JP2020162299A - Energy management system - Google Patents

Energy management system Download PDF

Info

Publication number
JP2020162299A
JP2020162299A JP2019059670A JP2019059670A JP2020162299A JP 2020162299 A JP2020162299 A JP 2020162299A JP 2019059670 A JP2019059670 A JP 2019059670A JP 2019059670 A JP2019059670 A JP 2019059670A JP 2020162299 A JP2020162299 A JP 2020162299A
Authority
JP
Japan
Prior art keywords
hydrogen
power
power generation
management system
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019059670A
Other languages
Japanese (ja)
Inventor
雅則 伊藤
Masanori Ito
雅則 伊藤
義広 謝花
Yoshihiro Shaka
義広 謝花
努 原田
Tsutomu Harada
努 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaka Yoshihiro
Original Assignee
Shaka Yoshihiro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaka Yoshihiro filed Critical Shaka Yoshihiro
Priority to JP2019059670A priority Critical patent/JP2020162299A/en
Publication of JP2020162299A publication Critical patent/JP2020162299A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Abstract

To provide an energy management system that mainly performs energy conversion between power and hydrogen.SOLUTION: A system platform 1 performs daily power demand prediction, and transmits a power generation instruction that enables necessary demand power to be ensured to each power generation facility. Surplus power is sent to a hydrogen station 3, and converted into hydrogen by an electrolytic and power generation device 4 arranged in the hydrogen station 3. Hydrogen produced in the hydrogen station is added to intake air of an engine for improving the combustion efficiency. That is, in a case where a load of the engine largely fluctuates in a marine vessel or vehicle, the amount of fuel supplied into a cylinder of the engine changes. Particularly when the amount of fuel increases abruptly, incomplete combustion occurs, and CO and the like are produced, but if a slight amount of hydrogen is added to the intake air, a hydrogen gas is burnt first in the cylinder because the combustion speed of the hydrogen gas is extremely higher than that of gasoline or heavy oil. Through this combustion, the fuel in the cylinder is made fine on the molecular level, and mixed into the intake air, so that complete combustion is promoted.SELECTED DRAWING: Figure 1

Description

本発明は、電力と水素との変換を中心としたエネルギー管理システムに関する。 The present invention relates to an energy management system centered on the conversion of electric power and hydrogen.

地域や季節によって電力需要が異なる。特に冷房が必要とされる夏季には電力が不足しがちになる。このため余剰電力を電気分解に廻し、電力不足などに備えて水素に変換して貯留し、必要な時に当該水素を用い燃料電池によって発電することが提案されている。 Electricity demand varies depending on the region and season. Especially in the summer when air conditioning is required, electricity tends to be insufficient. For this reason, it has been proposed that surplus electricity is used for electrolysis, converted to hydrogen in case of power shortage, stored, and generated by a fuel cell using the hydrogen when necessary.

例えば特許文献1には、再生可能エネルギーに基づいて発電される電力の余剰分を予測し、この予測余剰電力を用いて水素を製造して貯蔵し、貯蔵された水素をボンベなどに充填し、この充填ボンベを水素発電施設に車両で配送し、水素発電施設では買電電力と需要電力基づいて、当該車両から必要量の水素を購入する電力管理システムが提案されている。 For example, in Patent Document 1, a surplus of electric power generated based on renewable energy is predicted, hydrogen is produced and stored using this predicted surplus electric power, and the stored hydrogen is filled in a bomb or the like. A power management system has been proposed in which the filling bomb is delivered to a hydrogen power generation facility by vehicle, and the hydrogen power generation facility purchases the required amount of hydrogen from the vehicle based on the purchased power and the required power.

特許文献2には、余剰電力を用いて水を電気分解して電力を吸収する提案がなされている。具体的には、発電電力を平滑化フィルタを用いて平滑化し、発電電力が平滑化電力より高い場合は蓄電池に充電し、低い場合は蓄電池から放電する。 Patent Document 2 proposes to absorb electric power by electrolyzing water using surplus electric power. Specifically, the generated power is smoothed by using a smoothing filter, and when the generated power is higher than the smoothed power, the storage battery is charged, and when it is lower, the storage battery is discharged.

