JP2020167014A - Material of positive electrode for lithium ion secondary battery, additive for material of positive electrode for lithium ion secondary battery, lithium ion secondary battery and production method of material of positive electrode for lithium ion secondary battery - Google Patents

Material of positive electrode for lithium ion secondary battery, additive for material of positive electrode for lithium ion secondary battery, lithium ion secondary battery and production method of material of positive electrode for lithium ion secondary battery Download PDF

Info

Publication number
JP2020167014A
JP2020167014A JP2019065778A JP2019065778A JP2020167014A JP 2020167014 A JP2020167014 A JP 2020167014A JP 2019065778 A JP2019065778 A JP 2019065778A JP 2019065778 A JP2019065778 A JP 2019065778A JP 2020167014 A JP2020167014 A JP 2020167014A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium ion
secondary battery
electrode material
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019065778A
Other languages
Japanese (ja)
Other versions
JP7257847B2 (en
JP2020167014A5 (en
Inventor
祐耶 染野
Yuya Someno
祐耶 染野
恭平 北川
Kyohei Kitagawa
恭平 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nihon Denko Co Ltd
Original Assignee
Shin Nihon Denko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nihon Denko Co Ltd filed Critical Shin Nihon Denko Co Ltd
Priority to JP2019065778A priority Critical patent/JP7257847B2/en
Publication of JP2020167014A publication Critical patent/JP2020167014A/en
Publication of JP2020167014A5 publication Critical patent/JP2020167014A5/ja
Priority to JP2023015329A priority patent/JP2023052895A/en
Application granted granted Critical
Publication of JP7257847B2 publication Critical patent/JP7257847B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a material of a positive electrode for a lithium ion secondary battery for obtaining a lithium ion secondary battery having high output characteristics (load characteristics/rate characteristics), and to provide a production method of the material.SOLUTION: The material of a positive electrode for a lithium ion secondary battery is provided in which cation B having an ion radius larger than that of a lithium ion and a valence of bivalence or more is present between any of LiCoO2-based, Li(Ni,Co,Al)O2-based and Li(Ni,Co,Mn)O2-based positive electrode material layers having a laminar crystal structure of the lithium ion secondary battery, preferably cation A having ion radius smaller than that of the lithium ion and a valence of bivalence or more is present. The production method of the material of a positive electrode for a lithium ion secondary battery is also provided in which a compound oxide including cations A and B is produced, a positive electrode material having laminar crystal structure is produced, the compound oxide and the positive electrode material are mixed, and the cations A and B are replaced between the layers of the positive electrode material.SELECTED DRAWING: Figure 2

Description

本発明は、リチウムイオン二次電池正極材料とその製造に使用する添加剤及びこの添加剤を用いたリチウムイオン二次電池正極材料の製造方法、さらに、この正極材料を備えたリチウムイオン二次電池に関する。 The present invention relates to a lithium ion secondary battery positive electrode material, an additive used for manufacturing the same, a method for manufacturing a lithium ion secondary battery positive electrode material using the additive, and a lithium ion secondary battery provided with the positive electrode material. Regarding.

リチウムイオン二次電池は起電力やエネルギー密度の点で優れており、小型ビデオカメラ、携帯電話、ノートパソコンなどの携帯電子・通信機器用の電池として広く使用されている。リチウムイオン二次電池は一般的に正極活物質の特性が電池の特性を決めていると言われており、中でも層状の結晶構造を有する正極活物質はその容量の大きさから、携帯用の電子機器のみならず自動車用、蓄電設備などの移動体・大型向けリチウムイオン二次電池に使用されている。これらの分野向けではその使用方法から特に出力特性 (負荷特性・レート特性) に対する技術の要求が高い。 Lithium-ion secondary batteries are excellent in electromotive force and energy density, and are widely used as batteries for portable electronic and communication devices such as small video cameras, mobile phones, and laptop computers. In lithium-ion secondary batteries, it is generally said that the characteristics of the positive electrode active material determine the characteristics of the battery. Among them, the positive electrode active material having a layered crystal structure is a portable electron due to its large capacity. It is used not only for equipment but also for automobiles, power storage equipment, and other mobile and large-sized lithium-ion secondary batteries. For these fields, there is a high demand for technology for output characteristics (load characteristics / rate characteristics) due to its usage.

例えば層状の結晶構造を有する正極材料の出力特性向上に関する従来技術には次のようなものが有る。
特許文献1には、LiCo1−y Me2−a(Meは、V、Cu、Zr、Zn、Mg、Al又はFeから選ばれる1種又は2種以上の金属元素を表す。xは、0.9≦x≦1.1、yは0≦y≦0.01、aは−0.1≦a≦0.1の値をとる。)で表される複合酸化物の粒子表面に、Mg、Ti又はZrから選ばれる少なくとも1種以上の金属酸化物を乾式混合し、200〜700℃で加熱処理して前記複合酸化物の粒子表面に前記金属酸化物を付着させることにより出力特性を向上させる技術が開示されているが、試験は1C(1時間で充電、放電を繰り返す試験モード)までで急速充電が必要とされる近年のリチウムイオン二次電池の技術要求にこたえていない。
For example, there are the following conventional techniques for improving the output characteristics of a positive electrode material having a layered crystal structure.
Patent Document 1, Li x Co 1-y Me y O 2-a (Me represents V, Cu, Zr, Zn, Mg, one or more metal elements selected from Al, or Fe. x is 0.9 ≦ x ≦ 1.1, y is 0 ≦ y ≦ 0.01, and a is −0.1 ≦ a ≦ 0.1). By dry-mixing at least one metal oxide selected from Mg, Ti or Zr on the surface and heat-treating at 200 to 700 ° C. to attach the metal oxide to the particle surface of the composite oxide. Although the technology for improving the output characteristics is disclosed, the test meets the recent technical demands of lithium ion secondary batteries that require rapid charging up to 1C (test mode in which charging and discharging are repeated in 1 hour). Absent.

また、特許文献2には、ニッケル・コバルト・マンガン系化合物粒子粉末、ジルコニウム原料、リチウム原料を混合、焼成して得られるZr化合物が粒子表面に存在しており、且つ、前記Zr化合物の化学式がLi(Zr1−y)O(x、y及びzは、2.0≦x≦8.0、0≦y≦1.0、2.0≦z≦6.0)で表され、Zr含有量が0.05〜1.0wt%であるリチウム複合酸化物粒子粉末を正極活物質として用いることにより、高温での電気抵抗が低く、高温での高温レート特性に優れたリチウムイオン二次電池を製造する技術が開示されているが、リチウムイオン二次電池が最も使用される室温ではレート特性(出力特性)は向上していない。 Further, in Patent Document 2, a Zr compound obtained by mixing and firing a nickel-cobalt-manganese compound particle powder, a zirconium raw material, and a lithium raw material is present on the particle surface, and the chemical formula of the Zr compound is described. Li x (Zr 1-y A y ) O z (x, y and z are 2.0 ≦ x ≦ 8.0, 0 ≦ y ≦ 1.0, 2.0 ≦ z ≦ 6.0) By using lithium composite oxide particle powder having a Zr content of 0.05 to 1.0 wt% as the positive electrode active material, lithium ions have low electrical resistance at high temperatures and excellent high-temperature rate characteristics at high temperatures. Although a technique for manufacturing a secondary battery is disclosed, the rate characteristic (output characteristic) is not improved at room temperature where a lithium ion secondary battery is most used.

また、特許文献3には、Li1.03 CoO2.02粒子に、リチウムと、ニッケルおよびマンガンのうちの少なくとも一方の被覆元素とを含む酸化物よりなる被覆層と、この被覆層の少なくとも一部にイットリウムを含む酸化物よりなる表面層とを備えることを特徴とする正極活物質を製造する技術が開示されている。
この特許文献ではサイクル特性改善のみ示されており、出力特性については記載が無く、示唆も無い。
Further, in Patent Document 3, Li 1.03 CoO 2.02 particles are provided with a coating layer made of an oxide containing lithium and at least one coating element of nickel and manganese, and yttrium is added to at least a part of the coating layer. A technique for producing a positive electrode active material, which comprises a surface layer made of an oxide containing the mixture, is disclosed.
In this patent document, only the improvement of the cycle characteristics is shown, and the output characteristics are not described or suggested.

また、特許文献4には、リチウムイオン二次電池に用いられる正極活物質で、
少なくともリチウムとニッケルとを含む層状の結晶構造を有するリチウム遷移金属複合酸化物をコア粒子とし、コア粒子の表面の少なくとも一部に、リチウムとイットリウムとジルコニウムとを含む複合酸化物から構成された被覆層が形成されており、25℃における電池抵抗を軽減する技術が開示されている。
当該技術では、リチウム遷移金属複合酸化物の結晶格子内にYまたはZrを存在させた場合、十分な効果を得ることができない。
Further, Patent Document 4 describes a positive electrode active material used in a lithium ion secondary battery.
A lithium transition metal composite oxide having a layered crystal structure containing at least lithium and nickel is used as a core particle, and at least a part of the surface of the core particle is coated with a composite oxide containing lithium, yttrium, and zirconium. A layer is formed and a technique for reducing battery resistance at 25 ° C. is disclosed.
In this technique, when Y or Zr is present in the crystal lattice of the lithium transition metal composite oxide, a sufficient effect cannot be obtained.

また、特許文献5には、層状の結晶構造を有し、(Li1−xMg1+m(Co1−y 1+n (但し、Mは、少なくともMnを含む単一元素又は元素群を表し、Mは、Na、Sr、Ba及びFからなる群より選択される少なくとも1種の元素を含む単一元素又は元素群を表し、0.001≦x≦0.08、0.001≦y≦0.08、0≦z≦0.05、−0.05≦m≦0.05、及び、−0.05≦n≦0.05である。)で表されるリチウム・コバルト含有複合酸化物及びこれを活物質として含む非水二次電池用電極が開示されており、このリチウム・コバルト含有複合酸化物は、高電圧下でも結晶構造が安定であることから、高容量で、高電圧下でも充放電サイクル特性に優れた非水二次電池が得られるとされている。
当該技術は結晶構造の安定化は述べられているが、層間を調整することについては記述がない。
また、サイクル特性改善のみ示されており、出力特性については記載が無い。
Further, Patent Document 5 has a layered crystal structure, and (Li 1-x Mg x ) 1 + m (Co 1-y M 1 y ) 1 + n M 2 z O 2 (where M 1 has at least Mn. Represents a single element or group of elements containing, M 2 represents a single element or group of elements containing at least one element selected from the group consisting of Na, Sr, Ba and F, 0.001 ≦ x ≦ 0.08, 0.001 ≦ y ≦ 0.08, 0 ≦ z ≦ 0.05, −0.05 ≦ m ≦ 0.05, and −0.05 ≦ n ≦ 0.05). A lithium-cobalt-containing composite oxide represented and an electrode for a non-aqueous secondary battery containing the same as an active material are disclosed, and the lithium-cobalt-containing composite oxide has a stable crystal structure even under high voltage. Therefore, it is said that a non-aqueous secondary battery having a high capacity and excellent charge / discharge cycle characteristics can be obtained even under a high voltage.
The technique states that the crystal structure is stabilized, but does not describe adjusting the layers.
Moreover, only the improvement of the cycle characteristics is shown, and the output characteristics are not described.

