JP2020158881A - Mo ALLOY TARGET MATERIAL, AND MANUFACTURING METHOD THEREOF - Google Patents

Mo ALLOY TARGET MATERIAL, AND MANUFACTURING METHOD THEREOF Download PDF

Info

Publication number
JP2020158881A
JP2020158881A JP2020038881A JP2020038881A JP2020158881A JP 2020158881 A JP2020158881 A JP 2020158881A JP 2020038881 A JP2020038881 A JP 2020038881A JP 2020038881 A JP2020038881 A JP 2020038881A JP 2020158881 A JP2020158881 A JP 2020158881A
Authority
JP
Japan
Prior art keywords
target material
atomic
powder
alloy
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020038881A
Other languages
Japanese (ja)
Other versions
JP7419886B2 (en
Inventor
青木 大輔
Daisuke Aoki
大輔 青木
福岡 淳
Atsushi Fukuoka
淳 福岡
卓哉 熊谷
Takuya Kumagai
卓哉 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JP2020158881A publication Critical patent/JP2020158881A/en
Application granted granted Critical
Publication of JP7419886B2 publication Critical patent/JP7419886B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)

Abstract

To provide an Mo alloy target material that suppresses deformation of the target material in handling such as chucking and bonding, abrasion and fracture of a tip of a cutting tool, and abnormal discharge in sputtering at the same time and is useful for manufacturing an FPD or the like.SOLUTION: A Mo alloy target material contains Ni of 10-49 atom% and Nb of 1-30 atom% and has a total amount of Ni and Nb of 50 atom% or less and Mo and inevitable impurities of the balance. The Mo alloy target material has a Vickers hardness of 290-460 HV and a dispersion: [ (maximum value-minimum value)/(maximum value + minimum value) ]×100(%) of 20% or less.SELECTED DRAWING: Figure 1

Description

本発明は、例えば、電子部品用の電極や配線薄膜を形成するためのMo合金ターゲット材およびその製造方法に関するものである。 The present invention relates to, for example, a Mo alloy target material for forming electrodes and wiring thin films for electronic components, and a method for producing the same.

電気泳動型ディスプレイ等の平面表示装置(フラットパネルディスプレイ、Flat Panel Display:以下、FPDという)や、各種半導体デバイス、薄膜センサー、磁気ヘッド等の薄膜電子部品においては、低い電気抵抗値を備える(以下、「低抵抗」ともいう。)配線薄膜が必要である。例えば、FPDは、大画面、高精細、高速応答化に伴い、その配線薄膜には低抵抗化が要求されている。また、近年、FPDに操作性を加えるタッチパネルや樹脂基板を用いたフレキシブルなFPD等、新たな製品が開発されている。 Flat panel displays such as electrophoretic displays (flat panel displays, Flat Panel displays: hereinafter referred to as FPDs) and thin film electronic components such as various semiconductor devices, thin film sensors, and magnetic heads have low electrical resistance values (hereinafter referred to as FPD). , Also called "low resistance".) A thin film of wiring is required. For example, FPDs are required to have low resistance in their wiring thin films as they have a large screen, high definition, and high-speed response. Further, in recent years, new products such as a touch panel that adds operability to an FPD and a flexible FPD that uses a resin substrate have been developed.

FPDの駆動素子として用いられている薄膜トランジスタ(Thin FilmTransistor:以下、TFTという)の配線薄膜は、低抵抗化が必要であり、配線材料にはAlが用いられている。
現在、TFTには、非晶質Si半導体膜が用いられており、配線膜であるAlは、Siと直接触れると、TFT製造中の加熱工程により熱拡散して、TFTの特性を劣化させる。このため、AlとSiの間にキャップ膜として、耐熱性に優れたMoやMo合金をバリア膜とした積層配線膜が用いられている。
The wiring thin film of the thin film transistor (hereinafter referred to as TFT) used as the driving element of the FPD needs to have a low resistance, and Al is used as the wiring material.
At present, an amorphous Si semiconductor film is used for the TFT, and when Al, which is a wiring film, comes into direct contact with Si, heat is diffused by a heating process during the manufacture of the TFT, and the characteristics of the TFT are deteriorated. For this reason, a laminated wiring film using Mo or Mo alloy having excellent heat resistance as a barrier film is used as a cap film between Al and Si.

また、これまでの非晶質Si半導体膜から、より高速応答を実現できる酸化物を用いた透明な半導体膜の適用検討が行なわれており、これら酸化物半導体の配線薄膜にも、Alからなる配線膜と、MoやMo合金からなる下地膜やキャップ膜を積層した構造を有する、積層配線膜が検討されている。このため、これらの積層配線膜の形成に用いられるMo合金からなる薄膜の需要が高まっている。
そして、高い耐酸化性を有し、モバイル機器や車載機器に好適なMo合金薄膜として、Mo−Ni−Nb合金が提案されている。
Further, from the conventional amorphous Si semiconductor films, application studies of transparent semiconductor films using oxides capable of realizing a faster response have been studied, and the wiring thin films of these oxide semiconductors are also made of Al. A laminated wiring film having a structure in which a wiring film and a base film or a cap film made of Mo or Mo alloy are laminated is being studied. For this reason, there is an increasing demand for thin films made of Mo alloys used for forming these laminated wiring films.
A Mo—Ni—Nb alloy has been proposed as a Mo alloy thin film having high oxidation resistance and suitable for mobile devices and in-vehicle devices.