特許文献3には、電力不足が発生した場合に不足電力分に相当する水素を燃料電池に供給し、燃料電池で得られた電力を風力発電装置に供給し系統電力への安定電力供給を図ることが記載されている。 In Patent Document 3, when a power shortage occurs, hydrogen corresponding to the shortage power is supplied to the fuel cell, and the power obtained by the fuel cell is supplied to the wind power generator to ensure stable power supply to the grid power. It is stated that.

特開2018−207728号公報JP-A-2018-207728 特開2018−085862号公報Japanese Unexamined Patent Publication No. 2018-085862 特開2006−345649号公報Japanese Unexamined Patent Publication No. 2006-345649

前記した特許文献1〜3には、発電施設で発生した余剰電力を水素に変換すること、変換した水素を用いて発電を行うことが開示されているが、余剰電力を水素に変換する装置(電気分解装置)と溜めた水素を電力に変換する装置(燃料電池)が別々であり、システムを構築する際に装置が1つ増えてしまい必要以上に大掛かりなシステムとなってしまう。 The above-mentioned Patent Documents 1 to 3 disclose that the surplus electric power generated in the power generation facility is converted into hydrogen and that the converted hydrogen is used to generate power. However, a device that converts the surplus electric power into hydrogen ( The device (electrolytic device) and the device (fuel cell) that converts the stored hydrogen into electric power are separate, and when constructing the system, one device is added, resulting in an unnecessarily large-scale system.

また、システム全体をコンピュータで管理するばあいにも、制御要素が増えるため、制御が複雑になる。 Also, when the entire system is managed by a computer, the number of control elements increases, which complicates control.

上記課題を解決すべく本発明にかかるエネルギー管理システムは、電力需要予測を管理センタのコンピュータで行い、この電力需要予測に基づいて各発電施設に発電量の指示を行い、発電施設での余剰電力は水素ステーションに供給し、この水素ステーションには電力を水素に変換する装置(水電解装置)と水素を電力に変換する装置(燃料電池)を1つの電解兼発電装置を配置し、前記管理センタのコンピュータは水素ステーションに対し、前記電解兼発電装置で発電施設からの余剰電力で水素を製造するか、貯留した水素を用いて発電を行うかの指示を発信する構成とした。 In order to solve the above problems, the energy management system according to the present invention predicts the power demand by the computer of the management center, instructs each power generation facility of the amount of power generation based on the power demand forecast, and surplus power in the power generation facility. Supply to a hydrogen station, and in this hydrogen station, one electrolysis / power generation device is installed, which is a device that converts electric power into hydrogen (water electrolyzer) and a device that converts hydrogen into electric power (fuel cell). The computer is configured to send an instruction to the hydrogen station whether to produce hydrogen from the surplus electric power from the power generation facility by the electrolytic / power generation device or to generate power using the stored hydrogen.

水素ステーションで製造した水素はボンベに充填した水素吸蔵合金に蓄え、このボンベを船舶または車両に搭載し、エンジンの燃焼空気への添加剤として水素を供給する。 The hydrogen produced at the hydrogen station is stored in a hydrogen storage alloy filled in a cylinder, and this cylinder is mounted on a ship or vehicle to supply hydrogen as an additive to the combustion air of the engine.

本発明に係るエネルギー管理システムによれば、余剰電力を効果的に蓄えることでできるだけでなく、電力不足が予測される際に、水素ステーションでの発電を電力消費施設に供給することができる。 According to the energy management system according to the present invention, not only can surplus power be effectively stored, but also power generation at a hydrogen station can be supplied to a power consumption facility when a power shortage is predicted.

特に水素ステーションでは管理センタのコンピュータからの指示により、1つの装置を切り替えて水素の製造か発電のいずれかを行うようにしているので、装置の稼働効率が高まる。 In particular, at a hydrogen station, one device is switched to either produce hydrogen or generate electricity according to an instruction from a computer in a management center, so that the operating efficiency of the device is improved.

