JP4110533B2 - Manufacturing method of Mo-based target material - Google Patents

Manufacturing method of Mo-based target material Download PDF

Info

Publication number
JP4110533B2
JP4110533B2 JP2004055021A JP2004055021A JP4110533B2 JP 4110533 B2 JP4110533 B2 JP 4110533B2 JP 2004055021 A JP2004055021 A JP 2004055021A JP 2004055021 A JP2004055021 A JP 2004055021A JP 4110533 B2 JP4110533 B2 JP 4110533B2
Authority
JP
Japan
Prior art keywords
powder
target material
producing
raw material
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004055021A
Other languages
Japanese (ja)
Other versions
JP2005240160A5 (en
JP2005240160A (en
Inventor
克典 岩崎
惠介 井上
典夫 植村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2004055021A priority Critical patent/JP4110533B2/en
Priority to CNB2005100095854A priority patent/CN1314504C/en
Priority to US11/066,228 priority patent/US20050191202A1/en
Publication of JP2005240160A publication Critical patent/JP2005240160A/en
Publication of JP2005240160A5 publication Critical patent/JP2005240160A5/ja
Application granted granted Critical
Publication of JP4110533B2 publication Critical patent/JP4110533B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • B22F3/162Machining, working after consolidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/1208Containers or coating used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Description

本発明は、粉末焼結法によるMoターゲット材の製造方法に関するものである。 The present invention relates to a method for producing a Mo- based target material by a powder sintering method.

現在、液晶ディスプレイ(Liquid Crystal Display、以下LCDという)の薄膜電極および薄膜配線等には、電気抵抗の小さいMo等の高融点金属膜が用いられており、その金属薄膜を形成するための材料として、スパッタリング用ターゲット材が広く利用されている。そして、近年のLCDサイズの大型化に伴い、金属膜を形成するためのスパッタリング用ターゲット材に対しても大型化が要求されており、特に現在は、1m以上の長尺品やスパッタリング面積が1mを超える大型品が要求されている。 At present, refractory metal films such as Mo having a low electrical resistance are used for thin film electrodes and thin film wirings of liquid crystal displays (hereinafter referred to as LCDs), and as a material for forming the metal thin films. Sputtering target materials are widely used. With the recent increase in LCD size, it is required to increase the sputtering target material for forming a metal film, and in particular, a long product having a length of 1 m or more and a sputtering area of 1 m are currently required. Larger products exceeding 2 are required.

従来、スパッタリング面積の大型化への対応として、多数のターゲット素材をバッキングプレート上に貼り合わせる等の方法がとられてきた。しかしながら、多数のターゲット素材を貼り合わせてスパッタリング面積を大型化する方法では、スパッタリング時にターゲット素材間の隙間が存在するために発生する異常飛沫を原因とするパーティクルが生じるために一体物のターゲット素材による対応が要求されている。   Conventionally, in order to cope with an increase in the sputtering area, a method such as bonding a large number of target materials onto a backing plate has been employed. However, in the method of increasing the sputtering area by bonding a large number of target materials, particles due to abnormal droplets generated due to the presence of gaps between the target materials during sputtering are generated. Response is required.

従来より、Mo等の高融点金属をターゲット材として製造するためには、粉末焼結法が用いられてきたが、このような大型一体物のターゲット素材を粉末焼結法で作製する際に重要なのは、高密度化の達成と大型化への対応である。粉末焼結法には、種々の方法があるが、そのうち熱間静水圧プレス(HIP)法は、プレス圧力を3次元的に高圧で付加することが可能であることから、2次元的にしかプレス圧力を付加できないホットプレス法に比べて素材を均一に高密度化できるという利点がある。   Conventionally, a powder sintering method has been used to produce a refractory metal such as Mo as a target material. However, it is important when producing a target material of such a large integrated object by a powder sintering method. It is to achieve high density and cope with large size. There are various powder sintering methods. Among them, the hot isostatic pressing (HIP) method can apply the press pressure three-dimensionally at a high pressure, so that it can be applied only two-dimensionally. There is an advantage that the material can be uniformly densified compared to the hot press method in which press pressure cannot be applied.

HIP法は、焼結素材を加圧容器に充填して、プレス圧力を付加する必要があるため、焼結素材である原料粉末を加圧容器に、高充填率で均一な充填を行う必要がある。そこで、プレス圧力を充填した原料粉末に与える方法が提案されている(例えば、特許文献1および2参照)
特開2002−167669号公報 特開2003−342720号公報
In the HIP method, it is necessary to fill the sintered material in a pressurized container and apply a press pressure. Therefore, it is necessary to uniformly fill the pressurized container with the raw material powder, which is a sintered material, at a high filling rate. is there. Then, the method of giving to the raw material powder with which press pressure was filled is proposed (for example, refer patent document 1 and 2).
JP 2002-167669 A JP 2003-342720 A

しかしながら、上記の特許文献1および2に記載されるMo系ターゲット材の製造方法でも、Moに添加元素を含んだMo合金のターゲット材を製造する場合には、添加元素の偏在が発生しやすいという問題を解決できない。また、さらに加圧焼結体の変形が大きいという課題も存在する。   However, even in the manufacturing method of the Mo-based target material described in Patent Documents 1 and 2 described above, when manufacturing a Mo alloy target material containing an additive element in Mo, the uneven distribution of the additive element is likely to occur. The problem cannot be solved. There is also a problem that the pressure sintered body is further deformed.

本発明の目的は、加圧容器への原料粉末の充填密度を向上させ焼結体の変形を低減させ、また組成の偏在を低減させたMo系ターゲット材の製造方法を提供することである。   An object of the present invention is to provide a method for producing a Mo-based target material that improves the packing density of raw material powder in a pressurized container, reduces deformation of the sintered body, and reduces uneven distribution of the composition.

本発明者等は、Mo系ターゲット材の製造方法を種々検討した結果、加圧容器に充填する際の原料粉末の粒径を制御することで、上記の課題を解決できることを見出し、本発明に到達した。   As a result of various investigations on the manufacturing method of the Mo-based target material, the present inventors have found that the above problem can be solved by controlling the particle size of the raw material powder when filling the pressurized container. Reached.

すなわち、平均粒径20μm以下のMo粉末と平均粒径500μm以下の遷移金属粉末とを混合した原料粉末を圧縮成形した圧密体を、粉砕し該原料粉末の平均粒径以上でかつ平均粒径10mm以下の二次粉末を作製した後、該二次粉末を加圧容器に充填し、次いで加圧焼結を施し焼結体を得るMo系ターゲット材の製造方法である
また、好ましくは、原料粉末を圧縮成形した圧密体を、粉砕し該原料粉末の平均粒径以上でかつ平均粒径10mm以下の二次粉末を作製し、該二次粉末を加圧容器に充填した後、加圧焼結を施し焼結体を得て、次いで加圧容器に包まれたまま熱間塑性加工を施すMo系ターゲット材の製造方法である。
また、好ましくは、原料粉末を圧縮成形した圧密体を、粉砕し該原料粉末の平均粒径以上でかつ平均粒径10mm以下の二次粉末を作製し、該二次粉末を加圧容器に充填し、加圧焼結を施し焼結体を得た後、加圧容器に包まれたまま熱間塑性加工を施し、次いで再結晶化熱処理を行うMo系ターゲット材の製造方法である。
That is, the compression molded compacts the material powder obtained by mixing a mean particle diameter 500μm or less of a transition metal powder with the following Mo powder flat Hitoshitsubu径20 [mu] m, milling the average particle diameter or less on a and the average particle size of the raw material powder This is a method for producing a Mo-based target material in which a secondary powder of 10 mm or less is prepared, and then the secondary powder is filled into a pressure vessel and then subjected to pressure sintering to obtain a sintered body .
Preferably, the compacted body obtained by compression-molding the raw material powder is pulverized to produce a secondary powder having an average particle size equal to or greater than the average particle size and equal to or less than 10 mm, and the secondary powder is filled in a pressurized container. After that, pressure sintering is performed to obtain a sintered body, and then the Mo-based target material is subjected to hot plastic working while being wrapped in a pressure vessel.
Also, preferably, the raw material powder compression molded compacts, ground to produce an average particle diameter or more on a and the average particle size 10mm below the secondary powder of raw material powder, the pressurized vessel to the secondary powder This is a method for producing a Mo-based target material that is filled and subjected to pressure sintering to obtain a sintered body, which is then subjected to hot plastic working while being encased in a pressure vessel, and then subjected to recrystallization heat treatment.