また、特許文献6には、Cr、Mn、Fe、Ni、Zr、Ti、Mo、V、Al、BおよびGeよりなる群から選択される少なくとも1種の元素と、Mgとを含む層状の結晶構造を有するリチウム・コバルト含有複合酸化物からなる正極活物質の表面に、前記活物質とは異なる組成のリチウム、アルミニウムおよびホウ素を含有する酸化物からなる被覆層を形成した非水電解質二次電池用正極材料が開示されており、これを正極とする非水電解質二次電池は、放電時に高い電圧領域で大きな容量を引き出すことができ、かつ、すぐれた充放電サイクル特性を示すとされている。
当該技術は結晶構造の安定化は述べられているが、層間を調整することについては記述がない。
また、サイクル特性改善のみ示されており、出力特性については記載が無い。
Further, Patent Document 6 describes a layered crystal containing Mg and at least one element selected from the group consisting of Cr, Mn, Fe, Ni, Zr, Ti, Mo, V, Al, B and Ge. A non-aqueous electrolyte secondary battery in which a coating layer made of an oxide containing lithium, aluminum and boron having a composition different from that of the active material is formed on the surface of a positive electrode active material made of a lithium-cobalt-containing composite oxide having a structure. A positive electrode material for use is disclosed, and it is said that a non-aqueous electrolyte secondary battery using this as a positive electrode can draw out a large capacity in a high voltage region at the time of discharging and exhibits excellent charge / discharge cycle characteristics. ..
The technique states that the crystal structure is stabilized, but does not describe adjusting the layers.
Moreover, only the improvement of the cycle characteristics is shown, and the output characteristics are not described.

特開2003−221234号公報Japanese Unexamined Patent Publication No. 2003-221234 特開2013−193888号公報Japanese Unexamined Patent Publication No. 2013-193888 特開2007−242318号公報JP-A-2007-242318 特開2018−55808号公報JP-A-2018-55808 特開2015−156363号公報JP-A-2015-156363 特開2015−213038号公報Japanese Unexamined Patent Publication No. 2015-21038

本発明では、上記問題点に鑑みてなされたものであり、充放電時の電流値を増加させても、充放電容量が落ちにくい出力特性に優れた非水電解質二次電池用正極材料及びその製造方法を提供することを目的とする。また、本発明では、充放電時の電流値を増加させても、充放電容量が落ちにくい出力特性に優れた非水電解質二次電池用正極材料を製造するための、複合酸化物を提供することをも目的とする。 The present invention has been made in view of the above problems, and is a positive electrode material for a non-aqueous electrolyte secondary battery having excellent output characteristics in which the charge / discharge capacity does not easily decrease even if the current value during charge / discharge is increased, and a positive electrode material thereof. The purpose is to provide a manufacturing method. Further, the present invention provides a composite oxide for producing a positive electrode material for a non-aqueous electrolyte secondary battery, which has excellent output characteristics in which the charge / discharge capacity does not easily decrease even if the current value during charge / discharge is increased. It also aims at that.

本発明者は、上記課題を解決すべく、種々検討し、リチウムイオン二次電池に用いられる正極材料であって、層状の結晶構造を有する正極材料の層間に、リチウムイオンよりも大きなイオン半径であって且つ価数が2価以上であるカチオンBをリチウムイオンと置換することで、リチウム層間が広がった層状の結晶構造を有する正極材料が出力特性を改善するのに極めて効果的であることを見出し、本発明を完成した。 The present inventor has studied variously in order to solve the above problems, and has an ionic radius larger than that of lithium ions between the layers of the positive electrode material used for the lithium ion secondary battery and which has a layered crystal structure. By substituting the cation B having a valence of 2 or more with lithium ions, the positive electrode material having a layered crystal structure in which the lithium layers are widened is extremely effective in improving the output characteristics. The heading, the present invention was completed.

本発明は、上記知見に基づいて完成したもので、その発明の要旨は次の通りである。
(1)リチウムイオン二次電池に用いられる正極材料であって、層状の結晶構造を有する正極材料の層間に、リチウムイオンよりも大きなイオン半径であって且つ価数が2価以上であるカチオンBが存在していることを特徴とするリチウムイオン二次電池用正極材料。
ここで、リチウムイオンの半径とは、shanonのイオン半径として、「Shannon et al., Acta A 32(1976)751」で報告されているイオン半径の6配位の値である0.76Åをいう。以後も同じ。
The present invention has been completed based on the above findings, and the gist of the invention is as follows.
(1) Cation B which is a positive electrode material used for a lithium ion secondary battery and has an ion radius larger than that of lithium ions and a valence of divalent or higher between layers of the positive electrode material having a layered crystal structure. A positive electrode material for a lithium ion secondary battery, characterized in the presence of.
Here, the radius of the lithium ion means 0.76 Å, which is the 6-coordinated value of the ionic radius reported in "Shannon et al., Acta A 32 (1976) 751" as the ionic radius of shanon. .. The same applies thereafter.

(2)リチウムイオン二次電池に用いられる正極材料であって、層状の結晶構造を有する正極材料の層間に、リチウムイオンよりも小さなイオン半径であって且つ価数が2価以上であるカチオンAとリチウムイオンよりも大きなイオン半径であって且つ価数が2価以上であるカチオンBが存在していることを特徴とする(1)に記載のリチウムイオン二次電池正極材料。 (2) Cation A which is a positive electrode material used for a lithium ion secondary battery and has an ionic radius smaller than that of lithium ion and a valence of divalent or higher between layers of the positive electrode material having a layered crystal structure. The lithium ion secondary battery positive electrode material according to (1), wherein a cation B having an ionic radius larger than that of lithium ion and having a valence of divalent or higher is present.

(3)リチウムイオンよりも大きなイオン半径を持つカチオンBが、Ca2+,Sr2+,Ba2+,In3+,Y3+,La3+,Ce3+,Ce4+,Pr3+,Nd3+,Sm3+,Eu3+,Gd3+,Tb3+,Dy3+,Ho3+,Er3+,Tm3+,Yb3+,Lu3+,Bi3+から選ばれた1種又は2種以上であることを特徴とする(1)又は(2)に記載のリチウムイオン二次電池正極材料。 (3) The cation B having an ionic radius larger than that of lithium ion is Ca 2+ , Sr 2+ , Ba 2+ , In 3+ , Y 3+ , La 3+ , Ce 3+ , Ce 4+ , Pr 3+ , Nd 3+ , Sm 3+ , Eu. It is characterized by having one or more selected from 3+ , Gd 3+ , Tb 3+ , Dy 3+ , Ho 3+ , Er 3+ , Tm 3+ , Yb 3+ , Lu 3+ , Bi 3+ (1) or ( The lithium ion secondary battery positive electrode material according to 2).

(4)リチウムイオンよりも小さなイオン半径を持つカチオンAが、Mg2+,Al3+,Ga3+,Sc3+,Si4+,Ge4+,Ti4+,Zr4+,Hf4+,V5+,Nb5+,Ta5+,Mo4+,Mo5+,Mo6+,W4+,W5+,W6+から選ばれた1種又は2種以上であることを特徴とする(2)又は(3)記載のリチウムイオン二次電池正極材料。 (4) The cation A having an ionic radius smaller than that of lithium ion is Mg 2+ , Al 3+ , Ga 3+ , Sc 3+ , Si 4+ , Ge 4+ , Ti 4+ , Zr 4+ , Hf 4+ , V 5+ , Nb 5+ , Ta. The lithium ion secondary battery according to (2) or (3), which is one or more selected from 5+ , Mo 4+ , Mo 5+ , Mo 6+ , W 4+ , W 5+ , and W 6+. Positive electrode material.

(5)層状の結晶構造を有する正極材料の母相が、LiCoO系、Li(Ni,Co,Al)O系、Li(Ni,Co,Mn)O系のいずれかであることを特徴とする請求項(1)〜(4)のいずれかに記載のリチウムイオン二次電池正極材料。 (5) The parent phase of the positive electrode material having a layered crystal structure is one of LiCoO 2 system, Li (Ni, Co, Al) O 2 system, and Li (Ni, Co, Mn) O 2 system. The lithium ion secondary battery positive electrode material according to any one of claims (1) to (4).

(6)ベース組成(カチオンA、カチオンBが添加される前の組成)が一般式Li1+mNiCoMn1−x−y−w−m2+θで表され、
ここで、MはAl,Mgから選ばれた1種又は2種の元素であり、
mは−0.05≦m≦0.10、
xは0≦x≦1.0、
yは0≦y≦1.0、
wは0≦w≦0.2、
0.4≦m+x+y+w≦1.0、
θは電荷中性条件を満たすように定まる値、の範囲を持つ、
層状の結晶構造を有する正極材料であることを特徴とする(5)記載のリチウムイオン二次電池正極材料。
(6) (the composition before the cation A, cation B is added) the base composition represented by the general formula Li 1 + m Ni x Co y Mn 1-x-y-w-m M w O 2 + θ,
Here, M is one or two elements selected from Al and Mg, and
m is −0.05 ≦ m ≦ 0.10.
x is 0 ≦ x ≦ 1.0,
y is 0 ≦ y ≦ 1.0,
w is 0 ≦ w ≦ 0.2,
0.4 ≤ m + x + y + w ≤ 1.0,
θ has a range of values, which are determined to satisfy the charge neutrality condition.
The lithium ion secondary battery positive electrode material according to (5), which is a positive electrode material having a layered crystal structure.

(7)(1)〜(6)のいずれかに記載のリチウムイオン二次電池用正極材料を含むことを特徴とするリチウムイオン二次電池。 (7) A lithium ion secondary battery comprising the positive electrode material for a lithium ion secondary battery according to any one of (1) to (6).

(8)(2)〜(6)のいずれかに記載のリチウムイオン二次電池用正極材料を製造する方法であって、
前記カチオンAとBを含む複合酸化物を作製する工程、
層状の結晶構造を有する正極材料を作製する工程、
前記複合酸化物と前記正極材料を混合後、焼成することにより、
前記正極材料の層間にカチオンAとBをリチウムイオンと置換させる工程、
を含むことを特徴とするリチウムイオン二次電池正極材料の製造方法。
(8) The method for producing a positive electrode material for a lithium ion secondary battery according to any one of (2) to (6).
The step of producing a composite oxide containing the cations A and B,
A process of producing a positive electrode material having a layered crystal structure,
By mixing the composite oxide and the positive electrode material and then firing,
A step of substituting lithium ions for cations A and B between layers of the positive electrode material.
A method for producing a positive electrode material for a lithium ion secondary battery, which comprises.

