JP2020164641A - Method for producing raw coke - Google Patents

Method for producing raw coke Download PDF

Info

Publication number
JP2020164641A
JP2020164641A JP2019066185A JP2019066185A JP2020164641A JP 2020164641 A JP2020164641 A JP 2020164641A JP 2019066185 A JP2019066185 A JP 2019066185A JP 2019066185 A JP2019066185 A JP 2019066185A JP 2020164641 A JP2020164641 A JP 2020164641A
Authority
JP
Japan
Prior art keywords
pitch
coke
weight
graphite
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019066185A
Other languages
Japanese (ja)
Other versions
JP7167815B2 (en
Inventor
辰弥 長谷川
Tatsuya Hasegawa
辰弥 長谷川
佳男 朝日
Yoshio Asahi
佳男 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Chemical Group Corp
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Chemical Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Chemical Holdings Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2019066185A priority Critical patent/JP7167815B2/en
Publication of JP2020164641A publication Critical patent/JP2020164641A/en
Application granted granted Critical
Publication of JP7167815B2 publication Critical patent/JP7167815B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Coke Industry (AREA)

Abstract

To provide a raw coke that can be used as a raw material for a coke having a higher hardness in graphite products having an arbitrarily controlled thermal expansion coefficient.SOLUTION: A method for producing raw coke, including subjecting a mixture of pitch A having a quinoline insoluble of less than 10 wt.% and pitch B having a quinoline insoluble of 10 to 99 wt.% and a toluene insoluble of 20 to 99 wt.% to heating at 400 to 700°C. A method for producing pitch coke, including subjecting the obtained raw coke to heating at 800 to 1700°C. A method for producing graphite, including subjecting the obtained pitch coke to heating at 2000 to 3500°C.SELECTED DRAWING: Figure 1

Description

本発明は生コークスの製造方法に関する。詳しくは、本発明は、熱膨張係数が制御されながらも高い硬度を有する黒鉛を得ることができる生コークス及びピッチコークスの製造方法と、製造されたピッチコークスを用いた黒鉛の製造方法に関する。 The present invention relates to a method for producing raw coke. More specifically, the present invention relates to a method for producing raw coke and pitch coke capable of obtaining graphite having a high hardness while controlling the coefficient of thermal expansion, and a method for producing graphite using the produced pitch coke.

コークスを骨材とした成形物である黒鉛製品は、高熱伝導で適度な熱膨張係数を有し、高耐熱性、高電気伝導性、高強度という優れた特性から、冶金、電気、機械、化学、原子力などの幅広い産業分野で利用されている。いずれの用途においても黒鉛製品には高い硬度が求められている。また、他の部材と組み合わせて高温下で使用する用途が多いことから、適度な熱膨張係数を有することが必要である。よって、任意の熱膨張係数においてより硬度の高い黒鉛製品が望まれる。 Graphite products, which are molded products made from coke, have high thermal conductivity and an appropriate coefficient of thermal expansion, and because of their excellent properties of high heat resistance, high electrical conductivity, and high strength, metallurgy, electricity, machinery, and chemistry. , Used in a wide range of industrial fields such as nuclear power. High hardness is required for graphite products in all applications. Further, since it is often used in combination with other members at a high temperature, it is necessary to have an appropriate coefficient of thermal expansion. Therefore, a graphite product having a higher hardness at an arbitrary coefficient of thermal expansion is desired.

一般的に黒鉛製品の熱膨張係数及び硬度は骨材であるコークスにより決定される。かかるコークスの熱膨張係数を制御する方法の一つとして、特許文献1ではキノリン不溶分を多く含むコールタールピッチを原料として製造する方法が示されている。また、特許文献2、3では、硬度を高めるために、コールタールピッチにカーボンブラックを添加する製造方法が示されている。更に、特許文献4では、コールタール及び/又は石油系重質油に樹脂を配合し、熱分解重縮合して得られたコークスによる熱膨張係数の制御方法が示されている。 Generally, the coefficient of thermal expansion and hardness of graphite products are determined by coke, which is an aggregate. As one of the methods for controlling the coefficient of thermal expansion of coke, Patent Document 1 discloses a method of producing coal tar pitch containing a large amount of quinoline insoluble as a raw material. Further, Patent Documents 2 and 3 show a manufacturing method in which carbon black is added to the coal tar pitch in order to increase the hardness. Further, Patent Document 4 discloses a method of controlling the coefficient of thermal expansion by coke obtained by blending a resin with coal tar and / or petroleum-based heavy oil and thermally decomposing and polycondensing the resin.

特公昭60−3118号公報Special Publication No. 60-3118 特開平2−69308号公報Japanese Patent Application Laid-Open No. 2-69308 特開2004−124014号公報Japanese Unexamined Patent Publication No. 2004-124014 国際公開第2002/040616号International Publication No. 2002/040616

特許文献1に記載されている技術は熱膨張係数のみを任意に制御するものであり、熱膨張係数が大きいコークスは高い硬度を示すものの、熱膨張係数が小さくなるほど硬度が低下する傾向がある。また、特許文献2、3では、超微細で嵩密度の小さいカーボンブラックをコールタールピッチ中に均一に分散させることは困難であるため、カーボンブラックの添加量には限界があった。更に、特許文献4では、コールタールや石油系重質油と樹脂との混合物を加熱する際に、主として樹脂に由来する大量の分解ガスの発生によりコークスの嵩密度が小さくなり、得られる黒鉛製品の硬度や強度が低下する可能性がある。 The technique described in Patent Document 1 arbitrarily controls only the coefficient of thermal expansion, and coke having a large coefficient of thermal expansion shows high hardness, but the hardness tends to decrease as the coefficient of thermal expansion becomes smaller. Further, in Patent Documents 2 and 3, it is difficult to uniformly disperse ultrafine carbon black having a small bulk density in the coal tar pitch, so that the amount of carbon black added is limited. Further, in Patent Document 4, when a mixture of coal tar or petroleum-based heavy oil and a resin is heated, the bulk density of coke is reduced due to the generation of a large amount of decomposition gas mainly derived from the resin, and the obtained graphite product is obtained. The hardness and strength of the plastic may decrease.