また、好ましくは、原料粉末を冷間静水圧プレスで圧縮成形するMo系ターゲット材の製造方法である。
また、好ましくは、原料粉末を100MPa以上の圧力条件で冷間静水圧プレスを行うMo系ターゲット材の製造方法である。
また、好ましくは、原料粉末を圧縮成形した圧密体の相対密度を50%以上とするMo系ターゲット材の製造方法である。
また、好ましくは、加圧焼結は熱間静水圧プレスであるMo系ターゲット材の製造方法である。
Also, preferably, the manufacturing method of the Mo-based target compression molding raw material powder with cold isostatic pressing.
Also, preferably, the manufacturing method of the Mo-based target to perform cold isostatic pressing under a pressure of more than 100MPa the raw material powder.
Also, preferably, the manufacturing method of the Mo-based target for the relative density of the raw material powder compression molded compacts 50% or more.
Moreover, preferably, pressure sintering is a manufacturing method of the Mo-type target material which is a hot isostatic press.

また、好ましくは、温度1000〜1500℃、圧力100MPa以上の条件で熱間静水圧プレスを行うMo系ターゲット材の製造方法である。
また、好ましくは、焼結体の相対密度を98%以上とするMo系ターゲット材の製造方法である。
Moreover, Preferably, it is a manufacturing method of the Mo-type target material which performs hot isostatic pressing on the conditions of temperature 1000-1500 degreeC and a pressure of 100 Mpa or more.
In addition, a method for producing a Mo-based target material in which the relative density of the sintered body is preferably 98% or more is preferable.

また、好ましくは、前記二次粉末を充填する加圧容器の内径寸法の最大長さが1000mm以上であるMo系ターゲット材の製造方法である。
また、好ましくは、前記二次粉末を充填する加圧容器は、充填深さが最も深くなる方向に対向する一方の面が、充填口として解放された直方体形状であり、かつその内径寸法の最大長さが1000mm以上の金属カプセルであるMo系ターゲット材の製造方法である。
Preferably, the Mo-type target material manufacturing method is such that the maximum length of the inner diameter dimension of the pressurized container filled with the secondary powder is 1000 mm or more.
Also, preferably, pressurized container filling the secondary powder is one surface filling depth faces the deepest direction is a straight rectangular parallelepiped shape has been released as a filling port, and the inner diameter Is a method for producing a Mo-based target material which is a metal capsule having a maximum length of 1000 mm or more.

また、好ましくは、熱間塑性加工は、温度500〜1500℃、加工率2〜50%以下の塑性加工を複数回実施するMo系ターゲット材の製造方法である。
また、好ましくは、前記再結晶化熱処理は、1000〜1500℃で行うMo系ターゲット材の製造方法である。
また、好ましくは、焼結体の最大長さの辺を維持するように複数枚に切断するMo系ターゲット材の製造方法である。
また、好ましくは、原料粉末は、Moを50原子%以上含むMo系ターゲット材の製造方法である。
Preferably, the hot plastic working is a method for producing a Mo-based target material in which plastic working at a temperature of 500 to 1500 ° C. and a working rate of 2 to 50% or less is performed a plurality of times.
Moreover, Preferably, the said recrystallization heat processing is a manufacturing method of Mo type | system | group target material performed at 1000-1500 degreeC.
Also, preferably, M o based method for producing a target material you cut into sheets so as to maintain the sides of the maximum length of the sintered body.
Moreover, Preferably, raw material powder is a manufacturing method of Mo type | system | group target material which contains 50 atomic% or more of Mo.

本発明によれば、加圧容器への原料粉末の充填密度を向上させることで焼結体の変形を低減させ、また組成の偏在を低減させたMo系ターゲット材の製造方法をすることが可能となる。   According to the present invention, it is possible to reduce the deformation of the sintered body by improving the packing density of the raw material powder into the pressurized container, and to produce a Mo-based target material that reduces the uneven distribution of the composition. It becomes.

本発明の重要な特徴の一つは、Mo粉末と遷移金属粉末とを混合した原料粉末を一度圧縮成形した圧密体とした後に、粉砕処理を行い原料粉末の平均粒径以上でかつ平均粒径10mm以下の二次粉末を作製して、加圧容器に充填することで、加圧容器への原料粉末の充填率を向上させることができ、また原料粉末を充填した際の成分の偏在を容易に低減できた点にある。
加圧容器を使用する焼結製法でMo系ターゲット材を製造する場合においては、一般に微細なMoの原料粉末が使用されるが、Moの原料粉末は、凝集性が高く流れ性が悪いために、加圧容器に充填する場合に、加圧容器中で充填のばらつきが生じやすい。
そこで、本発明者等が検討した結果、原料粉末をある程度大きく粒径調整をすることで加圧容器への原料粉末の充填率を向上させることが可能となることを見出した。また、Moに添加元素を含む場合には、粉末の凝集性、流れ性等の理由から成分の偏在を発生させやすい。そこで、遷移金属粉末とMo粉末を混合した原料粉末を一度圧縮成形した後に粉砕した二次粉末を作製することで、加圧容器に充填する際の粉末自身の成分偏在を低減するとともに、加圧容器中で焼結した焼結体の成分偏在も低減することが可能となることも見出した。
One of the important features of the present invention is that the raw material powder obtained by mixing the Mo powder and the transition metal powder is once compressed into a compacted body, and then pulverized to obtain an average particle size that is equal to or larger than the average particle size of the raw material powder. By producing a secondary powder of 10 mm or less and filling it in a pressurized container, the filling rate of the raw material powder in the pressurized container can be improved, and the uneven distribution of components when filling the raw material powder is easy It is in the point which was able to reduce to.
In the case of producing a Mo-based target material by a sintering method using a pressure vessel, fine Mo raw material powder is generally used, but Mo raw material powder has high cohesiveness and poor flowability. When filling a pressurized container, variation in filling tends to occur in the pressurized container.
Thus, as a result of studies by the present inventors, it has been found that the filling rate of the raw material powder into the pressurized container can be improved by adjusting the particle size of the raw material powder to a certain extent. Moreover, when an additive element is contained in Mo, it is easy to generate the uneven distribution of components for reasons such as powder cohesiveness and flowability. Therefore, by creating a secondary powder that is once compacted and then pulverized after the raw material powder mixed with the transition metal powder and the Mo powder is reduced, the component distribution of the powder itself when filling the pressurized container is reduced and the pressure is increased. It has also been found that the uneven distribution of the components of the sintered body sintered in the container can be reduced.