更に、水素ステーションで水素吸蔵合金ボンベに水素を充填し、このボンベから小型船舶やトラックなどのエンジンへの吸気に水素を添加すれば、エンジンでの完全燃焼が促進され、COなどの発生が抑制される。 Furthermore, if hydrogen is filled in a hydrogen storage alloy cylinder at a hydrogen station and hydrogen is added to the intake air from this cylinder to the engine of a small ship or truck, complete combustion in the engine is promoted and the generation of CO etc. is suppressed. Will be done.

本発明に係るエネルギー管理システムの全体を説明した図The figure explaining the whole of the energy management system which concerns on this invention 同エネルギー管理システムの一部を構成する水素ステーションに備えられた電解兼発電装置で、(a)は水素発生、(b)は発電時を説明した図It is an electrolysis and power generation device installed in a hydrogen station that constitutes a part of the energy management system. (A) is a diagram explaining hydrogen generation and (b) is a diagram explaining the time of power generation.

以下に本発明の実施の形態を添付図面に基づいて説明する。本発明に係るエネルギー管理システムは、クラウドコンピュータなどに構築される管理システムのプラットフォーム1と、管理システムによって管理される一定地域内の発電施設2と、電解兼発電装置を備えた水素ステーション3で構成される。 Embodiments of the present invention will be described below with reference to the accompanying drawings. The energy management system according to the present invention comprises a management system platform 1 constructed on a cloud computer or the like, a power generation facility 2 in a certain area managed by the management system, and a hydrogen station 3 equipped with an electrolysis / power generation device. Will be done.

ここで、前記システム・プラットフォーム1はセキュリティを高めるため、クラウドコンピュータに構築せずオンプレミスとしてもよい。また、発電施設2としては、火力、水力、太陽光発電などすべてが含まれる。 Here, in order to enhance security, the system platform 1 may be on-premises without being built on a cloud computer. Further, the power generation facility 2 includes all of thermal power, hydraulic power, solar power generation and the like.

システム・プラットフォーム1では、日毎の電力需要予測を行い、必要な需要電力を確保できる発電指示を各発電施設に発信する。例えば最大発電能力が10000ワット/時の発電設備に対する需要電力が5000ワット/時であった場合には、7000ワット/時の指示を発信する。この時、2000ワット/時が余剰電力となる。 The system platform 1 forecasts the power demand on a daily basis and sends a power generation instruction that can secure the required power demand to each power generation facility. For example, when the required power for a power generation facility having a maximum power generation capacity of 10,000 watt / hour is 5,000 watt / hour, an instruction of 7,000 watt / hour is transmitted. At this time, 2000 watts / hour is the surplus power.

前記余剰電力は水素ステーション3に送られ、水素ステーション3に配置された電解兼発電装置4によって水素に変換される。図2は電解兼発電装置4の構造を説明したものであり、ケース内に水素イオンが透過する固体電解質5が設けられ、この固体電解質5の両側に触媒層などを介して電極6、7が設けられ、更にケースには水素の出口(入口)8、酸素の出口(入口)9及び水の入口(出口)10が設けられている。 The surplus electric power is sent to the hydrogen station 3 and converted into hydrogen by the electrolysis / power generation device 4 arranged at the hydrogen station 3. FIG. 2 illustrates the structure of the electrolysis / power generation device 4. A solid electrolyte 5 through which hydrogen ions permeate is provided in the case, and electrodes 6 and 7 are provided on both sides of the solid electrolyte 5 via a catalyst layer or the like. Further, the case is provided with an hydrogen outlet (inlet) 8, an oxygen outlet (inlet) 9, and a water inlet (outlet) 10.