一方、上述したMo合金薄膜を形成する手法としては、スパッタリングターゲット材(以下、単に「ターゲット材」ともいう。)を用いたスパッタリング法が最適である。スパッタリング法は、物理蒸着法の一つであり、他の真空蒸着やイオンプレーティングと比較して、大面積に安定してMo合金薄膜が形成できる方法であるとともに、上記のような添加元素の多い合金でも、組成変動が少ない優れたMo合金薄膜が得られる有効な手法である。
そして、上記したMo−Ni−Nb合金からなるターゲット材を得る手法としては、例えば、特許文献1では、Mo粉末と一種以上のNi合金粉末とを混合した、または、Mo粉末とNi合金粉末とNb粉末とを混合した混合粉末を加圧焼結した焼結体に機械加工を施す方法が提案されている。
On the other hand, as a method for forming the Mo alloy thin film described above, a sputtering method using a sputtering target material (hereinafter, also simply referred to as “target material”) is optimal. The sputtering method is one of the physical vapor deposition methods, and is a method capable of stably forming a Mo alloy thin film over a large area as compared with other vacuum vapor deposition and ion plating, and also contains the above-mentioned additive elements. This is an effective method for obtaining an excellent Mo alloy thin film with little composition variation even with a large number of alloys.
Then, as a method for obtaining the target material made of the Mo—Ni—Nb alloy described above, for example, in Patent Document 1, Mo powder and one or more Ni alloy powders are mixed, or Mo powder and Ni alloy powder are used. A method of machining a sintered body obtained by pressure-sintering a mixed powder mixed with Nb powder has been proposed.

特開2013−147734号公報Japanese Unexamined Patent Publication No. 2013-147734

特許文献1に開示される、Mo粉末とNi合金とNb粉末とを混合した混合粉末を、熱間静水圧プレス(以下、「HIP」という。)で加圧焼結してターゲット材を作製すると、そのターゲット材中に、局所的な低硬度の部位が存在する場合がある。このため、ターゲット材を所定の形状寸法に機械加工をする際のチャッキングやボンディングなどのハンドリングにおいて、ターゲット材本体が変形する場合がある。 When a mixed powder obtained by mixing Mo powder, Ni alloy and Nb powder disclosed in Patent Document 1 is pressure-sintered by a hot hydrostatic press (hereinafter referred to as "HIP") to prepare a target material. , Local low hardness sites may be present in the target material. Therefore, the target material body may be deformed in handling such as chucking and bonding when the target material is machined to a predetermined shape and size.

また、Mo−Ni−Nb合金は、機械加工時に、割れや欠け、脱落が発生する可能性の高い、いわゆる難削材である上、ターゲット材に局所的な高硬度の部位が存在してしまうと、切削工具のチップの摩耗や破損を招き、得られるターゲット材の表面粗さが大きくなったり、場合によっては、ターゲット材本体を破損させてしまうことがある。
また、ターゲット材のスパッタ面における中央部の侵食領域に、局所的な低硬度の部位が存在してしまうと、低硬度の部位のみが残存したり、脱落したりすることにより、侵食領域の表面粗さが粗くなり、スパッタ時の異常放電の起点となりやすくなる。
In addition, the Mo-Ni-Nb alloy is a so-called difficult-to-cut material that is likely to crack, chip, or fall off during machining, and the target material has local high-hardness parts. As a result, the tip of the cutting tool may be worn or damaged, the surface roughness of the obtained target material may become large, or the target material body may be damaged in some cases.
Further, if a local low-hardness portion exists in the central erosion region on the sputtered surface of the target material, only the low-hardness portion remains or falls off, so that the surface of the erosion region The roughness becomes coarse, and it becomes easy to become the starting point of abnormal discharge during sputtering.

本発明の目的は、チャッキングやボンディングなどのハンドリングにおけるターゲット材の変形や、切削工具のチップの摩耗や破損を抑制することに加え、スパッタ時の異常放電の抑制も同時に達成できるMo合金ターゲット材を提供することである。 An object of the present invention is a Mo alloy target material that can suppress deformation of the target material in handling such as chucking and bonding, wear and breakage of a cutting tool tip, and at the same time suppress abnormal discharge during sputtering. Is to provide.

本発明のMo合金ターゲット材は、Niを10〜49原子%、Nbを1〜30原子%含有し、且つNiとNbの合計量が50原子%以下で、残部がMoおよび不可避的不純物からなり、ビッカース硬さが290〜460HVであり、9点の測定点で測定を行なったビッカース硬さのばらつきが20%以下である。 The Mo alloy target material of the present invention contains 10 to 49 atomic% of Ni and 1 to 30 atomic% of Nb, the total amount of Ni and Nb is 50 atomic% or less, and the balance consists of Mo and unavoidable impurities. The Vickers hardness is 290 to 460 HV, and the variation of the Vickers hardness measured at 9 measurement points is 20% or less.

本発明のMo合金ターゲット材は、Niを10〜49原子%、Nbを1〜30原子%含有し、且つNiとNbの合計量が50原子%以下で、残部がMoおよび不可避的不純物となるように、Mo粉末とNiMo合金粉末とNb粉末を混合して混合粉末を得る工程と、前記混合粉末を常温で加圧して成形体を得る工程と、前記成形体を加圧焼結して焼結体を得る工程を含む製造方法により得ることができる。 The Mo alloy target material of the present invention contains 10 to 49 atomic% of Ni and 1 to 30 atomic% of Nb, and the total amount of Ni and Nb is 50 atomic% or less, and the balance is Mo and unavoidable impurities. As described above, a step of mixing Mo powder, NiMo alloy powder and Nb powder to obtain a mixed powder, a step of pressurizing the mixed powder at room temperature to obtain a molded product, and a step of pressurizing and sintering the molded product to bake. It can be obtained by a manufacturing method including a step of obtaining an alloy.