以上のように、前述の黒鉛製品の多くの特長を維持しつつ、熱膨張係数を任意に制御し、尚且つ高い硬度を示す骨材としてのコークス及び、そのコークスの原料及びその製造方法は見出されていなかった。 As described above, the coke as an aggregate which can arbitrarily control the coefficient of thermal expansion and show high hardness while maintaining many of the above-mentioned features of the graphite product, the raw material of the coke, and the manufacturing method thereof can be seen. It wasn't issued.

かかる現状を鑑みて、本発明の目的は、任意に制御した熱膨張係数の黒鉛製品においてより高い硬度を有するコークスの原料とすることができる生コークスの製造方法を提供することにある。本発明はまた、製造された生コークスを用いたピッチコークスの製造方法と、このピッチコークスを用いた黒鉛の製造方法を提供することを目的とする。 In view of this situation, an object of the present invention is to provide a method for producing raw coke, which can be used as a raw material for coke having a higher hardness in a graphite product having an arbitrarily controlled coefficient of thermal expansion. Another object of the present invention is to provide a method for producing pitch coke using the produced raw coke and a method for producing graphite using the pitch coke.

本発明者は上記課題を解決するべく鋭意検討した結果、キノリン不溶分を殆ど含まないピッチとキノリン不溶分とトルエン不溶分が所定範囲のピッチを混合して生コークスを製造することにより、上記課題を解決し得ることを見出した。即ち、本発明の要旨は以下の通りである。 As a result of diligent studies to solve the above problems, the present inventor has produced raw coke by mixing a pitch containing almost no quinoline insoluble matter and a pitch in which the quinoline insoluble matter and the toluene insoluble matter are in a predetermined range. I found that it could be solved. That is, the gist of the present invention is as follows.

[1] キノリン不溶分が10重量%未満のピッチAと、キノリン不溶分が10〜99重量%でトルエン不溶分が20〜99重量%であるピッチBとの混合物を400〜700℃で加熱する、生コークスの製造方法。 [1] A mixture of pitch A having a quinoline insoluble content of less than 10% by weight and pitch B having a quinoline insoluble content of 10 to 99% by weight and a toluene insoluble content of 20 to 99% by weight is heated at 400 to 700 ° C. , How to make raw coke.

[2] 前記混合物は、前記ピッチAと前記ピッチBとの合計量に対し、前記ピッチBを15〜60重量%含む、[1]に記載の生コークスの製造方法。 [2] The method for producing raw coke according to [1], wherein the mixture contains 15 to 60% by weight of the pitch B with respect to the total amount of the pitch A and the pitch B.

[3] 前記ピッチBを、コールタールピッチ及び/又はコールタールの蒸留物を、酸素存在下で加熱して得る、[1]又は[2]に記載の生コークスの製造方法。 [3] The method for producing raw coke according to [1] or [2], wherein the pitch B is obtained by heating a coal tar pitch and / or a distilled coal tar in the presence of oxygen.

[4] [1]ないし[3]のいずれかに記載の生コークスの製造方法により得られた生コークスを、800〜1700℃に加熱する、ピッチコークスの製造方法。 [4] A method for producing pitch coke, wherein the raw coke obtained by the method for producing raw coke according to any one of [1] to [3] is heated to 800 to 1700 ° C.

[5] [4]に記載のピッチコークスの製造方法により得られたピッチコークスを、2000〜3500℃に加熱する、黒鉛の製造方法。 [5] A method for producing graphite, in which the pitch coke obtained by the method for producing pitch coke according to [4] is heated to 2000 to 3500 ° C.

本発明によれば、任意に制御した熱膨張係数の黒鉛製品においてより高い硬度を有するコークスの原料とすることのできる生コークス及びピッチコークスを製造することができ、この生コークス及びピッチコークスを用いて所望の熱膨張係数を有する高硬度黒鉛製品を得ることができる。 According to the present invention, raw coke and pitch coke that can be used as raw materials for coke having higher hardness in a graphite product having an arbitrarily controlled coefficient of thermal expansion can be produced, and the raw coke and pitch coke can be used. Therefore, a high-hardness graphite product having a desired coefficient of thermal expansion can be obtained.

実施例及び比較例における熱膨張係数とショア硬度の相対値との関係を示すグラフである。It is a graph which shows the relationship between the coefficient of thermal expansion and the relative value of a shore hardness in an Example and a comparative example.

以下、本発明を詳細に説明するが、本発明は以下の説明に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。なお、本発明において、「〜」を用いてその前後に数値又は物性値を挟んで表現する場合、その前後の値を含むものとして用いることとする。 Hereinafter, the present invention will be described in detail, but the present invention is not limited to the following description, and can be arbitrarily modified and carried out without departing from the gist of the present invention. In addition, in this invention, when a numerical value or a physical property value is put before and after using "~", it is used as including the value before and after that.

〔生コークスの製造方法〕
本発明の生コークスの製造方法は、キノリン不溶分が10重量%未満のピッチAと、キノリン不溶分が10〜99重量%でトルエン不溶分が20〜99重量%であるピッチBとの混合物を400〜700℃で加熱して生コークス(以下、「本発明の生コークス」と称す場合がある。)を製造することを特徴とする。
[Manufacturing method of raw coke]
In the method for producing raw coke of the present invention, a mixture of pitch A having a quinoline insoluble content of less than 10% by weight and pitch B having a quinoline insoluble content of 10 to 99% by weight and a toluene insoluble content of 20 to 99% by weight is used. It is characterized in that raw coke (hereinafter, may be referred to as "raw coke of the present invention") is produced by heating at 400 to 700 ° C.

