JP2020158001A - Road surface state estimation device - Google Patents

Road surface state estimation device Download PDF

Info

Publication number
JP2020158001A
JP2020158001A JP2019061172A JP2019061172A JP2020158001A JP 2020158001 A JP2020158001 A JP 2020158001A JP 2019061172 A JP2019061172 A JP 2019061172A JP 2019061172 A JP2019061172 A JP 2019061172A JP 2020158001 A JP2020158001 A JP 2020158001A
Authority
JP
Japan
Prior art keywords
wheels
wheel
vehicle
driven
road surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019061172A
Other languages
Japanese (ja)
Inventor
碩 野間
Hiroshi Noma
碩 野間
丹羽 栄二
Eiji Niwa
栄二 丹羽
川崎 裕章
Hiroaki Kawasaki
裕章 川崎
悠輔 前田
Yusuke Maeda
悠輔 前田
小川 文治
Bunji Ogawa
文治 小川
加藤 和広
Kazuhiro Kato
和広 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Aisin AW Co Ltd
Advics Co Ltd
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Sumitomo Rubber Industries Ltd
Aisin AW Co Ltd
Advics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Sumitomo Rubber Industries Ltd, Aisin AW Co Ltd, Advics Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2019061172A priority Critical patent/JP2020158001A/en
Priority to CN202010161937.2A priority patent/CN111746546A/en
Priority to US16/813,916 priority patent/US20200307607A1/en
Priority to EP20162448.3A priority patent/EP3715205A3/en
Publication of JP2020158001A publication Critical patent/JP2020158001A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/068Road friction coefficient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2036Electric differentials, e.g. for supporting steering vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/102Indicating wheel slip ; Correction of wheel slip of individual wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18172Preventing, or responsive to skidding of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/02Measuring coefficient of friction between materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/46Wheel motors, i.e. motor connected to only one wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/24Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/461Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/465Slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/64Road conditions
    • B60L2240/642Slope of road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/26Wheel slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/28Wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/40Coefficient of friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/40Torque distribution
    • B60W2720/403Torque distribution between front and rear axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/40Torque distribution
    • B60W2720/406Torque distribution between left and right wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

To appropriately estimate a coefficient of friction of a road surface using a four-wheel independent driving type vehicle.SOLUTION: A road surface state estimation device includes: a control part which controls a driving device that each independently can drive a plurality of wheels so that a part of the plurality of wheels provided on a vehicle traveling on a road surface is driven as a driving wheel and a remaining part of the plurality of wheels is driven as a driven wheel; an acquisition part which acquires a detection result of a plurality of wheel speed sensors each detecting rotation speeds of the plurality of wheels; and an estimation part which calculates slip ratios for each of the driving wheels based on the detection result of a first wheel speed sensor detecting the rotation speed of the driving wheel in the plurality of wheel speed sensors and a detection result of a second wheel speed sensor detecting the rotation speed of the driven wheel in the plurality of wheel speed sensors, and estimates the coefficient of friction in each region corresponding to the driving wheels on the road surface based on the slip ratios.SELECTED DRAWING: Figure 2

Description

本開示は、路面状態推定装置に関する。 The present disclosure relates to a road surface condition estimation device.

従来から、車両が走行する路面の摩擦係数を求める技術について検討されている。このような技術として、たとえば、駆動輪として駆動する2つの車輪と、従動輪として従動する2つの車輪と、が予め決められた二輪駆動方式の車両において、駆動輪として駆動する2つの車輪の回転速度の平均値と、従動輪として駆動する2つの車輪の回転速度の平均値と、に基づいてスリップ比を算出し、当該スリップ比に基づいて路面の摩擦係数を推定する技術が知られている。 Conventionally, a technique for obtaining the coefficient of friction of the road surface on which a vehicle travels has been studied. As such a technique, for example, in a vehicle of a two-wheel drive system in which two wheels driven as driving wheels and two wheels driven as driven wheels are determined in advance, rotation of the two wheels driven as driving wheels A technique is known in which a slip ratio is calculated based on an average value of speeds and an average value of rotation speeds of two wheels driven as driven wheels, and a friction coefficient of a road surface is estimated based on the slip ratio. ..

特開2001−253334号公報Japanese Unexamined Patent Publication No. 2001-253334

しかしながら、上記のような従来の技術は、駆動輪および従動輪の個数および位置が固定であることが前提となっているので、駆動輪および従動輪の個数および位置が様々に変化しうる、いわゆる四輪独立駆動方式の車両にそのまま適用することができない。 However, since the conventional technique as described above is based on the premise that the number and position of the driving wheels and the driven wheels are fixed, the number and positions of the driving wheels and the driven wheels can be changed in various ways, so-called. It cannot be applied as it is to a vehicle with a four-wheel independent drive system.

そこで、本開示の課題の一つは、四輪独立駆動方式の車両を利用して路面の摩擦係数を適切に推定することが可能な路面状態推定装置を提供することである。 Therefore, one of the problems of the present disclosure is to provide a road surface condition estimation device capable of appropriately estimating the friction coefficient of the road surface by using a vehicle of a four-wheel independent drive system.

本開示の一例としての路面状態推定装置は、路面を走行する車両に設けられた複数の車輪のうち一部が駆動輪として駆動し、複数の車輪のうち残りの一部が従動輪として従動するように、複数の車輪をそれぞれ独立に駆動可能な駆動装置を制御する制御部と、複数の車輪の回転速度をそれぞれ検出する複数の車輪速センサの検出結果を取得する取得部と、複数の車輪速センサのうち駆動輪の回転速度を検出する第1の車輪速センサの検出結果と、複数の車輪速センサのうち従動輪の回転速度を検出する第2の車輪速センサの検出結果と、に基づいて、駆動輪ごとにスリップ比を算出し、当該スリップ比に基づいて、路面上における駆動輪に対応した領域ごとに摩擦係数を推定する推定部と、を備える。 In the road surface condition estimation device as an example of the present disclosure, a part of the plurality of wheels provided on the vehicle traveling on the road surface is driven as a driving wheel, and the remaining part of the plurality of wheels is driven as a driven wheel. As described above, a control unit that controls a drive device that can independently drive a plurality of wheels, an acquisition unit that acquires detection results of a plurality of wheel speed sensors that detect the rotation speeds of the plurality of wheels, and a plurality of wheels. Among the speed sensors, the detection result of the first wheel speed sensor that detects the rotation speed of the driving wheels and the detection result of the second wheel speed sensor that detects the rotation speed of the driven wheels among the plurality of wheel speed sensors are Based on this, a slip ratio is calculated for each drive wheel, and an estimation unit for estimating a friction coefficient for each region corresponding to the drive wheels on the road surface based on the slip ratio is provided.

上記のような構成によれば、四輪独立駆動方式の車両を利用して、駆動輪および従動輪の個数および位置に関わらず、路面の摩擦係数を、駆動輪に対応した領域ごとに適切に推定することができる。 According to the above configuration, using a four-wheel independent drive system vehicle, the friction coefficient of the road surface can be appropriately set for each region corresponding to the drive wheels regardless of the number and position of the drive wheels and the driven wheels. Can be estimated.

上述した路面状態推定装置において、推定部は、駆動輪および従動輪がそれぞれ複数存在する場合、第1の車輪速センサの検出結果に基づいて取得される複数の駆動輪の各々の回転速度と、第2の車輪速センサの検出結果に基づいて取得される複数の従動輪の回転速度の平均値と、に基づいて、駆動輪ごとにスリップ比を算出する。このような構成によれば、従動輪の回転速度については平均をとることで合わせて考慮し、駆動輪の回転速度については個別に考慮することで、駆動輪ごとにスリップ比を容易に算出することができる。 In the road surface condition estimation device described above, when there are a plurality of drive wheels and a plurality of driven wheels, the estimation unit determines the rotation speed of each of the plurality of drive wheels acquired based on the detection result of the first wheel speed sensor. The slip ratio is calculated for each drive wheel based on the average value of the rotation speeds of the plurality of driven wheels acquired based on the detection result of the second wheel speed sensor. According to such a configuration, the rotation speed of the driven wheels is taken into consideration by taking an average, and the rotation speed of the driving wheels is taken into consideration individually, so that the slip ratio can be easily calculated for each driving wheel. be able to.

また、上述した路面状態推定装置において、取得部は、複数の車輪の回転速度をそれぞれ検出する複数の車輪速センサを含む、車両の走行状態に関する情報を検出する車載センサの検出結果を取得し、制御部は、車載センサの検出結果に応じて、駆動輪として駆動させる車輪と、従動輪として駆動させる車輪と、を決定する。このような構成によれば、車両の走行状態を考慮して、駆動輪および従動輪の個数および位置を適切に決定することができる。 Further, in the road surface condition estimation device described above, the acquisition unit acquires the detection result of the in-vehicle sensor that detects the information on the driving state of the vehicle, including the plurality of wheel speed sensors that detect the rotation speeds of the plurality of wheels. The control unit determines a wheel to be driven as a driving wheel and a wheel to be driven as a driven wheel according to the detection result of the vehicle-mounted sensor. According to such a configuration, the number and position of the driving wheels and the driven wheels can be appropriately determined in consideration of the traveling state of the vehicle.

車載センサの検出結果に応じて駆動輪として駆動させる車輪と従動輪として駆動させる車輪とを決定する上述した構成において、制御部は、車載センサの検出結果が、車両が路面としての傾斜面を上る方向に進むことを示す場合、複数の車輪のうち車両の進行方向の前側に設けられた複数の前側車輪が、複数の車輪のうち車両の進行方向の後側に設けられた複数の後側車輪よりも数多く駆動輪として駆動するように、駆動装置を制御し、車両の走行状態が、車両が傾斜面を下る方向に進むという状態である場合、複数の後側車輪が複数の前側車輪よりも数多く駆動輪として駆動するように、駆動装置を制御する。このような構成によれば、登坂時には、車両を前から引っ張る形で駆動力が発生するように前側車輪の方を数多く駆動輪とすることで、車両の挙動を安定化させながら、摩擦係数を適切に推定することができる。また、降坂時には、たとえば回生ブレーキをかけた際に車両を後ろから引っ張る形で制動力が発生するように後側車輪の方を数多く駆動輪とすることで、車両の挙動を安定化させながら、摩擦係数を適切に推定することができる。 In the above-described configuration in which the wheels to be driven as the driving wheels and the wheels to be driven as the driven wheels are determined according to the detection result of the in-vehicle sensor, the control unit determines that the detection result of the in-vehicle sensor is that the vehicle climbs the inclined surface as the road surface. When indicating that the vehicle travels in a direction, the plurality of front wheels provided on the front side in the traveling direction of the vehicle among the plurality of wheels are the plurality of rear wheels provided on the rear side in the traveling direction of the vehicle among the plurality of wheels. If the drive is controlled so that it is driven as more drive wheels than, and the vehicle is in a state of traveling down an inclined surface, then the plurality of rear wheels is more than the plurality of front wheels. The drive device is controlled so that it is driven as many drive wheels. According to such a configuration, when climbing a slope, a large number of front wheels are used as driving wheels so that a driving force is generated by pulling the vehicle from the front, thereby stabilizing the behavior of the vehicle and reducing the coefficient of friction. Can be estimated appropriately. In addition, when descending a slope, for example, when the regenerative brake is applied, the rear wheels are used as many driving wheels so that braking force is generated by pulling the vehicle from behind, thereby stabilizing the behavior of the vehicle. , The coefficient of friction can be estimated appropriately.