本発明は、ビッカース硬さが調整されたMo合金ターゲット材を提供できる。これにより、チャッキングやボンディングなどのハンドリングにおけるターゲット材の変形や、切削工具のチップの摩耗や破損を抑制可能であり、スパッタ時の異常放電の抑制も同時に達成することが期待できる。このため、上述した、例えば、FPD等の製造に有用な技術となる。 The present invention can provide a Mo alloy target material with adjusted Vickers hardness. As a result, it is possible to suppress deformation of the target material in handling such as chucking and bonding, and wear and breakage of the tip of the cutting tool, and it can be expected that abnormal discharge during sputtering can be suppressed at the same time. Therefore, it becomes a technique useful for manufacturing, for example, FPD described above.

本発明例1のターゲット材のスパッタ面における光学顕微鏡観察写真。An optical microscope observation photograph of the sputtered surface of the target material of Example 1 of the present invention. 比較例のターゲット材のスパッタ面における光学顕微鏡観察写真。An optical microscope observation photograph of the sputtered surface of the target material of the comparative example.

本発明のターゲット材は、JIS Z 2244で規定されるビッカース硬さが290〜460HVの範囲であり、9点の測定点で測定を行なったビッカース硬さのばらつきが20%以下である。本発明のターゲット材は、ビッカース硬さを特定範囲とし、そのばらつき[(最大値−最小値)/(最大値+最小値)]×100(%)を小さくすることで、機械加工におけるチャッキングや、ボンディング等のハンドリングでターゲット材本体の変形を抑制することができる。そして、本発明の実施形態に係るターゲット材は、任意の9点の測定点で測定を行なったビッカース硬さのばらつきが10%以下であることが好ましい。 The target material of the present invention has a Vickers hardness in the range of 290 to 460 HV defined by JIS Z 2244, and the variation of Vickers hardness measured at nine measurement points is 20% or less. The target material of the present invention has Vickers hardness as a specific range, and by reducing the variation [(maximum value-minimum value) / (maximum value + minimum value)] x 100 (%), chucking in machining is performed. In addition, deformation of the target material body can be suppressed by handling such as bonding. The target material according to the embodiment of the present invention preferably has a variation in Vickers hardness of 10% or less measured at any nine measurement points.

また、本発明のターゲット材は、ビッカース硬さを特定範囲に調整することで、例えば、フライス盤や旋盤等のチップに構成刃先が生成されることを抑制できる。すなわち、本発明のターゲット材は、切削加工を進めるにつれて、構成刃先の成長に伴うチップの切り込み量が次第に大きくなることが抑制され、切削開始時と切削完了時でターゲット材の寸法差を小さくできることに加え、構成刃先の剥離に伴うチップの破損を抑制することもできる。 Further, in the target material of the present invention, by adjusting the Vickers hardness within a specific range, it is possible to suppress the formation of a constituent cutting edge on a tip such as a milling machine or a lathe. That is, in the target material of the present invention, it is possible to suppress that the depth of cut of the insert gradually increases with the growth of the constituent cutting edge as the cutting process proceeds, and the dimensional difference of the target material can be reduced between the start of cutting and the completion of cutting. In addition, it is possible to suppress damage to the tip due to peeling of the constituent cutting edge.

一方、ターゲット材のスパッタ面における中央部の侵食領域に、例えば、Moマトリックス相やMoNb相等で構成される局所的に低硬度の部位が存在してしまうと、低硬度の部位のみが残存したり、脱落したりする場合があり、ターゲット材の侵食領域の表面が粗くなり、スパッタ時の異常放電の起点となりやすくなる。このため、本発明のターゲット材は、ビッカース硬さを290HV以上にする。そして、上記と同様の理由から、本発明の実施形態に係るターゲット材は、ビッカース硬さを295HV以上にすることが好ましい。 On the other hand, if a locally low-hardness portion composed of, for example, a Mo matrix phase or a MoNb phase exists in the erosion region at the center of the sputtered surface of the target material, only the low-hardness portion may remain. , It may fall off, and the surface of the eroded region of the target material becomes rough, which tends to be the starting point of abnormal discharge during sputtering. Therefore, the target material of the present invention has a Vickers hardness of 290 HV or more. For the same reason as described above, the target material according to the embodiment of the present invention preferably has a Vickers hardness of 295 HV or more.