本発明の生コークスは、任意に制御した熱膨張係数の黒鉛製品においてより高い硬度を有するコークスを提供することができるという効果を奏する。
即ち、従来の黒鉛製品では、一般に熱膨張係数と硬度に相関があり、硬度の高いものは熱膨張係数も大きく、熱膨張係数の小さいものは硬度が低い傾向があったが、本発明によれば、この熱膨張係数と硬度の相関関係を解消し、所定の熱膨張係数で様々な硬度を有する黒鉛製品、或いは所定の硬度で様々な熱膨張係数を有する黒鉛製品を提供することができる。従って、熱膨張係数を任意に制御してより高い硬度の黒鉛製品を得ることも可能となる。
かかる効果が得られる理由は次のように推定される。
即ち、キノリン不溶分とトルエン不溶分を一定の範囲に制御したピッチBとこのピッチBよりもキノリン不溶分が少なく、キノリン不溶分を殆ど含まないピッチAを混合して用いることで、ピッチコークスの結晶性を制御して熱膨張係数を任意に制御し、様々な熱膨張係数でより高い硬度を有するコークスを製造することができる。
The raw coke of the present invention has the effect of being able to provide coke with higher hardness in a graphite product with an arbitrarily controlled coefficient of thermal expansion.
That is, in conventional graphite products, there is generally a correlation between the coefficient of thermal expansion and the hardness, those with a high coefficient of thermal expansion tend to have a large coefficient of thermal expansion, and those with a small coefficient of thermal expansion tend to have a low coefficient of thermal expansion. For example, it is possible to eliminate the correlation between the coefficient of thermal expansion and the hardness, and to provide a graphite product having various coefficients of thermal expansion with a predetermined coefficient of thermal expansion or a graphite product having various coefficients of thermal expansion with a predetermined coefficient of thermal expansion. Therefore, it is possible to obtain a graphite product having a higher hardness by arbitrarily controlling the coefficient of thermal expansion.
The reason why such an effect is obtained is presumed as follows.
That is, by using a mixture of pitch B in which the quinoline insoluble content and the toluene insoluble content are controlled within a certain range and pitch A in which the quinoline insoluble content is smaller than this pitch B and the quinoline insoluble content is hardly contained, pitch coke can be produced. By controlling the crystallinity and arbitrarily controlling the coefficient of thermal expansion, it is possible to produce coke having higher hardness at various coefficients of thermal expansion.

本発明の生コークスの製造原料は、キノリン不溶分が10重量%未満のピッチAと、キノリン不溶分が10〜99重量%でトルエン不溶分が20〜99重量%であるピッチBとの混合物である。 The raw material for producing raw coke of the present invention is a mixture of pitch A having a quinoline insoluble content of less than 10% by weight and pitch B having a quinoline insoluble content of 10 to 99% by weight and a toluene insoluble content of 20 to 99% by weight. is there.

キノリン不溶分が10重量%未満のピッチAとは、石灰の乾留によって得られるコールタールを蒸留、精製して得られる混合物であり、一般的に「コールタールピッチ」と呼称されるものである。コールタールピッチの成分としては、通常、ナフタレン、アセナフテン、フェノキシベンゼン、メチルナフタレン、その他三環以上の多環芳香族化合物等が含まれ、通常そのキノリン不溶分は0.1〜5重量%程度である。 Pitch A having a quinoline insoluble content of less than 10% by weight is a mixture obtained by distilling and purifying coal tar obtained by carbonization of lime, and is generally referred to as "coal tar pitch". The components of coal tar pitch usually include naphthalene, acenaphthene, phenoxybenzene, methylnaphthalene, and other polycyclic aromatic compounds having three or more rings, and the quinoline insoluble content thereof is usually about 0.1 to 5% by weight. is there.

ピッチBはキノリン不溶分が10〜99重量%で、トルエン不溶分が20〜99重量%である。
ピッチBのキノリン不溶分が10重量%未満であるとピッチAと混合してもピッチA単独の場合と得られる黒鉛の硬度、熱膨張係数は変わらない。一方、製造上の容易さからピッチBのキノリン不溶分は99重量%以下に制限される。これらをより良好なものとする観点から、ピッチBのキノリン不溶分は30重量%以上が好ましく、40重量%以上がより好ましい。一方、ピッチBのキノリン不溶分は98重量%以下が好ましく、95重量%以下がより好ましい。
Pitch B has a quinoline insoluble content of 10 to 99% by weight and a toluene insoluble content of 20 to 99% by weight.
If the quinoline insoluble content of pitch B is less than 10% by weight, the hardness and coefficient of thermal expansion of the obtained graphite do not change even when mixed with pitch A, as compared with the case of pitch A alone. On the other hand, the quinoline insoluble content of pitch B is limited to 99% by weight or less due to ease of manufacture. From the viewpoint of making these better, the quinoline insoluble content of pitch B is preferably 30% by weight or more, more preferably 40% by weight or more. On the other hand, the quinoline insoluble content of pitch B is preferably 98% by weight or less, more preferably 95% by weight or less.

また、ピッチBのトルエン不溶分が20重量%未満であるとピッチAと混合してもピッチA単独の場合と得られる黒鉛の硬度、熱膨張係数は変わらない。一方、製造上の容易さからピッチBのトルエン不溶分は99重量%以下に制限される。これらをより良好なものとする観点から、ピッチBのトルエン不溶分は30重量%以上が好ましく、50重量%以上がより好ましい。一方、ピッチBのトルエン不溶分は98重量%以下が好ましく、95重量%以下がより好ましい。 Further, when the toluene insoluble content of the pitch B is less than 20% by weight, the hardness and the coefficient of thermal expansion of the obtained graphite do not change even if the pitch A is mixed with the pitch A alone. On the other hand, the toluene insoluble content of pitch B is limited to 99% by weight or less due to ease of manufacture. From the viewpoint of making these better, the toluene insoluble content of pitch B is preferably 30% by weight or more, more preferably 50% by weight or more. On the other hand, the toluene insoluble content of pitch B is preferably 98% by weight or less, more preferably 95% by weight or less.

なお、ピッチA,Bのキノリン不溶分およびピッチBのトルエン不溶分は、ピッチを、溶剤キノリンもしくは溶剤トルエンと共に混合し、不溶分重量を測定するJIS K 2425の方法に基づいて求められる。 The quinoline insoluble matter of pitches A and B and the toluene insoluble matter of pitch B are determined based on the method of JIS K 2425 in which the pitch is mixed with solvent quinoline or solvent toluene and the weight of the insoluble matter is measured.

