the active material is used as the positive electrode and the electrode using the electrode slurry according to the present embodiment is used as the negative electrode, the positive electrode is used. Lithium predoping is not always necessary as it contains lithium.

<電解質>
非水電解質二次電池を構成する電解質としては、イオン伝導性を有する液体または固体であればよく、公知の非水電解質二次電池に用いられる電解質と同様のものが使用できるが、電池の出力特性が高いという観点から、有機溶媒に支持電解質であるアルカリ金属塩を溶解させたものを使用することが好ましい。
<Electrolyte>
The electrolyte constituting the non-aqueous electrolyte secondary battery may be any liquid or solid having ionic conductivity, and the same electrolyte as that used for known non-aqueous electrolyte secondary batteries can be used, but the output of the battery. From the viewpoint of high characteristics, it is preferable to use an organic solvent in which an alkali metal salt as a supporting electrolyte is dissolved.

有機溶媒としては、例えばエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジメチルエーテル、γ−ブチロラクトン、アセトニトリル等の非水性溶媒から選ばれる少なくとも一種が挙げられる。好ましくは、エチレンカーボネート、プロピレンカーボネート、またはこれらの混合溶媒が挙げられる。 Examples of the organic solvent include at least one selected from non-aqueous solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dimethyl ether, γ-butyrolactone and acetonitrile. Preferably, ethylene carbonate, propylene carbonate, or a mixed solvent thereof is used.

支持電解質としては、例えばLiPF6、LiBF4、LiAsF6、LiCF3SO3、LiI、LiClO4等が挙げられ、LiPF6が好ましい。 Examples of the supporting electrolyte include LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiI, LiClO 4, and the like, and LiPF 6 is preferable.

支持電解質の濃度は0.5mol/L〜1.7mol/L程度であればよい。なお電解質は液状には限定されない。例えば非水電解質二次電池がリチウムポリマー二次電池である場合、電解質は固体状(例えば、高分子ゲル状)、あるいはイオン性液体や溶融塩等であってもよい。 The concentration of the supporting electrolyte may be about 0.5 mol / L to 1.7 mol / L. The electrolyte is not limited to liquid. For example, when the non-aqueous electrolyte secondary battery is a lithium polymer secondary battery, the electrolyte may be solid (for example, polymer gel), ionic liquid, molten salt, or the like.

非水電解質二次電池は、上述した正極、負極、電解質以外にも、セパレータ等の部材を備えても良い。セパレータは、正極と負極との間に介在して両極間のイオンの移動を許容するとともに、当該正極と負極との内部短絡を防止するために機能する。非水電解質二次電池が密閉型であれば、セパレータには電解液を保持する機能も求められる。 The non-aqueous electrolyte secondary battery may include members such as a separator in addition to the above-mentioned positive electrode, negative electrode, and electrolyte. The separator intervenes between the positive electrode and the negative electrode to allow the movement of ions between the two electrodes, and functions to prevent an internal short circuit between the positive electrode and the negative electrode. If the non-aqueous electrolyte secondary battery is a closed type, the separator is also required to have a function of holding the electrolytic solution.

セパレータとしては、例えばポリエチレン、ポリプロピレン、ポリアクリロニトリル、アラミド、ポリイミド、セルロース、ガラス等を材料とする薄肉かつ微多孔性または不織布状の膜を用いるのが好ましい。 As the separator, it is preferable to use a thin-walled, microporous or non-woven film made of, for example, polyethylene, polypropylene, polyacrylonitrile, aramid, polyimide, cellulose, glass or the like.

本実施形態に係る非水電解質二次電池の形状は特に限定されず、円筒型、積層型、コイン型、ボタン型等の種々の形状にすることができる。 The shape of the non-aqueous electrolyte secondary battery according to the present embodiment is not particularly limited, and various shapes such as a cylindrical type, a laminated type, a coin type, and a button type can be used.