また、車載センサの検出結果に応じて駆動輪として駆動させる車輪と従動輪として駆動させる車輪とを決定する上述した構成において、制御部は、車載センサの検出結果が、車両が旋回を行うことを示す場合、複数の車輪のうち旋回の外側に設けられた複数の外側車輪が、複数の車輪のうち旋回の内側に設けられた複数の内側車輪よりも数多く駆動輪として駆動するように、駆動装置を制御する。このような構成によれば、外側車輪に内側車輪よりも大きな駆動力を発生させることで、旋回の際の車両の挙動の安定化を図りながら、摩擦係数を適切に推定することができる。 Further, in the above-described configuration in which the wheels to be driven as the driving wheels and the wheels to be driven as the driven wheels are determined according to the detection result of the in-vehicle sensor, the control unit determines that the vehicle turns by the detection result of the in-vehicle sensor. In the case of the present invention, the driving device is such that a plurality of outer wheels provided on the outer side of the turn among the plurality of wheels are driven as more drive wheels than a plurality of inner wheels provided on the inner side of the turn among the plurality of wheels. To control. According to such a configuration, by generating a driving force larger than that of the inner wheel on the outer wheel, the friction coefficient can be appropriately estimated while stabilizing the behavior of the vehicle when turning.

また、車載センサの検出結果に応じて駆動輪として駆動させる車輪と従動輪として駆動させる車輪とを決定する上述した構成において、制御部は、車載センサの検出結果が、車両が直進することを示す場合、複数の車輪のうち車両の左右方向の一方側で進行方向に沿って設けられた複数の一方車輪のうち少なくとも2つが駆動輪として駆動するか、または、複数の車輪のうち左右方向の他方側で進行方向に沿って設けられた複数の他方車輪のうち少なくとも2つが駆動輪として駆動するように、駆動装置を制御する。このような構成によれば、複数の一方車輪のうち少なくとも2つ、または、複数の他方車輪のうち少なくとも2つを駆動輪として駆動させることで、同じ位置(領域)の摩擦係数を2回推定し、摩擦係数の推定精度を高めることができる。 Further, in the above-described configuration in which the wheels to be driven as the driving wheels and the wheels to be driven as the driven wheels are determined according to the detection result of the in-vehicle sensor, the control unit indicates that the detection result of the in-vehicle sensor indicates that the vehicle travels straight. In the case, at least two of the plurality of wheels provided along the traveling direction on one side of the vehicle in the left-right direction are driven as driving wheels, or the other of the plurality of wheels in the left-right direction is driven. The drive device is controlled so that at least two of the other wheels provided along the traveling direction on the side are driven as drive wheels. According to such a configuration, the friction coefficient at the same position (region) is estimated twice by driving at least two of the plurality of one wheels or at least two of the plurality of other wheels as driving wheels. However, the estimation accuracy of the friction coefficient can be improved.

この場合において、制御部は、複数の一方車輪のうち少なくとも1つと、複数の他方車輪のうち少なくとも1つと、が駆動輪として駆動するように、駆動装置を制御し、推定部は、路面上における複数の一方車輪に対応した一方領域の摩擦係数としての第1の摩擦係数と、路面上における他方車輪に対応した他方領域の摩擦係数としての第2の摩擦係数と、を推定し、制御部は、第1の摩擦係数と第2の摩擦係数との大小関係に応じて、複数の一方車輪と複数の他方車輪とのうちいずれを数多く駆動輪として駆動させるかを決定する。このような構成によれば、たとえば、一方領域および他方領域のうち、駆動輪が一輪あたりに路面に伝達可能な駆動力が相対的に小さい滑りやすい方の領域に、駆動輪が一輪あたりに路面に伝達可能な駆動力が相対的に大きい滑りにくい方の領域よりも数多く駆動輪を配置することで、必要な駆動力を分散して確保しやすくすることができる。したがって、車両の挙動の安定化を図りながら、摩擦係数を適切に推定することができる。 In this case, the control unit controls the drive device so that at least one of the plurality of one wheels and at least one of the plurality of other wheels are driven as drive wheels, and the estimation unit is on the road surface. The control unit estimates the first friction coefficient as the friction coefficient of one region corresponding to a plurality of one wheels and the second friction coefficient as the friction coefficient of the other region corresponding to the other wheel on the road surface. , It is determined which of the plurality of one wheels and the plurality of other wheels is driven as a large number of driving wheels according to the magnitude relationship between the first friction coefficient and the second friction coefficient. According to such a configuration, for example, in one region and the other region, in the slippery region where the driving force that the driving wheels can transmit to the road surface per wheel is relatively small, the driving wheels are on the road surface per wheel. By arranging more driving wheels than in the non-slip area where the driving force that can be transmitted to the vehicle is relatively large, it is possible to disperse and secure the required driving force. Therefore, the coefficient of friction can be appropriately estimated while stabilizing the behavior of the vehicle.

上述した路面状態推定装置は、推定部により推定された摩擦係数と閾値との比較結果に応じて、車両に設けられた通知部を介して所定の通知を出力する出力部をさらに備える。このような構成によれば、車両の乗員に対して摩擦係数と閾値との比較結果に応じた通知を容易に出力することができる。 The road surface condition estimation device described above further includes an output unit that outputs a predetermined notification via a notification unit provided in the vehicle according to the comparison result between the friction coefficient estimated by the estimation unit and the threshold value. According to such a configuration, it is possible to easily output a notification according to the comparison result between the friction coefficient and the threshold value to the occupant of the vehicle.

また、上述した路面状態推定装置において、推定部は、摩擦係数を、路面上における駆動輪に対応した領域の位置に関する位置情報と対応付けて記憶部に記憶する。このような構成によれば、路面の摩擦係数を位置ごとに細かく分けて把握することができる。 Further, in the road surface state estimation device described above, the estimation unit stores the friction coefficient in the storage unit in association with the position information regarding the position of the region corresponding to the drive wheels on the road surface. According to such a configuration, the coefficient of friction of the road surface can be grasped by dividing it into small parts for each position.

図1は、実施形態にかかる車両の構成を示した例示的かつ模式的なブロック図である。FIG. 1 is an exemplary and schematic block diagram showing the configuration of the vehicle according to the embodiment. 図2は、実施形態にかかる路面状態推定装置の機能を示した例示的かつ模式的なブロック図である。FIG. 2 is an exemplary and schematic block diagram showing the function of the road surface condition estimation device according to the embodiment. 図3は、実施形態にかかる摩擦係数が記憶部に記憶される態様の一例を示した例示的かつ模式的な図である。FIG. 3 is an exemplary and schematic diagram showing an example of a mode in which the friction coefficient according to the embodiment is stored in the storage unit. 図4は、実施形態において実現されうる駆動輪および従動輪の設定の第1の例を示した例示的かつ模式的な図である。FIG. 4 is an exemplary and schematic diagram showing a first example of driving and trailing wheel settings that can be realized in an embodiment. 図5は、実施形態において実現されうる駆動輪および従動輪の設定の第2の例を示した例示的かつ模式的な図である。FIG. 5 is an exemplary and schematic diagram showing a second example of driving and trailing wheel settings that can be realized in an embodiment. 図6は、実施形態において実現されうる駆動輪および従動輪の設定の第3の例を示した例示的かつ模式的な図である。FIG. 6 is an exemplary and schematic diagram showing a third example of driving and trailing wheel settings that can be realized in an embodiment. 図7は、実施形態において実現されうる駆動輪および従動輪の設定の第4の例を示した例示的かつ模式的な図である。FIG. 7 is an exemplary and schematic diagram showing a fourth example of driving and trailing wheel settings that can be realized in an embodiment. 図8は、実施形態にかかる路面状態推定装置が路面の摩擦係数を推定するために実行する一連の処理を示した例示的かつ模式的なフローチャートである。FIG. 8 is an exemplary and schematic flowchart showing a series of processes performed by the road surface condition estimation device according to the embodiment for estimating the friction coefficient of the road surface.

以下、本開示の実施形態を図面に基づいて説明する。以下に説明される実施形態の構成、ならびに当該構成によってもたらされる作用および効果は、あくまで一例であって、以下の記載内容に限られるものではない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. The configurations of the embodiments described below, and the actions and effects brought about by the configurations, are merely examples and are not limited to the contents described below.

図1は、実施形態にかかる車両Vの構成を示した例示的かつ模式的なブロック図である。図1に示されるように、実施形態にかかる車両Vは、前輪10FLおよび10FRと、後輪10RLおよび10RRと、を備えた四輪自動車として構成されている。なお、以下では、前輪10FLおよび10FRと、後輪10RLおよび10RRと、を総称して車輪10と表現することがある。 FIG. 1 is an exemplary and schematic block diagram showing the configuration of the vehicle V according to the embodiment. As shown in FIG. 1, the vehicle V according to the embodiment is configured as a four-wheeled vehicle including front wheels 10FL and 10FR and rear wheels 10RL and 10RR. In the following, the front wheels 10FL and 10FR and the rear wheels 10RL and 10RR may be collectively referred to as the wheel 10.

実施形態にかかる車両Vは、駆動輪および従動輪の個数および位置を任意に設定/変更することが可能な、いわゆる四輪独立駆動方式の(電気)自動車である。 The vehicle V according to the embodiment is a so-called four-wheel independent drive type (electric) vehicle in which the number and positions of the drive wheels and the driven wheels can be arbitrarily set / changed.

すなわち、車両Vは、4つの車輪10にそれぞれ対応するように設けられた4つの駆動装置20を備えており、各駆動装置20は、対応する車輪10を独立に駆動可能ないわゆるインホイールモータとして構成されている。駆動装置20は、対応する車輪10に駆動力を与えることで当該車輪10を駆動輪として駆動させることが可能であるとともに、対応する車輪10に与える駆動力を停止することで当該車輪10を従動輪として従動させることが可能である。 That is, the vehicle V includes four drive devices 20 provided so as to correspond to the four wheels 10, and each drive device 20 serves as a so-called in-wheel motor capable of independently driving the corresponding wheels 10. It is configured. The driving device 20 can drive the wheel 10 as a driving wheel by applying a driving force to the corresponding wheel 10, and also causes the wheel 10 to be driven by stopping the driving force applied to the corresponding wheel 10. It can be driven as a driving wheel.

より具体的に、前輪10FLに対応するように設けられた駆動装置20FLは、前輪10FLを駆動輪として駆動させたり従動輪として従動させたりすることが可能であり、前輪10FRに対応するように設けられた駆動装置20FRは、前輪10FRを駆動輪として駆動させたり従動輪として従動させたりすることが可能である。同様に、後輪10RLに対応するように設けられた駆動装置20RLは、後輪10RLを駆動輪として駆動させたり従動輪として従動させたりすることが可能であり、後輪10RRに対応するように設けられた駆動装置20RRは、後輪10RRを駆動輪として駆動させたり従動輪として従動させたりすることが可能である。 More specifically, the drive device 20FL provided so as to correspond to the front wheel 10FL can drive the front wheel 10FL as a driving wheel or a driven wheel, and is provided so as to correspond to the front wheel 10FR. The drive device 20FR can drive the front wheels 10FR as drive wheels or drive as driven wheels. Similarly, the drive device 20RL provided so as to correspond to the rear wheel 10RL can drive the rear wheel 10RL as a driving wheel or as a driven wheel, so as to correspond to the rear wheel 10RR. The provided drive device 20RR can drive the rear wheel 10RR as a driving wheel or a driven wheel.

また、車両Vは、上述した各駆動装置20を統括的に制御する制御装置であるECU(Electronic Control Unit)100を備えている。ECU100は、たとえば、プロセッサ101やメモリ102や入出力装置(不図示)などといった、通常のコンピュータと同様のハードウェアを有したマイクロコンピュータとして構成される。 Further, the vehicle V includes an ECU (Electronic Control Unit) 100 which is a control device that collectively controls each of the above-mentioned drive devices 20. The ECU 100 is configured as a microcomputer having hardware similar to that of a normal computer, such as a processor 101, a memory 102, an input / output device (not shown), and the like.

なお、図1に示される例では、ECU100の制御対象として、駆動装置20の他に、通知部40が例示されている。詳細は後述するが、通知部40は、車両Vの乗員に対して画像または音声(またはそれらの併用)により情報を通知するための情報出力装置である。 In the example shown in FIG. 1, the notification unit 40 is exemplified in addition to the drive device 20 as the control target of the ECU 100. Although the details will be described later, the notification unit 40 is an information output device for notifying the occupants of the vehicle V of information by image or voice (or a combination thereof).