本発明のピッチBの製造方法は、得られるピッチのキノリン不溶分、トルエン不溶分のそれぞれの量が前述の特定の範囲となるものであれば特に制限されないが、好ましい製造方法の例としては、キノリン不溶分が1重量%未満であるコールタールピッチもしくはコールタールを蒸留して得られるオイルを酸素含有ガスの存在下で加熱する方法が挙げられる。
コールタールピッチ乃至はコールタールを蒸留して得られるオイルを酸素含有ガス存在下で加熱して得られるピッチBをピッチAに混合することで、生コークス、ピッチコークスおよび黒鉛の結晶性を制御し、熱膨張係数を任意に制御し、より高い硬度を有するコークスを製造することができる。
The method for producing pitch B of the present invention is not particularly limited as long as the amounts of the quinoline-insoluble component and the toluene-insoluble component of the obtained pitch are within the above-mentioned specific ranges, but examples of preferable production methods include. Examples thereof include a method of heating coal tar pitch having a quinoline insoluble content of less than 1% by weight or an oil obtained by distilling coal tar in the presence of an oxygen-containing gas.
The crystallinity of raw coke, pitch coke and graphite is controlled by mixing coal tar pitch or pitch B obtained by heating oil obtained by distilling coal tar in the presence of oxygen-containing gas with pitch A. , The thermal expansion coefficient can be arbitrarily controlled to produce coke having a higher hardness.

コールタールピッチ乃至はコールタールを蒸留して得られるオイルを加熱する際の酸素含有ガスの酸素濃度には制限はないが、通常は空気もしくは空気(酸素濃度21体積%)よりも酸素濃度の低いガス(例えば酸素濃度5〜21体積%)が使用される。 There is no limit to the oxygen concentration of the oxygen-containing gas when heating the oil obtained by distilling the coal tar pitch or coal tar, but the oxygen concentration is usually lower than that of air or air (oxygen concentration 21% by volume). Gas (eg, oxygen concentration 5-21% by volume) is used.

コールタールピッチ乃至はコールタールを蒸留して得られるオイルを酸素含有ガスの存在下で加熱する際の加熱条件は、好ましくは150〜400℃、より好ましくは200〜390℃で、好ましくは6〜30時間、より好ましくは10〜25時間である。 The heating conditions for heating the oil obtained by distilling coal tar pitch or coal tar in the presence of an oxygen-containing gas are preferably 150 to 400 ° C, more preferably 200 to 390 ° C, and preferably 6 to 6 to. It is 30 hours, more preferably 10 to 25 hours.

コールタールピッチもしくはコールタールを蒸留して得られるオイルを酸素含有ガスの存在下で加熱する際、加熱温度が150℃未満では改質反応が進行しにくいため、加熱温度は150℃以上が好ましく、より好ましくは200℃以上である。一方、加熱温度が400℃を超えるとコールタールピッチの燃焼や炭化が起こる恐れがあるため、加熱温度は400℃以下が好ましく、より好ましくは390℃以下である。また、加熱時間は、十分にキノリン不溶分、トルエン不溶分を増加させるため、6時間以上が好ましく、より好ましくは10時間以上である。一方、加熱時間をある程度行えば改質反応が完了しており、それ以上反応が進行しないことから、30時間以下が好ましく、より好ましくは25時間以下である。 When heating oil obtained by distilling coal tar pitch or coal tar in the presence of oxygen-containing gas, the reforming reaction does not easily proceed if the heating temperature is less than 150 ° C. Therefore, the heating temperature is preferably 150 ° C. or higher. More preferably, it is 200 ° C. or higher. On the other hand, if the heating temperature exceeds 400 ° C., coal tar pitch combustion or carbonization may occur. Therefore, the heating temperature is preferably 400 ° C. or lower, more preferably 390 ° C. or lower. In addition, the heating time is preferably 6 hours or more, more preferably 10 hours or more, in order to sufficiently increase the quinoline insoluble content and the toluene insoluble content. On the other hand, if the heating time is extended to some extent, the reforming reaction is completed and the reaction does not proceed any further. Therefore, 30 hours or less is preferable, and 25 hours or less is more preferable.

本発明の生コークスの製造法において原料となるピッチAとピッチBの混合割合は、ピッチAとピッチBの合計量に対し、ピッチBの割合が15〜60重量%であることが好ましい。ピッチBの割合が15重量%未満であると得られる黒鉛の熱膨張係数、硬度共にピッチA100%の場合と変わらない。一方、ピッチBの割合が60重量%を超えると炭化反応時に発泡して得られるピッチコークスおよび黒鉛の密度が低下する。これらをより良好なものとする観点から、ピッチBの割合は20重量%以上であることが好ましく、25重量%以上であることがより好ましい。一方55重量%以下であることが好ましく、50重量%以下であることがより好ましい。 In the method for producing raw coke of the present invention, the mixing ratio of pitch A and pitch B as raw materials is preferably such that the ratio of pitch B is 15 to 60% by weight with respect to the total amount of pitch A and pitch B. When the ratio of pitch B is less than 15% by weight, the coefficient of thermal expansion and hardness of the obtained graphite are the same as those when the pitch A is 100%. On the other hand, if the proportion of pitch B exceeds 60% by weight, the densities of pitch coke and graphite obtained by foaming during the carbonization reaction decrease. From the viewpoint of making these better, the ratio of pitch B is preferably 20% by weight or more, and more preferably 25% by weight or more. On the other hand, it is preferably 55% by weight or less, and more preferably 50% by weight or less.

本発明の生コークスの製造方法では、上記ピッチAとピッチBの混合物を400〜700℃で加熱する。この400〜700℃での加熱は、熱分解により炭化を行い、ピッチBを重合、固化させて生コークスを得る工程である。この工程での加熱温度は好ましくは450〜550℃である。また、この加熱処理は通常、窒素ガスなどの不活性ガス雰囲気下で行われる。加熱時間は、加熱温度やピッチの分子量分布によっても異なるが通常8〜25時間程度である。 In the method for producing raw coke of the present invention, the mixture of pitch A and pitch B is heated at 400 to 700 ° C. This heating at 400 to 700 ° C. is a step of carbonizing by thermal decomposition, polymerizing and solidifying pitch B to obtain raw coke. The heating temperature in this step is preferably 450 to 550 ° C. Further, this heat treatment is usually performed in an atmosphere of an inert gas such as nitrogen gas. The heating time varies depending on the heating temperature and the molecular weight distribution of the pitch, but is usually about 8 to 25 hours.