図2(a)は電解兼発電装置4を電気分解装置として用いる場合であり、この場合には、余剰電力(交流)はコンバータ11を介して直流とされ、電極6、7に供給される。また水の入口10から純水を供給する。供給された水は電気分解されて、2H+O2−となる。Hは固体電解質5を透過し電極6でO2−からの2eと結合してHとして取り出され、このHは可搬タイプのボンベ12内の水素吸蔵合金および水素ステーション3の床下などに設けた大容量タンク内の水素吸蔵合金に充填される。 FIG. 2A shows a case where the electrolytic / power generation device 4 is used as an electrolysis device. In this case, the surplus electric power (alternating current) is converted to direct current via the converter 11 and supplied to the electrodes 6 and 7. In addition, pure water is supplied from the water inlet 10. The supplied water is electrolyzed to 2H + + O 2- . H + passes through the solid electrolyte 5 and is taken out as H 2 by combining with 2e from O 2- at the electrode 6, and this H 2 is taken out as H 2 by the hydrogen storage alloy in the portable type bomb 12 and under the floor of the hydrogen station 3. It is filled in the hydrogen storage alloy in the large-capacity tank provided in the above.

水素ボンベなどに充填する水素吸蔵合金としては、水素の吸蔵能力に優れたTi、Zr、Pd、Mg、水素の放出能力に優れたFe、Co、Niなどが挙げられ、使用環境などに応じてこれら金属をブレンドして用いる。 Examples of the hydrogen storage alloy to be filled in a hydrogen bomb or the like include Ti, Zr, Pd, Mg, which has an excellent hydrogen storage capacity, Fe, Co, Ni, etc., which have an excellent hydrogen release capacity, depending on the usage environment and the like. These metals are blended and used.

ボンベ12は小型漁船13やトラック14に積み込まれ、燃焼効率を改善するために水素ガスはエンジンの吸気中に添加(0.1%以下)される。即ち、船舶や自動車においてエンジンの負荷変動が大きい場合、エンジンのシリンダ内に供給される燃料の量が変化する。特に燃料の量が急に多くなると不完全燃焼を起こし、COなどが発生する。しかしながら本実施例のように、吸気中に若干の水素を添加すると、水素ガスの燃焼速度はガソリンや重油に比べ極めて速い(約40倍)ため、シリンダ内で最初に水素ガスが燃焼しこの燃焼によりシリンダ内の燃料は分子レベルで細かくなって吸気と混合され完全燃焼が促進される。 The cylinder 12 is loaded on a small fishing boat 13 or a truck 14, and hydrogen gas is added (0.1% or less) to the intake air of the engine in order to improve the combustion efficiency. That is, when the load fluctuation of the engine is large in a ship or an automobile, the amount of fuel supplied into the cylinder of the engine changes. In particular, when the amount of fuel suddenly increases, incomplete combustion occurs and CO and the like are generated. However, as in this embodiment, when a small amount of hydrogen is added during intake, the combustion speed of hydrogen gas is extremely faster (about 40 times) than that of gasoline or heavy oil, so hydrogen gas burns first in the cylinder and this combustion occurs. As a result, the fuel in the cylinder becomes finer at the molecular level and is mixed with the intake air to promote complete combustion.

余剰電力を利用して水素ステーション3にて製造された水素は全て可搬タイプのボンベ12内に貯留されるわけではなく、更に水素ステーション3の床下などに設けた大容量タンク内の水素吸蔵合金にも貯留される。 Not all hydrogen produced at the hydrogen station 3 using surplus electric power is stored in the portable cylinder 12, and further, a hydrogen storage alloy in a large-capacity tank provided under the floor of the hydrogen station 3 or the like. It is also stored in.

一方、夏季などの電力が不足する場合には、大容量タンク内に貯留された水素は前記電解兼発電装置4を燃料電池として利用する。図2(b)は電解兼発電装置4を燃料電池として用いる場合であり、この場合には、水素の入口8から供給された水素は、電極6で水素イオンHと電子(e)となり、水素イオンHは固体電解質5を透過して電極7で空気中の酸素と結合して水となり、発生した電子(e)はインバータ13で交流に変換され、電力が不足している施設などに供給される。 On the other hand, when the electric power is insufficient such as in summer, the hydrogen stored in the large-capacity tank uses the electrolysis / power generation device 4 as a fuel cell. FIG. 2B shows a case where the electrolysis / power generation device 4 is used as a fuel cell. In this case, the hydrogen supplied from the hydrogen inlet 8 becomes hydrogen ions H + and electrons (e ) at the electrode 6. , Hydrogen ion H + permeates the solid electrolyte 5 and combines with oxygen in the air at the electrode 7 to become water, and the generated electrons (e ) are converted to AC by the inverter 13 and the facility lacks power. Is supplied to.