ここで、ECU100は、車両Vの走行状態を検出するために車両Vに設けられる各種の車載センサの検出結果を制御に利用することが可能である。たとえば、図1に示される例では、車載センサの一つとして、車輪10の回転速度を検出する車輪速センサ31が設けられている。 Here, the ECU 100 can use the detection results of various in-vehicle sensors provided in the vehicle V for control in order to detect the traveling state of the vehicle V. For example, in the example shown in FIG. 1, a wheel speed sensor 31 that detects the rotational speed of the wheel 10 is provided as one of the in-vehicle sensors.

車輪速センサ31は、複数の車輪10に対応するように複数設けられる。すなわち、車輪速センサ31は、前輪10FLの回転速度を検出する車輪速センサ31FLと、前輪10FRの回転速度を検出する車輪速センサ31FRと、後輪RLの回転速度を検出する車輪速センサ31RLと、後輪RRの回転速度を検出する車輪速センサ31RRと、の4つ設けられている。 A plurality of wheel speed sensors 31 are provided so as to correspond to the plurality of wheels 10. That is, the wheel speed sensor 31 includes a wheel speed sensor 31FL that detects the rotation speed of the front wheel 10FL, a wheel speed sensor 31FR that detects the rotation speed of the front wheel 10FR, and a wheel speed sensor 31RL that detects the rotation speed of the rear wheel RL. , And a wheel speed sensor 31RR that detects the rotation speed of the rear wheel RR, and four are provided.

なお、実施形態において、ECU100は、車輪速センサ31以外の他の車載センサの検出結果も制御に利用することが可能である。詳細は後述するが、実施形態において、ECU100は、車両Vに対する操舵操作(の量)を検出する、すなわち車両Vが直進しているか旋回しているかを検出する車載センサとしての操舵センサ32の検出結果と、車両Vが走行している路面の勾配を検出する、すなわち車両Vが勾配のある路面を走行しているか否かを検出する車載センサとしての勾配センサ33の検出結果と、を制御に利用しうる。 In the embodiment, the ECU 100 can also use the detection results of the vehicle-mounted sensor other than the wheel speed sensor 31 for control. Although details will be described later, in the embodiment, the ECU 100 detects (amount) of the steering operation with respect to the vehicle V, that is, the detection of the steering sensor 32 as an in-vehicle sensor for detecting whether the vehicle V is traveling straight or turning. To control the result and the detection result of the gradient sensor 33 as an in-vehicle sensor that detects the slope of the road surface on which the vehicle V is traveling, that is, whether or not the vehicle V is traveling on the sloped road surface. Can be used.

ところで、従来から、車両が走行する路面の摩擦係数を求める技術について検討されている。このような技術として、たとえば、駆動輪として駆動する2つの車輪と、従動輪として従動する2つの車輪と、が予め決められた二輪駆動方式の車両において、駆動輪として駆動する2つの車輪の回転速度の平均値と、従動輪として駆動する2つの車輪の回転速度の平均値と、に基づいてスリップ比を算出し、当該スリップ比に基づいて路面の摩擦係数を推定する技術が知られている。 By the way, conventionally, a technique for obtaining the friction coefficient of the road surface on which a vehicle travels has been studied. As such a technique, for example, in a vehicle of a two-wheel drive system in which two wheels driven as driving wheels and two wheels driven as driven wheels are determined in advance, rotation of the two wheels driven as driving wheels A technique is known in which a slip ratio is calculated based on an average value of speeds and an average value of rotation speeds of two wheels driven as driven wheels, and a friction coefficient of a road surface is estimated based on the slip ratio. ..

しかしながら、上記のような従来の技術は、駆動輪および従動輪の個数および位置が固定であることが前提となっているので、駆動輪および従動輪の個数および位置が様々に変化しうる実施形態のような四輪独立駆動方式の車両Vにそのまま適用することができない。 However, since the conventional technique as described above is based on the premise that the number and positions of the driving wheels and the driven wheels are fixed, the number and positions of the driving wheels and the driven wheels can be changed in various ways. It cannot be applied as it is to a vehicle V having a four-wheel independent drive system such as.

そこで、実施形態は、以下に説明するような機能を有した路面状態推定装置200をECU100内に実現することで、四輪独立駆動方式の車両Vを利用して路面の摩擦係数を適切に推定することを実現する。 Therefore, in the embodiment, by realizing the road surface condition estimation device 200 having the functions described below in the ECU 100, the friction coefficient of the road surface is appropriately estimated by using the vehicle V of the four-wheel independent drive system. Achieve what you do.

図2は、実施形態にかかる路面状態推定装置200の機能を示した例示的かつ模式的なブロック図である。なお、実施形態において、路面状態は、基本的には路面の摩擦係数を意味するので、「路面状態推定装置」は、「路面摩擦係数推定装置」と言い換えてもよい。 FIG. 2 is an exemplary and schematic block diagram showing the function of the road surface condition estimation device 200 according to the embodiment. In the embodiment, the road surface condition basically means the friction coefficient of the road surface, so the “road surface condition estimation device” may be paraphrased as the “road surface friction coefficient estimation device”.

図2に示されるように、路面状態推定装置200は、制御部201と、取得部202と、推定部203と、出力部204と、を備えている。これらの機能は、たとえば、ECU100のプロセッサ101がメモリ102に記憶されたプログラムを読み出して実行した結果として実現される。なお、実施形態では、これらの機能の一部または全部が、専用のハードウェア(回路)のみによって実現されてもよい。 As shown in FIG. 2, the road surface condition estimation device 200 includes a control unit 201, an acquisition unit 202, an estimation unit 203, and an output unit 204. These functions are realized, for example, as a result of the processor 101 of the ECU 100 reading and executing the program stored in the memory 102. In the embodiment, some or all of these functions may be realized only by dedicated hardware (circuit).

制御部201は、4つの駆動装置20の各々に適宜指令値を出力し、車両Vに設けられた4つの車輪10のうち一部が駆動輪として駆動し、残りの一部が従動輪として従動するように、4つの駆動装置20を制御する。なお、実施形態において、制御部201は、4つの車輪10の全てが駆動輪として駆動するように4つの駆動装置20を制御することも可能であるが、路面の摩擦係数を推定するためには、少なくとも1つの車輪が従動輪として従動している必要がある。 The control unit 201 outputs command values to each of the four drive devices 20 as appropriate, and some of the four wheels 10 provided on the vehicle V are driven as drive wheels, and the remaining part is driven as a driven wheel. The four drive devices 20 are controlled so as to do so. In the embodiment, the control unit 201 can control the four drive devices 20 so that all the four wheels 10 are driven as drive wheels, but in order to estimate the friction coefficient of the road surface, , At least one wheel needs to be driven as a driven wheel.

取得部202は、車載センサとしての4つの車輪速センサ31、操舵センサ32、および勾配センサ33の検出結果を取得する。 The acquisition unit 202 acquires the detection results of the four wheel speed sensors 31, the steering sensor 32, and the gradient sensor 33 as in-vehicle sensors.

推定部203は、4つの車輪速センサのうち駆動輪の回転速度を検出する第1の車輪速センサの検出結果と、4つの車輪速センサのうち従動輪の回転速度を検出する第2の車輪速センサの検出結果と、に基づいて、駆動輪ごとにスリップ比を算出し、当該スリップ比に基づいて、路面の摩擦係数を、駆動輪に対応した領域ごとに推定する。すなわち、推定部203は、駆動輪および従動輪の個数および位置がどのように設定されている場合であっても、路面上における駆動輪に対応した1以上の領域の各々の1以上の摩擦係数を推定する。 The estimation unit 203 detects the detection result of the first wheel speed sensor that detects the rotation speed of the driving wheel among the four wheel speed sensors, and the second wheel that detects the rotation speed of the driven wheel among the four wheel speed sensors. The slip ratio is calculated for each drive wheel based on the detection result of the speed sensor, and the friction coefficient of the road surface is estimated for each region corresponding to the drive wheels based on the slip ratio. That is, the estimation unit 203 has a friction coefficient of 1 or more for each of the 1 or more regions corresponding to the drive wheels on the road surface, regardless of how the number and positions of the drive wheels and the driven wheels are set. To estimate.

たとえば、推定部203は、駆動輪および従動輪がそれぞれ2つずつ存在する場合、2つの第1の車輪速センサの検出結果に基づいて取得される2つの駆動輪の各々の回転速度と、2つの第2の車輪速センサの検出結果に基づいて取得される2つの従動輪の回転速度の平均値と、に基づいて2つのスリップ比を算出し、当該2つのスリップ比に基づいて、路面上における2つの駆動輪に対応した2つの領域の各々の摩擦係数を推定する。 For example, when the estimation unit 203 has two drive wheels and two driven wheels, the rotation speed of each of the two drive wheels acquired based on the detection results of the two first wheel speed sensors and 2 Two slip ratios are calculated based on the average value of the rotational speeds of the two driving wheels acquired based on the detection results of the two second wheel speed sensors, and on the road surface based on the two slip ratios. Estimate the friction coefficient of each of the two regions corresponding to the two drive wheels in.

また、推定部203は、駆動輪が1つで従動輪が3つ存在する場合、1つの第1の車輪速センサの検出結果に基づいて取得される1つの駆動輪の回転速度と、3つの第2の車輪速センサの検出結果に基づいて取得される3つの従動輪の回転速度の平均値と、に基づいて、1つのスリップ比を算出し、当該1つのスリップ比に基づいて、路面上における1つの駆動輪に対応した1つの領域の摩擦係数を推定する。 Further, when the estimation unit 203 has one drive wheel and three driven wheels, the estimation unit 203 includes the rotation speed of one drive wheel and three driven wheels acquired based on the detection result of one first wheel speed sensor. One slip ratio is calculated based on the average value of the rotation speeds of the three driven wheels acquired based on the detection result of the second wheel speed sensor, and based on the one slip ratio, on the road surface. Estimate the friction coefficient of one region corresponding to one drive wheel in.

さらに、推定部203は、駆動輪が3つで従動輪が1つ存在する場合、3つの第1の車輪速センサの検出結果に基づいて取得される3つの駆動輪の各々の回転速度と、1つの第2の車輪速センサの検出結果に基づいて取得される1つの従動輪の回転速度と、に基づいて、3つのスリップ比を算出し、当該3つのスリップ比に基づいて、路面上における3つの駆動輪に対応した3つの領域の各々の摩擦係数を推定する。 Further, the estimation unit 203 determines the rotation speed of each of the three drive wheels acquired based on the detection results of the three first wheel speed sensors when there are three drive wheels and one trailing wheel. Three slip ratios are calculated based on the rotation speed of one driving wheel acquired based on the detection result of one second wheel speed sensor, and based on the three slip ratios, on the road surface. Estimate the friction coefficient of each of the three regions corresponding to the three drive wheels.

このように、実施形態において、摩擦係数は、路面上における駆動輪に対応した領域ごとに推定される。したがって、実施形態によれば、摩擦係数を複数回推定し、各摩擦係数を各領域の位置と対応付けることで、路面の状態をより細かく把握することが可能である。 Thus, in the embodiment, the coefficient of friction is estimated for each region corresponding to the drive wheels on the road surface. Therefore, according to the embodiment, it is possible to grasp the state of the road surface in more detail by estimating the friction coefficient a plurality of times and associating each friction coefficient with the position of each region.

そこで、実施形態において、推定部203は、情報を記憶するための記憶部203aを有しており、自身で推定した摩擦係数を、路面上における駆動輪に対応した領域の位置に関する位置情報と対応付けて記憶部203aに記憶する。位置情報は、たとえば車載センサの検出結果を利用したオドメトリなどに基づいて推定される車両Vの位置に基づいて取得される。 Therefore, in the embodiment, the estimation unit 203 has a storage unit 203a for storing information, and the friction coefficient estimated by itself corresponds to the position information regarding the position of the region corresponding to the drive wheel on the road surface. It is attached and stored in the storage unit 203a. The position information is acquired based on the position of the vehicle V estimated based on, for example, odometry using the detection result of the vehicle-mounted sensor.