本実施形態に係る電極を具備した非水電解質二次電池は、高容量かつサイクル特性に優れるため、スマートフォン、パワーツール、自動車、UPS等の電源として使用可能な電気機器に利用することができる。 Since the non-aqueous electrolyte secondary battery provided with the electrodes according to the present embodiment has a high capacity and excellent cycle characteristics, it can be used in an electric device that can be used as a power source for smartphones, power tools, automobiles, UPS, and the like.

実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited thereto.

実施例および比較例で使用した各種薬品について説明する。
重合体1:メタクリロニトリル−アクリロニトリル−メチルメタクリレート共重合体
重合体2:アクリロニトリル−メチルメタクリレート共重合体
重合体3:アクリロニトリル−ブタジエン共重合体
硫黄:鶴見化学工業(株)製の沈降硫黄
導電助剤:アセチレンブラック(デンカ(株)製のデンカブラック)
Various chemicals used in Examples and Comparative Examples will be described.
Polymer 1: Acrylonitrile-acrylonitrile-methylmethacrylate copolymer Polymer 2: Acrylonitrile-methylmethacrylate copolymer Polymer 3: Acrylonitrile-butadiene copolymer Sulfur: Precipitated sulfur conductive aid manufactured by Tsurumi Chemical Industry Co., Ltd .: Acrylonitrile black (Denka black manufactured by Denka Co., Ltd.)

[実施例1]
(原料の調製)
表1の実施例1に記載の配合に従い、重合体1および硫黄をカッターミルで細かく砕き、焼成工程に供した。
[Example 1]
(Preparation of raw materials)
According to the formulation shown in Example 1 of Table 1, the polymer 1 and sulfur were finely crushed with a cutter mill and subjected to a firing step.

(反応装置)
原料化合物の焼成には、図1に示す反応装置1を用いた。反応装置1は、原料化合物2を収容して焼成するための、有底筒状をなす石英ガラス製の、外径60mm、内径50mm、高さ300mmの反応容器3、当該反応容器3の上部開口を閉じるシリコーン製の蓋4、当該蓋4を貫通する1本のアルミナ保護管5((株)ニッカトー製の「アルミナSSA−S」、外径4mm、内径2mm、長さ250mm)と、2本のガス導入管6とガス排出管7(いずれも、(株)ニッカトー製の「アルミナSSA−S」、外径6mm、内径4mm、長さ150mm)、および反応容器3を底部側から加熱する電気炉8(ルツボ炉、開口幅φ80mm、加熱高さ100mm)を備えている。
(Reactor)
The reactor 1 shown in FIG. 1 was used for firing the raw material compound. The reaction apparatus 1 is a reaction vessel 3 having an outer diameter of 60 mm, an inner diameter of 50 mm, and a height of 300 mm, which is made of bottomed tubular quartz glass for accommodating and firing the raw material compound 2, and an upper opening of the reaction vessel 3. A silicone lid 4 and one alumina protective tube 5 (“Alumina SSA-S” manufactured by Nikkato Co., Ltd., outer diameter 4 mm, inner diameter 2 mm, length 250 mm) that penetrates the lid 4 and two Gas introduction pipe 6 and gas discharge pipe 7 (both are "alumina SSA-S" manufactured by Nikkato Co., Ltd., outer diameter 6 mm, inner diameter 4 mm, length 150 mm), and electricity for heating the reaction vessel 3 from the bottom side. It is equipped with a furnace 8 (rutsubo furnace, opening width φ80 mm, heating height 100 mm).