前記小型漁船14などの船舶とトラック15などの車両はシステム・プラットフォーム1と双方向通信可能とされている。
即ち小型漁船14を例にとると、自船が次に立ち寄る港の水素ステーション3で交換用の水素ボンベ12を受け取ることができるようにシステム・プラットフォーム1に発注しておくことができる。
Vessels such as the small fishing boat 14 and vehicles such as the truck 15 are capable of bidirectional communication with the system platform 1.
That is, taking the small fishing boat 14 as an example, the system platform 1 can be ordered so that the replacement hydrogen cylinder 12 can be received at the hydrogen station 3 of the port where the boat will stop next.

またシステム・プラットフォーム1はGPSなどを介して小型漁船13やトラック14の航路を把握でき、更に搭載エンジンなどを予め把握しておくことで、燃費や発生CO等も個別に計算することができる。 In addition, the system platform 1 can grasp the routes of the small fishing boat 13 and the truck 14 via GPS and the like, and by grasping the on-board engine and the like in advance, the fuel consumption and the generated CO 2 can be calculated individually. ..

このように本発明に係るエネルギー管理システムは、一定地域内の電力需要予測に基づき、発電施設に発電量(必要発電量+余剰発電量)を指示し、余剰発電量で水素を製造し、この水素をエンジンの燃焼効率向上と電力不足時の発電に利用するようにした。したがって、エネルギーの製造から消費までを無駄なく一元管理することができる。 As described above, the energy management system according to the present invention instructs the power generation facility to generate power (required power generation amount + surplus power generation amount) based on the power demand forecast in a certain area, and produces hydrogen with the surplus power generation amount. Hydrogen is used to improve the combustion efficiency of the engine and to generate electricity when there is a power shortage. Therefore, it is possible to centrally manage energy production and consumption without waste.

1…システム・プラットフォーム1、2…発電施設、3…水素ステーション、4…電解兼発電装置、5…固体電解質、6、7…電極、8…水素の出口(入口)、9…酸素の出口(入口)、10…水の入口(出口)、11…コンバータ、12…ボンベ、13…インバータ、14…小型漁船、15…トラック。 1 ... System platform 1, 2 ... Power generation facility, 3 ... Hydrogen station, 4 ... Electrolysis and power generation equipment, 5 ... Solid electrolyte, 6, 7 ... Electrodes, 8 ... Hydrogen outlet (inlet), 9 ... Oxygen outlet ( Entrance), 10 ... Water inlet (exit), 11 ... Converter, 12 ... Bomb, 13 ... Inverter, 14 ... Small fishing boat, 15 ... Truck.

Claims (2)

電力需要予測を行う管理センタのコンピュータと、前記管理センタの電力需要予測に基づいて発電を行う発電施設と、前記発電施設からの余剰電力が供給される水素ステーションからなるエネルギー管理システムであって、前記水素ステーションには前記余剰電力を水素に変換する水電解機能と水素を電力に変換する発電機能を備えた電解兼発電装置が配置され、この電解兼発電装置は前記管理センタのコンピュータからの指示により水電解機能と発電機能とを切り替えて駆動することを特徴とするエネルギー管理システム。 An energy management system consisting of a computer of a management center that predicts power demand, a power generation facility that generates power based on the power demand prediction of the management center, and a hydrogen station to which surplus power from the power generation facility is supplied. The hydrogen station is provided with an electrolysis / power generation device having a water electrolysis function for converting surplus electric power into hydrogen and a power generation function for converting hydrogen into electric power, and the electrolysis / power generation device is instructed by a computer in the management center. An energy management system characterized by switching between a water electrolysis function and a power generation function. 請求項1に記載のエネルギー管理システムにおいて、前記水素ステーションで製造された水素は水素吸蔵合金を収納したボンベに充填され、このボンベは水素をエンジンの吸気に添加するために船舶または自動車に交換可能に搭載されることを特徴とするエネルギー管理システム。


In the energy management system of claim 1, the hydrogen produced at the hydrogen station is filled in a bomb containing a hydrogen storage alloy, which can be replaced by a ship or vehicle to add hydrogen to the intake of the engine. An energy management system characterized by being installed in.