図3は、実施形態にかかる摩擦係数が記憶部203aに記憶される態様の一例を示した例示的かつ模式的な図である。図3に示されるように、推定部203により推定された摩擦係数は、(路面上における駆動輪に対応した領域の)位置と対応付けられた状態で記憶部203aに記憶される。 FIG. 3 is an exemplary and schematic diagram showing an example of a mode in which the friction coefficient according to the embodiment is stored in the storage unit 203a. As shown in FIG. 3, the coefficient of friction estimated by the estimation unit 203 is stored in the storage unit 203a in a state associated with the position (in the region corresponding to the drive wheels on the road surface).

なお、図3に示される例では、摩擦係数Kxと位置Pxとの対応関係のみが例示されているが、実施形態では、Kx以外の摩擦係数とPx以外の位置との対応関係も記憶されうる。また、実施形態では、たとえば同じ位置の領域に対応した摩擦係数が複数回推定された場合、最新の摩擦係数を考慮して古い摩擦係数を補正したり、最新の摩擦係数で古い摩擦係数が更新したりすることで、摩擦係数の推定精度が高められうる。 In the example shown in FIG. 3, only the correspondence between the friction coefficient Kx and the position Px is illustrated, but in the embodiment, the correspondence between the friction coefficient other than Kx and the position other than Px can also be stored. .. Further, in the embodiment, for example, when the friction coefficient corresponding to the region at the same position is estimated multiple times, the old friction coefficient is corrected in consideration of the latest friction coefficient, or the old friction coefficient is updated with the latest friction coefficient. By doing so, the estimation accuracy of the coefficient of friction can be improved.

また、実施形態では、摩擦係数と位置との対応関係が推定部203内の記憶部203aに記憶される構成が例示されているが、摩擦係数と位置との対応関係を記憶する手段は、推定部203の外に設けられてもよい。たとえば、実施形態では、路面状態推定装置200に通信機能を持たせ、当該通信機能により、摩擦係数と位置との対応関係を、ネットワーク上に記憶部として設けられたサーバに送信して記憶させてもよい。このような構成によれば、たとえば、複数の車両Vで推定された摩擦係数を対応する位置とともにネットワーク上のサーバに集めて管理することが可能である。 Further, in the embodiment, a configuration in which the correspondence between the friction coefficient and the position is stored in the storage unit 203a in the estimation unit 203 is exemplified, but the means for storing the correspondence between the friction coefficient and the position is estimated. It may be provided outside the portion 203. For example, in the embodiment, the road surface condition estimation device 200 is provided with a communication function, and the communication function transmits and stores the correspondence between the friction coefficient and the position to a server provided as a storage unit on the network. May be good. According to such a configuration, for example, it is possible to collect and manage the friction coefficients estimated by a plurality of vehicles V in a server on the network together with the corresponding positions.

図2に戻り、出力部204は、推定部203により推定された摩擦係数と閾値との比較結果に応じて、通知部40を介して所定の通知を出力する。たとえば、出力部204は、推定部203により推定された1以上の摩擦係数のうち少なくとも1つが閾値より小さい場合、通知部40を介して、路面(のうち少なくとも一部の領域)が滑りやすくなっている旨の警報を表す通知を車両Vの乗員に出力する。 Returning to FIG. 2, the output unit 204 outputs a predetermined notification via the notification unit 40 according to the comparison result between the friction coefficient estimated by the estimation unit 203 and the threshold value. For example, in the output unit 204, when at least one of the friction coefficients of 1 or more estimated by the estimation unit 203 is smaller than the threshold value, the road surface (at least a part of the region) becomes slippery via the notification unit 40. A notification indicating an alarm indicating that the vehicle V is being output is output to the occupant of the vehicle V.

ところで、実施形態では、前述したように、駆動輪および従動輪の個数および位置を任意に設定/変更することが可能である。したがって、実施形態では、たとえば以下に図4〜図7に示されるような形で、駆動輪および従動輪の個数および位置の設定を車両Vの走行状態に応じて適宜変化させれば、車両Vの挙動の安定化を図りながら摩擦係数の適切な推定を実現することが可能である。 By the way, in the embodiment, as described above, the number and position of the driving wheels and the driven wheels can be arbitrarily set / changed. Therefore, in the embodiment, if the setting of the number and position of the driving wheels and the driven wheels is appropriately changed according to the traveling state of the vehicle V, for example, as shown in FIGS. 4 to 7 below, the vehicle V It is possible to realize an appropriate estimation of the friction coefficient while stabilizing the behavior of.

図4は、実施形態おいて実現されうる駆動輪および従動輪の設定の第1の例を示した例示的かつ模式的な図である。以下に説明するように、図4に示される設定は、車両Vが路面としての傾斜面を上る方向に進む場合(矢印A401参照)において特に有効であるが、他の場合(たとえば車両Vが平坦路を通常通りに走行する場合)にも有効である。なお、車両Vが傾斜面を上る方向に進むか否かは、勾配センサ33の検出結果などに基づいて取得することが可能である。 FIG. 4 is an exemplary and schematic diagram showing a first example of driving and trailing wheel settings that can be realized in an embodiment. As described below, the settings shown in FIG. 4 are particularly effective when the vehicle V travels up an inclined surface as a road surface (see arrow A401), but in other cases (for example, the vehicle V is flat). It is also effective when traveling on the road as usual). Whether or not the vehicle V advances in the direction of climbing the inclined surface can be acquired based on the detection result of the gradient sensor 33 or the like.

車両Vが傾斜面を上る方向に進む場合、車両Vの進行方向の後側に設けられた後側車輪としての後輪10RLおよび10RRを駆動輪として駆動するよりも、車両Vの進行方向の前側に設けられた前側車輪としての前輪10FLおよび10FRを駆動輪として駆動した方が、車両Vを前から引っ張る形で駆動力が発生し、車両Vのふらつき(回転)を抑制することが可能だと考えられる。したがって、この場合、制御部201は、前輪10FLおよび10FRが駆動輪として駆動し、後輪10RLおよび10RRが従動輪として従動するように、駆動装置20を制御する。これにより、車両Vの挙動の安定化を図りながら、路面上における後輪10RLおよび10RRに対応した各領域の摩擦係数を適切に推定することが可能である。 When the vehicle V advances in the direction of going up the inclined surface, the front side in the traveling direction of the vehicle V is driven rather than driving the rear wheels 10RL and 10RR as the rear wheels provided on the rear side in the traveling direction of the vehicle V as driving wheels. By driving the front wheels 10FL and 10FR as the front wheels provided in the above as driving wheels, the driving force is generated by pulling the vehicle V from the front, and it is possible to suppress the wobbling (rotation) of the vehicle V. Conceivable. Therefore, in this case, the control unit 201 controls the drive device 20 so that the front wheels 10FL and 10FR are driven as drive wheels and the rear wheels 10RL and 10RR are driven as driven wheels. As a result, it is possible to appropriately estimate the friction coefficient of each region corresponding to the rear wheels 10RL and 10RR on the road surface while stabilizing the behavior of the vehicle V.

なお、実施形態では、前輪10FLおよび10FRの方が後輪10RLおよび10RRよりも数多く駆動輪として駆動しさえすれば、図4に示される設定以外の設定によっても、車両Vが傾斜面を上る方向に進む場合に上記と同様の効果を得ることが可能である。このような設定の一例として、たとえば、前輪10FLおよび10FRと、後輪10RLおよび10RRのうち一方と、の3つが駆動輪として駆動し、後輪10RLおよび10RRのうち他方のみが従動輪として従動するという設定が考えられる。 In the embodiment, as long as the front wheels 10FL and 10FR are driven as more driving wheels than the rear wheels 10RL and 10RR, the vehicle V goes up the inclined surface even with a setting other than the setting shown in FIG. It is possible to obtain the same effect as described above when proceeding to. As an example of such a setting, for example, three of the front wheels 10FL and 10FR and one of the rear wheels 10RL and 10RR are driven as driving wheels, and only the other of the rear wheels 10RL and 10RR is driven as a driven wheel. Can be considered.

図5は、実施形態おいて実現されうる駆動輪および従動輪の設定の第2の例を示した例示的かつ模式的な図である。図5に示される設定は、図4に示される設定を前後反転したものに相当する。したがって、図5に示される設定は、車両Vが路面としての傾斜面を下る方向に進む場合(矢印A501参照)において有効であるが、他の場合(たとえば車両Vが平坦路を通常通りに走行する場合)にも有効である。 FIG. 5 is an exemplary and schematic diagram showing a second example of driving and trailing wheel settings that can be realized in an embodiment. The settings shown in FIG. 5 correspond to the settings shown in FIG. 4 inverted back and forth. Therefore, the setting shown in FIG. 5 is effective when the vehicle V travels down the inclined surface as the road surface (see arrow A501), but in other cases (for example, the vehicle V travels on a flat road as usual). It is also effective when doing).

より具体的に、車両Vが傾斜面を下る方向に進む場合、車両Vの進行方向の前側に設けられた前側車輪としての前輪10FLおよび10FRを駆動輪として駆動するよりも、車両Vの進行方向の後側に設けられた後側車輪としての後輪10RLおよび10RRを駆動輪として駆動した方が、たとえば回生ブレーキをかけた際に車両Vを後ろから引っ張る形で制動力が発生し、車両Vのふらつき(回転)を抑制することが可能だと考えられる。したがって、この場合、制御部201は、後輪10RLおよび10RRが駆動輪として駆動し、前輪10FLおよび10FRが従動輪として従動するように、駆動装置20を制御する。これにより、車両Vの挙動の安定化を図りながら、路面上における前輪10FLおよび10FRに対応した各領域の摩擦係数を適切に推定することが可能である。 More specifically, when the vehicle V advances in the direction of going down the inclined surface, the traveling direction of the vehicle V is more than driving the front wheels 10FL and 10FR as the front wheels provided on the front side of the traveling direction of the vehicle V as driving wheels. When the rear wheels 10RL and 10RR as the rear wheels provided on the rear side are driven as the driving wheels, for example, when the regenerative brake is applied, a braking force is generated by pulling the vehicle V from behind, and the vehicle V is generated. It is thought that it is possible to suppress the wobbling (rotation) of the wheel. Therefore, in this case, the control unit 201 controls the drive device 20 so that the rear wheels 10RL and 10RR are driven as driving wheels and the front wheels 10FL and 10FR are driven as driven wheels. As a result, it is possible to appropriately estimate the friction coefficient of each region corresponding to the front wheels 10FL and 10FR on the road surface while stabilizing the behavior of the vehicle V.

なお、実施形態では、後輪10RLおよび10RRの方が前輪10FLおよび10FRよりも数多く駆動輪として駆動しさえすれば、図5に示される設定以外の設定によっても、車両Vが傾斜面を下る方向に進む場合に上記と同様の効果を得ることが可能である。このような設定の一例として、たとえば、後輪10RLおよび10RRと、前輪10FLおよび10FRのうち一方と、の3つが駆動輪として駆動し、前輪10FLおよび10FRのうち他方のみが従動輪として従動するという設定が考えられる。 In the embodiment, as long as the rear wheels 10RL and 10RR are driven as more driving wheels than the front wheels 10FL and 10FR, the vehicle V goes down the inclined surface even with a setting other than the setting shown in FIG. It is possible to obtain the same effect as described above when proceeding to. As an example of such a setting, for example, three of the rear wheels 10RL and 10RR and one of the front wheels 10FL and 10FR are driven as driving wheels, and only the other of the front wheels 10FL and 10FR is driven as a driven wheel. Settings are possible.

図6は、実施形態おいて実現されうる駆動輪および従動輪の設定の第3の例を示した例示的かつ模式的な図である。以下に説明するように、図6に示される設定は、車両Vが右回りに旋回を行う場合(矢印A601参照)において有効である。なお、車両Vが右回りに旋回を行うか否かは、操舵センサ32の検出結果などに基づいて取得することが可能である。 FIG. 6 is an exemplary and schematic diagram showing a third example of driving and trailing wheel settings that can be realized in an embodiment. As described below, the settings shown in FIG. 6 are effective when the vehicle V makes a clockwise turn (see arrow A601). Whether or not the vehicle V turns clockwise can be obtained based on the detection result of the steering sensor 32 or the like.