アルミナ保護管5は、蓋4から下方が、反応容器3の底に収容した原料化合物2に達する長さに形成され、内部に熱電対9が挿通されている。アルミナ保護管5は、熱電対9の保護管として用いられる。熱電対9の先端は、アルミナ保護管5の閉じられた先端で保護された状態で、原料化合物2に挿入されて、当該原料化合物2の温度を測定するために機能する。熱電対9の出力は、図中に実線の矢印で示すように、電気炉8の温度コントローラ10に入力され、温度コントローラ10は、この熱電対9からの入力に基づいて、電気炉8の加熱温度をコントロールするために機能する。 The alumina protective tube 5 is formed so as to have a length below the lid 4 that reaches the raw material compound 2 housed in the bottom of the reaction vessel 3, and a thermocouple 9 is inserted therein. The alumina protective tube 5 is used as a protective tube for the thermocouple 9. The tip of the thermocouple 9 is inserted into the raw material compound 2 while being protected by the closed tip of the alumina protective tube 5, and functions to measure the temperature of the raw material compound 2. The output of the thermocouple 9 is input to the temperature controller 10 of the electric furnace 8 as shown by the solid arrow in the figure, and the temperature controller 10 heats the electric furnace 8 based on the input from the thermocouple 9. It works to control the temperature.

ガス導入管6とガス排出管7は、その下端が、蓋4から下方へ3mm突出するように形成されている。 The lower ends of the gas introduction pipe 6 and the gas discharge pipe 7 are formed so as to protrude 3 mm downward from the lid 4.

ガス導入管6には、図示しないガスの供給系から、Arガスが継続的に供給される。またガス排出管7は、水酸化ナトリウム水溶液11を収容したトラップ槽12に接続されている。反応容器3からガス排出管7を通って外部へ出ようとする排気は、一旦、トラップ槽12内の水酸化ナトリウム水溶液11を通ったのちに外部へ放出される。そのため排気中に、加硫反応によって発生する硫化水素ガスが含まれていても、水酸化ナトリウム水溶液と中和されて排気からは除去される。 Ar gas is continuously supplied to the gas introduction pipe 6 from a gas supply system (not shown). Further, the gas discharge pipe 7 is connected to a trap tank 12 containing the sodium hydroxide aqueous solution 11. The exhaust gas that is going to go out from the reaction vessel 3 through the gas discharge pipe 7 is once passed through the sodium hydroxide aqueous solution 11 in the trap tank 12 and then discharged to the outside. Therefore, even if hydrogen sulfide gas generated by the vulcanization reaction is contained in the exhaust gas, it is neutralized with the aqueous sodium hydroxide solution and removed from the exhaust gas.

(焼成工程)
焼成工程は、まず原料化合物2を反応容器3の底に収容した状態で、ガスの供給系から、80mL/分の流量でAr(アルゴン)ガスを継続的に供給しながら、供給開始30分後に、電気炉8による加熱を開始した。昇温速度は150℃/時で実施した。そして原料化合物の温度が450℃に達した時点で、450℃を維持しながら2時間焼成をした。次いでArガスの流量を調整しながら、Arガス雰囲気下、反応生成物の温度を25℃まで自然冷却させたのち、該反応生成物を反応容器3から取り出した。
(Baking process)
In the firing step, first, with the raw material compound 2 housed in the bottom of the reaction vessel 3, Ar (argon) gas is continuously supplied from the gas supply system at a flow rate of 80 mL / min, and 30 minutes after the start of supply. , The heating by the electric furnace 8 was started. The heating rate was 150 ° C./hour. Then, when the temperature of the raw material compound reached 450 ° C., firing was performed for 2 hours while maintaining 450 ° C. Next, while adjusting the flow rate of Ar gas, the temperature of the reaction product was naturally cooled to 25 ° C. under an Ar gas atmosphere, and then the reaction product was taken out from the reaction vessel 3.

(未反応硫黄の除去)
焼成工程後の生成物に残存する未反応硫黄(遊離した状態の単体硫黄)を除去するために、以下の工程を行なった。すなわち、該生成物を乳鉢で粉砕し、粉砕物2gをガラスチューブオーブンに収容して、真空吸引しながら250℃で3時間加熱して、未反応硫黄が除去された(または、微量の未反応硫黄しか含まない)硫黄系活物質を得た。昇温速度は10℃/分とした。
(Removal of unreacted sulfur)
The following steps were carried out in order to remove unreacted sulfur (elemental sulfur in a free state) remaining in the product after the firing step. That is, the product was crushed in a mortar, 2 g of the crushed product was placed in a glass tube oven, and heated at 250 ° C. for 3 hours while sucking vacuum to remove unreacted sulfur (or a small amount of unreacted). A sulfur-based active material (containing only sulfur) was obtained. The heating rate was 10 ° C./min.