〔ピッチコークスの製造方法〕
本発明のピッチコークスの製造方法では、本発明の生コークスの製造方法により製造された本発明の生コークスを800〜1700℃に加熱することにより、ピッチコークスを得る。800〜1700℃での加熱は生コークス中に残留している揮発成分を揮発させ、ピッチコークスを得る工程である。この工程での加熱温度は好ましくは900〜1400℃である。また、この加熱処理における雰囲気は特に制約はないが、酸素含有率が低い不活性ガス雰囲気下であることが好ましい。加熱時間は、加熱温度によっても異なるが通常1〜5時間程度である。
[Manufacturing method of pitch coke]
In the method for producing pitch coke of the present invention, pitch coke is obtained by heating the raw coke of the present invention produced by the method for producing raw coke of the present invention to 800 to 1700 ° C. Heating at 800 to 1700 ° C. is a step of volatilizing the volatile components remaining in the raw coke to obtain pitch coke. The heating temperature in this step is preferably 900 to 1400 ° C. The atmosphere in this heat treatment is not particularly limited, but is preferably an inert gas atmosphere having a low oxygen content. The heating time varies depending on the heating temperature, but is usually about 1 to 5 hours.

〔黒鉛の製造方法〕
本発明の黒鉛の製造方法では、前述の製造方法により得られたピッチコークスを2000〜3500℃に加熱することにより、黒鉛を得る。この際の加熱条件は、2000℃以上であることが原料由来の不純物を揮発させる観点で好ましく、この観点から加熱温度は好ましくは2200℃以上である。また、加熱温度が3500℃以下であると、黒鉛化の進行が停止した後での余剰なエネルギー消費を防ぐ観点で好ましく、この観点から加熱温度は好ましくは3000℃以下である。なお、黒鉛を製造する際には、ピッチコークスを上記温度範囲で焼成すればよいが、より好ましくは以下に説明するように、ピッチコークスと結着成分の混合物を成形したものを2000〜3500℃で焼成することが好ましい。なお、この焼成は、不活性ガス雰囲気で行うことが好ましく、焼成時間は通常0.5時間〜60日程度とすることが好ましい。
[Graphite manufacturing method]
In the method for producing graphite of the present invention, graphite is obtained by heating the pitch coke obtained by the above-mentioned production method to 2000 to 3500 ° C. The heating condition at this time is preferably 2000 ° C. or higher from the viewpoint of volatilizing impurities derived from the raw material, and from this viewpoint, the heating temperature is preferably 2200 ° C. or higher. Further, when the heating temperature is 3500 ° C. or lower, it is preferable from the viewpoint of preventing excess energy consumption after the progress of graphitization is stopped, and from this viewpoint, the heating temperature is preferably 3000 ° C. or lower. In the production of graphite, pitch coke may be calcined in the above temperature range, but more preferably, as described below, a mixture of pitch coke and a binder component is molded at 2000 to 3500 ° C. It is preferable to bake at. The firing is preferably carried out in an inert gas atmosphere, and the firing time is usually preferably about 0.5 hours to 60 days.

[結着成分の混合と混練]
通常の黒鉛材料製造では、主要材料であるピッチコークス自体は融着性を有しない場合があるため、バインダーピッチなどの結着成分(バインダーピッチ)を混合して成形を行うことが好ましい。この際、ピッチコークスとバインダーピッチを十分に馴染ませる目的で、通常バインダーピッチの軟化点以上で加温をしつつ、ピッチコークスとバインダーピッチを混合する。この工程は混練と呼ばれ、黒鉛成形体の密度、硬度、電気抵抗などの諸物性に大きく影響する。本発明においてもバインダーピッチを加え、混練操作を行った上で成形体とすることも可能である。なお、ここでいうバインダーピッチとしては、コールタールピッチ、即ち、前述のピッチAおよび、それを加熱改質したコールタールピッチを用いることができる。
ピッチコークスとバインダーピッチの混合比は後述の通りである。
[Mixing and kneading of binding components]
In ordinary graphite material production, pitch coke itself, which is a main material, may not have cohesiveness, so it is preferable to mix a binder component (binder pitch) such as a binder pitch for molding. At this time, for the purpose of sufficiently blending the pitch coke and the binder pitch, the pitch coke and the binder pitch are usually mixed while being heated above the softening point of the binder pitch. This process is called kneading and greatly affects various physical properties such as density, hardness, and electrical resistance of the graphite compact. Also in the present invention, it is possible to add a binder pitch and perform a kneading operation to obtain a molded product. As the binder pitch referred to here, a coal tar pitch, that is, the above-mentioned pitch A and a coal tar pitch obtained by heat-modifying the above-mentioned pitch A can be used.
The mixing ratio of pitch coke and binder pitch is as described later.

[加圧成形]
本発明の製造方法は、特に、前記か焼後、黒鉛化する前にピッチコークスを粉砕し、バインダーピッチと混合し、加圧成形を行うことが好ましい。成形に使用するピッチコークスの粒径は特に制限されないが、成形体硬度向上の観点から、200μm以下が好ましく、より好ましくは150μm以下である。また、製造上の容易さからピッチコークスの粒径は10μm以上が好ましく、より好ましくは20μm以上である。ここで、ピッチコークスの粒径とは篩分けの際の篩の目の粗さの値である。
[Pressure molding]
In the production method of the present invention, it is particularly preferable that the pitch coke is crushed after the calcination and before graphitization, mixed with the binder pitch, and pressure-molded. The particle size of the pitch coke used for molding is not particularly limited, but from the viewpoint of improving the hardness of the molded product, it is preferably 200 μm or less, more preferably 150 μm or less. Further, the particle size of the pitch coke is preferably 10 μm or more, more preferably 20 μm or more, from the viewpoint of ease of production. Here, the particle size of pitch coke is a value of the roughness of the sieve at the time of sieving.