以下に、本発明の製造方法に関して詳細に説明する。
一般に使用されるMo粉末は、化学的製法により作製されるため平均粒径20μm以下の微細粒径を有している。また、Nb、Cr、Ti等の遷移金属粉末は、溶解インゴットを粉砕して作製されるものが多いため平均粒径500μm以下の比較的大きな粒径を有している。本発明においては、この微細な原料粉末を一度圧縮成形して圧密体として、その後粉砕処理を行い、原料粉末の平均粒径以上でかつ平均粒径10mm以下の原料粉末の二次粉末を作製する。その後、この二次粉末を加圧容器に充填し、加圧焼結を行ってターゲット材の素材となる焼結体を得る。 この二次粉末の平均粒径の下限を原料粉末の平均粒径以上とした理由は、原料粉末の平均粒径を下回っては、圧密体を作製して粉砕する意味がないためである。また、この二次粉末の平均粒径の上限を10mm以下に規定した理由は、10mmを超えるとその境界線が明瞭に現れ、一種の模様状の形態をなすためである。また、その粒界が優先的に外気雰囲気と接触するため局部的に酸素量が高くなる危険性が内在している。したがって外観上判別しにくく、平均化するためにも平均粒径10mm以下である必要がある。
一方、Mo粉末に遷移金属粉末加えた場合においては、添加された遷移金属元素の偏在を抑制する手段として、原料粉末を圧密成形した圧密体を粉砕処理することが重要となる。この場合も、上記と同様の理由から二次粉末の平均粒径は10mm以下にする必要がある。
なお、本発明における平均粒径とは、Mo粉末、遷移金属粉末、原料粉末あるいは二次粉末の粒径分布において、個数がその総量の50%をしめるときの粒径(D50)をいう。
Below, the manufacturing method of this invention is demonstrated in detail.
Generally used Mo powder has a fine particle size of 20 μm or less in average particle size because it is produced by a chemical manufacturing method. In addition, many transition metal powders such as Nb, Cr, and Ti have a relatively large particle size with an average particle size of 500 μm or less because many are produced by pulverizing a molten ingot. In the present invention, this fine raw material powder is once compression-molded to form a compacted body, and then pulverized to produce a secondary powder of the raw material powder having an average particle diameter of not less than 10 mm and an average particle diameter of not more than 10 mm. . Thereafter, the secondary powder is filled into a pressure vessel and subjected to pressure sintering to obtain a sintered body that becomes a material of the target material. The reason why the lower limit of the average particle size of the secondary powder is set to be equal to or greater than the average particle size of the raw material powder is that it is meaningless to produce a compacted body and pulverize it below the average particle size of the raw material powder. The reason why the upper limit of the average particle size of the secondary powder is specified to be 10 mm or less is that when it exceeds 10 mm, the boundary line clearly appears and forms a pattern. Moreover, since the grain boundary is preferentially in contact with the outside air atmosphere, there is a risk that the amount of oxygen locally increases. Therefore, it is difficult to discriminate in appearance, and the average particle size needs to be 10 mm or less for averaging.
On the other hand, when the transition metal powder is added to the Mo powder, it is important to pulverize the compacted body obtained by compacting the raw material powder as a means for suppressing the uneven distribution of the added transition metal element. Also in this case, the average particle size of the secondary powder needs to be 10 mm or less for the same reason as described above.
Incidentally, the average particle diameter in the present invention, Mo powder, transition metal powder in the particle size distribution of the raw powder or the secondary powder refers to a particle size (D 50) when the number is occupied 50% of the total amount.

また、圧縮成形するMoを主体とする原料粉末は平均粒径10μm以下、圧密体を粉砕処理した後の二次粉末は平均粒径5mm以下であることがより好ましい。
その理由は、原料粉末の粒径が小さいほど加圧焼結後の焼結体の相対密度を容易に高めることができるためである。加圧容器への充填密度を向上させる点からは、充填する粉末つまりは二次粉末の粒径を大きくすることに効果があるが、加圧焼結における焼結性の点では、密度の高い原料粉末の粒径は小さいことが望ましい。特に、本発明の焼結体を構成する主体であるMoは高融点金属で一般的な拡散温度は高温であるため、拡散を促進させるためには高温処理すると同時に接触面積を増大することが好ましい。よって、原料粉末の平均粒径としては、10μm以下であることが好ましい。 また、二次粒子の平均粒径が5mm以下であることが好ましい理由は、酸素量の局所的集中をより低減できるためであり、添加元素を含む場合には添加元素の分散性をより高めることができるためである。さらに好ましい二次粉末の平均粒径は0.5〜3mmである。
また、Mo粉末と混合される遷移金属粉末の平均粒径を500μm以下としたのは、平均粒径がこの値を超えるとターゲット材とした際の成分偏在が低減できないためである。
More preferably, the raw material powder mainly composed of Mo to be compression-molded has an average particle size of 10 μm or less, and the secondary powder after the compacted body is pulverized has an average particle size of 5 mm or less.
The reason is that the smaller the particle size of the raw material powder, the easier it is to increase the relative density of the sintered body after pressure sintering. From the point of improving the packing density in the pressurized container, it is effective to increase the particle size of the powder to be filled, that is, the secondary powder, but in terms of sinterability in pressure sintering, the density is high. The particle size of the raw material powder is desirably small. In particular, Mo, which is the main constituent of the sintered body of the present invention, is a refractory metal and a general diffusion temperature is high. Therefore, in order to promote diffusion, it is preferable to increase the contact area at the same time as high-temperature treatment. . Therefore, the average particle size of the raw material powder is preferably 10 μm or less. The reason why the average particle size of the secondary particles is preferably 5 mm or less is that the local concentration of the oxygen amount can be further reduced. When the additive element is included, the dispersibility of the additive element is further increased. It is because it can do. The average particle size of the secondary powder is more preferably 0.5 to 3 mm.
In addition, the reason why the average particle size of the transition metal powder mixed with the Mo powder is 500 μm or less is that when the average particle size exceeds this value, the component uneven distribution when the target material is used cannot be reduced.

また、圧密体は、加圧容器に充填する二次粉末としての粒径を維持するためには、相対密度が50%以上になるように圧縮成形することが望ましい。
料粉末を圧縮成形する方法としては、冷間静水圧プレスが望ましく、その際の圧力条件としては、容易に上記の圧密体の相対密度を50%以上にできるため100MPa以上の圧力を付加することが望ましい。
The compacted body is preferably compression-molded so that the relative density is 50% or more in order to maintain the particle size as the secondary powder filled in the pressurized container.
As a method for compression molding a raw material powder, cold isostatic pressing is desirable, as the pressure conditions at that time easily adds pressure higher than 100MPa for the relative density of the compacting body can be more than 50% It is desirable.