(ラマンスペクトル分析)
得られた硫黄系活物質について、ナノフォトン(株)製のRAMANtouchを用いて励起波長λ=532nm、グレーチング:1200gr/mm、分解能:1.2cm-1の条件でラマンスペクトル分析をした(図2)。なお、図2において縦軸は相対強度、横軸はラマンシフト(cm-1)を示す。得られた硫黄系活物質は、200cm-1〜1800cm-1の範囲で1530cm-1付近、1320cm-1付近、940cm-1付近、470cm-1付近、370cm-1付近、および310cm-1付近にピークが観測された。
(Raman spectrum analysis)
The obtained sulfur-based active material was subjected to Raman spectral analysis under the conditions of excitation wavelength λ = 532 nm, grating: 1200 gr / mm, and resolution: 1.2 cm -1 using RAMANtouch manufactured by Nanophoton Corporation (Fig. 2). ). In FIG. 2, the vertical axis represents the relative intensity and the horizontal axis represents the Raman shift (cm -1 ). The resulting sulfur-based active material, 200 cm -1 ~1800Cm around 1530 cm -1 in the range of -1, 1320 cm around -1, 940 cm around -1, 470 cm around -1, 370 cm around -1, and 310cm around -1 A peak was observed.

(元素分析)
炭素、水素、および窒素については、Elementar社製の全自動元素分析装置vario MICRO cubeを用いて測定した質量から、硫黄系活物質の総量中に占める質量比(%)を算出した。また硫黄は、Dionex社製のイオンクロマトグラフ装置DX−320に、同社製のカラム(IonPac AS12A)を用いて測定した質量から、硫黄系活物質の総量中に占める質量比(%)を算出した。また酸素は、堀場製作所(株)製のEMGA−920を用い、不活性ガス中インパルス加熱・融解−NDIR法により定量した。
(Elemental analysis)
For carbon, hydrogen, and nitrogen, the mass ratio (%) to the total amount of the sulfur-based active material was calculated from the mass measured using a fully automatic elemental analyzer vario MICRO cube manufactured by Elementar. For sulfur, the mass ratio (%) of the total amount of sulfur-based active material was calculated from the mass measured by the ion chromatograph device DX-320 manufactured by Dionex using the column (IonPac AS12A) manufactured by Dionex. .. Oxygen was quantified by the impulse heating / melting-NDIR method in an inert gas using EMGA-920 manufactured by HORIBA, Ltd.

<リチウムイオン二次電池の作製>
〔1〕正極
上記の硫黄系活物質、導電助剤、および水性アクリル樹脂を90:5:5(質量比)の割合で秤量し、容器に入れ、分散剤にmilliQ水を使用して自転公転ミキサー((株)シンキー製のARE−250)を用いて攪拌、混合を行い、均一なスラリーを作製した。作製したスラリーを厚さ20μmのアルミ箔上に、スリット幅60μmのアプリケーターを使用して塗工し、ロールプレスを用いて圧縮した正極を120℃で3時間、乾燥機で加熱し、乾燥後、φ11に打ち抜くことでリチウムイオン二次電池用の正極を得た。その後正極の重量を測定し、上述の比率から電極中の活物質量を算出した。
<Manufacturing of lithium ion secondary battery>
[1] Positive electrode The above sulfur-based active material, conductive auxiliary agent, and aqueous acrylic resin are weighed at a ratio of 90: 5: 5 (mass ratio), placed in a container, and rotated and revolved using milliQ water as a dispersant. A uniform slurry was prepared by stirring and mixing using a mixer (ARE-250 manufactured by Shinky Co., Ltd.). The prepared slurry was applied onto an aluminum foil having a thickness of 20 μm using an applicator having a slit width of 60 μm, and the positive electrode compressed by a roll press was heated at 120 ° C. for 3 hours in a dryer. A positive electrode for a lithium ion secondary battery was obtained by punching to φ11. After that, the weight of the positive electrode was measured, and the amount of active material in the electrode was calculated from the above ratio.