(9)(2)〜(6)のいずれかに記載のリチウムイオン二次電池用正極材料を製造する方法であって、
前記カチオンAとBを含む複合酸化物を作製する工程、
リチウム塩と、層状の結晶構造を有する正極材料の前駆体と、前記複合酸化物の混合体を調製する工程、
前記混合体を焼成することにより層状の結晶構造を有する正極材料の層間にカチオンAとBが挿入されていることを特徴とするリチウムイオン二次電池正極材料の製造方法。
(9) The method for producing a positive electrode material for a lithium ion secondary battery according to any one of (2) to (6).
The step of producing a composite oxide containing the cations A and B,
A step of preparing a mixture of a lithium salt, a precursor of a positive electrode material having a layered crystal structure, and the composite oxide.
A method for producing a positive electrode material for a lithium ion secondary battery, characterized in that cations A and B are inserted between layers of a positive electrode material having a layered crystal structure by firing the mixture.

(10)前記(3)記載のカチオンBと(4)記載のカチオンAを含む複合酸化物であることを特徴とするリチウムイオン二次電池正極材料添加剤。 (10) A lithium ion secondary battery positive electrode material additive, which is a composite oxide containing the cation B described in (3) and the cation A described in (4).

本発明によれば、出力特性が高いリチウム二次電池用正極を製造することができる、リチウムイオン二次電池に用いられる正極材料粉末を提供することが可能になる。 According to the present invention, it is possible to provide a positive electrode material powder used for a lithium ion secondary battery, which can produce a positive electrode for a lithium secondary battery having high output characteristics.

本発明の出力特性向上メカニズムを示す概念図であり、層状の結晶構造を持つリチウムイオン二次電池用正極材料の層間へ、カチオンA、カチオンBが挿入される前の概念図を示す。It is a conceptual diagram which shows the output characteristic improvement mechanism of this invention, and shows the conceptual diagram before the cation A and cation B are inserted between the layers of the positive electrode material for a lithium ion secondary battery which has a layered crystal structure. 本発明の出力特性向上メカニズムを示す概念図であり、層状の結晶構造を持つリチウムイオン二次電池用正極材料の層間へ、カチオンA、カチオンBが挿入された後の概念図を示す。It is a conceptual diagram which shows the output characteristic improvement mechanism of this invention, and shows the conceptual diagram after the cation A and cation B are inserted between the layers of the positive electrode material for a lithium ion secondary battery which has a layered crystal structure.

以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

通常、リチウムイオン二次電池には層状の結晶構造を持つリチウム遷移金属複合酸化物が用いられているが、本発明はこのようなリチウムイオン二次電池がこれまで以上に電流を必要とする状況でも、短時間で蓄電した電気を吸放出することが出来る出力特性が高いリチウム二次電池用正極を製造することができる、リチウムイオン二次電池に用いられる正極材料粉末を提供することが可能になる。 Normally, a lithium transition metal composite oxide having a layered crystal structure is used in a lithium ion secondary battery, but in the present invention, such a lithium ion secondary battery requires more current than ever before. However, it has become possible to provide a positive electrode material powder used for a lithium ion secondary battery, which can manufacture a positive electrode for a lithium secondary battery having high output characteristics capable of absorbing and discharging electricity stored in a short time. Become.

本発明の層間が広がった層状の結晶構造を持つリチウムイオン二次電池用正極材料とは、層状の結晶構造を有する正極材料の層間に、リチウムイオンよりも大きなイオン半径であって且つ価数が2価以上であるカチオンBが存在していることを特徴とするリチウムイオン二次電池用正極材料である。 The positive electrode material for a lithium ion secondary battery having a layered crystal structure with wide layers of the present invention has an ionic radius larger than that of lithium ions and a valence between layers of the positive electrode material having a layered crystal structure. It is a positive electrode material for a lithium ion secondary battery, characterized in that cation B having a valence of 2 or more is present.

本発明では層間を広げる必要があるため、カチオンBはリチウムイオンよりも大きなイオン半径を有してなければならない。
また1価のカチオンを用いた場合、充放電に伴うリチウムイオンの挿入脱離と共に、1価のカチオンも
層状の結晶構造を有する正極材料から脱離する恐れがあるため、カチオンBの価数は2価以上であることが必要である。
Since it is necessary to widen the layers in the present invention, the cation B must have an ionic radius larger than that of the lithium ion.
When a monovalent cation is used, the valence of the cation B is high because the monovalent cation may be desorbed from the positive electrode material having a layered crystal structure at the same time as the insertion and desorption of lithium ions due to charging and discharging. It must be divalent or higher.

層間を広げるためのカチオンBは、工業材料としての観点から比較的無害,より安価であり,入手しやすいことが望ましく具体例としてはY3+,La3+が挙げられるが、その他に、Ca2+,Sr2+,Ba2+,In3+,Ce3+,Ce4+,Pr3+,Nd3+,Sm3+,Eu3+,Gd3+,Tb3+,Dy3+,Ho3+,Er3+,Tm3+,Yb3+,Lu3+,Bi3+から選ばれた1種又は2種以上などが挙げられる。 The cation B for widening the layers is relatively harmless from the viewpoint of an industrial material, is cheaper, and is desirable to be easily available. Specific examples thereof include Y 3+ and La 3+ . In addition, Ca 2+ , sr 2+, Ba 2+, In 3+ , Ce 3+, Ce 4+, Pr 3+, Nd 3+, Sm 3+, Eu 3+, Gd 3+, Tb 3+, Dy 3+, Ho 3+, Er 3+, Tm 3+, Yb 3+, Lu 3+ , One or more selected from Bi 3+, and the like.

リチウムイオンよりも小さなイオン半径を持つカチオンAは、工業材料としての観点から比較的無害,より安価であり,入手しやすいことが望ましく具体例としてはZr4+が挙げられるが、その他に、Mg2+,Al3+,Ga3+,Sc3+,Si4+,Ge4+,Ti4+,Hf4+,V5+,Nb5+,Ta5+,Mo4+,Mo5+,Mo6+,W4+,W5+,W6+から選ばれた1種又は2種以上などを挙げることができる。 Cation A having an ionic radius smaller than that of lithium ion is relatively harmless from the viewpoint of an industrial material, is cheaper, and is desirable to be easily available. Specific examples thereof include Zr 4+ . In addition, Mg 2+ , Al 3+, Ga 3+, Sc 3+, Si 4+, Ge 4+, Ti 4+, Hf 4+, V 5+, Nb 5+, Ta 5+, Mo 4+, Mo 5+, Mo 6+, W 4+, W 5+, selected from W 6+ One kind or two or more kinds of the above can be mentioned.

層状の結晶構造を持つリチウムイオン二次電池用正極材料の層間へ、カチオンA、カチオンBが挿入される前の概念図を図1に、挿入された後の概念図を図2に示す。
ここで図のLi+はリチウムイオンを、
n+は層状の結晶構造を有する正極材料を構成する金属元素イオン(ニッケル,コバルト,マンガン,アルミニウム,マグネシウム)を、
2−は層状の結晶構造を有する正極材料を構成する酸素イオンを、
g+はg価の価数を持つリチウムイオンよりも小さなイオン半径を持つカチオンAを、
h+はh価の価数を持つリチウムイオンよりも大きなイオン半径を持つカチオンBを示している。
FIG. 1 shows a conceptual diagram before the cation A and the cation B are inserted between the layers of the positive electrode material for a lithium ion secondary battery having a layered crystal structure, and FIG. 2 shows a conceptual diagram after the cation B is inserted.
Here, Li + in the figure is lithium ion,
M n + is a metal element ion (nickel, cobalt, manganese, aluminum, magnesium) that constitutes a positive electrode material having a layered crystal structure.
O2- is an oxygen ion that constitutes a positive electrode material having a layered crystal structure.
Ag + is a cation A having an ionic radius smaller than that of a lithium ion having a g-valent valence.
B h + indicates a cation B having an ionic radius larger than that of a lithium ion having an h-valent valence.

図1の状態にある層状の結晶構造を持つリチウムイオン二次電池用正極材料の層間へ、リチウムイオンよりも大きなカチオンBを挿入する際、リチウムイオンよりも小さなイオン半径を持つカチオンAを同時に用いることで、カチオンBをより挿入しやすくなると考えられる。
その理由として、まずリチウムイオンよりも小さなイオン半径を持つカチオンAを同時に用いた場合、カチオンAのイオン半径はリチウムイオンのイオン半径よりも小さいために、比較的容易に層間のリチウムイオンと置換されると考えられる。
そして層間のカチオンAで置換された部位の隣接点は、リチウムイオンとの価数の差から正孔が生じると考えられる。
また、層状の結晶構造を持つリチウムイオン二次電池用正極材料では、リチウム層の上下面方向にそれぞれ負電荷を帯びた酸素イオンの層が存在している。
ここで、カチオンAの置換とリチウムイオンとの価数差から層間に生じた正孔の周囲では、この負電荷を帯びた酸素イオン層が近接する形となるため、酸素イオン層に由来する負電荷同士の反発により、層間が広がると考えられる。
すなわち、リチウムイオンが出入り可能であった層間の大きさよりも更に層間が広がることになるため、リチウムイオンよりも大きなイオン半径を持つカチオンBが、層間へより挿入しやすくなり、図2に示す状態が形成されると考えられる。
When a cation B larger than lithium ion is inserted between layers of a positive electrode material for a lithium ion secondary battery having a layered crystal structure as shown in FIG. 1, a cation A having an ionic radius smaller than that of lithium ion is used at the same time. It is considered that this makes it easier to insert the cation B.
The reason is that when cation A having an ionic radius smaller than that of lithium ion is used at the same time, the ionic radius of cation A is smaller than the ionic radius of lithium ion, so that it is relatively easily replaced with lithium ion between layers. It is thought that.
It is considered that holes are generated at the adjacent points of the sites substituted with the cation A between the layers due to the difference in valence with the lithium ions.
Further, in the positive electrode material for a lithium ion secondary battery having a layered crystal structure, negatively charged oxygen ion layers are present in the upper and lower surfaces of the lithium layer.
Here, since the negatively charged oxygen ion layer is in close proximity to the holes generated between the layers due to the substitution of cation A and the valence difference between the lithium ions, the negatives derived from the oxygen ion layer are formed. It is considered that the layers are widened due to the repulsion between the charges.
That is, since the layers are further expanded than the size of the layers in which lithium ions can enter and exit, the cation B having an ionic radius larger than that of the lithium ions can be more easily inserted into the layers, and the state shown in FIG. Is considered to be formed.

この効果を得るためにカチオンAとBが近くに存在することが望ましく、カチオンAとカチオンBは複合化した化合物とすることが望ましい。 In order to obtain this effect, it is desirable that cations A and B are present close to each other, and it is desirable that cations A and B be a compound compound.