加圧焼結は、3次元的に高圧で圧力を付加することで、原料粉末を焼結させることが可能であるため熱間静水圧プレス(HIP)を適用することが望ましい。また、その際には、温度1000〜1500℃、圧力100MPa以上の条件を適用することが望ましい。
それは、この100MPaに満たない圧力、1000℃に満たない温度でHIPを行っても、ターゲット材に要求される相対密度98%以上の密度を有する焼結体が作製しづらいためである。一方、Moを中心とした焼結体を得るためにはできるだけ高い温度での処理が好ましいが、HIP温度は加圧容器に用いる材質のほか、設備面での制約が存在する。一般的なHIP装置では1500℃がほぼ上限となり、それ以上では現実性に欠ける。
In pressure sintering, it is desirable to apply a hot isostatic press (HIP) because it is possible to sinter the raw material powder by applying pressure at a high pressure three-dimensionally. In that case, it is desirable to apply conditions of a temperature of 1000 to 1500 ° C. and a pressure of 100 MPa or more.
This is because it is difficult to produce a sintered body having a relative density of 98% or more required for the target material even if HIP is performed at a pressure less than 100 MPa and a temperature less than 1000 ° C. On the other hand, in order to obtain a sintered body centered on Mo, treatment at a temperature as high as possible is preferable, but the HIP temperature has restrictions on the equipment as well as the material used for the pressurized container. In a general HIP apparatus, 1500 ° C. is almost the upper limit, and beyond that, it is not realistic.

また、本発明の製造方法は、加圧容器が大型化する場合に、原料粉末の充填密度が向上し難く、また成分偏在を発生しやすいので、特に容積における最大長さが1000mm以上の加圧容器を用いる必要のある大型のターゲット材の製造方法に好適である。また、原料粉末の充填方法としては、原料粉末自身の比重を利用して充填率の向上が図れるため、充填深さが最も深くなる方向に対抗する一方の面が、充填口として開放された実質的に直方体形状であり、かつ容積の最大長さが1000mm以上となるように加圧容器を使用することがより好ましい。   Further, in the production method of the present invention, when the pressurized container is enlarged, the filling density of the raw material powder is difficult to improve and the component is likely to be unevenly distributed. It is suitable for the manufacturing method of a large target material which needs to use a container. In addition, as a method of filling the raw material powder, since the filling rate can be improved by utilizing the specific gravity of the raw material powder itself, one surface facing the direction in which the filling depth becomes the deepest is substantially opened as a filling port. In particular, it is more preferable to use a pressurized container so that it has a rectangular parallelepiped shape and a maximum volume length of 1000 mm or more.

また、上記の製造方法により作製した焼結体を加圧容器に包まれたまま、熱間塑性加工を施すことも本発明の製造方法に含まれる。焼結体を熱間塑性加工により、大型化することに適しているためである。
また、上記焼結体を加圧容器に包まれたまま熱間塑性加工を施すのは、焼結体を熱間塑性加工する際に、焼結体肌のまま加工を実施すると、焼結体の表面が汚染される可能性が高いためである。さらに、加圧容器に包まれたまま熱間塑性加工を施すと加圧容器を除去するという工程を省略することができるために、製造コストを低減できるためである。
また、熱間塑性加工は、500〜1500℃の温度に焼結体を維持しながら、加工率2〜50%の塑性加工を複数回実施することが望ましい。
それは、温度としては、温度が500℃に満たない場合は、延性が低く塑性加工時に付加する荷重を上げなければならないために生産性上の問題があり、1500℃を超える場合には加圧容器が溶ける可能性があると同時に焼結体の結晶粒が粗大化するという問題があるためである。また、加工率としては、50%を超える高い加工率で塑性加工を行うと焼結体に割れが発生したり、内部に欠陥を生じるという問題があるため好ましくないためである。また、2%を下回る加工率ではほとんど形状変化に影響が無く加工コスト上好ましくない。さらに加工時に割れ等の欠陥を発生させないためにも、全体に高率の加工を施す場合には、前記の加工温度および加工率で複数回実施することが有効である。
In addition, the manufacturing method of the present invention includes subjecting the sintered body manufactured by the above manufacturing method to hot plastic working while being wrapped in a pressure vessel. This is because the sintered body is suitable for increasing the size by hot plastic working.
In addition, when the sintered body is subjected to hot plastic processing while the sintered body is encased in a pressurized container, the sintered body is subjected to hot plastic working. This is because the surface of the surface is highly likely to be contaminated. Furthermore, if hot plastic working is performed while being wrapped in a pressurized container, the process of removing the pressurized container can be omitted, and thus the manufacturing cost can be reduced.
Moreover, as for hot plastic working, it is desirable to carry out plastic working at a working rate of 2 to 50% a plurality of times while maintaining the sintered body at a temperature of 500 to 1500 ° C.
As for the temperature, when the temperature is less than 500 ° C., there is a problem in productivity because the ductility is low and the load applied during plastic processing must be increased. This is because there is a problem that the crystal grains of the sintered body are coarsened. Moreover, as a processing rate, when plastic processing is performed at a high processing rate exceeding 50%, there is a problem that cracks are generated in the sintered body or defects are generated inside, which is not preferable. Further, when the processing rate is less than 2%, there is almost no influence on the shape change, which is not preferable in terms of processing cost. Further, in order to prevent defects such as cracks during processing, it is effective to perform a plurality of times at the above-described processing temperature and processing rate when a high rate of processing is performed on the whole.

さらに、熱間塑性加工後に、再結晶化熱処理を施すことも本発明の製造方法に含まれる。
圧延直後の組織は繊維状組織を有し、特に、板厚方向で表面部および中央部でその度合いが異なる。ターゲット材としては、不均一な結晶状態である場合にスパッタリング時の成膜の均一性に影響するため、結晶組織は同一であることが望ましい。したがって再結晶挙動を利用した組織の均一化を施すことが好ましい。
なお、再結晶化熱処理は、1000〜1500℃の範囲で行うことが好ましい。
それは、Moを主体とする組成の特性から、1000℃以下では繊維状組織が残存する可能性が高く、1500℃を超える温度では圧延表面部の圧下率の高い領域で結晶粒の一部粗大化が認められるためである。
Furthermore, after the hot plastic working, recrystallization heat treatment is also included in the production method of the present invention.
The structure immediately after rolling has a fibrous structure, and in particular, the degree is different between the surface portion and the central portion in the thickness direction. The target material desirably has the same crystal structure because it affects the uniformity of film formation during sputtering when it is in a non-uniform crystal state. Therefore, it is preferable to homogenize the structure using the recrystallization behavior.
In addition, it is preferable to perform recrystallization heat processing in 1000-1500 degreeC.
Because of the characteristics of the composition mainly composed of Mo, there is a high possibility that a fibrous structure will remain at 1000 ° C. or less, and at temperatures exceeding 1500 ° C., some of the crystal grains become coarse in the region where the rolling surface portion has a high rolling reduction. This is because it is recognized.

また、本発明は、本発明の製造方法により得られる焼結体、熱間塑性加工を施した後の焼結体、および熱間塑性加工を施した後に再結晶化熱処理を施した焼結体を最大長さの辺を維持するように切断する方法も含まれる。それは、現在、大型のターゲット材の要求が高いため、一度の加圧焼結処理で多数のターゲット材料を製造することで、コストを低減できるためである。   The present invention also relates to a sintered body obtained by the production method of the present invention, a sintered body after hot plastic working, and a sintered body subjected to recrystallization heat treatment after hot plastic working. Also included is a method of cutting so that the side of the maximum length is maintained. This is because the demand for large target materials is currently high, and the cost can be reduced by producing a large number of target materials by a single pressure sintering process.

本発明の原料粉末は、Moを50原子%以上含むことが望ましい。それは、Mo粉末は、凝集性が高く加圧容器への均一な充填が困難であるため、Moを50原子%以上含むターゲット材への適用に非常に効果が高いためである Raw material Powder of the present invention preferably includes Mo 50 atomic% or more. This is because Mo powder is highly cohesive and it is difficult to uniformly fill the pressurized container, so that it is very effective for application to a target material containing Mo of 50 atomic% or more .