〔2〕負極
負極としては、金属リチウム箔(直径14mm、厚さ500μmの円盤状、本城金属(株)製)を用いた。
[2] Negative electrode As the negative electrode, a metallic lithium foil (a disk shape having a diameter of 14 mm and a thickness of 500 μm, manufactured by Honjo Metal Co., Ltd.) was used.

〔3〕電解液
電解液としては、エチレンカーボネートとジエチルカーボネートとの混合溶媒に、LiPF6を溶解した非水電解質を用いた。エチレンカーボネートとジエチルカーボネートとは体積比1:1で混合した。電解液中のLiPF6の濃度は、1.0mol/Lであった。
[3] Electrolyte As the electrolyte, a non-aqueous electrolyte in which LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate was used. Ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1. The concentration of LiPF 6 in the electrolytic solution was 1.0 mol / L.

〔4〕電池
〔1〕、〔2〕で得られた正極および負極を用いて、コイン電池を製作した。詳しくは、ドライルーム内で、セパレータ(Celgard社製Celgard2400、厚さ25μmのポリプロピレン微孔質膜)と、ガラス不織布フィルタ(厚さ440μm、ADVANTEC社製、GA100)とを正極と負極との間に挟装して、電極体電池とした。この電極体電池を、ステンレス容器からなる電池ケース(CR2032型コイン電池用部材、宝泉(株)製)に収容した。電池ケースには〔3〕で得られた電解液を注入した。電池ケースをカシメ機で密閉して、実施例1のコイン型リチウムイオン二次電池を作製した。
[4] Batteries Coin batteries were produced using the positive and negative electrodes obtained in [1] and [2]. Specifically, in a dry room, a separator (Celgard 2400 manufactured by Celgard, polypropylene microporous film having a thickness of 25 μm) and a glass non-woven fabric filter (thickness 440 μm, manufactured by ADVANTEC, GA100) are placed between a positive electrode and a negative electrode. It was sandwiched to form an electrode body battery. This electrode body battery was housed in a battery case (CR2032 type coin battery member, manufactured by Hosen Co., Ltd.) made of a stainless steel container. The electrolytic solution obtained in [3] was injected into the battery case. The battery case was sealed with a caulking machine to produce the coin-type lithium ion secondary battery of Example 1.

[実施例2]
原料にさらに導電助剤を配合した以外は、実施例1と同様に電池作製を行った。
[Example 2]
A battery was produced in the same manner as in Example 1 except that a conductive auxiliary agent was further added to the raw material.

[比較例1,2]
重合体1に代えて重合体2または重合体3を使用した以外は、実施例1と同様に電池作製を行った。
[Comparative Examples 1 and 2]
A battery was produced in the same manner as in Example 1 except that the polymer 2 or the polymer 3 was used instead of the polymer 1.

[試験方法]
<充放電容量測定試験>
各実施例および比較例で作製したコイン型リチウムイオン二次電池について、試験温度30℃の条件下で、硫黄系活物質1gあたり50mAに相当する電流値の充放電をさせた。放電終止電圧は1.0V、充電終止電圧は3.0Vとした。また充放電は30回繰り返し、各回の放電容量(mAh/g)を測定するとともに、2回目の放電容量(mAh/g)を初期容量とした。結果を表1に示す。なお、初期容量が大きいほど、リチウムイオン二次電池は充放電容量が大きく好ましいと評価できる。
[Test method]
<Charge / discharge capacity measurement test>
The coin-type lithium ion secondary batteries produced in each Example and Comparative Example were charged and discharged with a current value corresponding to 50 mA per 1 g of the sulfur-based active material under the condition of a test temperature of 30 ° C. The discharge end voltage was 1.0 V, and the charge end voltage was 3.0 V. The charging / discharging was repeated 30 times, the discharge capacity (mAh / g) of each time was measured, and the second discharge capacity (mAh / g) was used as the initial capacity. The results are shown in Table 1. It can be evaluated that the larger the initial capacity, the larger the charge / discharge capacity of the lithium ion secondary battery, which is preferable.