カチオンAとカチオンBを複合化した化合物は、焼成途中に分解することを避けるため、複合酸化物とすることが望ましく、複合酸化物の具体例としてはY0.28Zr0.721.86などが挙げられる。
カチオンAとカチオンBを複合化した複合酸化物の合成方法としては特に指定はないが、
例えば、カチオンAとカチオンBを含む溶液、
または、カチオンAとカチオンBいずれか一方の粒子を含む分散液にもう一方のカチオンを含む溶液を
調整し、次いでその溶液に塩基を添加しカチオンAとBを含む水酸化物スラリーを得る段階と、
その水酸化物スラリーを固液分離後、洗浄、乾燥、焼成する段階と、
を順次行うことによって製造することができる。
The compound in which cation A and cation B are compounded is preferably a composite oxide in order to avoid decomposition during firing. Specific examples of the composite oxide include Y 0.28 Zr 0.72 O 1. 86 and the like can be mentioned.
Although there is no particular specification as a method for synthesizing a composite oxide in which cation A and cation B are compounded,
For example, a solution containing cation A and cation B,
Alternatively, a step of preparing a solution containing the other cation in a dispersion containing particles of either cation A or cation B, and then adding a base to the solution to obtain a hydroxide slurry containing cations A and B. ,
After solid-liquid separation of the hydroxide slurry, washing, drying, and firing are performed.
Can be manufactured by sequentially performing.

カチオンAとカチオンBの好ましい配合比(モル比)は、A:B=15:85〜85:15であり、より好ましくは、A:B=28:72〜72:28である。 The preferred compounding ratio (molar ratio) of cation A and cation B is A: B = 15: 85 to 85:15, and more preferably A: B = 28: 72 to 72:28.

本発明で好適に用いることができるリチウム遷移金属複合酸化物は、
ベース組成が一般式Li1+mNiCoMn1−x−y−w−m2+θで表され、
ここで、MはAl,Mgから選ばれた1種又は2種の元素であり、
mは−0.05≦m≦0.10、
xは0≦x≦1.0、
yは0≦y≦1.0、
wは0≦w≦0.2、
0.4≦m+x+y+w≦1.0、
θは電荷中性条件を満たすように定まる値、の範囲を持つ、
リチウム遷移金属複合酸化物である。
The lithium transition metal composite oxide that can be suitably used in the present invention is
Base composition is represented by the general formula Li 1 + m Ni x Co y Mn 1-x-y-w-m M w O 2 + θ,
Here, M is one or two elements selected from Al and Mg, and
m is −0.05 ≦ m ≦ 0.10.
x is 0 ≦ x ≦ 1.0,
y is 0 ≦ y ≦ 1.0,
w is 0 ≦ w ≦ 0.2,
0.4 ≤ m + x + y + w ≤ 1.0,
θ has a range of values, which are determined to satisfy the charge neutrality condition.
It is a lithium transition metal composite oxide.

また、ここで、−0.05≦m≦0.10としたのは、m<−0.05では、Li層に入るNiが多くなり、リチウム遷移金属複合酸化物の放電容量が小さくなるためであり、m>0.10では、過剰なLiが遷移金属層に入り、Ni価数を高め、放電容量の低下を引き起こす原因となるためで、0≦x≦1.0としたのは、Ni価数変化を用いた正極材料であるためで、0≦y≦1.0としたのは、結晶構造安定化のためにNi量に応じた必要量としたものである。 Further, the reason why −0.05 ≦ m ≦ 0.10. Is set here is that when m <-0.05, the amount of Ni entering the Li layer increases and the discharge capacity of the lithium transition metal composite oxide becomes small. This is because when m> 0.10., excess Li enters the transition metal layer, which increases the Ni valence and causes a decrease in the discharge capacity. Therefore, 0 ≦ x ≦ 1.0 is set. Since it is a positive electrode material using a change in Ni valence, 0 ≦ y ≦ 1.0 is a necessary amount according to the amount of Ni for stabilizing the crystal structure.

上記リチウム遷移金属複合酸化物Li1+mNiCoMn1−x−y−w−m2+θにおけるMは、高温特性の改善に効果があるものとして選択され、MはAl,Mgから選ばれた1種又は2種の金属元素であり、wは0≦w≦0.2の範囲が好ましい。w>0.2とした場合、放電容量が低下し好ましくない。 M in the lithium-transition metal composite oxide Li 1 + m Ni x Co y Mn 1-x-y-w-m M w O 2 + θ is selected as being effective in improving high temperature characteristics, M is Al, It is one or two kinds of metal elements selected from Mg, and w is preferably in the range of 0 ≦ w ≦ 0.2. When w> 0.2, the discharge capacity is lowered, which is not preferable.

前記層状の結晶構造を持つリチウムイオン二次電池用正極材料の例としては、LiCoO、LiNi0.80Co0.15Al0.05、LiNi0.50Co0.20Mn0.30、などが知られている。 Examples of the positive electrode material for a lithium ion secondary battery having a layered crystal structure include LiCoO 2 , LiNi 0.80 Co 0.15 Al 0.05 O 2 , LiNi 0.50 Co 0.20 Mn 0.30. O 2 , etc. are known.

カチオンAとカチオンBを複合化した化合物を、リチウム遷移金属複合酸化物に加える質量%の比率
は、リチウム遷移金属複合酸化物を100質量%に対し、カチオンAとカチオンBを複合化した化合物を加える質量%をpとした時、0.1<p<2.3の範囲で、より好ましくは0.5≦p≦2.0の範囲である。
これは、カチオンAとカチオンBを含む複合酸化物を加える量が少なすぎると、出力特性を高める効果が確認できず、逆に多すぎると、リチウム遷移金属複合酸化物の放電容量を低下させてしまうためである。
The ratio of mass% of the compound of cation A and cation B added to the lithium transition metal composite oxide is 100% by mass of the lithium transition metal composite oxide, and the compound of cation A and cation B is compounded. When the mass% to be added is p, it is in the range of 0.1 <p <2.3, more preferably in the range of 0.5 ≦ p ≦ 2.0.
This is because if the amount of the composite oxide containing cation A and cation B added is too small, the effect of enhancing the output characteristics cannot be confirmed, and conversely, if it is too large, the discharge capacity of the lithium transition metal composite oxide is lowered. This is because it will be stored.

本発明に係るリチウム遷移金属複合酸化物粒子粉末の最大粒径は50μm未満が好ましい。最大粒径が50μm以上の場合、正極板の設計厚みにも依存するが、正極製造のためにスラリー調製し、アルミニウム箔上に塗工した際に、筋引き等の塗工不良を引き起こし易いため好ましくない。 The maximum particle size of the lithium transition metal composite oxide particle powder according to the present invention is preferably less than 50 μm. When the maximum particle size is 50 μm or more, although it depends on the design thickness of the positive electrode plate, when a slurry is prepared for positive electrode production and coated on an aluminum foil, coating defects such as streaks are likely to occur. Not preferable.

本発明に係るリチウム複合酸化物粒子粉末のBET比表面積は15m/g以下が好ましい。
BET比表面積が15m/gを超える場合には充填密度の低下や電解液との反応性が増加するため好ましくない。
The BET specific surface area of the lithium composite oxide particle powder according to the present invention is preferably 15 m 2 / g or less.
If the BET specific surface area exceeds 15 m 2 / g, it is not preferable because the packing density decreases and the reactivity with the electrolytic solution increases.

次いで、本発明のリチウムイオン二次電池用正極材料の製造方法について説明する。 Next, a method for producing the positive electrode material for a lithium ion secondary battery of the present invention will be described.

本発明のリチウムイオン二次電池用正極材料は、
リチウム塩、
層状の結晶構造を有する正極材料の原料となる遷移金属化合物、
リチウムイオンよりも大きなイオン半径を持つカチオンBとリチウムイオンよりも小さなイオン半径を持つカチオンAを含む複合酸化物とを、混合、焼成、粒度調整することで得られる。
The positive electrode material for a lithium ion secondary battery of the present invention is
Lithium salt,
Transition metal compounds, which are raw materials for positive electrode materials with a layered crystal structure,
It is obtained by mixing, firing, and adjusting the particle size of a composite oxide containing a cation B having an ionic radius larger than that of lithium ion and a cation A having an ionic radius smaller than that of lithium ion.

リチウム塩としては特に指定はないが炭酸リチウム、水酸化リチウムが好ましい。y<0.6においては炭酸リチウムが好適であり、yが0.6以上では水酸化リチウムが適している。また、リチウム塩の粒径は、遷移金属複合化合物との反応性を考慮すると、平均粒子径で10μm以下が好ましい。 The lithium salt is not particularly specified, but lithium carbonate and lithium hydroxide are preferable. When y <0.6, lithium carbonate is suitable, and when y is 0.6 or more, lithium hydroxide is suitable. The particle size of the lithium salt is preferably 10 μm or less in terms of average particle size in consideration of reactivity with the transition metal composite compound.

層状の結晶構造を有する正極材料の原料となる遷移金属化合物としては特に指定はないが、目的とする正極材料のベース組成に予め調整したNi,Co,Mn,Alを含む化合物を用いる方法、
または、CoやCo(OH)2のようなCo化合物、NiOやNi(OH)2のようなNi化合物、
MnO,MnO,Mn,MnOOH,Mn(OH)2のようなMn化合物、AlやAl(OH)のようなAl化合物を、個別の元素の化合物を目的とする正極材料の組成となるよう配合する方法などが考えられる。
The transition metal compound used as a raw material for the positive electrode material having a layered crystal structure is not particularly specified, but a method using a compound containing Ni, Co, Mn, and Al prepared in advance for the base composition of the target positive electrode material.
Alternatively, a Co compound such as Co 3 O 4 or Co (OH) 2 , a Ni compound such as Ni O or Ni (OH) 2 ,
Mn compounds such as MnO, MnO 2 , Mn 3 O 4 , MnOOH, Mn (OH) 2 , Al compounds such as Al 2 O 3 and Al (OH) 3 , positive electrodes for the purpose of compounding individual elements. A method of blending so as to have the composition of the material can be considered.

混合方法としては特に限定するものではないが、精密混合機で乾式混合することが好ましい。
なお、原料の混合及び焼成において、
リチウム塩、層状の結晶構造を有する正極材料の原料となる遷移金属化合物を混合、焼成、解砕し得られた正極材料に、リチウムイオンよりも大きなイオン半径を持つカチオンBとリチウムイオンよりも小さなイオン半径を持つカチオンAを含む複合酸化物を混合し焼成する方法と、
リチウム塩、層状の結晶構造を有する正極材料の原料となる遷移金属化合物、
リチウムイオンよりも大きなイオン半径を持つカチオンBとリチウムイオンよりも小さなイオン半径を持つカチオンAを含む複合酸化物を全て混合したのち焼成する方法がある。
The mixing method is not particularly limited, but it is preferable to dry-mix with a precision mixer.
In addition, in mixing and firing of raw materials,
A positive electrode material obtained by mixing, firing, and crushing a lithium salt and a transition metal compound that is a raw material for a positive electrode material having a layered crystal structure, and a cation B having an ionic radius larger than that of lithium ions and smaller than that of lithium ions. A method of mixing and firing a composite oxide containing a cation A having an ionic radius, and
Lithium salts, transition metal compounds that are raw materials for positive electrode materials with a layered crystal structure,
There is a method in which a composite oxide containing a cation B having an ionic radius larger than that of lithium ion and a cation A having an ionic radius smaller than that of lithium ion are all mixed and then fired.