車両Vが右回りに旋回する場合、旋回の外側に設けられた外側車輪としての前輪10FLおよび後輪10RLに、旋回の内側に設けられた内側車輪としての前輪10FRおよび後輪10RRよりも大きな駆動力が発生すれば、車両Vがスムーズに旋回する。したがって、この場合、制御部201は、両方の外側車輪としての前輪10FLおよび後輪10RLと、一方の内側車輪としての前輪FRと、が駆動輪として駆動し、他方の内側車輪としての後輪10RRが従動輪として従動するように、駆動装置20を制御する。これにより、右回りの旋回の際の車両Vの挙動の安定化を図りながら、路面上における前輪10FL、前輪10FR、および後輪10RLに対応した各領域の摩擦係数を適切に推定することが可能である。 When the vehicle V turns clockwise, the front wheels 10FL and rear wheels 10RL as outer wheels provided outside the turn are driven larger than the front wheels 10FR and rear wheels 10RR as inner wheels provided inside the turn. If a force is generated, the vehicle V turns smoothly. Therefore, in this case, the control unit 201 is driven by the front wheels 10FL and the rear wheels 10RL as both outer wheels and the front wheels FR as one inner wheel as driving wheels, and the rear wheels 10RR as the other inner wheels. Controls the drive device 20 so that the drive wheel is driven as a driven wheel. As a result, it is possible to appropriately estimate the friction coefficient of each region corresponding to the front wheels 10FL, the front wheels 10FR, and the rear wheels 10RL on the road surface while stabilizing the behavior of the vehicle V when turning clockwise. Is.

なお、実施形態では、外側車輪としての前輪10FLおよび後輪10RLの方が内側車輪としての前輪10FRおよび後輪10RRよりも数多く駆動輪として駆動しさえすれば、図6に示される設定以外の設定によっても、車両Vが右回りに旋回する場合に上記と同様の効果を得ることが可能である。このような設定の一例として、たとえば、外側車輪としての前輪10FLおよび後輪10RLのみが駆動輪として駆動し、内側車輪としての前輪10FRおよび後輪10RRは従動輪として従動するという設定が考えられる。 In the embodiment, as long as the front wheels 10FL and the rear wheels 10RL as the outer wheels are driven as more drive wheels than the front wheels 10FR and the rear wheels 10RR as the inner wheels, the settings other than those shown in FIG. 6 are set. It is also possible to obtain the same effect as described above when the vehicle V turns clockwise. As an example of such a setting, for example, it is conceivable that only the front wheels 10FL and the rear wheels 10RL as the outer wheels are driven as the driving wheels, and the front wheels 10FR and the rear wheels 10RR as the inner wheels are driven as the driven wheels.

ここで、図6に示される設定は、車両Vが右回りに旋回する場合のみならず、車両Vが直進する場合(矢印A602参照)においても有効である。なお、車両Vが直進するか否かは、操舵センサ32の検出結果などに基づいて取得することが可能である。 Here, the setting shown in FIG. 6 is effective not only when the vehicle V turns clockwise but also when the vehicle V goes straight (see arrow A602). Whether or not the vehicle V travels straight can be obtained based on the detection result of the steering sensor 32 or the like.

より具体的に、図6に示される設定においては、車両Vの左右方向の一方側としての左側で進行方向に沿って設けられた一方車輪としての前輪10FLおよび後輪10RLの両方が駆動輪として駆動する。したがって、図6に示される設定によれば、車両Vが直進する場合において、駆動輪として駆動する前輪10FLおよび後輪10RLにより、路面上における同じ位置(領域)の摩擦係数を2回推定することが可能であるので、摩擦係数の推定精度を高めることが可能である。 More specifically, in the setting shown in FIG. 6, both the front wheel 10FL and the rear wheel 10RL as one wheel provided along the traveling direction on the left side as one side in the left-right direction of the vehicle V are used as driving wheels. Drive. Therefore, according to the setting shown in FIG. 6, when the vehicle V travels straight, the friction coefficient at the same position (region) on the road surface is estimated twice by the front wheels 10FL and the rear wheels 10RL driven as driving wheels. Therefore, it is possible to improve the estimation accuracy of the friction coefficient.

図7は、実施形態おいて実現されうる駆動輪および従動輪の設定の第4の例を示した例示的かつ模式的な図である。図7に示される設定は、図6に示される設定を左右反転したものに相当する。したがって、図7に示される設定は、車両Vが左回りに旋回を行う場合(矢印A701参照)において有効である。 FIG. 7 is an exemplary and schematic diagram showing a fourth example of driving and trailing wheel settings that can be realized in an embodiment. The settings shown in FIG. 7 correspond to the left-right reversals of the settings shown in FIG. Therefore, the setting shown in FIG. 7 is effective when the vehicle V turns counterclockwise (see arrow A701).

より具体的に、車両Vが左回りに旋回する場合、旋回の外側に設けられた外側車輪としての前輪10FRおよび後輪10RRに、旋回の内側に設けられた内側車輪としての前輪10FLおよび後輪10RLよりも大きな駆動力が発生すれば、車両Vがスムーズに旋回する。したがって、この場合、制御部201は、両方の外側車輪としての前輪10FRおよび後輪10RRと、一方の内側車輪としての前輪FLと、が駆動輪として駆動し、他方の内側車輪としての後輪10RLが従動輪として従動するように、駆動装置20を制御する。これにより、左回りの旋回の際の車両Vの挙動の安定化を図りながら、路面上における前輪10FL、前輪10FR、および後輪10RRに対応した各領域の摩擦係数を適切に推定することが可能である。 More specifically, when the vehicle V turns counterclockwise, the front wheels 10FR and rear wheels 10RR as outer wheels provided outside the turn, and the front wheels 10FL and rear wheels as inner wheels provided inside the turn. If a driving force larger than 10 RL is generated, the vehicle V turns smoothly. Therefore, in this case, the control unit 201 is driven by the front wheels 10FR and the rear wheels 10RR as both outer wheels and the front wheels FL as one inner wheel as drive wheels, and the rear wheels 10RL as the other inner wheels. Controls the drive device 20 so that the drive wheel is driven as a driven wheel. This makes it possible to appropriately estimate the friction coefficient of each region corresponding to the front wheels 10FL, front wheels 10FR, and rear wheels 10RR on the road surface while stabilizing the behavior of the vehicle V when turning counterclockwise. Is.

なお、実施形態では、外側車輪としての前輪10FRおよび後輪10RRの方が内側車輪としての前輪10FLおよび後輪10RLよりも数多く駆動輪として駆動しさえすれば、図7に示される設定以外の設定によっても、車両Vが左回りに旋回する場合に上記と同様の効果を得ることが可能である。このような設定の一例として、たとえば、外側車輪としての前輪10FRおよび後輪10RRのみが駆動輪として駆動し、内側車輪としての前輪10FLおよび後輪10RLは従動輪として従動するという設定が考えられる。 In the embodiment, as long as the front wheels 10FR and the rear wheels 10RR as the outer wheels are driven as more drive wheels than the front wheels 10FL and the rear wheels 10RL as the inner wheels, the settings other than those shown in FIG. 7 are set. It is also possible to obtain the same effect as described above when the vehicle V turns counterclockwise. As an example of such a setting, for example, it is conceivable that only the front wheels 10FR and the rear wheels 10RR as the outer wheels are driven as the driving wheels, and the front wheels 10FL and the rear wheels 10RL as the inner wheels are driven as the driven wheels.

ここで、図7に示される設定も、図6に示される設定と同様に、車両Vが直進する場合(矢印A702参照)においても有効である。 Here, the setting shown in FIG. 7 is also effective when the vehicle V travels straight (see arrow A702), similarly to the setting shown in FIG.

より具体的に、図7に示される設定においてば、車両Vの左右方向の他方側としての右側で進行方向に沿って設けられた他方車輪としての前輪10FLおよび後輪10RLの両方が駆動輪として駆動する。したがって、図7に示される設定によれば、車両Vが直進する場合において、駆動輪として駆動する前輪10FRおよび後輪10RRにより、路面上における同じ位置(領域)の摩擦係数を2回推定することが可能であるので、摩擦係数の推定精度を高めることが可能である。 More specifically, in the setting shown in FIG. 7, both the front wheels 10FL and the rear wheels 10RL as the other wheels provided along the traveling direction on the right side as the other side in the left-right direction of the vehicle V are used as driving wheels. Drive. Therefore, according to the setting shown in FIG. 7, when the vehicle V travels straight, the friction coefficient of the same position (region) on the road surface is estimated twice by the front wheels 10FR and the rear wheels 10RR driven as driving wheels. Therefore, it is possible to improve the estimation accuracy of the friction coefficient.

ところで、図6および図7のいずれに示される設定においても、車両Vの左側の一方車輪と右側の他方車輪とが少なくとも1つずつ、より具体的には、前輪10FLおよび10FRが駆動輪として駆動する。したがって、これらの設定によれば、路面の摩擦係数として、路面上における一方車輪に対応した一方領域としての左側領域の摩擦係数である第1の摩擦係数と、路面上における他方車輪に対応した他方領域としての右側領域の摩擦係数である第2の摩擦係数と、を別個に推定することが可能である。 By the way, in any of the settings shown in FIGS. 6 and 7, at least one wheel on the left side and one wheel on the right side of the vehicle V are driven, more specifically, the front wheels 10FL and 10FR are driven as driving wheels. To do. Therefore, according to these settings, the coefficient of friction of the road surface is the first friction coefficient, which is the friction coefficient of the left region as one region corresponding to one wheel on the road surface, and the other corresponding to the other wheel on the road surface. It is possible to estimate separately from the second friction coefficient, which is the friction coefficient of the right region as the region.

上記を踏まえて、実施形態において、制御部201は、第1の摩擦係数と第2の摩擦係数との大小関係に応じて、一方車輪と他方車輪とのうちいずれを数多く駆動輪として駆動させるかを決定しうる。 Based on the above, in the embodiment, which of the one wheel and the other wheel is driven by the control unit 201 as a driving wheel according to the magnitude relationship between the first friction coefficient and the second friction coefficient. Can be determined.

すなわち、第1の摩擦係数が第2の摩擦係数よりも小さい場合、左側領域が、右側領域に比べて、駆動輪が一輪あたりに路面に伝達可能な駆動力が小さい滑りやすい領域だといえるので、左側領域に配置される一方車輪を右側領域に配置される他方車輪よりも数多く駆動輪として駆動した方が、左側領域の走行に必要な駆動力を分散して確保し、車両Vの挙動の安定化を図ることが可能である。したがって、この場合、制御部201は、図6に示される設定に基づき、一方車輪としての前輪10FLおよび後輪10RLの両方と、他方車輪のうちの1つとしての前輪10FRと、が駆動輪として駆動し、残りの他方車輪としての後輪RRが従動輪として従動するように、駆動装置20を制御する。 That is, when the first friction coefficient is smaller than the second friction coefficient, it can be said that the left side region is a slippery region in which the driving force that the driving wheels can transmit to the road surface per wheel is smaller than that of the right side region. If one wheel arranged in the left area is driven as more driving wheels than the other wheel arranged in the right area, the driving force required for traveling in the left area is dispersed and secured, and the behavior of the vehicle V is changed. It is possible to stabilize it. Therefore, in this case, the control unit 201 uses both the front wheels 10FL and the rear wheels 10RL as one wheel and the front wheels 10FR as one of the other wheels as driving wheels based on the settings shown in FIG. The drive device 20 is controlled so that the rear wheel RR as the remaining other wheel is driven as a driven wheel.