本発明のターゲット材は、ビッカース硬さを460HV以下にすることで、例えば、フライス盤や旋盤等のチップの摩耗量を抑えることができる。すなわち、本発明のターゲット材は、切削加工を進めるにつれて、チップの摩耗に伴うチップの切り込み量が次第に小さくなり、切削開始時と切削完了時でターゲット材の寸法差が大きくなることを抑制できることに加え、チップの破損を抑制することもできる。
また、本発明のターゲット材は、ビッカース硬さを460HV以下にすることで、切削機械へのチャッキングに加え、バッキングプレートやバッキングチューブにボンディングする際のハンドリング等でターゲット材本体の破損を抑制できる。そして、上記と同様の理由から、本発明の実施形態に係るターゲット材は、ビッカース硬さを455HV以下にすることが好ましい。
By setting the Vickers hardness of the target material of the present invention to 460 HV or less, for example, the amount of wear of chips such as a milling machine and a lathe can be suppressed. That is, in the target material of the present invention, as the cutting process progresses, the depth of cut of the insert due to the wear of the insert gradually decreases, and it is possible to suppress an increase in the dimensional difference of the target material between the start of cutting and the completion of cutting. In addition, damage to the chip can be suppressed.
Further, by setting the Vickers hardness of the target material of the present invention to 460 HV or less, it is possible to suppress damage to the target material body by handling when bonding to a backing plate or a backing tube in addition to chucking to a cutting machine. .. For the same reason as described above, the target material according to the embodiment of the present invention preferably has a Vickers hardness of 455 HV or less.

本発明でいうビッカース硬さは、上述したターゲット材の変形や、切削工具のチップの摩耗や破損を抑制することに加え、スパッタ時の異常放電を抑制する観点から、ターゲット材のスパッタ面における中心付近の1.5mm四方において、任意の9点で測定する。このとき、荷重は9.8Nとし、加圧時間は10秒とする。
そして、本発明のターゲット材は、上記条件で測定されるビッカース硬さが290〜460HVの範囲にあり、そのばらつき[(最大値−最小値)/(最大値+最小値)]×100(%)が20%以下であることをいう。
また、本発明の実施形態に係るターゲット材は、ビッカース硬さを290〜460HVにする観点から、Mo−Ni−Nb合金相で構成されることが好ましい。
The Vickers hardness referred to in the present invention is the center of the target material on the sputtered surface from the viewpoint of suppressing the deformation of the target material and the wear and breakage of the cutting tool tip as described above and also suppressing the abnormal discharge during sputtering. Measure at any 9 points in the vicinity of 1.5 mm square. At this time, the load is 9.8 N and the pressurization time is 10 seconds.
The target material of the present invention has a Vickers hardness in the range of 290 to 460 HV measured under the above conditions, and the variation [(maximum value-minimum value) / (maximum value + minimum value)] x 100 (%). ) Is 20% or less.
Further, the target material according to the embodiment of the present invention is preferably composed of a Mo—Ni—Nb alloy phase from the viewpoint of making the Vickers hardness 290 to 460 HV.

そして、本発明のターゲット材は、Niを10〜49原子%、Nbを1〜30原子%含有し、且つNiとNbの合計量が50原子%以下で、且つ前記Niと前記NbとMoの合計が100原子%で不可避的不純物を含む組成を有する。NiおよびNbの含有量は、密着性、耐酸化性、耐湿性を大きく損なわない範囲として規定するものである。
Niの含有量は、10原子%以上にすることで、酸化抑制効果を得ることができる。また、Niは、Moに比べてCuやAlに熱拡散しやすい元素であり、電気抵抗値を増加させる場合がある。このため、Niの含有量は49原子%以下にする。また、上記と同様の理由から、Niの含有量は30原子%以下が好ましく、20原子%以下がより好ましい。
Nbの含有量は、1原子%以上にすることで、耐湿性を向上させることができる。また、Nbを30原子%以下、且つNiとNbの合計を50原子%以下にすることで、耐食性を向上させつつ、エッチング性を確保できる。また、上記と同様の理由から、Nbの含有量は20原子%以下が好ましく、15原子%以下がより好ましい。
The target material of the present invention contains 10 to 49 atomic% of Ni and 1 to 30 atomic% of Nb, and the total amount of Ni and Nb is 50 atomic% or less, and the Ni, Nb, and Mo are contained. It has a composition containing 100 atomic% in total and unavoidable impurities. The contents of Ni and Nb are defined as a range that does not significantly impair adhesion, oxidation resistance, and moisture resistance.
When the Ni content is 10 atomic% or more, an oxidation suppressing effect can be obtained. Further, Ni is an element that is more easily thermally diffused into Cu and Al than Mo, and may increase the electric resistance value. Therefore, the Ni content should be 49 atomic% or less. Further, for the same reason as described above, the Ni content is preferably 30 atomic% or less, more preferably 20 atomic% or less.
Moisture resistance can be improved by setting the Nb content to 1 atomic% or more. Further, by setting Nb to 30 atomic% or less and the total of Ni and Nb to 50 atomic% or less, etching resistance can be ensured while improving corrosion resistance. Further, for the same reason as described above, the Nb content is preferably 20 atomic% or less, more preferably 15 atomic% or less.