混合に引き続いて焼成を行うが、焼成条件の例としては、焼成温度が750℃以上1000℃以下で一度に焼成を行う、
または、
焼成温度が500℃以上700℃以下に保持される第一の焼成工程と、
前記第一の焼成工程から焼成温度を下げずに引き続き行われ、焼成温度が700℃以上1000℃以下に保持される第二の焼成工程、
または、
前記第一の焼成工程から焼成温度を一旦室温まで下げた後、焼成温度が700℃以上1000℃以下に保持される第二の焼成工程を行うなどが挙げられる。
Baking is performed after mixing. As an example of firing conditions, firing is performed at a time when the firing temperature is 750 ° C. or higher and 1000 ° C. or lower.
Or
The first firing step in which the firing temperature is maintained at 500 ° C or higher and 700 ° C or lower,
A second firing step, which is carried out continuously from the first firing step without lowering the firing temperature, and the firing temperature is maintained at 700 ° C. or higher and 1000 ° C. or lower.
Or
After the firing temperature is once lowered to room temperature from the first firing step, a second firing step in which the firing temperature is maintained at 700 ° C. or higher and 1000 ° C. or lower is performed.

第一の焼成工程では500〜700℃で2〜10時間焼成する。500〜700℃とするのはLi塩と遷移金属複合化合物の反応がこの温度域で起こる為である。
第二の焼成工程では反応促進のため第一の焼成工程より高い700〜1000℃で5〜30時間焼成する。1000℃を超えると、一次粒子の成長や粒子同士の焼結が進み好ましくない。700℃未満では一次粒子が十分に成長せず、結晶性が低くなる。また目的の組成が得られなくなるため好ましくない。
好適な焼成時間は温度との組み合わせで一概には定まらないが第一の焼成工程では2〜10時間が好ましく、第二の焼成工程では5〜30時間が好ましい。
In the first firing step, firing is performed at 500 to 700 ° C. for 2 to 10 hours. The temperature is set to 500 to 700 ° C. because the reaction between the Li salt and the transition metal composite compound occurs in this temperature range.
In the second firing step, in order to promote the reaction, firing is performed at 700 to 1000 ° C., which is higher than that of the first firing step, for 5 to 30 hours. If the temperature exceeds 1000 ° C., the growth of primary particles and the sintering of particles proceed, which is not preferable. Below 700 ° C., the primary particles do not grow sufficiently and the crystallinity becomes low. Further, it is not preferable because the desired composition cannot be obtained.
The suitable firing time is not unconditionally determined in combination with the temperature, but is preferably 2 to 10 hours in the first firing step and 5 to 30 hours in the second firing step.

合成(焼成)されたリチウム遷移金属複合酸化物は、最大粒子径が50μm以下に粒度調整する。なお、粒度調整手段は、特に問うことなく、例えば、ロールミル、ジェットミル、フルイ等を用いることができる。 The particle size of the synthesized (calcined) lithium transition metal composite oxide is adjusted so that the maximum particle size is 50 μm or less. As the particle size adjusting means, for example, a roll mill, a jet mill, a sieve, or the like can be used without any particular limitation.

本発明に係る上記リチウム遷移金属複合酸化物を正極活物質として使用する場合にも、通常のリチウム遷移金属複合酸化物と同様、負極活物質には炭素材料、リチウム吸蔵合金等のリチウム吸蔵放出可能な物質を用い、電解液としてはリチウム塩を非水系電解液または樹脂に溶解した非水系電解液を用いる。
たとえばリチウム塩として六フッ化リン酸リチウム(LiPF)を用い、非水系電解液としてエチレンカーボネートとジエチルカーボネートの混合溶液を用いる。
このほかにもリチウム塩としてはLiClO、LiAsF、LiBF、LiSOCF、LiN(SOCFなどやそれらの混合物が用いられる。
また、非水電解液としてはジエチルカーボネート、プロピレンカーボネート、ビニレンカーボネート等やその混合物、及びポリエチレンイミン等を主鎖とした高いイオン伝導性を有する高分子固体電解質(樹脂)等を用いることが可能である。
Even when the lithium transition metal composite oxide according to the present invention is used as the positive electrode active material, the negative electrode active material can be occluded and released with lithium such as a carbon material and a lithium storage alloy, as in the case of a normal lithium transition metal composite oxide. A non-aqueous electrolyte solution in which a lithium salt is dissolved in a resin or a non-aqueous electrolyte solution is used as the electrolytic solution.
For example, lithium hexafluorophosphate (LiPF 6 ) is used as the lithium salt, and a mixed solution of ethylene carbonate and diethyl carbonate is used as the non-aqueous electrolyte solution.
In addition, as the lithium salt, LiClO 4 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 , LiN (SO 3 CF 3 ) 2 , and a mixture thereof are used.
Further, as the non-aqueous electrolyte solution, it is possible to use diethyl carbonate, propylene carbonate, vinylene carbonate or the like or a mixture thereof, or a polymer solid electrolyte (resin) having high ionic conductivity having polyethyleneimine or the like as the main chain. is there.

以上のように本発明の層間が広がった層状の結晶構造を持つリチウムイオン二次電池用正極材料は、これまで以上に短時間で蓄電した電気を吸放出することができ、本発明の活物質を用いる事で、出力特性が高いリチウムイオン二次電池を作製することができる。 As described above, the positive electrode material for a lithium ion secondary battery having a layered crystal structure in which the layers of the present invention are widened can absorb and release the stored electricity in a shorter time than before, and is the active material of the present invention. By using the above, a lithium ion secondary battery having high output characteristics can be manufactured.

以下、本発明を、実施例、比較例により説明する。なお、本発明は実施例に限定されるものではない。 Hereinafter, the present invention will be described with reference to Examples and Comparative Examples. The present invention is not limited to the examples.

(実施例1)
化学式Li1.02Ni0.49Co0.20Mn0.29となるよう調整した炭酸リチウム、遷移金属複合化合物(化学式:Ni0.5Co0.2Mn0.3(OH))に、カチオンAとBを含む複合酸化物としてY0.28Zr0.721.86をリチウム遷移金属複合酸化物に対し0.5質量%の比率になるように加え、精密混合機で乾式混合、その後、大気雰囲気下において650℃で5時間、引き続き890℃で11時間焼成し、
解砕、整粒してカチオンAとBが含まれたリチウム遷移金属複合酸化物を合成した。
(Example 1)
Lithium carbonate, transition metal composite compound adjusted to have a chemical formula Li 1.02 Ni 0.49 Co 0.20 Mn 0.29 O 2 (Chemical formula: Ni 0.5 Co 0.2 Mn 0.3 (OH) 2 ) ), Y 0.28 Zr 0.72 O 1.86 as a composite oxide containing cations A and B was added so as to have a ratio of 0.5% by mass with respect to the lithium transition metal composite oxide, and a precision mixer was added. After that, it was baked at 650 ° C. for 5 hours and then at 890 ° C. for 11 hours in an air atmosphere.
A lithium transition metal composite oxide containing cations A and B was synthesized by crushing and sizing.

(実施例2〜4、実施例7〜25、実施例28〜41および比較例2、比較例3)
実施例2、実施例7〜25、実施例28〜41および比較例2、比較例3においては、Y0.28Zr0.721.86の代わりに、表1〜3に記載の成分比率となるカチオンAとBを含む複合酸化物(ABO、ここでnはカチオンAとBの価数に対し電荷中性条件を満たすように定まる値)を用いた他は、実施例1と同様に作製した。
(Examples 2 to 4, Examples 7 to 25, Examples 28 to 41 and Comparative Example 2, Comparative Example 3)
In Examples 2, Examples 7 to 25, Examples 28 to 41, and Comparative Example 2 and Comparative Example 3, the components shown in Tables 1 to 3 are used instead of Y 0.28 Zr 0.72 O 1.86. Example 1 and the same as in Example 1 except that a composite oxide containing cations A and B as a ratio (ABO n , where n is a value determined so as to satisfy the charge neutrality condition with respect to the valences of cations A and B) was used. It was produced in the same manner.

(実施例5、実施例6、比較例4、比較例5)
実施例5、実施例6、比較例4、比較例5においては、カチオンAとBを含む複合酸化物(ABO、ここでnはカチオンAとBの価数に対し電荷中性条件を満たすように定まる値)を、リチウム遷移金属複合酸化物に対し表1及び表3に記載の質量%の比率になるように加えた他は、実施例1と同様に作製した。
(Example 5, Example 6, Comparative Example 4, Comparative Example 5)
In Example 5, Example 6, Comparative Example 4, and Comparative Example 5, a composite oxide containing cations A and B (ABO n , where n satisfies the charge neutrality condition with respect to the valences of cations A and B). The value determined as described above) was added to the lithium transition metal composite oxide so as to have a mass% ratio shown in Tables 1 and 3, and the same was prepared in the same manner as in Example 1.

(実施例26)
実施例26においては、Y0.28Zr0.721.86の代わりに、表2に記載の成分比率となるカチオンAとB、及びカチオンB’を含む複合酸化物(ABB’On、ここでnはカチオンAとBとB’の価数に対し電荷中性条件を満たすように定まる値)を用いた他は、実施例1と同様に作製した。
(Example 26)
In Example 26, instead of Y 0.28 Zr 0.72 O 1.86 , a composite oxide containing cations A and B having the component ratios shown in Table 2 and cation B'(ABB'On, Here, n was prepared in the same manner as in Example 1 except that n was a value determined so as to satisfy the charge neutrality condition with respect to the valences of cations A, B, and B'.

(実施例27)
実施例27においては、Y0.28Zr0.721.86の代わりに、表2に記載の成分比率となるカチオンAとB、及びカチオンA’とカチオンB’とを含む複合酸化物(A A’B B’On、ここでnはカチオンAとA’とBとB’の価数に対し電荷中性条件を満たすように定まる値)を用いた他は、実施例1と同様に作製した。
(Example 27)
In Example 27, instead of Y 0.28 Zr 0.72 O 1.86 , a composite oxide containing cations A and B having the component ratios shown in Table 2 and cations A'and B'. Same as in Example 1 except that (AA'B B'On, where n is a value determined so as to satisfy the charge neutrality condition with respect to the valences of the cations A, A', B, and B') was used. Made in.