JP2019059670A 2019-03-27 2019-03-27 Energy management system Pending JP2020162299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019059670A JP2020162299A (en) 2019-03-27 2019-03-27 Energy management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019059670A JP2020162299A (en) 2019-03-27 2019-03-27 Energy management system

Publications (1)

Publication Number Publication Date
JP2020162299A true JP2020162299A (en) 2020-10-01

Family

ID=72640170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019059670A Pending JP2020162299A (en) 2019-03-27 2019-03-27 Energy management system

Country Status (1)

Country Link
JP (1) JP2020162299A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114234182A (en) * 2021-12-22 2022-03-25 佛山市科达机电有限公司 Energy-saving ceramic roller kiln and combustion method
WO2023286500A1 (en) * 2021-07-13 2023-01-19 矢崎総業株式会社 Hydrogen station, control unit for hydrogen station, and program for hydrogen station

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286500A1 (en) * 2021-07-13 2023-01-19 矢崎総業株式会社 Hydrogen station, control unit for hydrogen station, and program for hydrogen station
JP7420772B2 (en) 2021-07-13 2024-01-23 矢崎総業株式会社 Hydrogen station, hydrogen station control unit, and hydrogen station program
CN114234182A (en) * 2021-12-22 2022-03-25 佛山市科达机电有限公司 Energy-saving ceramic roller kiln and combustion method
CN114234182B (en) * 2021-12-22 2024-01-30 佛山市科达机电有限公司 Energy-saving ceramic roller kiln and combustion method

Similar Documents

Publication Publication Date Title
Bassam et al. Development of a multi-scheme energy management strategy for a hybrid fuel cell driven passenger ship
Ehteshami et al. The role of hydrogen and fuel cells to store renewable energy in the future energy network–potentials and challenges
JP6061680B2 (en) Electrochemical system and method for operating an electrochemical system
Dell et al. Energy storage—a key technology for global energy sustainability
CN106877406B (en) A kind of multiple target power configuration optimization method of multiple-energy-source ship microgrid
CN110654520A (en) Ship direct-current networking system adopting fuel cell and ship applying same
Alfonsín et al. Modelization of hybrid systems with hydrogen and renewable energy oriented to electric propulsion in sailboats
JP2013027177A (en) Electricity distribution system
JP2020162299A (en) Energy management system
EP3922545A1 (en) Sea-borne vessel producing hydrogen on-board from renewable resources
JP2017034843A (en) Hydrogen manufacturing system, hydrogen supply station, and hydrogen manufacturing method
Piwek et al. Vanadium-oxygen cell for positive electrolyte discharge in dual-circuit vanadium redox flow battery
US20220173612A1 (en) System for supplying energy to electrically operated mining machines
EP1661199A2 (en) Hydrogen storage-based rechargeable fuel cell system
JP2002348694A (en) Energy supply system
Wu et al. On the design of plug-in hybrid fuel cell and lithium battery propulsion systems for coastal ships
US8377599B2 (en) Methods, apparatuses, and systems for the extensible and recyclable use of solid matter in the supply chain for the generation of electricity
CN218005895U (en) Deep peak regulation system with fuel gas and steam combined cycle and water electrolysis hydrogen production coupling
US20150044584A1 (en) Fuel Cell System
JP2009224293A (en) Fuel cell system
JPH0491638A (en) Energy system
JP6516061B1 (en) Fast charging station
Sheindlin et al. Distributed generation of heat and electricity on the basis of renewable energy sources with using aluminum as an intermediate energy carrier
KR20110048214A (en) The electric power generator with both fuel-cell and gas fuel engine
JP2014084792A (en) Cogeneration system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20191108

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210601