本発明のターゲット材は、以下の製造方法で得ることができ、その一般的形態を説明する。尚、本発明は、以下に説明する形態によって限定されるものではない。
先ず、Niを10〜49原子%、Nbを1〜30原子%含有し、NiとNbの合計量が50原子%以下、残部がMoおよび不可避的不純物からなるように、Mo粉末とNiMo合金粉末とNb粉末を混合して混合粉末を得る。そして、この混合粉末を、常温(JIS Z 8703で規定された20±15℃)で、例えば、冷間静水圧プレス(以下、「CIP」という。)を用いて加圧して成形体とする。
次に、この成形体を加圧焼結して焼結体を得て、これに機械加工を施すことにより、本発明のターゲット材を得ることができる。ここで、本発明の実施形態に係るターゲット材の製造方法は、後述する加圧焼結の条件を適用することで、上記の焼結体を得る工程の後に、ターゲット材の残留応力除去やビッカース硬さの調整のための熱処理を施すことなく、ビッカース硬さが調整されたターゲット材を得ることができる。
尚、本発明の実施形態に係るターゲット材は、ターゲット材全体のビッカース硬さのばらつきを効果的に低減する観点から、その製造方法において、上記の焼結体を得る工程の前に、「上記の成形体を解砕して解砕粉を得る工程」を含めて、上記の焼結体を得る工程では、この解砕粉を加圧焼結して焼結体を得ることが好ましい。例えば、上記の成形体を、例えば、ディスクミル等で一度解砕して、1.5mmアンダーの解砕粉を作製して、この解砕粉を加圧焼結して焼結体を得て、これに機械加工を施すことにより得ることが好ましい。
The target material of the present invention can be obtained by the following production method, and its general form will be described. The present invention is not limited to the modes described below.
First, Mo powder and NiMo alloy powder are contained so that Ni is contained in an amount of 10 to 49 atomic% and Nb is contained in an amount of 1 to 30 atomic%, the total amount of Ni and Nb is 50 atomic% or less, and the balance is composed of Mo and unavoidable impurities. And Nb powder are mixed to obtain a mixed powder. Then, this mixed powder is pressed at room temperature (20 ± 15 ° C. specified in JIS Z 8703) using, for example, a cold hydrostatic press (hereinafter referred to as “CIP”) to form a molded product.
Next, this molded product is pressure-sintered to obtain a sintered body, which is then machined to obtain the target material of the present invention. Here, in the method for producing a target material according to an embodiment of the present invention, by applying the conditions of pressure sintering described later, after the step of obtaining the above-mentioned sintered body, residual stress removal of the target material and Vickers A target material having an adjusted Vickers hardness can be obtained without performing a heat treatment for adjusting the hardness.
From the viewpoint of effectively reducing the variation in the Vickers hardness of the entire target material, the target material according to the embodiment of the present invention is described in the manufacturing method before the step of obtaining the above-mentioned sintered body. In the step of obtaining the above-mentioned sintered body, including the step of crushing the molded product of the above to obtain crushed powder, it is preferable to pressure-sinter the crushed powder to obtain a sintered body. For example, the above-mentioned molded product is once crushed with, for example, a disc mill or the like to produce crushed powder under 1.5 mm, and the crushed powder is pressure-sintered to obtain a sintered body. , It is preferable to obtain this by subjecting it to machining.

加圧焼結は、HIPやホットプレスが適用可能であり、800〜1400℃、10〜200MPa、1〜10時間の条件で行なうことが好ましい。これらの条件の選択は、加圧焼結する装置に依存する。例えば、HIPは低温高圧の条件が適用しやすく、ホットプレスは高温低圧の条件が適用しやすい。本発明の製造方法では、加圧焼結に、低温での焼結が可能で、Ni合金やNbの拡散を抑制でき、且つ高圧で焼結して高密度の焼結体が得られるHIPを用いることが好ましい。
焼結温度は800℃以上にすることで、焼結が促進され、高密度の焼結体を得ることができる。また、上記と同様の理由から、焼結温度は1000℃以上にすることが好ましい。
一方、焼結温度は1400℃以下にすることで、液相の発現や焼結体の結晶成長を抑制でき、均一で微細な金属組織を得ることができる。また、上記と同様の理由から、焼結温度は1300℃以下にすることが好ましい。
加圧力は10MPa以上にすることで、焼結が促進され、高密度の焼結体を得ることができる。また、加圧力は200MPa以下にすることで、焼結時にターゲット材への残留応力の導入が抑制され、焼結後の割れの発生を抑制することができることに加え、汎用の加圧焼結装置を利用することができる。
焼結時間は1時間以上にすることで、焼結を十分に進行させることができ、高密度の焼結体を得ることができる。また、焼結時間は10時間以下にすることで、製造効率の低下を抑制できる。
HIP or hot press can be applied to the pressure sintering, and it is preferable to perform the pressure sintering under the conditions of 800 to 1400 ° C., 10 to 200 MPa, and 1 to 10 hours. The choice of these conditions depends on the equipment for pressure sintering. For example, HIP is easy to apply low temperature and high pressure conditions, and hot press is easy to apply high temperature and low pressure conditions. In the production method of the present invention, HIP can be sintered under pressure at a low temperature, can suppress the diffusion of Ni alloys and Nb, and can be sintered at a high pressure to obtain a high-density sintered body. It is preferable to use it.
By setting the sintering temperature to 800 ° C. or higher, sintering is promoted and a high-density sintered body can be obtained. Further, for the same reason as described above, the sintering temperature is preferably 1000 ° C. or higher.
On the other hand, when the sintering temperature is set to 1400 ° C. or lower, the expression of the liquid phase and the crystal growth of the sintered body can be suppressed, and a uniform and fine metal structure can be obtained. Further, for the same reason as described above, the sintering temperature is preferably 1300 ° C. or lower.
By setting the pressing force to 10 MPa or more, sintering is promoted and a high-density sintered body can be obtained. Further, by setting the pressing force to 200 MPa or less, the introduction of residual stress into the target material during sintering can be suppressed, the occurrence of cracks after sintering can be suppressed, and a general-purpose pressure sintering apparatus can be used. Can be used.
By setting the sintering time to 1 hour or more, the sintering can proceed sufficiently and a high-density sintered body can be obtained. Further, by setting the sintering time to 10 hours or less, a decrease in manufacturing efficiency can be suppressed.