また、10回目の放電容量DC10(mAh/g)と30回目の放電容量DC30(mAh/g)から、下記式により容量維持率(%)を求めた。結果を表1に示す。なお、容量維持率が大きいほど、リチウムイオン二次電池はサイクル特性に優れているといえる。
(容量維持率(%))=(DC30(mAh/g))/(DC10(mAh/g))×100
Further, the capacity retention rate (%) was calculated from the 10th discharge capacity DC 10 (mAh / g) and the 30th discharge capacity DC 30 (mAh / g) by the following formula. The results are shown in Table 1. It can be said that the larger the capacity retention rate, the better the cycle characteristics of the lithium ion secondary battery.
(Capacity retention rate (%)) = (DC 30 (mAh / g)) / (DC 10 (mAh / g)) × 100

表1の結果より、本発明のメタクリロニトリルをモノマー成分として含む重合体と硫黄とが複合した活物質を電極材料として使用したリチウムイオン二次電池は、優れた充放電容量およびサイクル特性を有していることがわかる。 From the results shown in Table 1, the lithium ion secondary battery using the active material in which the polymer containing methacrylonitrile as a monomer component and sulfur in combination as an electrode material has excellent charge / discharge capacity and cycle characteristics. You can see that it is doing.

本発明の硫黄系活物質を電極材料として使用することにより、安価で充放電容量が大きくかつサイクル特性に優れた非水電解質二次電池を製造することができる。 By using the sulfur-based active material of the present invention as an electrode material, it is possible to manufacture a non-aqueous electrolyte secondary battery which is inexpensive, has a large charge / discharge capacity, and has excellent cycle characteristics.

1 反応装置
2 原料化合物
3 反応容器
4 シリコーン製の蓋
5 アルミナ保護管
6 ガス導入管
7 ガス排出管
8 電気炉
9 熱電対
10 温度コントローラ
11 水酸化ナトリウム水溶液
12 トラップ槽
1 Reaction device 2 Raw material compound 3 Reaction vessel 4 Silicone lid 5 Alumina protective tube 6 Gas introduction tube 7 Gas discharge tube 8 Electric furnace 9 Thermocouple 10 Temperature controller 11 Sodium hydroxide aqueous solution 12 Trap tank

Claims (11)