ピッチコークスとバインダーピッチの混合比は、少なすぎると結着性に乏しく、多すぎると成形体が膨張することから、ピッチコークス100重量部に対してバインダーピッチ20〜50重量部を混合することが好ましく、より好ましくは25〜45重量部である。
加圧成形の方法としては金型成形、押出成形、冷間静水等方圧加圧成形等が挙げられる。
If the mixing ratio of pitch coke and binder pitch is too small, the binding property is poor, and if it is too large, the molded product expands. Therefore, it is possible to mix 20 to 50 parts by weight of the binder pitch with 100 parts by weight of pitch coke. It is preferably, more preferably 25 to 45 parts by weight.
Examples of the pressure molding method include mold molding, extrusion molding, cold hydrostatic isotropic pressure molding, and the like.

加圧成形の条件として、温度は通常80〜200℃、好ましくは100〜170℃である。また、圧力は通常1〜100MPa、好ましくは10〜50MPaである。 As a condition of pressure molding, the temperature is usually 80 to 200 ° C., preferably 100 to 170 ° C. The pressure is usually 1 to 100 MPa, preferably 10 to 50 MPa.

上記成形後は、黒鉛化する前にバインダーピッチ由来の揮発分を揮発させるために成形体をか焼することが好ましい。成形体のか焼は通常800〜1800℃の温度で、1時間〜30日程度行われ、雰囲気は不活性雰囲気下が好ましい。 After the above molding, it is preferable to calcify the molded product in order to volatilize the volatile matter derived from the binder pitch before graphitizing. The roasting of the molded product is usually carried out at a temperature of 800 to 1800 ° C. for about 1 hour to 30 days, and the atmosphere is preferably an inert atmosphere.

[含浸・再か焼]
成形体のか焼によって生成した空隙にさらにバインダーピッチを含浸させる工程をピッチ含浸という。その後、再度か焼により結着成分を焼結させるが、この含浸・再か焼を繰り返すことでより高密度化された黒鉛を得ることができる。この工程は成形体のか焼後及び黒鉛化後に行うことができるが、含浸ピッチの浸透のし易さから成形体のか焼後に行うことが望ましい。
[Immersion / recalcination]
The step of further impregnating the voids generated by baking of the molded product with the binder pitch is called pitch impregnation. After that, the binding component is sintered again by calcination, and by repeating this impregnation and calcination, higher density graphite can be obtained. This step can be performed after the molded product is baked and graphitized, but it is desirable to perform this step after the molded product is baked because of the ease of penetration of the impregnation pitch.

以下、実施例により本発明の内容を更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例によって限定されるものではない。なお、以下の実施例における各種の製造条件や評価結果の値は、本発明の実施態様における上限又は下限の好ましい値としての意味を持つものであり、好ましい範囲は前記した上限又は下限の値と、下記実施例の値又は実施例同士の値との組み合わせで規定される範囲であってもよい。 Hereinafter, the content of the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples as long as the gist of the present invention is not exceeded. The values of various production conditions and evaluation results in the following examples have meanings as preferable values of the upper limit or the lower limit in the embodiment of the present invention, and the preferable range is the above-mentioned upper limit or lower limit value. , The range specified by the combination of the values of the following examples or the values of the examples may be used.

[実施例1]
(ピッチBの製造)
コールタールを蒸留して得られるオイル蒸留物100gを空気流通下、260℃で23時間加熱して改質し、キノリン不溶分が75重量%で、トルエン不溶分が76重量%のピッチBを得た。
[Example 1]
(Manufacturing of pitch B)
100 g of an oil distillate obtained by distilling coal tar is reformed by heating at 260 ° C. for 23 hours under air flow to obtain pitch B having a quinoline insoluble content of 75% by weight and a toluene insoluble content of 76% by weight. It was.

(生コークスの製造)
上記ピッチBの製造で得たピッチB6.25gと、ピッチAとしてコールタールピッチ(キノリン不溶分:1重量%未満)18.75gを混合し、得られた混合物を、窒素雰囲気下に480℃で10時間加熱して生コークスを得た。
(Manufacturing of raw coke)
6.25 g of pitch B obtained in the above production of pitch B and 18.75 g of coal tar pitch (quinoline insoluble content: less than 1% by weight) as pitch A were mixed, and the obtained mixture was prepared at 480 ° C. under a nitrogen atmosphere. Raw coke was obtained by heating for 10 hours.

(ピッチコークスの製造)
得られた生コークスを窒素雰囲気下に1300℃で2時間加熱してピッチコークスを得た。
(Manufacturing of pitch coke)
The obtained raw coke was heated at 1300 ° C. for 2 hours in a nitrogen atmosphere to obtain pitch coke.

(ピッチコークスの成形と黒鉛の製造)
金型成形により加圧成形を行った。粒径53〜100μmに粉砕したピッチコークス粉1.3gとバインダーピッチ(コールタールピッチ(キノリン不溶分:15重量%未満))0.39gを混合し、その混合物1.6gをφ20mmのコイン状の金型に封入・加圧して、φ20mm×厚み約4mmのコイン型成形体を得た。得られた成形体を不活性雰囲気下、30MPa、1300℃で2時間か焼した後2800℃で0.5時間焼成して黒鉛化した。得られた黒鉛化成形体を直方体に切り出して物性評価を行った。
(Pitch coke molding and graphite production)
Pressure molding was performed by mold molding. 1.3 g of pitch coke powder crushed to a particle size of 53 to 100 μm and 0.39 g of binder pitch (coal tar pitch (quinoline insoluble content: less than 15% by weight)) are mixed, and 1.6 g of the mixture is in the form of a coin of φ20 mm. It was sealed and pressed in a mold to obtain a coin mold having a diameter of 20 mm and a thickness of about 4 mm. The obtained molded product was calcined at 30 MPa at 1300 ° C. for 2 hours in an inert atmosphere and then calcined at 2800 ° C. for 0.5 hours to graphitize. The obtained graphitized molded product was cut into a rectangular parallelepiped and evaluated for physical properties.