逆に、第1の摩擦係数が第2の摩擦係数よりも大きい場合、右側領域が、左側領域に比べて、駆動輪が一輪あたりに路面に伝達可能な駆動力が小さい滑りやすい領域だといえるので、右側領域に配置される他方車輪を左側領域に配置される一方車輪よりも数多く駆動輪として駆動した方が、右側領域の走行に必要な駆動力を分散して確保し、車両Vの挙動の安定化を図ることが可能である。したがって、この場合、制御部201は、図7に示される設定に基づき、他方車輪としての前輪10FRおよび後輪10RRの両方と、一方車輪のうちの1つとしての前輪10FLと、が駆動輪として駆動し、残りの他方車輪としての後輪RLが従動輪として従動するように、駆動装置20を制御する。 On the contrary, when the first friction coefficient is larger than the second friction coefficient, it can be said that the right side region is a slippery region in which the driving force that the driving wheels can transmit to the road surface per wheel is smaller than that of the left side region. Therefore, driving the other wheel arranged in the right side region as more driving wheels than the one wheel arranged in the left side region disperses and secures the driving force required for traveling in the right side region, and the behavior of the vehicle V. It is possible to stabilize the wheel. Therefore, in this case, based on the setting shown in FIG. 7, the control unit 201 uses both the front wheels 10FR and the rear wheels 10RR as the other wheels and the front wheels 10FL as one of the wheels as driving wheels. The drive device 20 is controlled so that the rear wheel RL as the remaining other wheel is driven as a driven wheel.

このように、実施形態において、制御部201は、車載センサの検出結果に応じて、たとえば図4〜図7に示される設定を適宜使い分けることで、駆動輪として駆動させる車輪10と、従動輪として駆動させる車輪10と、を車両Vの走行状態に適した形で決定することが可能である。 As described above, in the embodiment, the control unit 201 has the wheels 10 to be driven as the driving wheels and the driven wheels by appropriately using the settings shown in FIGS. 4 to 7, for example, according to the detection result of the vehicle-mounted sensor. It is possible to determine the wheels 10 to be driven in a form suitable for the traveling state of the vehicle V.

なお、実施形態では、車両Vとして四輪の自動車が例示されているが、実施形態の技術は、駆動装置によって独立に制御される複数の車輪が設けられた構成であれば、四輪の自動車以外の車両にも適用することが可能である。この場合、四輪の自動車以外の車両においても、駆動輪および従動輪の個数および位置の設定として、図4〜図7に示される設定を上記と同様の発想に基づいて適宜アレンジしたものを車両Vの走行状態に応じて使い分ければ、上記と同様の有効な結果が得られる。 In the embodiment, a four-wheeled vehicle is exemplified as the vehicle V, but the technology of the embodiment is a four-wheeled vehicle as long as it is provided with a plurality of wheels independently controlled by a driving device. It can be applied to vehicles other than the above. In this case, even in a vehicle other than a four-wheeled automobile, as the setting of the number and position of the driving wheel and the driven wheel, the setting shown in FIGS. 4 to 7 is appropriately arranged based on the same idea as described above. If it is used properly according to the traveling state of V, the same effective result as above can be obtained.

以上の構成に基づき、実施形態にかかる路面状態推定装置200は、次の図8に示されるような流れに従って処理を実行する。 Based on the above configuration, the road surface condition estimation device 200 according to the embodiment executes the process according to the flow as shown in FIG. 8 below.

図8は、実施形態にかかる路面状態推定装置200が路面の摩擦係数を推定するために実行する一連の処理を示した例示的かつ模式的なフローチャートである。図8に示される一連の処理は、車両Vが走行している間、繰り返し実行される。 FIG. 8 is an exemplary and schematic flowchart showing a series of processes executed by the road surface condition estimation device 200 according to the embodiment for estimating the friction coefficient of the road surface. The series of processes shown in FIG. 8 is repeatedly executed while the vehicle V is traveling.

図8に示されるように、実施形態では、まず、S801において、路面状態推定装置200の取得部202は、車輪速センサ31や操舵センサ32や勾配センサ33などを含む各種の車載センサの検出結果に基づいて、車両Vの走行状態を取得する。車両Vの走行状態とは、たとえば、車両Vが傾斜面を走行しているか否か、傾斜面における車両Vの走行方向が上り方向であるか下り方向であるか、車両Vが旋回を行っているか否か、および、車両Vが直進しているか否かなどを示す情報である。 As shown in FIG. 8, in the embodiment, first, in S801, the acquisition unit 202 of the road surface condition estimation device 200 detects the detection results of various in-vehicle sensors including the wheel speed sensor 31, the steering sensor 32, the gradient sensor 33, and the like. Based on, the traveling state of the vehicle V is acquired. The traveling state of the vehicle V is, for example, whether or not the vehicle V is traveling on an inclined surface, whether the traveling direction of the vehicle V on the inclined surface is an up direction or a down direction, and the vehicle V makes a turn. This is information indicating whether or not the vehicle V is traveling straight.

そして、S802において、路面状態推定装置200の制御部201は、S801で取得された車両Vの走行状態に応じて、駆動輪/従動輪として機能させる車輪10の個数および位置を決定し、決定内容に沿って駆動装置20を制御する。 Then, in S802, the control unit 201 of the road surface condition estimation device 200 determines the number and positions of the wheels 10 to function as the driving wheels / trailing wheels according to the traveling state of the vehicle V acquired in S801, and the determined contents. The drive device 20 is controlled along the above.

そして、S803において、路面状態推定装置200の取得部202は、各車輪速センサ31の検出結果に基づいて、各車輪10の回転速度を取得する。 Then, in S803, the acquisition unit 202 of the road surface condition estimation device 200 acquires the rotation speed of each wheel 10 based on the detection result of each wheel speed sensor 31.

そして、S804において、路面状態推定装置200の推定部203は、S803で取得された情報に基づいて、前述したような方法により、駆動輪ごとにスリップ比を算出し、当該スリップ比に基づいて、路面上における駆動輪に対応した領域ごとに摩擦係数を推定する。 Then, in S804, the estimation unit 203 of the road surface condition estimation device 200 calculates the slip ratio for each drive wheel by the method as described above based on the information acquired in S803, and based on the slip ratio, The coefficient of friction is estimated for each region on the road surface corresponding to the drive wheels.

そして、S805において、路面状態推定装置200の推定部203は、S804で推定された摩擦係数を、当該摩擦係数に従って摩擦を発生させると推定される領域、すなわちS804における摩擦係数の推定時における駆動輪に対応した路面上の領域の位置に関する位置情報と対応付けて記憶部203aに記憶する。 Then, in S805, the estimation unit 203 of the road surface condition estimation device 200 uses the friction coefficient estimated in S804 as a driving wheel in a region estimated to generate friction according to the friction coefficient, that is, when the friction coefficient is estimated in S804. It is stored in the storage unit 203a in association with the position information regarding the position of the region on the road surface corresponding to.

そして、S806において、路面状態推定装置200の出力部204は、S804における処理の結果、閾値よりも小さい摩擦係数が推定されたか否かを判断する。すなわち、出力部204は、S804で推定された1以上の摩擦係数のうち少なくとも1つが閾値より小さいか否かを判断する。 Then, in S806, the output unit 204 of the road surface condition estimation device 200 determines whether or not a friction coefficient smaller than the threshold value is estimated as a result of the processing in S804. That is, the output unit 204 determines whether or not at least one of the friction coefficients of 1 or more estimated in S804 is smaller than the threshold value.

S806において、閾値よりも小さい摩擦係数が推定されたと判断された場合、S807に処理が進む。そして、S807において、路面状態推定装置200の出力部204は、通知部40を介して、路面(のうち閾値よりも小さい摩擦係数に対応した少なくとも一部の領域)が滑りやすくなっている旨の警報を表す通知を車両Vの乗員に出力する。そして、処理が終了する。 If it is determined in S806 that a friction coefficient smaller than the threshold value is estimated, the process proceeds to S807. Then, in S807, the output unit 204 of the road surface condition estimation device 200 indicates that the road surface (at least a part of the region corresponding to the friction coefficient smaller than the threshold value) becomes slippery via the notification unit 40. A notification indicating an alarm is output to the occupant of the vehicle V. Then, the process ends.

なお、S806において、閾値よりも小さい摩擦係数が推定されなかったと判断された場合、S807に処理が進むことなく、そのまま処理が終了する。 If it is determined in S806 that a friction coefficient smaller than the threshold value has not been estimated, the process ends without proceeding to S807.

以上説明したように、実施形態にかかる路面状態推定装置200は、制御部201と、取得部202と、推定部203と、を備えている。制御部201は、路面を走行する車両Vに設けられた複数の車輪10のうち一部が駆動輪として駆動し、複数の車輪のうち残りの一部が従動輪として従動するように、複数の車輪をそれぞれ独立に駆動可能な駆動装置20を制御する。取得部202は、複数の車輪10の回転速度をそれぞれ検出する複数の車輪速センサ31の検出結果を取得する。推定部203は、複数の車輪速センサ31のうち駆動輪の回転速度を検出する第1の車輪速センサの検出結果と、複数の車輪速センサのうち従動輪の回転速度を検出する第2の車輪速センサの検出結果と、に基づいて、駆動輪ごとにスリップ比を算出し、当該スリップ比に基づいて、路面上における駆動輪に対応した領域ごとに摩擦係数を推定する。 As described above, the road surface condition estimation device 200 according to the embodiment includes a control unit 201, an acquisition unit 202, and an estimation unit 203. The control unit 201 has a plurality of wheels 10 provided on the vehicle V traveling on the road surface so that a part of the wheels 10 is driven as a driving wheel and the remaining part of the wheels is driven as a driven wheel. It controls a drive device 20 that can drive the wheels independently. The acquisition unit 202 acquires the detection results of the plurality of wheel speed sensors 31 that detect the rotation speeds of the plurality of wheels 10. The estimation unit 203 detects the detection result of the first wheel speed sensor that detects the rotation speed of the driving wheel among the plurality of wheel speed sensors 31, and the second wheel speed sensor that detects the rotation speed of the driven wheel among the plurality of wheel speed sensors. The slip ratio is calculated for each drive wheel based on the detection result of the wheel speed sensor, and the friction coefficient is estimated for each region corresponding to the drive wheels on the road surface based on the slip ratio.

実施形態によれば、上記のような構成に基づいて、四輪独立駆動方式の車両Vを利用して、駆動輪および従動輪の個数および位置に関わらず、路面の摩擦係数を、駆動輪に対応した領域ごとに適切に推定することができる。 According to the embodiment, based on the above configuration, the vehicle V of the four-wheel independent drive system is used to apply the friction coefficient of the road surface to the drive wheels regardless of the number and positions of the drive wheels and the driven wheels. It can be estimated appropriately for each corresponding area.

より具体的に、実施形態において、推定部203は、駆動輪および従動輪がそれぞれ複数存在する場合、第1の車輪速センサの検出結果に基づいて取得される複数の駆動輪の各々の回転速度と、第2の車輪速センサの検出結果に基づいて取得される複数の従動輪の回転速度の平均値と、に基づいて、駆動輪ごとにスリップ比を算出する。このような構成によれば、従動輪の回転速度については平均をとることで合わせて考慮し、駆動輪の回転速度については個別に考慮することで、駆動輪ごとにスリップ比を容易に推定することができる。 More specifically, in the embodiment, when a plurality of driving wheels and a plurality of driven wheels are present, the estimation unit 203 increases the rotation speed of each of the plurality of driving wheels acquired based on the detection result of the first wheel speed sensor. And, based on the average value of the rotation speeds of the plurality of driven wheels acquired based on the detection result of the second wheel speed sensor, the slip ratio is calculated for each drive wheel. According to such a configuration, the rotation speed of the driven wheels is taken into consideration by taking an average, and the rotation speed of the driving wheels is taken into consideration individually, so that the slip ratio can be easily estimated for each driving wheel. be able to.

ここで、実施形態において、取得部202は、車両Vの走行状態に関する情報を検出する車載センサとしての車輪速センサ31、操舵センサ32、および勾配センサ33の検出結果を取得し、制御部201は、車載センサの検出結果に応じて、駆動輪として駆動させる車輪10と、従動輪として駆動させる車輪10と、を決定する。このような構成によれば、車両Vの走行状態を考慮して、駆動輪および従動輪の個数および位置を適切に決定することができる。 Here, in the embodiment, the acquisition unit 202 acquires the detection results of the wheel speed sensor 31, the steering sensor 32, and the gradient sensor 33 as vehicle-mounted sensors that detect information on the driving state of the vehicle V, and the control unit 201 acquires the detection results. The wheel 10 to be driven as a driving wheel and the wheel 10 to be driven as a driven wheel are determined according to the detection result of the vehicle-mounted sensor. According to such a configuration, the number and position of the driving wheels and the driven wheels can be appropriately determined in consideration of the traveling state of the vehicle V.