本発明の実施例について以下に説明する。
平均粒径12μmのMo粉末、W粉末、平均粒径100μmのNb粉末、Ti粉末、Zr粉末を準備した。表1の試料No.1〜6に示すターゲット材を製造するために、Mo粉末および各添加元素の遷移金属粉末を所定の原子%比率で秤量後、V型混合機で10分間混合して得られた原料粉末を冷間静水圧プレス(CIP)で圧縮成形した圧密体を作製した。なお、CIPの圧力条件は265MPaとした。前記圧密体をジョークラッシャーおよびディスクミルを使用して粉砕し二次粉末を作製した。その二次粉末を再度V型混合機で10分間混合した後、内径寸法で厚さ100mm×幅1000mm×高さ1300mmの軟鋼製加圧容器に充填した。充填後、加圧容器の上蓋を溶接した後に450℃の温度下で真空脱気し、熱間静水圧プレス(HIP)で加圧焼結した。HIPは、1250℃、150MPaの条件下で5時間保持した。HIP後の焼結体を切断および機械加工して、厚さ6mm×幅810mm×長さ950mmのターゲット材を6枚得た。なお、二次粉末の加圧容器への充填密度を測定し表1に示した。また、上記の圧密体、焼結体から試験片を採取し、アルキメデス法により、相対密度を測定し表1に示す。
Examples of the present invention will be described below.
Mo powder, W powder having an average particle diameter of 12 μm, Nb powder having an average particle diameter of 100 μm, Ti powder , and Zr powder were prepared. Sample No. in Table 1 In order to produce the target materials shown in 1 to 6, Mo powder and transition metal powders of each additive element were weighed at a predetermined atomic% ratio, and then the raw material powder obtained by mixing for 10 minutes with a V-type mixer was cooled. A compacted body compression-molded with an isostatic press (CIP) was produced. The CIP pressure condition was 265 MPa. The compacted body was pulverized using a jaw crusher and a disk mill to produce a secondary powder. The secondary powder was again mixed with a V-type mixer for 10 minutes, and then filled into a pressure vessel made of mild steel having an inner diameter of 100 mm thick × 1000 mm wide × 1300 mm high. After filling, the upper lid of the pressurized container was welded, vacuum degassed at a temperature of 450 ° C., and pressure sintered by hot isostatic pressing (HIP). HIP was held for 5 hours under the conditions of 1250 ° C. and 150 MPa. The sintered body after HIP was cut and machined to obtain six target materials having a thickness of 6 mm × width of 810 mm × length of 950 mm. The packing density of the secondary powder into the pressurized container was measured and shown in Table 1. Further, test pieces were collected from the above compacted body and sintered body, and the relative density was measured by Archimedes method and shown in Table 1.

また、平均粒径6μmのMo粉末および平均粒径100μmのNb粉末を準備し、表1の試料No.7〜8に示すターゲット材を製造するため、上記と同様の方法で圧密体を作製した。前記圧密体をジョークラッシャーおよびディスクミルを使用して粉砕し二次粉末を作製した。その二次粉末を使用して上記と同様の方法で焼結体を作製した。その後、この焼結体を切断および機械加工して、厚さ6mm×幅810mm×長さ950mmのターゲット材を6枚得た。なお、二次粉末の加圧容器への充填密度を測定し表1に示した。また、上記の圧密体、焼結体から試験片を採取し、アルキメデス法により、相対密度を測定し表1に示す。   Also, Mo powder having an average particle diameter of 6 μm and Nb powder having an average particle diameter of 100 μm were prepared. In order to produce the target materials shown in 7 to 8, a compact was produced by the same method as described above. The compacted body was pulverized using a jaw crusher and a disk mill to produce a secondary powder. The sintered compact was produced by the method similar to the above using the secondary powder. Thereafter, this sintered body was cut and machined to obtain six target materials each having a thickness of 6 mm, a width of 810 mm, and a length of 950 mm. The packing density of the secondary powder into the pressurized container was measured and shown in Table 1. Further, test pieces were collected from the above compacted body and sintered body, and the relative density was measured by Archimedes method and shown in Table 1.

また、比較例として、表1の試料No.9〜10に示すターゲット材を製造するため、Mo粉末およびNb粉末を所定の原子%比率で秤量後、V型混合機で10分間混合して得られた原料粉末を圧縮成形せずに直接に上記と同一寸法の軟鋼製加圧容器に充填した。充填後、加圧容器の上蓋を溶接した後に450℃の温度下で真空脱気し、1250℃、150MPa、5時間保持するHIPを行い焼結体を作製した。その後、この焼結体を切断および機械加工して、厚さ6mm×幅610mm×長さ710mmのターゲット材を3枚得た。なお、二次粉末の加圧容器への充填密度を測定し表1に示した。また、二次粉末の上記の焼結体から試験片を採取し、アルキメデス法により、相対密度を測定し表1に示す。
また、焼結体の変形を図1の模式図に示す通り、焼結体1の長さ方向の中央部2の底面にある基準点3と端部4の底面との差から算出した変形量5として、変形量が12mm以上のものを問題あり、12mmよりも小さいものを良好として評価して同様に表1に示す。
As a comparative example, sample No. In order to produce the target materials shown in 9 to 10, Mo powder and Nb powder are weighed at a predetermined atomic% ratio, and then directly mixed without compression molding the raw material powder obtained by mixing for 10 minutes with a V-type mixer. Filled into a pressurized steel pressure vessel of the same dimensions as above. After filling, the upper lid of the pressurized container was welded, vacuum degassed at a temperature of 450 ° C., and HIP held at 1250 ° C., 150 MPa for 5 hours to prepare a sintered body. Thereafter, this sintered body was cut and machined to obtain three target materials having a thickness of 6 mm × width of 610 mm × length of 710 mm. The packing density of the secondary powder into the pressurized container was measured and shown in Table 1. Further, a test piece was taken from the above sintered body of the secondary powder, and the relative density was measured by Archimedes method and shown in Table 1.
Further, as shown in the schematic diagram of FIG. 1, the deformation amount of the sintered body is calculated from the difference between the reference point 3 on the bottom surface of the central portion 2 in the longitudinal direction of the sintered body 1 and the bottom surface of the end portion 4. No. 5, the deformation amount of 12 mm or more is problematic, and smaller than 12 mm is evaluated as good and similarly shown in Table 1.