(熱膨張係数の測定)
熱膨張係数測定はRigaku社製の熱機械分析装置(Thermo plus EVO2/TMA)にて、200℃〜1000℃間の成形体の長さ方向の寸法変化から線熱膨張係数を算出した。
(Measurement of coefficient of thermal expansion)
For the measurement of the coefficient of thermal expansion, a thermomechanical analyzer (Thermo plus EVO2 / TMA) manufactured by Rigaku Co., Ltd. was used to calculate the coefficient of linear thermal expansion from the dimensional change in the length direction of the molded product between 200 ° C. and 1000 ° C.

(ショア硬度の測定)
ショア硬度測定には今井精機社製の硬さ試験機(ショア式D型)を用いて、直方体サンプルの2面(成形時圧力をかけた面と断面)を3カ所ずつ測定し、計6カ所の平均値をサンプルのショア硬度として採用した。
(Measurement of shore hardness)
For the shore hardness measurement, a hardness tester (shore type D type) manufactured by Imai Seiki Co., Ltd. was used to measure two surfaces (the surface under pressure during molding and the cross section) of the rectangular parallelepiped sample at three locations, for a total of six locations. The average value of was adopted as the shore hardness of the sample.

[実施例2]
実施例1のピッチBとピッチAとの混合量を、ピッチBを8.75g、ピッチAを16.25gとした以外は実施例1と同様に実施した。得られた黒鉛について実施例1と同様の評価を行った。
[Example 2]
The mixing amount of pitch B and pitch A of Example 1 was the same as that of Example 1 except that the pitch B was 8.75 g and the pitch A was 16.25 g. The obtained graphite was evaluated in the same manner as in Example 1.

[実施例3]
実施例1のピッチBとピッチAとの混合量を、ピッチBを12.5g、ピッチAを12.5gとした以外は実施例1と同様に実施した。得られた黒鉛について実施例1と同様の評価を行った。
[Example 3]
The mixing amount of pitch B and pitch A of Example 1 was the same as that of Example 1 except that the pitch B was 12.5 g and the pitch A was 12.5 g. The obtained graphite was evaluated in the same manner as in Example 1.

[比較例1]
実施例1のピッチBとピッチAの混合物の代わりに、キノリン不溶分が5重量%でトルエン不溶分が13重量%であるコールタールピッチを480℃に加熱して生コークスを得た以外は実施例1と同様に実施した。得られた黒鉛について実施例1と同様の評価を行った。
[Comparative Example 1]
Instead of the mixture of pitch B and pitch A of Example 1, the coal tar pitch having a quinoline insoluble content of 5% by weight and a toluene insoluble content of 13% by weight was heated to 480 ° C. to obtain raw coke. It was carried out in the same manner as in Example 1. The obtained graphite was evaluated in the same manner as in Example 1.

[比較例2]
コールタールを蒸留して得られるオイル100gを空気流通下、260℃で9時間加熱して、キノリン不溶分が0.9重量%でトルエン不溶分が18重量%のピッチを得た。得られたピッチ6.25gとコールタールピッチ(キノリン不溶分:1重量%未満)18.75gを混合し、480℃に加熱して生コークスを得た以外は実施例1と同様に実施した。得られた黒鉛について実施例1と同様の評価を行った。
[Comparative Example 2]
100 g of oil obtained by distilling coal tar was heated at 260 ° C. for 9 hours under air flow to obtain a pitch of 0.9% by weight of quinoline insoluble matter and 18% by weight of toluene insoluble matter. The same procedure as in Example 1 was carried out except that 6.25 g of the obtained pitch and 18.75 g of coal tar pitch (quinoline insoluble content: less than 1% by weight) were mixed and heated to 480 ° C. to obtain raw coke. The obtained graphite was evaluated in the same manner as in Example 1.

表−1に実施例1〜3及び比較例1、2の熱膨張係数、ショア硬度の測定結果をまとめて示した。なお、ショア硬度は比較例1の成形体のショア硬度で規格化した相対値として示した。また、これら実施例1〜3及び比較例1、2の熱膨張係数とショア硬度の相対値との関係を図1に示す。 Table 1 summarizes the measurement results of the coefficient of thermal expansion and shore hardness of Examples 1 to 3 and Comparative Examples 1 and 2. The shore hardness is shown as a relative value standardized by the shore hardness of the molded product of Comparative Example 1. Further, FIG. 1 shows the relationship between the coefficient of thermal expansion of Examples 1 to 3 and Comparative Examples 1 and 2 and the relative value of the shore hardness.

Figure 2020164641
Figure 2020164641

ピッチAとピッチBとの混合原料を用いた実施例1〜3では比較例1、2と比較して高い硬度が得られることが確認された。また、実施例1と比較例1では、熱膨張係数が同程度であっても実施例1の方が高いショア硬度を示すことが確認された。このようにピッチAとピッチBとの混合原料を用いたピッチコークスはコールタールピッチから合成したピッチコークスと比較して高硬度の黒鉛となる。比較例2は熱膨張係数が非常に低いが硬度も低い。
実施例1〜3より、本発明によれば、高い硬度領域で様々な熱膨張係数を示す黒鉛製品を得られることが分かる。
It was confirmed that in Examples 1 to 3 using the mixed raw materials of pitch A and pitch B, higher hardness was obtained as compared with Comparative Examples 1 and 2. Further, it was confirmed that in Example 1 and Comparative Example 1, even if the coefficient of thermal expansion was about the same, Example 1 showed higher shore hardness. As described above, the pitch coke using the mixed raw material of the pitch A and the pitch B becomes graphite having a higher hardness than the pitch coke synthesized from the coal tar pitch. Comparative Example 2 has a very low coefficient of thermal expansion but also a low hardness.
From Examples 1 to 3, it can be seen that according to the present invention, graphite products showing various coefficients of thermal expansion can be obtained in a high hardness region.