体積基準の累積粒度分布の50%粒径(以下、「D50」という。)が7μmのMo粉末と、D50が35μmのNiMo合金粉末と、D50が110μmのNb粉末とを、Niを30原子%、Nbを15原子%含有し、残部がMoおよび不可避的不純物からなるように混合して混合粉末を得た。
そして、この混合粉末をゴム製の型内に充填し、成形圧2.7ton/cm(≒2.65MPa)の条件でCIP処理をして成形体を得た。
次に、上記で得た成形体をHIP装置の炉体内部に設置して、1250℃、120MPa、10時間の条件で加圧焼結を実施して、本発明例1のターゲット材となるMo合金焼結体を得た。
Mo powder having a 50% particle size (hereinafter referred to as "D50") of the volume-based cumulative particle size distribution, NiMo alloy powder having a D50 of 35 μm, Nb powder having a D50 of 110 μm, and Ni being 30 atomic%. , Nb was contained in an amount of 15 atomic%, and the mixture was mixed so that the balance consisted of Mo and unavoidable impurities to obtain a mixed powder.
Then, this mixed powder was filled in a rubber mold and subjected to CIP treatment under the condition of a molding pressure of 2.7 ton / cm 2 (≈2.65 MPa) to obtain a molded product.
Next, the molded product obtained above is installed inside the furnace body of the HIP apparatus, and pressure sintering is performed under the conditions of 1250 ° C., 120 MPa, and 10 hours to obtain Mo, which is the target material of Example 1 of the present invention. An alloy sintered body was obtained.

体積基準の累積粒度分布の50%粒径(以下、「D50」という。)が7μmのMo粉末と、D50が35μmのNiMo合金粉末と、D50が110μmのNb粉末とを、Niを49原子%、Nbを1原子%含有し、残部がMoおよび不可避的不純物からなるように混合して混合粉末を得た。
そして、この混合粉末をゴム製の型内に充填し、成形圧2.7ton/cm(≒2.65MPa)の条件でCIP処理をして成形体を得た。この成形体をディスクミルで解砕して、1.5mmアンダーの解砕粉を得た。
次に、上記で得た解砕粉をHIP装置の炉体内部に設置して、1250℃、120MPa、10時間の条件で加圧焼結を実施して、本発明例2のターゲット材となるMo合金焼結体を得た。
Mo powder having a 50% particle size (hereinafter referred to as "D50") of the volume-based cumulative particle size distribution, NiMo alloy powder having a D50 of 35 μm, Nb powder having a D50 of 110 μm, and Ni being 49 atomic%. , Nb was contained in 1 atomic%, and the mixture was mixed so that the balance consisted of Mo and unavoidable impurities to obtain a mixed powder.
Then, this mixed powder was filled in a rubber mold and subjected to CIP treatment under the condition of a molding pressure of 2.7 ton / cm 2 (≈2.65 MPa) to obtain a molded product. This molded product was crushed with a disc mill to obtain crushed powder under 1.5 mm.
Next, the crushed powder obtained above is installed inside the furnace body of the HIP apparatus and subjected to pressure sintering under the conditions of 1250 ° C., 120 MPa, and 10 hours to become the target material of Example 2 of the present invention. A Mo alloy sintered body was obtained.

体積基準の累積粒度分布の50%粒径(以下、「D50」という。)が7μmのMo粉末と、D50が35μmのNiMo合金粉末と、D50が110μmのNb粉末とを、Niを10原子%、Nbを10原子%含有し、残部がMoおよび不可避的不純物からなるように混合して混合粉末を得た。
そして、この混合粉末をゴム製の型内に充填し、成形圧2.7ton/cm(≒2.65MPa)の条件でCIP処理をして成形体を得た。この成形体をディスクミルで解砕して、1.5mmアンダーの解砕粉を得た。
次に、上記で得た解砕粉をHIP装置の炉体内部に設置して、1250℃、120MPa、10時間の条件で加圧焼結を実施して、本発明例3のターゲット材となるMo合金焼結体を得た。
Mo powder having a 50% particle size (hereinafter referred to as "D50") of the volume-based cumulative particle size distribution, NiMo alloy powder having a D50 of 35 μm, Nb powder having a D50 of 110 μm, and Ni being 10 atomic%. , Nb was contained in an amount of 10 atomic%, and the mixture was mixed so that the balance consisted of Mo and unavoidable impurities to obtain a mixed powder.
Then, this mixed powder was filled in a rubber mold and subjected to CIP treatment under the condition of a molding pressure of 2.7 ton / cm 2 (≈2.65 MPa) to obtain a molded product. This molded product was crushed with a disc mill to obtain crushed powder under 1.5 mm.
Next, the crushed powder obtained above is installed inside the furnace body of the HIP apparatus and subjected to pressure sintering under the conditions of 1250 ° C., 120 MPa, and 10 hours to become the target material of Example 3 of the present invention. A Mo alloy sintered body was obtained.

D50が7μmのMo粉末と、D50が35μmのNiMo合金粉末と、D50が110μmのNb粉末とを、Niを30原子%、Nbを15原子%含有し、残部がMoおよび不可避的不純物からなるように混合して混合粉末を得た。
そして、この混合粉末を軟鋼製の加圧容器に充填して、これをHIP装置の炉体内部に設置して、1250℃、120MPa、10時間の条件で加圧焼結を実施して、比較例のターゲット材となるMo合金焼結体を得た。
Mo powder having a D50 of 7 μm, NiMo alloy powder having a D50 of 35 μm, and Nb powder having a D50 of 110 μm are contained in an amount of 30 atomic% Ni and 15 atomic% Nb, and the balance is composed of Mo and unavoidable impurities. To obtain a mixed powder.
Then, this mixed powder is filled in a pressure vessel made of mild steel, installed inside the furnace body of the HIP apparatus, and pressure sintering is performed under the conditions of 1250 ° C., 120 MPa, and 10 hours for comparison. A Mo alloy sintered body as the target material of the example was obtained.