表1に示した通り、本発明例の試料No.2〜6および8では、原料粉末を圧縮成形した圧密体を平均粒径10mm以下に粉砕した二次粉末を作製しているため、充填密度が52%以上と非常に高い充填密度を達成している。そして、充填密度が高いことから、焼結体にした際の寸法の収縮量や変形量も低減されているため、歩留りよくターゲット材を製造できることがわかる。
また、本発明例の試料No.8から、原料粉末の平均粒径を10μm以下、二次粉末の平均粒径を1mm以下とすると、充填密度の上昇と焼結体の相対密度の上昇がさらに顕著になることが見て取れる。
一方、二次粉末を作製せずに、原料粉末を混合後、直接加圧容器に充填して加圧焼結した比較例の試料No.9では、充填密度が40%以下と低く、焼結体にした際の寸法収縮や変形量も大きいため、ターゲット材を製造する際の歩留りが劣ることが分かる。さらに、同一寸法の加圧容器を用いても、焼結体にした際の寸法収縮や変形量が大きいために、想定した寸法のターゲット材が作製できない危険性がある。
As shown in Table 1, sample No. In Nos. 2 to 6 and 8 , since a secondary powder obtained by pulverizing a compact formed by compressing a raw material powder to an average particle size of 10 mm or less is produced, a very high packing density of 52% or more is achieved. Yes. And since the packing density is high, since the shrinkage amount and deformation amount of the dimension at the time of making a sintered body are reduced, it can be seen that the target material can be manufactured with high yield.
In addition, Sample No. 8, it can be seen that when the average particle size of the raw material powder is 10 μm or less and the average particle size of the secondary powder is 1 mm or less, the increase in the packing density and the increase in the relative density of the sintered body become more remarkable.
On the other hand, the sample No. 2 of the comparative example was prepared by mixing the raw material powder without filling the secondary powder, directly filling the pressure vessel, and pressure sintering. In No. 9, since the packing density is as low as 40% or less and the dimensional shrinkage and deformation amount when the sintered body is made are large, it can be seen that the yield in producing the target material is inferior. Furthermore, even if a pressurized container having the same size is used, there is a risk that a target material having an assumed size cannot be produced due to large dimensional shrinkage and deformation when the sintered body is formed.

さらに、本発明例の試料No.2と比較例の試料No.9のターゲット材の組織に偏在するNb領域を評価する写真図をそれぞれ図2、図3に示す。二次粉末を作製していない図3では、その中央に長径20mm以上のNb領域が存在しており、Nbの偏在が発生していることが分かる。一方、本発明の図2では、Nb領域がMoマトリクスに分散しており、明らかなNbの偏在は存在していない。   Furthermore, Sample No. 2 and Comparative Sample No. Photographs for evaluating Nb regions unevenly distributed in the structure of the target material 9 are shown in FIGS. 2 and 3, respectively. In FIG. 3 in which the secondary powder is not produced, an Nb region having a major axis of 20 mm or more exists in the center, and it can be seen that Nb is unevenly distributed. On the other hand, in FIG. 2 of the present invention, the Nb region is dispersed in the Mo matrix, and there is no obvious uneven distribution of Nb.

実施例1で作製した試料2と同様の組成、寸法の焼結体を同様の製法で作製し、さらに熱間圧延を実施した。熱間圧延は、HIPによる終了後に加圧容器を除去せずそのままの状態で、1150℃加熱と圧下率50%以下の圧延を3回実施した。なお、目標となるターゲット材の目標寸法は幅1500mm、長さ1800mmである。焼結体の圧延結果を表2に示す。   A sintered body having the same composition and dimensions as those of Sample 2 produced in Example 1 was produced by the same production method, and further hot-rolled. In the hot rolling, after completion of HIP, the pressure vessel was not removed and the heating was performed at 1150 ° C. and rolling with a reduction rate of 50% or less was performed three times. In addition, the target dimension of the target material used as a target is width 1500mm and length 1800mm. Table 2 shows the rolling results of the sintered body.

表2からも分かるように、加熱温度500〜1500℃で、圧下率2〜50%の圧延を複数回実施することで、割れを生じることなく大型のターゲット素材を作製することができる。
なお、450℃で加熱した状態で、焼結体を圧延したが、加熱温度が低温であるために焼結体の延性が維持できず、数%の圧下率による圧延を繰返し行わなければならず、製造効率上好ましくなかった。
As can be seen from Table 2, a large target material can be produced without cracking by performing rolling at a heating temperature of 500 to 1500 ° C. at a rolling reduction of 2 to 50% a plurality of times.
In addition, although the sintered compact was rolled in the state heated at 450 degreeC, since the heating temperature is low temperature, the ductility of a sintered compact cannot be maintained, and rolling by the rolling reduction of several% must be repeated. This is not preferable in terms of production efficiency.

さらに、実施例2で作製した焼結体を熱間圧延したターゲット素材に再結晶化熱処理を行った。再結晶化熱処理は真空雰囲気中で900℃、1150℃、1300℃で行った。熱処理温度到達後1時間温度を保持し、冷却後に試験片を採取し、光学顕微鏡で100倍の断面ミクロ組織を比較した。その結果を表3に示す。また、再結晶化熱処理の温度900℃と1300℃の試料について100倍の光学顕微鏡によるミクロ組織写真をそれぞれ図4、図5として示す。   Further, a recrystallization heat treatment was performed on the target material obtained by hot rolling the sintered body produced in Example 2. The recrystallization heat treatment was performed at 900 ° C., 1150 ° C., and 1300 ° C. in a vacuum atmosphere. After the heat treatment temperature was reached, the temperature was maintained for 1 hour, and after cooling, test specimens were collected, and 100-fold cross-sectional microstructures were compared with an optical microscope. The results are shown in Table 3. In addition, microstructural photographs taken with a 100-fold optical microscope are shown in FIGS. 4 and 5, respectively, with respect to samples having a recrystallization heat treatment temperature of 900 ° C. and 1300 ° C.

表3および図4および図5から、再結晶化熱処理温度が1000℃に満たない場合には、繊維状組織が残存する可能性があることがわかる。   From Table 3, FIG. 4 and FIG. 5, it can be seen that when the recrystallization heat treatment temperature is less than 1000 ° C., the fibrous structure may remain.

実施例1における焼結体の変形の測定方法を示す模式図である。3 is a schematic diagram illustrating a method for measuring deformation of a sintered body in Example 1. FIG. 実施例1における試料No.2のターゲット材の組織に偏在するNb領域を評価するための写真図である。Sample No. 1 in Example 1 It is a photograph figure for evaluating the Nb area | region which is unevenly distributed in the structure | tissue of 2 target materials. 実施例1における試料No.9のターゲット材の組織に偏在するNb領域を評価するための写真図である。Sample No. 1 in Example 1 It is a photograph figure for evaluating Nb field unevenly distributed in the structure of 9 target materials. 実施例3における試料No.2−1−1の100倍の光学顕微鏡によるミクロ組織写真である。Sample No. in Example 3 It is a micro structure photograph by a 100 times optical microscope of 2-1-1. 実施例3における試料No.2−1−3の100倍の光学顕微鏡によるミクロ組織写真である。Sample No. in Example 3 It is a micro structure photograph by a 100 times optical microscope of 2-1-3.

符号の説明Explanation of symbols

1 焼結体、2 中央部、3 基準点、4 端面、5 変形


1 Sintered body 2 Central part 3 Reference point 4 End face 5 Deformation amount


Claims (15)