本発明の生コークスを用いて得られる黒鉛は、熱膨張係数が低く、かつ高硬度であることから、特に、冶金、電気、機械、化学、原子力用途等に利用される人造黒鉛として有用である。より具体的には、本発明による黒鉛は、発熱材、坩堝、断熱材、集電体、減摩材、熱交材、原子炉の減速材・遮蔽物等として好ましく用いることができる。 The graphite obtained by using the raw coke of the present invention has a low coefficient of thermal expansion and high hardness, and is therefore particularly useful as artificial graphite used for metallurgy, electricity, machinery, chemistry, nuclear applications, etc. .. More specifically, the graphite according to the present invention can be preferably used as an exothermic material, a crucible, a heat insulating material, a current collector, an antifriction material, a heat mixing material, a moderator / shield of a nuclear reactor, and the like.

Claims (5)

キノリン不溶分が10重量%未満のピッチAと、キノリン不溶分が10〜99重量%でトルエン不溶分が20〜99重量%であるピッチBとの混合物を400〜700℃で加熱する、生コークスの製造方法。 Raw coke that heats a mixture of pitch A with a quinoline insoluble content of less than 10% by weight and pitch B with a quinoline insoluble content of 10 to 99% by weight and a toluene insoluble content of 20 to 99% by weight at 400 to 700 ° C. Manufacturing method. 前記混合物は、前記ピッチAと前記ピッチBとの合計量に対し、前記ピッチBを15〜60重量%含む、請求項1に記載の生コークスの製造方法。 The method for producing raw coke according to claim 1, wherein the mixture contains 15 to 60% by weight of the pitch B with respect to the total amount of the pitch A and the pitch B. 前記ピッチBを、コールタールピッチ及び/又はコールタールの蒸留物を、酸素存在下で加熱して得る、請求項1又は2に記載の生コークスの製造方法。 The method for producing raw coke according to claim 1 or 2, wherein the pitch B is obtained by heating a coal tar pitch and / or a distilled coal tar in the presence of oxygen. 請求項1ないし3のいずれか1項に記載の生コークスの製造方法により得られた生コークスを、800〜1700℃に加熱する、ピッチコークスの製造方法。 A method for producing pitch coke, wherein the raw coke obtained by the method for producing raw coke according to any one of claims 1 to 3 is heated to 800 to 1700 ° C. 請求項4に記載のピッチコークスの製造方法により得られたピッチコークスを、2000〜3500℃に加熱する、黒鉛の製造方法。 A method for producing graphite, wherein the pitch coke obtained by the method for producing pitch coke according to claim 4 is heated to 2000 to 3500 ° C.
JP2019066185A 2019-03-29 2019-03-29 Raw coke production method Active JP7167815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019066185A JP7167815B2 (en) 2019-03-29 2019-03-29 Raw coke production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019066185A JP7167815B2 (en) 2019-03-29 2019-03-29 Raw coke production method

Publications (2)

Publication Number Publication Date
JP2020164641A true JP2020164641A (en) 2020-10-08
JP7167815B2 JP7167815B2 (en) 2022-11-09

Family

ID=72715122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019066185A Active JP7167815B2 (en) 2019-03-29 2019-03-29 Raw coke production method

Country Status (1)

Country Link
JP (1) JP7167815B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6265916A (en) * 1985-09-18 1987-03-25 Mitsubishi Chem Ind Ltd Production of high-grade carbonaceous molded body
JPH03197589A (en) * 1989-12-26 1991-08-28 Mitsubishi Kasei Corp Manufacture of needle coke
JPH03277686A (en) * 1990-03-27 1991-12-09 Nippon Steel Chem Co Ltd Production of coke for refining use
JPH10139410A (en) * 1996-09-13 1998-05-26 Ado Kemuko Kk Production of carbonaceous material and battery using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6265916A (en) * 1985-09-18 1987-03-25 Mitsubishi Chem Ind Ltd Production of high-grade carbonaceous molded body
JPH03197589A (en) * 1989-12-26 1991-08-28 Mitsubishi Kasei Corp Manufacture of needle coke
JPH03277686A (en) * 1990-03-27 1991-12-09 Nippon Steel Chem Co Ltd Production of coke for refining use
JPH10139410A (en) * 1996-09-13 1998-05-26 Ado Kemuko Kk Production of carbonaceous material and battery using the same

Also Published As

Publication number Publication date
JP7167815B2 (en) 2022-11-09

Similar Documents

Publication Publication Date Title
JP4647370B2 (en) Fiber-reinforced silicon carbide composite material and method for producing the same
KR101439177B1 (en) Preparing method of isotropic bulk graphite using graphite scrap and the isotropic bulk graphite thereby
JP2007076980A (en) Magnesia carbon brick
JP2010503605A (en) Low CTE isotropic graphite
JP4696279B2 (en) High purity nuclear graphite
US4643956A (en) Coke filled separator plate for electrochemical cells
JP7167814B2 (en) Method for producing modified pitch
JP7031436B2 (en) Modification pitch and its manufacturing method
JP3636516B2 (en) Synthetic resin composition and synthetic resin molding
JP2020164641A (en) Method for producing raw coke
JP4430448B2 (en) Method for producing isotropic graphite material
JP6922327B2 (en) Graphite and its manufacturing method, and mixtures
RU2377223C1 (en) Method to produce composite carbon materials
JP4809582B2 (en) High thermal conductive graphite material and method for producing the same
US9546113B2 (en) High porosity/low permeability graphite bodies and process for the production thereof
KR20180123748A (en) Pitch for carbon precursor, method of preparing the same
KR101144817B1 (en) Manufacturing method of separator for fuel cell using surface treatment and separator for fuel cell manufactured by the same
JP2006232565A (en) Method of manufacturing carbon material and method of purifying the same
JP3314383B2 (en) Method for producing carbon fiber / carbon composite material
Wolf Manufacture of bulk carbon and grapidte materials
JP2003212655A (en) Low thermal expansion graphite material and production method therefor
JPH0692269B2 (en) Impermeable carbon material
JPS6153104A (en) Production of high-strength carbon material
JP2021130580A (en) Method for producing graphite material having high thermal expansion coefficient and the graphite material
MARINESCU et al. OBTAINING OF HIGH DENSITY CARBON MATERIALS BY COKE SINTERING RESULTING FROM HEAT TREATMENT OF TAR FOR APPLICATIONS IN SENSORS MANUFACTURE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221010

R151 Written notification of patent or utility model registration

Ref document number: 7167815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151