より具体的に、実施形態において、制御部201は、車載センサの検出結果が、車両Vが路面としての傾斜面を上る方向に進むことを示す場合、複数の車輪10のうち車両Vの進行方向の前側に設けられた複数の前側車輪が、複数の車輪10のうち車両Vの進行方向の後側に設けられた複数の後側車輪よりも数多く駆動輪として駆動するように、駆動装置20を制御しうる(図4参照)。また、制御部201は、車両Vの走行状態が、車両Vが傾斜面を下る方向に進むという状態である場合、複数の後側車輪が複数の前側車輪よりも数多く駆動輪として駆動するように、駆動装置20を制御しうる(図5参照)。このような構成によれば、登坂時には、車両Vを前から引っ張る形で駆動力が発生するように前側車輪の方を数多く駆動輪とすることで、車両Vの挙動を安定化させながら、摩擦係数を適切に推定することができる。また、降坂時には、たとえば回生ブレーキをかけた際に車両Vを後ろから引っ張る形で制動力が発生するように後側車輪の方を数多く駆動輪とすることで、車両Vの挙動を安定化させながら、摩擦係数を適切に推定することができる。 More specifically, in the embodiment, when the detection result of the vehicle-mounted sensor indicates that the vehicle V advances in the direction of going up the inclined surface as the road surface, the traveling direction of the vehicle V among the plurality of wheels 10 The drive device 20 is driven so that the plurality of front wheels provided on the front side of the vehicle drive more as drive wheels than the plurality of rear wheels provided on the rear side in the traveling direction of the vehicle V among the plurality of wheels 10. It can be controlled (see FIG. 4). Further, the control unit 201 causes the plurality of rear wheels to be driven as more driving wheels than the plurality of front wheels when the traveling state of the vehicle V is such that the vehicle V advances in the direction of descending the inclined surface. , The drive device 20 can be controlled (see FIG. 5). According to such a configuration, when climbing a slope, a large number of front wheels are used as driving wheels so that a driving force is generated by pulling the vehicle V from the front, so that the behavior of the vehicle V is stabilized and friction is generated. The coefficient can be estimated appropriately. In addition, when descending a slope, the behavior of the vehicle V is stabilized by using a large number of rear wheels as driving wheels so that braking force is generated by pulling the vehicle V from behind, for example, when regenerative braking is applied. The coefficient of friction can be estimated appropriately.

また、実施形態において、制御部201は、車載センサの検出結果が、車両Vが旋回を行うことを示す場合、複数の車輪10のうち旋回の外側に設けられた複数の外側車輪が、複数の車輪10のうち旋回の内側に設けられた複数の内側車輪よりも数多く駆動輪として駆動するように、駆動装置20を制御しうる(図6および図7参照)。このような構成によれば、外側車輪に内側車輪よりも大きな駆動力を発生させることで、旋回の際の車両Vの挙動の安定化を図りながら、摩擦係数を適切に推定することができる。 Further, in the embodiment, when the detection result of the vehicle-mounted sensor indicates that the vehicle V makes a turn, the control unit 201 has a plurality of outer wheels provided outside the turn among the plurality of wheels 10. The drive device 20 can be controlled so that it is driven as more drive wheels than a plurality of inner wheels provided inside the turn among the wheels 10 (see FIGS. 6 and 7). According to such a configuration, by generating a driving force larger than that of the inner wheel on the outer wheel, the friction coefficient can be appropriately estimated while stabilizing the behavior of the vehicle V at the time of turning.

また、実施形態において、制御部201は、車載センサの検出結果が、車両Vが直進することを示す場合、複数の車輪10のうち車両Vの左右方向の一方側で進行方向に沿って設けられた複数の一方車輪のうち少なくとも2つが駆動輪として駆動するか、または、複数の車輪10のうち左右方向の他方側で進行方向に沿って設けられた複数の他方車輪のうち少なくとも2つが駆動輪として駆動するように、駆動装置20を制御しうる(図6および図7参照)。このような構成によれば、複数の一方車輪のうち少なくとも2つ、または、複数の他方車輪のうち少なくとも2つを駆動輪として駆動させることで、同じ位置(領域)の摩擦係数を2回推定し、摩擦係数の推定精度を高めることができる。 Further, in the embodiment, when the detection result of the vehicle-mounted sensor indicates that the vehicle V travels straight, the control unit 201 is provided on one side of the plurality of wheels 10 in the left-right direction of the vehicle V along the traveling direction. At least two of the plurality of one wheels are driven as driving wheels, or at least two of the plurality of wheels 10 are provided along the traveling direction on the other side in the left-right direction. The drive device 20 can be controlled so as to be driven as (see FIGS. 6 and 7). According to such a configuration, the friction coefficient at the same position (region) is estimated twice by driving at least two of the plurality of one wheels or at least two of the plurality of other wheels as driving wheels. However, the estimation accuracy of the friction coefficient can be improved.

この場合において、制御部201は、複数の一方車輪のうち少なくとも1つと、複数の他方車輪のうち少なくとも1つと、が駆動輪として駆動するように、駆動装置20を制御しうる(図6および図7参照)。そして、推定部203は、路面上における複数の一方車輪に対応した一方領域の摩擦係数としての第1の摩擦係数と、路面上における他方車輪に対応した他方領域の摩擦係数としての第2の摩擦係数と、を推定しうる。そして、制御部201は、第1の摩擦係数と第2の摩擦係数との大小関係に応じて、複数の一方車輪と複数の他方車輪とのうちいずれを数多く駆動輪として駆動させるかを決定しうる。このような構成によれば、たとえば、一方領域および他方領域のうち、駆動輪が一輪あたりに路面に伝達可能な駆動力が相対的に小さい滑りやすい方の領域に、駆動輪が一輪あたりに路面に伝達可能な駆動力が相対的に大きい滑りにくい方の領域よりも数多く駆動輪を配置することで、必要な駆動力を分散して確保しやすくすることができる。したがって、車両Vの挙動の安定化を図りながら、摩擦係数を適切に推定することができる。 In this case, the control unit 201 can control the drive device 20 so that at least one of the plurality of one wheels and at least one of the plurality of other wheels are driven as drive wheels (FIGS. 6 and 6). 7). Then, the estimation unit 203 has a first friction coefficient as a friction coefficient of one region corresponding to a plurality of one wheels on the road surface and a second friction as a friction coefficient of the other region corresponding to the other wheel on the road surface. The coefficient and can be estimated. Then, the control unit 201 determines which of the plurality of one wheels and the plurality of other wheels is driven as a large number of driving wheels according to the magnitude relationship between the first friction coefficient and the second friction coefficient. sell. According to such a configuration, for example, in one region and the other region, in the slippery region where the driving force that the driving wheels can transmit to the road surface per wheel is relatively small, the driving wheels are on the road surface per wheel. By arranging more driving wheels than in the non-slip area where the driving force that can be transmitted to the vehicle is relatively large, it is possible to disperse and secure the required driving force. Therefore, the coefficient of friction can be appropriately estimated while stabilizing the behavior of the vehicle V.

なお、実施形態において、路面状態推定装置200は、推定部203により推定された摩擦係数と閾値との比較結果に応じて、車両Vに設けられた通知部40を介して所定の通知を出力する出力部204をさらに備えている。このような構成によれば、車両Vの乗員に対して摩擦係数と閾値との比較結果に応じた通知を容易に出力することができる。 In the embodiment, the road surface condition estimation device 200 outputs a predetermined notification via the notification unit 40 provided in the vehicle V according to the comparison result between the friction coefficient estimated by the estimation unit 203 and the threshold value. It further includes an output unit 204. According to such a configuration, it is possible to easily output a notification according to the comparison result between the friction coefficient and the threshold value to the occupant of the vehicle V.

また、実施形態において、推定部203は、摩擦係数を、路面上における駆動輪に対応した領域の位置に関する位置情報と対応付けて記憶部203aに記憶する。このような構成によれば、路面の摩擦係数を位置ごとに細かく分けて把握することができる。 Further, in the embodiment, the estimation unit 203 stores the friction coefficient in the storage unit 203a in association with the position information regarding the position of the region corresponding to the drive wheel on the road surface. According to such a configuration, the coefficient of friction of the road surface can be grasped by dividing it into small parts for each position.

以上、本開示の実施形態を説明したが、上述した実施形態はあくまで一例であって、発明の範囲を限定することは意図していない。上述した新規な実施形態は、様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。上述した実施形態およびその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although the embodiments of the present disclosure have been described above, the above-described embodiments are merely examples and are not intended to limit the scope of the invention. The novel embodiment described above can be implemented in various forms, and various omissions, replacements, and changes can be made without departing from the gist of the invention. The above-described embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

10 車輪
10FL 前輪(車輪)
10FR 前輪(車輪)
10RL 後輪(車輪)
10RR 後輪(車輪)
20、20FL、20FR、20RL、20RR 駆動装置
31、31FL、31FR、31RL、31RR 車輪速センサ(車載センサ)
32 操舵センサ(車載センサ)
33 勾配センサ(車載センサ)
200 路面状態推定装置
201 制御部
202 取得部
203 推定部
203a 記憶部
204 出力部
V 車両
10 wheels 10FL front wheels (wheels)
10FR front wheel (wheel)
10RL rear wheel (wheel)
10RR rear wheel (wheel)
20, 20FL, 20FR, 20RL, 20RR Drive unit 31, 31FL, 31FR, 31RL, 31RR Wheel speed sensor (vehicle-mounted sensor)
32 Steering sensor (vehicle-mounted sensor)
33 Gradient sensor (vehicle-mounted sensor)
200 Road surface condition estimation device 201 Control unit 202 Acquisition unit 203 Estimating unit 203a Storage unit 204 Output unit V Vehicle

Claims (9)