(比較例1)
化学式Li1.02Ni0.49Co0.20Mn0.29となるよう調整した炭酸リチウム、遷移金属複合化合物(化学式:Ni0.5Co0.2Mn0.3(OH))を、精密混合機で乾式混合、その後、650℃で5時間、引き続き890℃で11時間焼成し、解砕、整粒してリチウム遷移金属複合酸化物を合成した。
(Comparative Example 1)
Lithium carbonate, transition metal composite compound adjusted to have a chemical formula Li 1.02 Ni 0.49 Co 0.20 Mn 0.29 O 2 (Chemical formula: Ni 0.5 Co 0.2 Mn 0.3 (OH) 2 ) ) Was dry-mixed with a precision mixer, and then fired at 650 ° C. for 5 hours and then at 890 ° C. for 11 hours to be crushed and sized to synthesize a lithium transition metal composite oxide.

(実施例40)
化学式Li1.02Ni0.49Co0.20Mn0.29となるよう調整した炭酸リチウム、遷移金属複合化合物(化学式:Ni0.5Co0.2Mn0.3(OH))を加え、精密混合機で乾式混合、その後、大気雰囲気下において850℃で10時間焼成し、解砕した。
続いてカチオンAとBを含む複合酸化物としてY0.28Zr0.721.86をリチウム遷移金属複合酸化物に対し、0.5質量%の比率になるように加え、精密混合機で乾式混合、
その後、大気雰囲気下において850℃で6時間焼成し、
解砕、整粒してカチオンAとBが含まれたリチウム遷移金属複合酸化物を合成した。
(Example 40)
Lithium carbonate, transition metal composite compound adjusted to have a chemical formula Li 1.02 Ni 0.49 Co 0.20 Mn 0.29 O 2 (Chemical formula: Ni 0.5 Co 0.2 Mn 0.3 (OH) 2 ) ) Was added, dry mixing was performed with a precision mixer, and then the mixture was fired at 850 ° C. for 10 hours in an air atmosphere to be crushed.
Subsequently, Y 0.28 Zr 0.72 O 1.86 was added as a composite oxide containing cations A and B so as to have a ratio of 0.5% by mass with respect to the lithium transition metal composite oxide, and a precision mixer was added. Dry mixing,
Then, it was fired at 850 ° C. for 6 hours in an air atmosphere.
A lithium transition metal composite oxide containing cations A and B was synthesized by crushing and sizing.

(実施例42)
化学式Li1.00Ni0.85Co0.15Al0.05となるよう調整した水酸化リチウム、遷移金属複合化合物(化学式:Ni0.85Co0.15Al0.05(OH))に、カチオンAとBを含む複合酸化物としてY0.33Zr0.671.84をリチウム遷移金属複合酸化物に対し0.5質量%の比率になるように加え、精密混合機で乾式混合、その後、酸素ガスフローしながら600℃で5時間、引き続き800℃で20時間焼成し、解砕、整粒してカチオンAとBが含まれたリチウム遷移金属複合酸化物を合成した。
(Example 42)
Lithium hydroxide and transition metal composite compound adjusted to have a chemical formula Li 1.00 Ni 0.85 Co 0.15 Al 0.05 O 2 (chemical formula: Ni 0.85 Co 0.15 Al 0.05 (OH)) To 2 ), Y 0.33 Zr 0.67 O 1.84 as a composite oxide containing cations A and B was added so as to have a ratio of 0.5% by mass with respect to the lithium transition metal composite oxide, and the mixture was precisely mixed. Dry mixing with a machine, then firing at 600 ° C for 5 hours and then 800 ° C for 20 hours with oxygen gas flow, crushing and sizing to synthesize a lithium transition metal composite oxide containing cations A and B. did.

(実施例43)
化学式Li1.00Ni0.85Co0.15Al0.05となるよう調整した水酸化リチウム、遷移金属複合化合物(化学式:Ni0.85Co0.15Al0.05(OH))を加え、精密混合機で乾式混合、その後、酸素ガスフローしながら600℃で5時間、引き続き800℃で15時間焼成し、解砕した。
続いて、カチオンAとBを含む複合酸化物としてY0.33Zr0.671.84をリチウム遷移金属複合酸化物に対し0.5質量%の比率になるように加え、精密混合機で乾式混合、
その後、酸素ガスフローしながら800℃で5時間焼成し、解砕、整粒してカチオンAとBが含まれたリチウム遷移金属複合酸化物を合成した。
(Example 43)
Lithium hydroxide, transition metal composite compound adjusted to have a chemical formula Li 1.00 Ni 0.85 Co 0.15 Al 0.05 O 2 (Chemical formula: Ni 0.85 Co 0.15 Al 0.05 (OH) 2 ) was added, dry mixing was performed with a precision mixer, and then the mixture was fired at 600 ° C. for 5 hours and then at 800 ° C. for 15 hours while flowing oxygen gas to crush it.
Subsequently, Y 0.33 Zr 0.67 O 1.84 was added as a composite oxide containing cations A and B so as to have a ratio of 0.5% by mass with respect to the lithium transition metal composite oxide, and a precision mixer was added. Dry mixing,
Then, it was calcined at 800 ° C. for 5 hours while flowing oxygen gas, crushed and sized to synthesize a lithium transition metal composite oxide containing cations A and B.

(実施例44)
実施例44においては、Y0.33Zr0.671.84の代わりに、表4に記載の成分比率となるカチオンAとB、及びカチオンB’を含む複合酸化物(ABB’On、ここでnはカチオンAとBとB’の価数に対し電荷中性条件を満たすように定まる値)を用いた他は、実施例42と同様に作製した。
(Example 44)
In Example 44, instead of Y 0.33 Zr 0.67 O 1.84 , a composite oxide containing cations A and B having the component ratios shown in Table 4 and cation B'(ABB'On, Here, n was prepared in the same manner as in Example 42, except that n was a value determined so as to satisfy the charge neutrality condition with respect to the valences of cations A, B, and B'.

(比較例6)
化学式Li1.00Ni0.85Co0.15Al0.05となるよう調整した水酸化リチウム、遷移金属複合化合物(化学式:Ni0.85Co0.15Al0.05(OH))を、精密混合機で乾式混合、その後、
酸素ガスフローしながら600℃で5時間、引き続き800℃で20時間焼成し、解砕、整粒してリチウム遷移金属複合酸化物を合成した。
(Comparative Example 6)
Lithium hydroxide, transition metal composite compound adjusted to have a chemical formula Li 1.00 Ni 0.85 Co 0.15 Al 0.05 O 2 (Chemical formula: Ni 0.85 Co 0.15 Al 0.05 (OH) 2 ) is dry-mixed with a precision mixer, and then
The lithium transition metal composite oxide was synthesized by firing at 600 ° C. for 5 hours and then at 800 ° C. for 20 hours while flowing oxygen gas, crushing and sizing.

(比較例7)
比較例7においては、Y0.33Zr0.671.84の代わりに、表4に記載の成分比率となるカチオンAとBを含む複合酸化物(ABO、ここでnはカチオンAとBの価数に対し電荷中性条件を満たすように定まる値)を用いた他は、実施例42と同様に作製した。
(Comparative Example 7)
In Comparative Example 7, instead of Y 0.33 Zr 0.67 O 1.84 , a composite oxide containing cations A and B having the component ratios shown in Table 4 (ABO n , where n is cation A). A value determined so as to satisfy the charge neutrality condition with respect to the valences of B and B) was used, and the same as in Example 42 was produced.

(比較例8、比較例9)
比較例8、比較例9においては、表4に記載の成分比率となるカチオンAとBを含む複合酸化物(ABOn、ここでnはカチオンAとBの価数に対し電荷中性条件を満たすように定まる値)をリチウム遷移金属複合酸化物に対し表7の質量%比率になるように加えた他は、実施例42と同様に作製した。
(Comparative Example 8, Comparative Example 9)
In Comparative Examples 8 and 9, a composite oxide containing cations A and B having the component ratios shown in Table 4 (ABOn, where n satisfies the charge neutrality condition with respect to the valences of the cations A and B). It was prepared in the same manner as in Example 42, except that the value determined as described above was added so as to have a mass% ratio of Table 7 with respect to the lithium transition metal composite oxide.

(正極作製)
上記、各実施例および比較例にて合成したリチウム遷移金属複合酸化物を正極活物質として、正極を作製した。
導電助剤にはティムカル社の商品名KS6とSuper−P、結着剤にクレハ社の商品名KFポリマー(PVdFをNメチルピロリドンに溶解させた溶液)を使用した。
重量比で、「正極活物質:KS6:Super−P:結着剤」を「94:1:2:3」の割合で秤量し、NMPを加えて混練し、正極スラリーを作製した。
得られたスラリーをアルミニウム製の集電体にドクターブレード法により塗布し、乾燥、直径13mmの円盤状に打ち抜き後、プレスして正極を作製した。
(Preparation of positive electrode)
A positive electrode was prepared using the lithium transition metal composite oxide synthesized in each of the above Examples and Comparative Examples as a positive electrode active material.
Timcal's trade names KS6 and Super-P were used as conductive aids, and Kureha's trade name KF polymer (a solution of PVdF dissolved in N-methylpyrrolidone) was used as a binder.
By weight ratio, "positive electrode active material: KS6: Super-P: binder" was weighed at a ratio of "94: 1: 2: 3", NMP was added and kneaded to prepare a positive electrode slurry.
The obtained slurry was applied to an aluminum current collector by the doctor blade method, dried, punched into a disk shape having a diameter of 13 mm, and pressed to prepare a positive electrode.

(コインセル組立)
前記実施例及び比較例の正極と、負極、電解液およびセパレータには、それぞれ順に、金属リチウムを円板状に切り出したもの、エチレンカーボネートとジエチルカーボネートを体積比で3:7の割合で混合した溶媒に溶質LiPFを1mol/l溶かしたもの、ポリプロピレン製の微多孔膜を使用し、コイン型電池CR2032タイプ(直径20mm、高さ3.2mm)を組立てて電池評価測定を行った。
(Coin cell assembly)
For the positive electrode, the negative electrode, the electrolytic solution, and the separator of the above-mentioned Examples and Comparative Examples, metallic lithium was cut out in a disk shape, and ethylene carbonate and diethyl carbonate were mixed in a volume ratio of 3: 7, respectively. A coin-type battery CR2032 type (diameter 20 mm, height 3.2 mm) was assembled using a microporous film made of polypropylene in which 1 mol / l of solute LiPF 6 was dissolved in a solvent, and battery evaluation measurement was performed.