上記で得た各焼結体のスパッタ面となる面の任意の位置から機械加工により試験片を採取した。そして、ビッカース硬さは、JIS Z 2244に準じ、株式会社明石製作所製のMVK−Eを用いて、図1および図2に示す9点に相当する測定点で測定した。その結果を表1に示す。 A test piece was sampled by machining from an arbitrary position on the surface to be the sputter surface of each of the above-mentioned sintered bodies. The Vickers hardness was measured at measurement points corresponding to 9 points shown in FIGS. 1 and 2 using MVK-E manufactured by Akashi Seisakusho Co., Ltd. in accordance with JIS Z 2244. The results are shown in Table 1.

ここで、本発明例となるMo合金焼結体は、いずれも、ターゲット材の形状にするための機械加工時に、チップの摩耗や破損がないことを確認した。また、その機械加工において、Mo合金焼結体の脱落もなかったことから、スパッタ時の異常放電の抑制も期待できる。また、切削機械へのチャッキング等のハンドリングでMo合金焼結体が変形や破損することもなかった。
一方、比較例となるMo合金焼結体は、ターゲット材の形状にするための機械加工時に、チップの摩耗や破損が生じた。また、その機械加工において、Mo合金焼結体の脱落が確認された。
Here, it was confirmed that none of the Mo alloy sintered bodies as an example of the present invention had chip wear or breakage during machining to form the target material. In addition, since the Mo alloy sintered body did not fall off during the machining, it can be expected to suppress abnormal discharge during sputtering. In addition, the Mo alloy sintered body was not deformed or damaged by handling such as chucking to a cutting machine.
On the other hand, in the Mo alloy sintered body as a comparative example, chip wear and breakage occurred during machining to form the shape of the target material. In addition, it was confirmed that the Mo alloy sintered body fell off during the machining.

各ターゲット材のスパッタ面となる面の金属組織を光学顕微鏡で観察した結果を図1および図2に示す。
比較例となるターゲット材は、図2で示すマトリックスとなるMo相に、薄灰色部で示す粗大なNi合金相が点在する金属組織であり、ビッカース硬さが460HVを上回る部位が確認され、ばらつき[(最大値−最小値)/(最大値+最小値)]×100(%)が20%を超えていることが確認された。
一方、本発明例1となるターゲット材は、図1の薄灰色部で示すNi合金相が微細に分散しており、比較例にみられた粗大なNi合金相がなく、ビッカース硬さが290〜460HVの範囲に調整されており、且つ、ばらつき[(最大値−最小値)/(最大値+最小値)]×100(%)が20%以下に調整されていることが確認できた。これにより、本発明のターゲット材は、ハンドリングにおけるターゲット材の変形や、切削工具のチップの摩耗や破損が抑制できることに加え、スパッタ時の異常放電の起点の生成抑制も期待できる。
The results of observing the metal structure of the surface to be the sputtered surface of each target material with an optical microscope are shown in FIGS. 1 and 2.
The target material as a comparative example is a metal structure in which the coarse Ni alloy phase shown by the light gray part is scattered in the Mo phase which is the matrix shown in FIG. 2, and a portion where the Vickers hardness exceeds 460 HV is confirmed. It was confirmed that the variation [(maximum value-minimum value) / (maximum value + minimum value)] × 100 (%) exceeded 20%.
On the other hand, in the target material according to Example 1 of the present invention, the Ni alloy phase shown in the light gray portion of FIG. 1 is finely dispersed, there is no coarse Ni alloy phase seen in the comparative example, and the Vickers hardness is 290. It was confirmed that the range was adjusted to ~ 460 HV, and the variation [(maximum value-minimum value) / (maximum value + minimum value)] × 100 (%) was adjusted to 20% or less. As a result, the target material of the present invention can be expected to suppress the deformation of the target material during handling and the wear and breakage of the cutting tool tip, as well as the generation of the starting point of abnormal discharge during sputtering.

Claims (2)

Niを10〜49原子%、Nbを1〜30原子%含有し、且つNiとNbの合計量が50原子%以下で、残部がMoおよび不可避的不純物からなり、ビッカース硬さが290〜460HVであり、9点の測定点で測定を行なったビッカース硬さのばらつきが20%以下であるMo合金ターゲット材。 It contains 10 to 49 atomic% of Ni, 1 to 30 atomic% of Nb, the total amount of Ni and Nb is 50 atomic% or less, the balance consists of Mo and unavoidable impurities, and the Vickers hardness is 290 to 460 HV. Yes, a Mo alloy target material with a Vickers hardness variation of 20% or less measured at 9 measurement points. Niを10〜49原子%、Nbを1〜30原子%含有し、且つNiとNbの合計量が50原子%以下で、残部がMoおよび不可避的不純物となるように、Mo粉末とNiMo合金粉末とNb粉末を混合して混合粉末を得る工程と、前記混合粉末を常温で加圧して成形体を得る工程と、前記成形体を加圧焼結して焼結体を得る工程を含むMo合金ターゲット材の製造方法。

Mo powder and NiMo alloy powder so that Ni is contained in an amount of 10 to 49 atomic%, Nb is contained in an amount of 1 to 30 atomic%, the total amount of Ni and Nb is 50 atomic% or less, and the balance is Mo and unavoidable impurities. Mo alloy including a step of mixing and Nb powder to obtain a mixed powder, a step of pressurizing the mixed powder at room temperature to obtain a molded body, and a step of pressurizing and sintering the molded body to obtain a sintered body. Manufacturing method of target material.