路面を走行する車両に設けられた複数の車輪のうち一部が駆動輪として駆動し、前記複数の車輪のうち残りの一部が従動輪として従動するように、前記複数の車輪をそれぞれ独立に駆動可能な駆動装置を制御する制御部と、
前記複数の車輪の回転速度をそれぞれ検出する複数の車輪速センサの検出結果を取得する取得部と、
前記複数の車輪速センサのうち前記駆動輪の回転速度を検出する第1の車輪速センサの検出結果と、前記複数の車輪速センサのうち前記従動輪の回転速度を検出する第2の車輪速センサの検出結果と、に基づいて、前記駆動輪ごとにスリップ比を算出し、当該スリップ比に基づいて、前記路面上における前記駆動輪に対応した領域ごとに摩擦係数を推定する推定部と、
を備える、路面状態推定装置。
The plurality of wheels are independently driven so that a part of the plurality of wheels provided on the vehicle traveling on the road surface is driven as a driving wheel and the remaining part of the plurality of wheels is driven as a driven wheel. A control unit that controls a driveable drive unit and
An acquisition unit that acquires detection results of a plurality of wheel speed sensors that detect the rotation speeds of the plurality of wheels, respectively.
The detection result of the first wheel speed sensor that detects the rotation speed of the driving wheel among the plurality of wheel speed sensors, and the second wheel speed that detects the rotation speed of the driven wheel among the plurality of wheel speed sensors. An estimation unit that calculates the slip ratio for each drive wheel based on the detection result of the sensor and estimates the friction coefficient for each region corresponding to the drive wheel on the road surface based on the slip ratio.
A road surface condition estimation device.
前記推定部は、前記駆動輪および前記従動輪がそれぞれ複数存在する場合、前記第1の車輪速センサの検出結果に基づいて取得される複数の前記駆動輪の各々の回転速度と、前記第2の車輪速センサの検出結果に基づいて取得される複数の前記従動輪の回転速度の平均値と、に基づいて、前記駆動輪ごとに前記スリップ比を算出する、
請求項1に記載の路面状態推定装置。
When a plurality of the driving wheel and the driven wheel are present, the estimation unit includes the rotation speed of each of the plurality of driving wheels acquired based on the detection result of the first wheel speed sensor, and the second driving wheel. The slip ratio is calculated for each of the driving wheels based on the average value of the rotational speeds of the plurality of driven wheels acquired based on the detection result of the wheel speed sensor.
The road surface condition estimation device according to claim 1.
前記取得部は、前記複数の車輪の回転速度をそれぞれ検出する前記複数の車輪速センサを含む、前記車両の走行状態に関する情報を検出する車載センサの検出結果を取得し、
前記制御部は、前記車載センサの検出結果に応じて、前記駆動輪として駆動させる車輪と、前記従動輪として駆動させる車輪と、を決定する、
請求項1または2に記載の路面状態推定装置。
The acquisition unit acquires the detection result of an in-vehicle sensor that detects information on the running state of the vehicle, including the plurality of wheel speed sensors that detect the rotational speeds of the plurality of wheels.
The control unit determines a wheel to be driven as the driving wheel and a wheel to be driven as the driven wheel according to the detection result of the vehicle-mounted sensor.
The road surface condition estimation device according to claim 1 or 2.
前記制御部は、
前記車載センサの検出結果が、前記車両が前記路面としての傾斜面を上る方向に進むことを示す場合、前記複数の車輪のうち前記車両の進行方向の前側に設けられた複数の前側車輪が、前記複数の車輪のうち前記車両の前記進行方向の後側に設けられた複数の後側車輪よりも数多く前記駆動輪として駆動するように、前記駆動装置を制御し、
前記車両の走行状態が、前記車両が前記傾斜面を下る方向に進むという状態である場合、前記複数の後側車輪が前記複数の前側車輪よりも数多く前記駆動輪として駆動するように、前記駆動装置を制御する、
請求項3に記載の路面状態推定装置。
The control unit
When the detection result of the vehicle-mounted sensor indicates that the vehicle advances in the direction of going up the inclined surface as the road surface, the plurality of front wheels provided on the front side in the traveling direction of the vehicle among the plurality of wheels are used. The driving device is controlled so as to drive as the driving wheels more than the plurality of rear wheels provided on the rear side of the vehicle in the traveling direction among the plurality of wheels.
When the traveling state of the vehicle is a state in which the vehicle advances in the direction of descending the inclined surface, the driving is such that the plurality of rear wheels are driven as the driving wheels more than the plurality of front wheels. Control the device,
The road surface condition estimation device according to claim 3.
前記制御部は、前記車載センサの検出結果が、前記車両が旋回を行うことを示す場合、前記複数の車輪のうち前記旋回の外側に設けられた複数の外側車輪が、前記複数の車輪のうち前記旋回の内側に設けられた複数の内側車輪よりも数多く前記駆動輪として駆動するように、前記駆動装置を制御する、
請求項3または4に記載の路面状態推定装置。
When the detection result of the vehicle-mounted sensor indicates that the vehicle makes a turn, the control unit means that the plurality of outer wheels provided outside the turn are among the plurality of wheels. The drive device is controlled so that it is driven as the drive wheels more than the plurality of inner wheels provided inside the turn.
The road surface condition estimation device according to claim 3 or 4.
前記制御部は、前記車載センサの検出結果が、前記車両が直進することを示す場合、前記複数の車輪のうち前記車両の左右方向の一方側で進行方向に沿って設けられた複数の一方車輪のうち少なくとも2つが前記駆動輪として駆動するか、または、前記複数の車輪のうち前記左右方向の他方側で前記進行方向に沿って設けられた複数の他方車輪のうち少なくとも2つが前記駆動輪として駆動するように、前記駆動装置を制御する、
請求項3〜5のうちいずれか1項に記載の路面状態推定装置。
When the detection result of the vehicle-mounted sensor indicates that the vehicle is going straight, the control unit has a plurality of one wheels provided along the traveling direction on one side of the plurality of wheels in the left-right direction of the vehicle. At least two of them are driven as the driving wheels, or at least two of the other wheels provided along the traveling direction on the other side of the left and right directions are the driving wheels. Control the driving device to drive,
The road surface condition estimation device according to any one of claims 3 to 5.
前記制御部は、前記複数の一方車輪のうち少なくとも1つと、前記複数の他方車輪のうち少なくとも1つと、が前記駆動輪として駆動するように、前記駆動装置を制御し、
前記推定部は、前記路面上における前記複数の一方車輪に対応した一方領域の前記摩擦係数としての第1の摩擦係数と、前記路面上における前記他方車輪に対応した他方領域の前記摩擦係数としての第2の摩擦係数と、を推定し、
前記制御部は、前記第1の摩擦係数と前記第2の摩擦係数との大小関係に応じて、前記複数の一方車輪と前記複数の他方車輪とのうちいずれを数多く前記駆動輪として駆動させるかを決定する、
請求項6に記載の路面状態推定装置。
The control unit controls the drive device so that at least one of the plurality of one wheels and at least one of the plurality of other wheels are driven as the drive wheels.
The estimation unit serves as a first friction coefficient as the friction coefficient of one region corresponding to the plurality of one wheels on the road surface and as the friction coefficient of the other region corresponding to the other wheel on the road surface. Estimate the second coefficient of friction,
Which of the plurality of one wheels and the plurality of other wheels is driven as the driving wheels by the control unit according to the magnitude relationship between the first friction coefficient and the second friction coefficient. To decide,
The road surface condition estimation device according to claim 6.
前記推定部により推定された前記摩擦係数と閾値との比較結果に応じて、前記車両に設けられた通知部を介して所定の通知を出力する出力部をさらに備える、
請求項1〜7のうちいずれか1項に記載の路面状態推定装置。
An output unit that outputs a predetermined notification via a notification unit provided in the vehicle is further provided according to the comparison result between the friction coefficient and the threshold value estimated by the estimation unit.
The road surface condition estimation device according to any one of claims 1 to 7.
前記推定部は、前記摩擦係数を、前記路面上における前記駆動輪に対応した前記領域の位置に関する位置情報と対応付けて記憶部に記憶する、
請求項1〜8のうちいずれか1項に記載の路面状態推定装置。
The estimation unit stores the friction coefficient in the storage unit in association with position information regarding the position of the region corresponding to the drive wheel on the road surface.
The road surface condition estimation device according to any one of claims 1 to 8.
JP2019061172A 2019-03-27 2019-03-27 Road surface state estimation device Pending JP2020158001A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019061172A JP2020158001A (en) 2019-03-27 2019-03-27 Road surface state estimation device
CN202010161937.2A CN111746546A (en) 2019-03-27 2020-03-10 Road surface condition estimation device
US16/813,916 US20200307607A1 (en) 2019-03-27 2020-03-10 Road surface condition estimation device
EP20162448.3A EP3715205A3 (en) 2019-03-27 2020-03-11 Road surface condition estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019061172A JP2020158001A (en) 2019-03-27 2019-03-27 Road surface state estimation device

Publications (1)

Publication Number Publication Date
JP2020158001A true JP2020158001A (en) 2020-10-01

Family

ID=69960230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019061172A Pending JP2020158001A (en) 2019-03-27 2019-03-27 Road surface state estimation device

Country Status (4)

Country Link
US (1) US20200307607A1 (en)
EP (1) EP3715205A3 (en)
JP (1) JP2020158001A (en)
CN (1) CN111746546A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11505176B2 (en) * 2020-06-30 2022-11-22 Rivian Ip Holdings, Llc Systems and methods for controlling torque induced yaw in a vehicle
CN113788022B (en) * 2020-11-19 2023-08-11 北京京东乾石科技有限公司 Vehicle control method, device, computer readable storage medium and electronic equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004120821A (en) * 2002-09-24 2004-04-15 Japan Science & Technology Corp Driving-gear of electric automobile
JP2005007972A (en) * 2003-06-17 2005-01-13 Honda Motor Co Ltd Method for estimating road surface friction coefficient
JP2009177991A (en) * 2008-01-28 2009-08-06 Honda Motor Co Ltd Device for controlling drive forces of a plurality of driving sources
JP2011063106A (en) * 2009-09-16 2011-03-31 Toyota Motor Corp Vehicle controller and vehicle control method
JP2012228163A (en) * 2012-02-15 2012-11-15 Pioneer Electronic Corp Torque distribution device and torque distribution method
JP2017038470A (en) * 2015-08-10 2017-02-16 三菱自動車工業株式会社 Electric automobile brake control apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050038589A1 (en) * 2003-08-14 2005-02-17 Deepak Shukla Method for estimating a friction coefficient
JP5103066B2 (en) * 2007-06-21 2012-12-19 富士重工業株式会社 Vehicle road surface state estimating device
EP2295301A4 (en) * 2008-06-30 2014-07-09 Nissan Motor Road surface friction coefficient estimating device and road surface friction coefficient estimating method
US8707756B2 (en) * 2008-10-29 2014-04-29 Nissan Motor Co., Ltd. Device and method for estimating frictional condition of ground surface with which vehicle is in contact
JP5824406B2 (en) * 2012-04-20 2015-11-25 日立建機株式会社 Electric drive vehicle
DE102013226997A1 (en) * 2013-12-20 2015-06-25 Robert Bosch Gmbh Device and method for determining a coefficient of friction representing the coefficient of friction of a carriageway traveled by a motor vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004120821A (en) * 2002-09-24 2004-04-15 Japan Science & Technology Corp Driving-gear of electric automobile
JP2005007972A (en) * 2003-06-17 2005-01-13 Honda Motor Co Ltd Method for estimating road surface friction coefficient
JP2009177991A (en) * 2008-01-28 2009-08-06 Honda Motor Co Ltd Device for controlling drive forces of a plurality of driving sources
JP2011063106A (en) * 2009-09-16 2011-03-31 Toyota Motor Corp Vehicle controller and vehicle control method
JP2012228163A (en) * 2012-02-15 2012-11-15 Pioneer Electronic Corp Torque distribution device and torque distribution method
JP2017038470A (en) * 2015-08-10 2017-02-16 三菱自動車工業株式会社 Electric automobile brake control apparatus

Also Published As

Publication number Publication date
US20200307607A1 (en) 2020-10-01
CN111746546A (en) 2020-10-09
EP3715205A2 (en) 2020-09-30
EP3715205A3 (en) 2020-10-21

Similar Documents

Publication Publication Date Title
US10486547B2 (en) Device and method for controlling electric vehicle with torque command and vibration suppression control
JP6244027B2 (en) Tire classification
US8200408B2 (en) System and method for active traction control of a vehicle
JP6502074B2 (en) Vehicle braking / driving force control device
JP6779379B2 (en) Vehicle control unit
JPH10295004A (en) Drive and control equipment for electric vehicle
EP3715205A2 (en) Road surface condition estimation device
JP4950052B2 (en) Method and apparatus for controlling the lock level of an electronically controllable differential lock mechanism
JP2005207953A (en) Road surface friction coefficient detector
WO2019074088A1 (en) Operation control device for tractor vehicle
JP2007124832A (en) Drive force controller of electric vehicle
JP2005168184A (en) Determing system of degradation in motor performance of vehicle driven by motor
JP3039071B2 (en) Vehicle turning limit judgment device
JP6788424B2 (en) Vehicle braking force control device
US10723357B2 (en) Traction control system and control method thereof
JP2005255035A (en) Behavior control device for vehicle
JP2016190607A (en) Control apparatus of vehicle
JP2006341673A (en) Vehicle for stabilizing control of vehicle load rate distribution and steering performance
WO2018235929A1 (en) Travel control device
JP4238707B2 (en) Driving force control device for electric motor driven vehicle
JP2006182173A (en) Lane deviation prevention device
KR102025493B1 (en) Apparatus for electronic limited slip differential of vehicle and control method thereof
CN110281911B (en) Vehicle stability control device
JP2008247248A (en) Vehicular steering device
JP2005067597A (en) Vehicle dynamics control system and its adjusting method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20190425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220307

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230704