(電池評価)
作製したコイン型リチウム二次電池を、まず25℃の恒温槽内にて、初期活性化を行った。
充電は、レート35mA/g、上限4.23V定電流定電圧で電流が2mA/gとなった時点で充電を終了した。
放電は、レート35mA/g、放電下限電圧3.0Vとした。
初期活性化はこの条件にて、充電と放電を3回繰り返した。
次に、初期活性化後のコイン型リチウム二次電池を45℃の恒温槽内にて、充電は、レート80mA/g、上限4.23V定電流定電圧で電流が7mA/gとなった時点で充電を終了し、放電は、レート80mA/g、放電下限電圧3.0Vとし、60回の繰返し充放電試験を行った。
(Battery evaluation)
The produced coin-type lithium secondary battery was first initially activated in a constant temperature bath at 25 ° C.
Charging was completed when the current reached 2 mA / g at a rate of 35 mA / g and an upper limit of 4.23 V constant current and constant voltage.
The discharge was performed at a rate of 35 mA / g and a discharge lower limit voltage of 3.0 V.
In the initial activation, charging and discharging were repeated three times under this condition.
Next, the coin-type lithium secondary battery after initial activation is charged in a constant temperature bath at 45 ° C. when the current reaches 7 mA / g at a rate of 80 mA / g and an upper limit of 4.23 V constant current constant voltage. Charging was completed at, the discharge was performed at a rate of 80 mA / g, the lower limit voltage of discharge was 3.0 V, and 60 times of repeated charge / discharge tests were performed.

次に、60回繰り返し充放電試験後のコイン型リチウム二次電池を、25℃の恒温槽内にて、レート特性評価を行った。
初めに、充電は、レート35mA/g、上限4.23V定電流定電圧で電流が2mA/gとなった時点で充電を終了し、放電は、レート35mA/g、放電下限電圧3.0Vとして充電と放電を1回行った。
続けて、充電は、レート35mA/g、上限4.23V定電流定電圧で電流が2mA/gとなった時点で充電を終了し、放電は、レート350mA/g、放電下限電圧3.0Vとして充電と放電を1回行った。
Next, the rate characteristics of the coin-type lithium secondary battery after the 60-time repeated charge / discharge test were evaluated in a constant temperature bath at 25 ° C.
First, charging ends when the current reaches 2 mA / g at a rate of 35 mA / g and an upper limit of 4.23 V constant current and constant voltage, and discharging is performed at a rate of 35 mA / g and a lower limit voltage of 3.0 V. Charging and discharging were performed once.
Subsequently, charging ends when the current reaches 2 mA / g at a rate of 35 mA / g and an upper limit of 4.23 V constant current and constant voltage, and discharge is performed at a rate of 350 mA / g and a lower limit voltage of 3.0 V. Charging and discharging were performed once.

実施例1〜実施例41、比較例1〜5においては、前記条件で、放電をレート350mA/g、放電下限電圧3.0Vとしたときの各実施例と比較例の放電容量を、放電をレート350mA/g、放電下限電圧3.0Vとしたときの、比較例2の放電容量で除算することで、レート特性(%)を算出した。
つまり、
レート特性(%)=(放電をレート350mA/g、放電下限電圧3.0Vでの各実施例と比較例の放電容量)÷(放電をレート350mA/g、放電下限電圧3.0Vとしたときの、比較例2の放電容量)
である。
In Examples 1 to 41 and Comparative Examples 1 to 5, the discharge capacity of each Example and Comparative Example when the discharge rate was 350 mA / g and the discharge lower limit voltage was 3.0 V under the above conditions was set to discharge. The rate characteristic (%) was calculated by dividing by the discharge capacity of Comparative Example 2 when the rate was 350 mA / g and the discharge lower limit voltage was 3.0 V.
In other words
Rate characteristics (%) = (Discharge rate 350 mA / g, discharge capacity of each example and comparative example at discharge lower limit voltage 3.0 V) ÷ (Discharge rate 350 mA / g, discharge lower limit voltage 3.0 V) (Discharge capacity of Comparative Example 2)
Is.

また、実施例42〜44、比較例7〜9においては、前記条件で、放電をレート350mA/g、放電下限電圧3.0Vとしたときの各実施例と比較例の放電容量を、放電をレート350mA/g、放電下限電圧3.0Vとしたときの、比較例7の放電容量で除算することで、レート特性(%)を算出した。
つまり、
レート特性(%)=(放電をレート350mA/g、放電下限電圧3.0Vでの各実施例と比較例の放電容量)÷(放電をレート350mA/g、放電下限電圧3.0Vとしたときの、比較例7の放電容量)
である。
Further, in Examples 42 to 44 and Comparative Examples 7 to 9, the discharge capacity of each Example and Comparative Example when the discharge rate was 350 mA / g and the discharge lower limit voltage was 3.0 V under the above conditions was discharged. The rate characteristic (%) was calculated by dividing by the discharge capacity of Comparative Example 7 when the rate was 350 mA / g and the lower limit voltage was 3.0 V.
In other words
Rate characteristics (%) = (Discharge rate 350 mA / g, discharge capacity of each example and comparative example at discharge lower limit voltage 3.0 V) ÷ (Discharge rate 350 mA / g, discharge lower limit voltage 3.0 V) (Discharge capacity of Comparative Example 7)
Is.

なお、カチオンA(とカチオンA’)とカチオンB(とカチオンB’)の添加比は、併せて1molとなるようにした。 The addition ratio of cation A (and cation A') and cation B (and cation B') was set to 1 mol in total.

表1、表2、表3に示す通り、
比較例1に示すカチオンAとカチオンBのいずれも含まない層状の結晶構造を有する正極材料、及び、
比較例2に示すカチオンAを含む層状の結晶構造を有する正極材料に対し、
実施例1〜実施例41のカチオンB、またはカチオンA(とカチオンA‘)とカチオンB(とカチオンB’)を含む複合酸化物を加えて合成した層状の結晶構造を有する正極材料では、いずれもレート特性が高くなっている。
As shown in Table 1, Table 2 and Table 3,
A positive electrode material having a layered crystal structure containing neither cation A nor cation B shown in Comparative Example 1 and
With respect to the positive electrode material having a layered crystal structure containing cation A shown in Comparative Example 2.
The positive electrode material having a layered crystal structure synthesized by adding the cation B of Examples 1 to 41 or the composite oxide containing the cation A (and the cation A') and the cation B (and the cation B') is any of the above. The rate characteristics are also high.

同様に、表4に示す通り、
比較例6に示すカチオンAとカチオンBのいずれも含まない層状の結晶構造を有する正極材料、及び、
比較例7に示すカチオンAを含む層状の結晶構造を有する正極材料に対し、
実施例42〜実施例44のカチオンB、またはカチオンA(とカチオンA‘)とカチオンB(とカチオンB’)を含む複合酸化物を加えて合成した層状の結晶構造を有する正極材料では、いずれもレート特性が高くなっている。
Similarly, as shown in Table 4.
A positive electrode material having a layered crystal structure containing neither cation A nor cation B shown in Comparative Example 6 and
With respect to the positive electrode material having a layered crystal structure containing cation A shown in Comparative Example 7.
The positive electrode material having a layered crystal structure synthesized by adding the cation B of Examples 42 to 44 or the composite oxide containing the cation A (and the cation A') and the cation B (and the cation B') is any of the above. The rate characteristics are also high.

実施例1〜4と比較例3より、カチオンAとカチオンBには好ましい配合比があり、カチオンBが少なすぎると、レート特性が高くならないことが確認できた。
実施例1に対し比較例4,比較例5、もしくは、実施例42に対し比較例8,比較例9より、リチウム遷移金属複合酸化物に対して、カチオンAとカチオンBを含む複合酸化物を加える質量%の比率は、好ましい量があることが確認できた。
From Examples 1 to 4 and Comparative Example 3, it was confirmed that cation A and cation B had a preferable compounding ratio, and that if the amount of cation B was too small, the rate characteristics did not increase.
From Comparative Example 4 and Comparative Example 5 with respect to Example 1, or from Comparative Example 8 and Comparative Example 9 with respect to Example 42, a composite oxide containing cation A and cation B was added to the lithium transition metal composite oxide. It was confirmed that the ratio of the mass% to be added had a preferable amount.

Claims (10)