JP2020038881A 2019-03-20 2020-03-06 Mo alloy target material and its manufacturing method Active JP7419886B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019052843 2019-03-20
JP2019052843 2019-03-20

Publications (2)

Publication Number Publication Date
JP2020158881A true JP2020158881A (en) 2020-10-01
JP7419886B2 JP7419886B2 (en) 2024-01-23

Family

ID=72564095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020038881A Active JP7419886B2 (en) 2019-03-20 2020-03-06 Mo alloy target material and its manufacturing method

Country Status (4)

Country Link
JP (1) JP7419886B2 (en)
KR (1) KR20200112716A (en)
CN (1) CN111719126A (en)
TW (1) TWI715467B (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4110533B2 (en) * 2004-02-27 2008-07-02 日立金属株式会社 Manufacturing method of Mo-based target material
JP2008255440A (en) 2007-04-06 2008-10-23 Hitachi Metals Ltd MoTi ALLOY SPUTTERING TARGET MATERIAL
JP5550328B2 (en) 2009-12-22 2014-07-16 株式会社東芝 Mo sputtering target and manufacturing method thereof
JP5988140B2 (en) 2011-06-07 2016-09-07 日立金属株式会社 Manufacturing method of MoTi target material and MoTi target material
JP2013067835A (en) * 2011-09-22 2013-04-18 Spm Ag Semiconductor Parts & Materials Sputtering target, transistor, method for manufacturing sintered body, method for manufacturing transistor, electronic component or electric equipment, liquid crystal display element, panel for organic el display, solar cell, semiconductor element, and light emitting diode element
JP5958822B2 (en) * 2011-12-22 2016-08-02 日立金属株式会社 Method for producing Mo alloy sputtering target material and Mo alloy sputtering target material
KR101600169B1 (en) * 2013-03-12 2016-03-04 히타치 긴조쿠 가부시키가이샤 METAL THIN FILM FOR ELECTRONIC COMPONENT AND Mo ALLOY SPUTTERING TARGET MATERIAL FOR FORMING METAL THIN FILM
CN103143710B (en) * 2013-03-27 2015-12-23 宁夏东方钽业股份有限公司 A kind of preparation method of molybdenum alloy target
JP6602550B2 (en) 2014-04-28 2019-11-06 株式会社アライドマテリアル Material for sputtering target
JP6626732B2 (en) * 2015-06-29 2019-12-25 山陽特殊製鋼株式会社 Sputtering target material
JP6997945B2 (en) * 2016-12-27 2022-01-18 日立金属株式会社 Laminated wiring film and its manufacturing method and Mo alloy sputtering target material

Also Published As

Publication number Publication date
TW202035753A (en) 2020-10-01
CN111719126A (en) 2020-09-29
JP7419886B2 (en) 2024-01-23
TWI715467B (en) 2021-01-01
KR20200112716A (en) 2020-10-05

Similar Documents

Publication Publication Date Title
JP6381142B2 (en) Touch screen device
JP5562929B2 (en) Tungsten sputtering target and manufacturing method thereof
JP3445276B2 (en) Mo-W target for wiring formation, Mo-W wiring thin film, and liquid crystal display device using the same
JP5952272B2 (en) Targets containing molybdenum
TWI515167B (en) An oxide sintered body and a sputtering target, and a method for producing the oxide sintered body
JP2013535571A5 (en) Targets containing molybdenum
KR101613001B1 (en) METHOD OF MANUFACTURING Mo ALLOY SPUTTERING TARGET MATERIAL AND Mo ALLOY SPUTTERING TARGET MATERIAL
JP6681019B2 (en) Sputtering target material for forming laminated wiring film and coating layer for electronic parts
JP2011523978A (en) Molybdenum-niobium alloy, sputtering target containing such alloy, method for producing such target, thin film produced therefrom, and use thereof
JP2012224942A (en) Al-BASED ALLOY SPUTTERING TARGET AND METHOD FOR PRODUCING THE SAME
JP7419885B2 (en) Mo alloy target material and its manufacturing method
JP4945037B2 (en) Tungsten sputtering target and manufacturing method thereof
JP6459058B2 (en) Mo alloy target
TWI684660B (en) TiW alloy target and its manufacturing method
JP7419886B2 (en) Mo alloy target material and its manufacturing method
JP7293787B2 (en) TaWSi target and manufacturing method thereof
KR20150021891A (en) Sputtering target material for forming coating layer and manufacturing method thereof
TWI674325B (en) MoNb target
KR20170044343A (en) Preparation method of reuse tungsten target and the reuse tungsten target prepared thereby
CN113614279B (en) V alloy target
KR20230133222A (en) Chromium sintered body, method of manufacturing the same, sputtering target, and method of manufacturing substrate with chromium film
CN113614280A (en) V alloy target

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231225

R150 Certificate of patent or registration of utility model

Ref document number: 7419886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150