メタクリロニトリルをモノマー成分として含む重合体と硫黄とを含む原料を焼成してなる硫黄系活物質。 A sulfur-based active material obtained by calcining a polymer containing methacrylnitrile as a monomer component and a raw material containing sulfur. 前記重合体が、メタクリロニトリルを含む2種以上のモノマー成分を含む共重合体である、請求項1記載の硫黄系活物質。 The sulfur-based active material according to claim 1, wherein the polymer is a copolymer containing two or more kinds of monomer components containing methacrylonitrile. 前記重合体が、メタクリロニトリル、アクリロニトリル、およびその他の(メタ)アクリルモノマーをモノマー成分として含む共重合体である、請求項1または2記載の硫黄系活物質。 The sulfur-based active material according to claim 1 or 2, wherein the polymer is a copolymer containing methacrylonitrile, acrylonitrile, and other (meth) acrylic monomer as a monomer component. その他の(メタ)アクリルモノマーが、(メタ)アクリル酸エステルである、請求項3記載の硫黄系活物質。 The sulfur-based active material according to claim 3, wherein the other (meth) acrylic monomer is a (meth) acrylic acid ester. ラマンスペクトルにおいて、1530cm-1付近、1320cm-1付近、940cm-1付近、470cm-1付近、370cm-1付近、および310cm-1付近にピークが存在することを特徴とする、請求項1〜4のいずれか一項に記載の硫黄系活物質。 In the Raman spectrum and 1530cm around -1, 1320 cm around -1, 940 cm around -1, 470 cm around -1, characterized 370cm around -1, and 310cm around -1 that peaks are present, according to claim 1 to 4 The sulfur-based active material according to any one of the above. 原料を焼成する温度が250〜550℃である、請求項1〜5のいずれか一項に記載の硫黄系活物質。 The sulfur-based active material according to any one of claims 1 to 5, wherein the temperature at which the raw material is fired is 250 to 550 ° C. 原料がさらに導電助剤を含む、請求項1〜6のいずれか一項に記載の硫黄系活物質。 The sulfur-based active material according to any one of claims 1 to 6, wherein the raw material further contains a conductive auxiliary agent. 前記導電助剤が導電性炭素材料である、請求項7記載の硫黄系活物質。 The sulfur-based active material according to claim 7, wherein the conductive auxiliary agent is a conductive carbon material. 請求項1〜8のいずれか一項に記載の硫黄系活物質を含んでなる非水電解質二次電池用電極。 An electrode for a non-aqueous electrolyte secondary battery comprising the sulfur-based active material according to any one of claims 1 to 8. 請求項9に記載の電極を具備した非水電解質二次電池。 A non-aqueous electrolyte secondary battery comprising the electrode according to claim 9. 硫黄系活物質の製造方法であって、
メタクリロニトリルをモノマー成分として含む重合体と硫黄とを含む原料を焼成する工程を含む製造方法。
It is a method for producing sulfur-based active materials.
A production method including a step of calcining a polymer containing methacrylnitrile as a monomer component and a raw material containing sulfur.
JP2019229492A 2019-03-29 2019-12-19 Sulfur-based active material Active JP7404852B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020200000655A KR20200115052A (en) 2019-03-29 2020-01-03 Sulfur-based active materials
CN202010035284.3A CN111755687A (en) 2019-03-29 2020-01-14 Sulfur-based active material
EP20162985.4A EP3716363B1 (en) 2019-03-29 2020-03-13 Sulfur-based active material
US16/825,880 US11069893B2 (en) 2019-03-29 2020-03-20 Sulfur-based active material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019068452 2019-03-29
JP2019068452 2019-03-29

Publications (2)

Publication Number Publication Date
JP2020167144A true JP2020167144A (en) 2020-10-08
JP7404852B2 JP7404852B2 (en) 2023-12-26

Family

ID=72717409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019229492A Active JP7404852B2 (en) 2019-03-29 2019-12-19 Sulfur-based active material

Country Status (2)