均粒径20μm以下のMo粉末と平均粒径500μm以下の遷移金属粉末とを混合した原料粉末を圧縮成形した圧密体を、粉砕し該原料粉末の平均粒径以上でかつ平均粒径10mm以下の二次粉末を作製した後、該二次粉末を加圧容器に充填し、次いで加圧焼結を施し焼結体を得ることを特徴とするMo系ターゲット材の製造方法。 Flat Hitoshitsubu径20μm following Mo powder and the average particle diameter 500μm or less of a transition metal powder and the raw material powder obtained by mixing a compression molded compacts, and the average particle size 10mm or less in the average particle diameter or more of the ground raw material powder A method for producing a Mo-based target material, comprising: preparing a secondary powder, and then filling the secondary powder into a pressure vessel, and then performing pressure sintering to obtain a sintered body. 原料粉末を圧縮成形した圧密体を、粉砕し該原料粉末の平均粒径以上でかつ平均粒径10mm以下の二次粉末を作製し、該二次粉末を加圧容器に充填した後、加圧焼結を施し焼結体を得て、次いで加圧容器に包まれたまま熱間塑性加工を施すことを特徴とする請求項1に記載のMo系ターゲット材の製造方法。 The compacted body obtained by compression-molding the raw material powder is pulverized to produce a secondary powder having an average particle size equal to or larger than the average particle size and equal to or less than 10 mm. The method for producing a Mo-based target material according to claim 1, wherein a sintered body is obtained by performing sintering, and then hot plastic working is performed while being encased in a pressure vessel. 原料粉末を圧縮成形した圧密体を、粉砕し該原料粉末の平均粒径以上でかつ平均粒径10mm以下の二次粉末を作製し、該二次粉末を加圧容器に充填し、加圧焼結を施し焼結体を得た後、加圧容器に包まれたまま熱間塑性加工を施し、次いで再結晶化熱処理を行うことを特徴とする請求項に記載のMo系ターゲット材の製造方法。 The compacted body obtained by compression-molding the raw material powder is pulverized to produce a secondary powder having an average particle size equal to or greater than that of the raw material powder and an average particle size of 10 mm or less. 3. The production of a Mo-based target material according to claim 2 , wherein after sintering and obtaining a sintered body, hot plastic working is performed while encased in a pressure vessel, followed by recrystallization heat treatment. Method. 原料粉末を冷間静水圧プレスで圧縮成形することを特徴とする請求項1乃至のいずれかに記載のMo系ターゲット材の製造方法。 Mo-based method for producing a target material according to any one of claims 1 to 3, wherein the compression molding raw material powders by cold isostatic pressing. 原料粉末を100MPa以上の圧力条件で冷間静水圧プレスを行うことを特徴とする請求項1乃至のいずれかに記載のMo系ターゲット材の製造方法。
The method for producing a Mo-based target material according to any one of claims 1 to 4 , wherein the raw material powder is cold isostatically pressed under a pressure condition of 100 MPa or more.
原料粉末を圧縮成形した圧密体の相対密度を50%以上とすることを特徴とする請求項1乃至のいずれかに記載のMo系ターゲット材の製造方法。 The method for producing a Mo-based target material according to any one of claims 1 to 5 , wherein the relative density of the compact formed by compression molding the raw material powder is 50% or more. 加圧焼結は熱間静水圧プレスであることを特徴とする請求項1乃至のいずれかに記載のMo系ターゲット材の製造方法。 The method for producing a Mo-based target material according to any one of claims 1 to 6 , wherein the pressure sintering is a hot isostatic pressing. 温度1000〜1500℃、圧力100MPa以上の条件で熱間静水圧プレスを行うことを特徴とする請求項に記載のMo系ターゲット材の製造方法。 The method for producing a Mo-based target material according to claim 7 , wherein hot isostatic pressing is performed under conditions of a temperature of 1000 to 1500 ° C. and a pressure of 100 MPa or more. 焼結体の相対密度を98%以上とすることを特徴とする請求項1乃至のいずれかに記載のMo系ターゲット材の製造方法。 The method for producing a Mo-based target material according to any one of claims 1 to 8 , wherein the relative density of the sintered body is 98% or more. 前記二次粉末を充填する加圧容器の内径寸法の最大長さが1000mm以上であることを特徴とする請求項乃至のいずれかに記載のMo系ターゲット材の製造方法。 The method for producing a Mo-based target material according to any one of claims 7 to 9 , wherein the maximum length of the inner diameter of the pressurized container filled with the secondary powder is 1000 mm or more. 前記二次粉末を充填する加圧容器は、充填深さが最も深くなる方向に対向する一方の面が、充填口として解放された直方体形状であり、かつその内径寸法の最大長さが1000mm以上の金属カプセルであることを特徴とする請求項10に記載のMo系ターゲット材の製造方法。 Pressurized container for filling the secondary powder is one surface filling depth faces the deepest direction is a straight rectangular parallelepiped shape has been released as a filling port, and the maximum length of the inner diameter It is a metal capsule of 1000 mm or more, The manufacturing method of Mo type | system | group target material of Claim 10 characterized by the above-mentioned. 熱間塑性加工は、温度500〜1500℃、加工率2〜50%以下の塑性加工を複数回実施することを特徴とする請求項乃至11のいずれかに記載のMo系ターゲット材の製造方法。 The method for producing a Mo-based target material according to any one of claims 2 to 11 , wherein the hot plastic working is performed plural times at a temperature of 500 to 1500 ° C and a processing rate of 2 to 50%. . 前記再結晶化熱処理は、1000〜1500℃で行うことを特徴とする請求項乃至12のいずれかに記載のMo系ターゲット材の製造方法。 The method for producing a Mo-based target material according to any one of claims 3 to 12 , wherein the recrystallization heat treatment is performed at 1000 to 1500 ° C. 焼結体の最大長さの辺を維持するように複数枚に切断することを特徴とする請求項10に記載のMo系ターゲット材の製造方法。 Mo-based method for producing a target material according to claim 10, characterized in that cutting the plurality to maintain the maximum length of a side of the sintered body. 原料粉末は、Moを50原子%以上含むことを特徴とする請求項1乃至14のいずれかに記載のMo系ターゲット材の製造方法。 Raw material powder, Mo-based method for producing a target material according to any one of claims 1 to 14, characterized in that it comprises a Mo 50 atomic% or more.
JP2004055021A 2004-02-27 2004-02-27 Manufacturing method of Mo-based target material Expired - Lifetime JP4110533B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004055021A JP4110533B2 (en) 2004-02-27 2004-02-27 Manufacturing method of Mo-based target material
CNB2005100095854A CN1314504C (en) 2004-02-27 2005-02-24 Process of mfg. Mo alloyed targeting materials
US11/066,228 US20050191202A1 (en) 2004-02-27 2005-02-25 Method of producing target material of Mo alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004055021A JP4110533B2 (en) 2004-02-27 2004-02-27 Manufacturing method of Mo-based target material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008023911A Division JP4706980B2 (en) 2008-02-04 2008-02-04 Manufacturing method of Mo target material

Publications (3)

Publication Number Publication Date
JP2005240160A JP2005240160A (en) 2005-09-08
JP2005240160A5 JP2005240160A5 (en) 2006-08-24
JP4110533B2 true JP4110533B2 (en) 2008-07-02

Family

ID=34879772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004055021A Expired - Lifetime JP4110533B2 (en) 2004-02-27 2004-02-27 Manufacturing method of Mo-based target material

Country Status (3)