リチウムイオン二次電池に用いられる正極材料であって、層状の結晶構造を有する正極材料の層間に、リチウムイオンよりも大きなイオン半径であって且つ価数が2価以上であるカチオンBが存在していることを特徴とするリチウムイオン二次電池用正極材料。 Cation B, which is a positive electrode material used for a lithium ion secondary battery and has an ionic radius larger than that of lithium ions and a valence of divalent or higher, exists between layers of the positive electrode material having a layered crystal structure. A positive electrode material for a lithium ion secondary battery. リチウムイオン二次電池に用いられる正極材料であって、層状の結晶構造を有する正極材料の層間に、リチウムイオンよりも小さなイオン半径であって且つ価数が2価以上であるカチオンAとリチウムイオンよりも大きなイオン半径であって且つ価数が2価以上であるカチオンBが存在していることを特徴とする請求項1記載のリチウムイオン二次電池正極材料。 Cation A and lithium ion, which are positive electrode materials used for lithium ion secondary batteries and have an ionic radius smaller than that of lithium ions and a valence of divalent or higher, between layers of the positive electrode material having a layered crystal structure. The lithium ion secondary battery positive electrode material according to claim 1, wherein a cation B having a larger ionic radius and a valence of divalent or higher is present. リチウムイオンよりも大きなイオン半径を持つカチオンBが、Ca2+,Sr2+,Ba2+,In3+,Y3+,La3+,Ce3+,Ce4+,Pr3+,Nd3+,Sm3+,Eu3+,Gd3+,Tb3+,Dy3+,Ho3+,Er3+,Tm3+,Yb3+,Lu3+,Bi3+から選ばれた1種又は2種以上であることを特徴とする請求項1又は2に記載のリチウムイオン二次電池正極材料。 Cation B having an ionic radius larger than that of lithium ion is Ca 2+ , Sr 2+ , Ba 2+ , In 3+ , Y 3+ , La 3+ , Ce 3+ , Ce 4+ , Pr 3+ , Nd 3+ , Sm 3+ , Eu 3+ , Gd. The invention according to claim 1 or 2, wherein the amount is one or more selected from 3+ , Tb 3+ , Dy 3+ , Ho 3+ , Er 3+ , Tm 3+ , Yb 3+ , Lu 3+ , and Bi 3+ . Lithium ion secondary battery positive electrode material. リチウムイオンよりも小さなイオン半径を持つカチオンAが、Mg2+,Al3+,Ga3+,Sc3+,Si4+,Ge4+,Ti4+,Zr4+,Hf4+,V5+,Nb5+,Ta5+,Mo4+,Mo5+,Mo6+,W4+,W5+,W6+から選ばれた1種又は2種以上であることを特徴とする請求項2又は3記載のリチウムイオン二次電池正極材料。 The cation A having an ionic radius smaller than that of lithium ion is Mg 2+ , Al 3+ , Ga 3+ , Sc 3+ , Si 4+ , Ge 4+ , Ti 4+ , Zr 4+ , Hf 4+ , V 5+ , Nb 5+ , Ta 5+ , Mo. The lithium ion secondary battery positive electrode material according to claim 2 or 3, wherein the lithium ion secondary battery positive electrode material is one or more selected from 4+ , Mo 5+ , Mo 6+ , W 4+ , W 5+ , and W 6+ . 層状の結晶構造を有する正極材料の母相が、LiCoO系、Li(Ni,Co,Al)O系、Li(Ni,Co,Mn)O系のいずれかであることを特徴とする請求項1〜4のいずれかに記載のリチウムイオン二次電池正極材料。 The matrix of the positive electrode material having a layered crystal structure is one of LiCoO 2 system, Li (Ni, Co, Al) O 2 system, and Li (Ni, Co, Mn) O 2 system. The lithium ion secondary battery positive electrode material according to any one of claims 1 to 4. ベース組成が一般式Li1+mNiCoMn1−x−y−w−m2+θで表され、
ここで、MはAl,Mgから選ばれた1種又は2種の元素であり、
mは−0.05≦m≦0.10、
xは0≦x≦1.0、
yは0≦y≦1.0、
wは0≦w≦0.2、0.4≦m+x+y+w≦1.0、
θは電荷中性条件を満たすように定まる値、の範囲を持つ、
層状の結晶構造を有する正極材料であることを特徴とする請求項5記載のリチウムイオン二次電池正極材料。
Base composition is represented by the general formula Li 1 + m Ni x Co y Mn 1-x-y-w-m M w O 2 + θ,
Here, M is one or two elements selected from Al and Mg, and
m is −0.05 ≦ m ≦ 0.10.
x is 0 ≦ x ≦ 1.0,
y is 0 ≦ y ≦ 1.0,
w is 0 ≦ w ≦ 0.2, 0.4 ≦ m + x + y + w ≦ 1.0,
θ has a range of values, which are determined to satisfy the charge neutrality condition.
The lithium ion secondary battery positive electrode material according to claim 5, wherein the positive electrode material has a layered crystal structure.
請求項1〜6のいずれかに記載のリチウムイオン二次電池用正極材料を含むことを特徴とするリチウムイオン二次電池。 A lithium ion secondary battery comprising the positive electrode material for a lithium ion secondary battery according to any one of claims 1 to 6. 請求項2〜6のいずれかに記載のリチウムイオン二次電池用正極材料を製造する方法であって、
前記カチオンAとBを含む複合酸化物を作製する工程、
層状の結晶構造を有する正極材料を作製する工程、
前記複合酸化物と前記正極材料を混合後、焼成することにより、前記正極材料の層間にカチオンAとBをリチウムイオンと置換させる工程、
を含むことを特徴とするリチウムイオン二次電池正極材料の製造方法。
The method for producing a positive electrode material for a lithium ion secondary battery according to any one of claims 2 to 6.
The step of producing a composite oxide containing the cations A and B,
A process of producing a positive electrode material having a layered crystal structure,
A step of replacing the cations A and B with lithium ions between the layers of the positive electrode material by mixing the composite oxide and the positive electrode material and then firing the mixture.
A method for producing a positive electrode material for a lithium ion secondary battery, which comprises.
請求項2〜6のいずれかに記載のリチウムイオン二次電池用正極材料を製造する方法であって、
前記カチオンAとBを含む複合酸化物を作製する工程、
リチウム塩と、層状の結晶構造を有する正極材料の前駆体と、前記複合酸化物の混合体を調製する工程、
前記混合体を焼成することにより層状の結晶構造を有する正極材料の層間にカチオンAとBが挿入されている
ことを特徴とするリチウムイオン二次電池正極材料の製造方法。
The method for producing a positive electrode material for a lithium ion secondary battery according to any one of claims 2 to 6.
The step of producing a composite oxide containing the cations A and B,
A step of preparing a mixture of a lithium salt, a precursor of a positive electrode material having a layered crystal structure, and the composite oxide.
By firing the mixture, cations A and B are inserted between the layers of the positive electrode material having a layered crystal structure.
A method for producing a positive electrode material for a lithium ion secondary battery.
請求項3記載のカチオンBと請求項4記載のカチオンAを含む複合酸化物であることを特徴とするリチウムイオン二次電池正極材料添加剤。


A lithium ion secondary battery positive electrode material additive, which is a composite oxide containing the cation B according to claim 3 and the cation A according to claim 4.


JP2019065778A 2019-03-29 2019-03-29 Lithium ion secondary battery positive electrode material, lithium ion secondary battery positive electrode material additive, lithium ion secondary battery, and method for producing lithium ion secondary battery positive electrode material Active JP7257847B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019065778A JP7257847B2 (en) 2019-03-29 2019-03-29 Lithium ion secondary battery positive electrode material, lithium ion secondary battery positive electrode material additive, lithium ion secondary battery, and method for producing lithium ion secondary battery positive electrode material
JP2023015329A JP2023052895A (en) 2019-03-29 2023-02-03 Material of positive electrode for lithium ion secondary battery, additive for material of positive electrode for lithium ion secondary battery, lithium ion secondary battery and production method of material of positive electrode for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019065778A JP7257847B2 (en) 2019-03-29 2019-03-29 Lithium ion secondary battery positive electrode material, lithium ion secondary battery positive electrode material additive, lithium ion secondary battery, and method for producing lithium ion secondary battery positive electrode material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023015329A Division JP2023052895A (en) 2019-03-29 2023-02-03 Material of positive electrode for lithium ion secondary battery, additive for material of positive electrode for lithium ion secondary battery, lithium ion secondary battery and production method of material of positive electrode for lithium ion secondary battery

Publications (3)

Publication Number Publication Date
JP2020167014A true JP2020167014A (en) 2020-10-08
JP2020167014A5 JP2020167014A5 (en) 2022-01-18
JP7257847B2 JP7257847B2 (en) 2023-04-14

Family

ID=72714524

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019065778A Active JP7257847B2 (en) 2019-03-29 2019-03-29 Lithium ion secondary battery positive electrode material, lithium ion secondary battery positive electrode material additive, lithium ion secondary battery, and method for producing lithium ion secondary battery positive electrode material
JP2023015329A Pending JP2023052895A (en) 2019-03-29 2023-02-03 Material of positive electrode for lithium ion secondary battery, additive for material of positive electrode for lithium ion secondary battery, lithium ion secondary battery and production method of material of positive electrode for lithium ion secondary battery

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023015329A Pending JP2023052895A (en) 2019-03-29 2023-02-03 Material of positive electrode for lithium ion secondary battery, additive for material of positive electrode for lithium ion secondary battery, lithium ion secondary battery and production method of material of positive electrode for lithium ion secondary battery

Country Status (1)

Country Link
JP (2) JP7257847B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354121A (en) * 1998-06-09 1999-12-24 Kasei Optonix Co Ltd Manufacture of lithium secondary battery positive electrode material
JP2013182757A (en) * 2012-03-01 2013-09-12 Nippon Chem Ind Co Ltd Positive electrode active material for lithium secondary battery, manufacturing method thereof and lithium secondary battery
JP2015503181A (en) * 2012-01-17 2015-01-29 エルジー・ケム・リミテッド Positive electrode active material, lithium secondary battery for controlling impurities or swelling, and method for producing positive electrode active material with improved productivity
JP2016506032A (en) * 2013-10-31 2016-02-25 エルジー・ケム・リミテッド Positive electrode active material, method for producing the same, and lithium secondary battery including the same
JP2019114454A (en) * 2017-12-25 2019-07-11 日亜化学工業株式会社 Method of manufacturing positive electrode material for non-aqueous secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354121A (en) * 1998-06-09 1999-12-24 Kasei Optonix Co Ltd Manufacture of lithium secondary battery positive electrode material
JP2015503181A (en) * 2012-01-17 2015-01-29 エルジー・ケム・リミテッド Positive electrode active material, lithium secondary battery for controlling impurities or swelling, and method for producing positive electrode active material with improved productivity
JP2013182757A (en) * 2012-03-01 2013-09-12 Nippon Chem Ind Co Ltd Positive electrode active material for lithium secondary battery, manufacturing method thereof and lithium secondary battery
JP2016506032A (en) * 2013-10-31 2016-02-25 エルジー・ケム・リミテッド Positive electrode active material, method for producing the same, and lithium secondary battery including the same
JP2019114454A (en) * 2017-12-25 2019-07-11 日亜化学工業株式会社 Method of manufacturing positive electrode material for non-aqueous secondary battery

Also Published As

Publication number Publication date
JP7257847B2 (en) 2023-04-14
JP2023052895A (en) 2023-04-12

Similar Documents

Publication Publication Date Title
JP2020068210A (en) Composite positive electrode active material, positive electrode containing the same, lithium battery and manufacturing method thereof
JP2020504416A (en) Positive active material for lithium secondary battery, method for producing the same, electrode including the same, and lithium secondary battery including the electrode
JP2018049815A (en) Precursor for lithium transition metal oxide cathode material for rechargeable battery
EP3933984A1 (en) Cathode active material, method for preparing same, and secondary battery including cathode comprising same
US20080233481A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US12015154B2 (en) Cathode active material for lithium ion secondary battery and lithium ion secondary battery
JP2017226576A (en) Lithium-nickel-containing composite oxide and nonaqueous electrolyte secondary battery
JP2023523668A (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same
US20240006591A1 (en) Process for manufacturing positive electrode active material for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP2023524021A (en) Positive electrode active material for lithium secondary battery, method for producing same, and lithium secondary battery including the same
JP2020004506A (en) Positive electrode active substance for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
JP2023509595A (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same
JP2022523183A (en) A lithium secondary battery containing a positive electrode active material, a method for producing the same, and a positive electrode containing the positive electrode.
JP2020050562A (en) Metal composite hydroxide and its manufacturing method, positive electrode active material for lithium ion secondary battery and its manufacturing method, and lithium ion secondary battery using the same
JP2020021684A5 (en)
JP7371364B2 (en) Positive electrode active material for lithium ion secondary batteries and its manufacturing method, positive electrode for lithium ion secondary batteries, and lithium ion secondary batteries
KR102296218B1 (en) A positive electrode active material for lithium secondary battery, method of preparing the positive electrode active material, and lithium secondary battery including the positive electrode active material
KR102350597B1 (en) A cathode active material, method of preparing the same, and lithium secondary battery comprising a cathode comprising the cathode active material
JP7230227B2 (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same
JP7258372B2 (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same
KR102523095B1 (en) A cathode active material, method of preparing the same, lithium secondary battery comprising the cathode active material
JP2020033235A (en) Method for producing transition metal composite hydroxide, and method for producing cathode active material for lithium ion secondary battery
US11695116B2 (en) Method for manufacturing cathode active material for lithium ion secondary battery
JP7257847B2 (en) Lithium ion secondary battery positive electrode material, lithium ion secondary battery positive electrode material additive, lithium ion secondary battery, and method for producing lithium ion secondary battery positive electrode material
WO2019009160A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using said positive electrode active material

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20211227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220107

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20220105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230404

R150 Certificate of patent or registration of utility model

Ref document number: 7257847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150