Country Link
JP (1) JP7404852B2 (en)
KR (1) KR20200115052A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113860A1 (en) * 2020-11-30 2022-06-02 日本ゼオン株式会社 Binder composition for nonaqueous lithium ion secondary battery electrodes, method for producing same, binder solution for nonaqueous lithium ion secondary battery electrodes, slurry composition for nonaqueous lithium ion secondary battery electrodes, electrode for nonaqueous lithium ion secondary batteries, and nonaqueous lithium ion secondary battery
WO2022254962A1 (en) 2021-06-02 2022-12-08 住友ゴム工業株式会社 Sulfur-based active material, electrode, lithium ion secondary battery, and production method
WO2023189851A1 (en) * 2022-03-31 2023-10-05 住友ゴム工業株式会社 Sulfur-based active material, electrode, and lithium ion secondary battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001047762A (en) 1999-08-10 2001-02-20 Sumitomo Rubber Ind Ltd Printing blanket and manufacture thereof
JP4961403B2 (en) 2008-08-08 2012-06-27 株式会社大林組 Building evaluation method
CN102160217B (en) 2008-10-17 2014-02-05 独立行政法人产业技术综合研究所 Sulfur-modified polyacrylonitrile, manufacturing method therefor, and application thereof
JP2013191327A (en) 2012-03-13 2013-09-26 Toyota Industries Corp Nonaqueous electrolyte secondary battery and vehicle
JP6115914B2 (en) 2013-03-13 2017-04-19 国立研究開発法人産業技術総合研究所 Sulfur-modified nitrile group-containing copolymer resin and use thereof
JP6132102B2 (en) 2013-10-04 2017-05-24 住友ゴム工業株式会社 Method for producing sulfur-based positive electrode active material and method for producing lithium ion secondary battery
JP6731663B2 (en) 2015-09-02 2020-07-29 住友ゴム工業株式会社 Sulfur-based positive electrode active material, positive electrode and lithium ion secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113860A1 (en) * 2020-11-30 2022-06-02 日本ゼオン株式会社 Binder composition for nonaqueous lithium ion secondary battery electrodes, method for producing same, binder solution for nonaqueous lithium ion secondary battery electrodes, slurry composition for nonaqueous lithium ion secondary battery electrodes, electrode for nonaqueous lithium ion secondary batteries, and nonaqueous lithium ion secondary battery
WO2022254962A1 (en) 2021-06-02 2022-12-08 住友ゴム工業株式会社 Sulfur-based active material, electrode, lithium ion secondary battery, and production method
KR20230170729A (en) 2021-06-02 2023-12-19 스미토모 고무 코교 카부시키카이샤 Sulfur-based active materials, electrodes and lithium-ion secondary batteries and manufacturing methods
WO2023189851A1 (en) * 2022-03-31 2023-10-05 住友ゴム工業株式会社 Sulfur-based active material, electrode, and lithium ion secondary battery

Also Published As

Publication number Publication date
KR20200115052A (en) 2020-10-07
JP7404852B2 (en) 2023-12-26

Similar Documents

Publication Publication Date Title
EP3139427B1 (en) Sulfur-based positive-electrode active material, positive electrode and lithium-ion secondary battery
JP7404852B2 (en) Sulfur-based active material
WO2019107463A1 (en) Conductive material paste for electrochemical elements, slurry composition for electrochemical element positive electrodes and method for producing same, positive electrode for electrochemical elements, and electrochemical element
JP7245465B2 (en) Electrode slurry for non-aqueous electrolyte secondary batteries
JP7163983B2 (en) Organic sulfur material, electrode, lithium ion secondary battery, and manufacturing method
US11094939B2 (en) Sulfur-based active material
US20210367238A1 (en) Sulfur-based active material, electrode, non-aqueous electrolyte secondary battery and producing methods thereof
US11069893B2 (en) Sulfur-based active material
JP7404851B2 (en) Sulfur-based active material
JP7136244B2 (en) Organic sulfur material, electrode, lithium ion secondary battery, and manufacturing method
US11876228B2 (en) Organic sulfur material, electrode, and lithium-ion secondary batteries, and producing method
US20210324115A1 (en) Organic sulfur material, electrode, and lithium-ion secondary batteries, and producing method
JP7264306B1 (en) Electrodes and lithium-ion secondary batteries
JP7318789B1 (en) Electrodes and lithium-ion secondary batteries
JP2020205149A (en) Method for cleaning and processing sulfur-based active material
WO2023189852A1 (en) Method for producing sulfur-based active material
WO2023189851A1 (en) Sulfur-based active material, electrode, and lithium ion secondary battery
WO2023189850A1 (en) Sulfur-based active material, electrode, lithium ion secondary battery and production method
WO2022254962A1 (en) Sulfur-based active material, electrode, lithium ion secondary battery, and production method
JP7004969B2 (en) Electrode for lithium ion secondary battery
JP2023068392A (en) Electrode active material, electrode, and lithium ion secondary battery
JP2023041370A (en) Manufacturing methods of sulfur-based active material, electrode and lithium ion secondary battery, modified polymer, sulfur-based active material, electrode and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231127

R150 Certificate of patent or registration of utility model

Ref document number: 7404852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150