Country Link
US (1) US20050191202A1 (en)
JP (1) JP4110533B2 (en)
CN (1) CN1314504C (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101111627B (en) * 2005-02-01 2012-05-09 东曹株式会社 Sinter, sputtering target and molding die, and production process of sintered compact
AT8697U1 (en) * 2005-10-14 2006-11-15 Plansee Se TUBE TARGET
JP4831468B2 (en) * 2005-10-18 2011-12-07 日立金属株式会社 Manufacturing method of Mo target material
US7837929B2 (en) * 2005-10-20 2010-11-23 H.C. Starck Inc. Methods of making molybdenum titanium sputtering plates and targets
JP2007277671A (en) * 2006-04-11 2007-10-25 Hitachi Metals Ltd METHOD FOR PRODUCING Mo ALLOY POWDER AND METHOD FOR PRODUCING SPUTTERING TARGET MATERIAL
US20080087866A1 (en) * 2006-10-13 2008-04-17 H.C. Stark Inc. Titanium oxide-based sputtering target for transparent conductive film, method for producing such film and composition for use therein
CN102505109A (en) * 2007-01-12 2012-06-20 新日铁高新材料 Process for producing molybdenum-based sputtering target plate
JP2008255440A (en) * 2007-04-06 2008-10-23 Hitachi Metals Ltd MoTi ALLOY SPUTTERING TARGET MATERIAL
CN101977711B (en) * 2008-03-27 2013-03-13 日立金属株式会社 Coated fine metal particle and process for producing the same
CN101648320B (en) * 2009-05-08 2012-06-27 宁波江丰电子材料有限公司 Welding method of target materials and back plates
JP2011089188A (en) * 2009-10-26 2011-05-06 Ulvac Japan Ltd Method for producing titanium-containing sputtering target
JP5550328B2 (en) * 2009-12-22 2014-07-16 株式会社東芝 Mo sputtering target and manufacturing method thereof
WO2011125722A1 (en) * 2010-04-01 2011-10-13 三菱化学株式会社 Positive electrode material for lithium secondary battery, method for producing the same, positive electrode for lithium secondary battery, and lithium secondary battery
US8449817B2 (en) * 2010-06-30 2013-05-28 H.C. Stark, Inc. Molybdenum-containing targets comprising three metal elements
US8449818B2 (en) 2010-06-30 2013-05-28 H. C. Starck, Inc. Molybdenum containing targets
WO2012043227A1 (en) 2010-09-30 2012-04-05 日立金属株式会社 Method for producing molybdenum target
CN103562432B (en) 2011-05-10 2015-08-26 H·C·施塔克公司 Multistage sputtering target and relevant method thereof and article
CN102321871B (en) * 2011-09-19 2013-03-20 基迈克材料科技(苏州)有限公司 Method for producing molybdenum alloy sputtering target for flat-panel display by using hot isostatic press
TWI572725B (en) * 2011-09-26 2017-03-01 日立金屬股份有限公司 Method for producing moti target
CN103182508B (en) * 2011-12-27 2014-12-10 北京有色金属研究总院 Preparation method for alloy target material applied to M-typed cathode coating film with high current density
CN102560383B (en) * 2012-01-12 2013-10-23 宝鸡市科迪普有色金属加工有限公司 Molybdenum niobium alloy plate target material processing technology
US9334565B2 (en) 2012-05-09 2016-05-10 H.C. Starck Inc. Multi-block sputtering target with interface portions and associated methods and articles
CN103060762B (en) * 2013-01-11 2018-02-23 江西科泰新材料有限公司 The production technology of molybdenum niobium alloy target
CN103182507B (en) * 2013-03-19 2015-04-15 昆山海普电子材料有限公司 Production method of chromium-aluminium alloy target material
CN103205721B (en) * 2013-03-19 2015-10-28 昆山海普电子材料有限公司 A kind of production method of titanium-aluminium alloy target material
CN103143710B (en) * 2013-03-27 2015-12-23 宁夏东方钽业股份有限公司 A kind of preparation method of molybdenum alloy target
AT13602U3 (en) * 2013-10-29 2014-08-15 Plansee Se Sputtering target and method of preparation
CN104439236B (en) * 2014-12-23 2016-08-17 金堆城钼业股份有限公司 A kind of preparation method of zirconium oxide molybdenum alloy electrode
CN105714253B (en) * 2016-03-10 2017-11-24 洛阳爱科麦钨钼科技股份有限公司 The preparation method of large scale, fine grain molybdenum tantalum alloy-sputtering targets material
AT15356U1 (en) * 2016-09-29 2017-07-15 Plansee Se Sputtering target
CN106567048B (en) * 2016-11-10 2018-11-27 洛阳科威钨钼有限公司 A kind of manufacturing method of large size High-Purity Molybdenum alloy rotary target material
JP7205213B2 (en) * 2018-03-27 2023-01-17 日立金属株式会社 TiW alloy target and manufacturing method thereof
JP7419886B2 (en) * 2019-03-20 2024-01-23 株式会社プロテリアル Mo alloy target material and its manufacturing method
JP7419885B2 (en) * 2019-03-20 2024-01-23 株式会社プロテリアル Mo alloy target material and its manufacturing method
CN112975102B (en) * 2021-03-04 2023-06-23 宁波江丰电子材料股份有限公司 Diffusion welding method for cobalt target and copper backboard

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE216436T1 (en) * 1993-12-14 2002-05-15 Toshiba Kk MOLYBDENUM TUNGSTEN MATERIAL FOR WIRING, MOLYBDENUM TUNGSTEN TARGET FOR WIRING, METHOD FOR PRODUCING THE SAME AND THIN MOLYBDENUM TUNGSTEN WIRING
JP3863204B2 (en) * 1995-08-25 2006-12-27 株式会社アライドマテリアル Sputtering target material and manufacturing method thereof
US6797137B2 (en) * 2001-04-11 2004-09-28 Heraeus, Inc. Mechanically alloyed precious metal magnetic sputtering targets fabricated using rapidly solidfied alloy powders and elemental Pt metal
JP3748221B2 (en) * 2001-10-23 2006-02-22 日立金属株式会社 Mo-based sputtering target and method for producing the same

Also Published As

Publication number Publication date
CN1660526A (en) 2005-08-31
US20050191202A1 (en) 2005-09-01
JP2005240160A (en) 2005-09-08
CN1314504C (en) 2007-05-09

Similar Documents

Publication Publication Date Title
JP4110533B2 (en) Manufacturing method of Mo-based target material
KR100665243B1 (en) Sputter target material and method of producing the same
JP4894008B2 (en) Method for producing MoNb-based sintered sputtering target material
CN113549780B (en) Powder metallurgy refractory multi-principal-element high-entropy alloy and preparation method thereof
US7854886B2 (en) Production method for metal matrix composite material
JP3748221B2 (en) Mo-based sputtering target and method for producing the same
JPH08120445A (en) Production of titanium-aluminum alloy target material
EP2214852A1 (en) Production method for metal matrix composite material
JP4356071B2 (en) Sputtering target material and manufacturing method thereof
TW201103999A (en) Method for manufacturing nickel alloy target
JP4721090B2 (en) Manufacturing method of Mo-based target material
JP4706980B2 (en) Manufacturing method of Mo target material
US20090104470A1 (en) Production method for metal matrix composite material
US7854887B2 (en) Production method for metal matrix composite material
JP4591749B2 (en) Manufacturing method of Mo target material
JPH02259029A (en) Manufacture of aluminide
Gülsoy et al. Injection molding of mechanical alloyed Ti–Fe–Zr powder
JP3551355B2 (en) Ru target and method of manufacturing the same
Srivatsan et al. Microstructure and hardness of copper powder consolidated by plasma pressure compaction
CN115287487B (en) Preparation method of nano hard alloy
Nadakuduru et al. Mechanical behaviour of titanium, Ti-6Al-4V (wt%) alloy and Ti-47Al-2Cr (at%) alloy produced using powder compact forging
Vompe et al. Sintering of additively manufactured zirconium by MoldJet technology
Qangule The influence of process route on mechanical property development in sintered commercially pure and blended elemental titanium
JPH02290901A (en) Metal fine powder for compacting and manufacture of sintered body thereof
Hong et al. Consolidation of Al2O3 nanopowder by magnetic pulsed compaction and sintering

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080327

R150 Certificate of patent or registration of utility model

Ref document number: 4110533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6