JP2020155657A - Method for manufacturing r-t-b based sintered magnet - Google Patents

Method for manufacturing r-t-b based sintered magnet Download PDF

Info

Publication number
JP2020155657A
JP2020155657A JP2019054079A JP2019054079A JP2020155657A JP 2020155657 A JP2020155657 A JP 2020155657A JP 2019054079 A JP2019054079 A JP 2019054079A JP 2019054079 A JP2019054079 A JP 2019054079A JP 2020155657 A JP2020155657 A JP 2020155657A
Authority
JP
Japan
Prior art keywords
based sintered
alloy
sintered body
mol
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019054079A
Other languages
Japanese (ja)
Other versions
JP7228096B2 (en
Inventor
西内 武司
Takeshi Nishiuchi
武司 西内
宣介 野澤
Sensuke Nozawa
宣介 野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2019054079A priority Critical patent/JP7228096B2/en
Publication of JP2020155657A publication Critical patent/JP2020155657A/en
Priority to JP2023010682A priority patent/JP2023052675A/en
Application granted granted Critical
Publication of JP7228096B2 publication Critical patent/JP7228096B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Abstract

To provide a method for manufacturing an R-T-B based sintered magnet having high Br and high HcJ, which enables the decrease in heavy rare earth element.SOLUTION: A method for manufacturing an R-T-B based sintered magnet comprises the steps of: preparing an R1-T1-B based sintered body; preparing an R2-Ga-Cu based alloy; and performing a thermal treatment with a part of the R2-Ga-Cu based alloy put in contact with at least a part of the surface of the R1-T1-B based sintered body at a temperature of 450°C to 500°C in vacuum or inert gas atmosphere. In the R1-T1-B based sintered body, the molar ratio of T1 to B is over 14.0 and equal to or smaller than 15.0. With the R2-Ga-Cu based alloy, R2 is a rare earth element and includes La, and the R2 content is 70 to 90 mol% to a quantity of the R2-Ga-Cu based alloy; the ratio of La to the rare earth element is higher than the ratio of La to the rare earth element of the R1-T1-B based sintered body; a Ga content is 5 to 20 mol% to a whole quantity of the R2-Ga-Cu based alloy, and a Cu content is 5 to 20 mol% to the whole quantity of the R2-Ga-Cu based alloy.SELECTED DRAWING: Figure 1

Description

本発明は、R−T−B系焼結磁石の製造方法に関する。 The present invention relates to a method for manufacturing an RTB-based sintered magnet.

R−T−B系焼結磁石(Rは希土類元素のうち少なくとも一種である。Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む。Bは硼素である)は永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品などに使用されている。本明細書において希土類元素とは、スカンジウム(Sc)、イットリウム(Y)、およびランタノイドからなる群から選択された少なくとも1つの元素をいう。ここで、ランタノイドとは、ランタンからルテチウムまでの15の元素の総称である。 R-TB-based sintered magnets (R is at least one of the rare earth elements, T is at least one of the transition metal elements and always contains Fe, and B is boron) are the most permanent magnets. Known as a high-performance magnet, it is used in various motors such as voice coil motors (VCM) for hard disk drives, motors for electric vehicles (EV, HV, PHV, etc.), motors for industrial equipment, and home appliances. .. As used herein, the rare earth element means at least one element selected from the group consisting of scandium (Sc), yttrium (Y), and lanthanoids. Here, lanthanoid is a general term for 15 elements from lanthanum to lutetium.

R−T−B系焼結磁石は主としてR14B化合物からなる主相とこの主相の粒界部分に位置する粒界相(以下、単に「粒界」という場合がある)とから構成されている。R14B化合物は高い磁化を持つ強磁性相でありR−T−B系焼結磁石の特性の根幹をなしている。 R-T-B based sintered magnet is mainly grain boundary phase located in the grain boundary of the main phase and the main phase consisting of R 2 T 14 B compound (hereinafter, simply referred to as "grain boundary") from the It is configured. R 2 T 14 B compound has the foundation characteristics of high magnetization are ferromagnetic phase with an R-T-B based sintered magnet.

R−T−B系焼結磁石は、高温で保磁力HcJ(以下、単に「保磁力」又は「HcJ」という場合がある)が低下するため不可逆熱減磁が起こるという問題がある。そのため、特に電気自動車用モータに使用されるR−T−B系焼結磁石では、高温下でも高いHcJを有する、すなわち室温においてより高いHcJを有することが要求されている。 The RTB -based sintered magnet has a problem that irreversible thermal demagnetization occurs because the coercive force H cJ (hereinafter, may be simply referred to as “coercive force” or “H cJ ”) decreases at a high temperature. Therefore, in a particularly R-T-B based sintered magnet used in an electric vehicle motor, having a high H cJ even at high temperatures, that is, required to have a higher H cJ at room temperature.

R−T−B系焼結磁石において、R14B化合物中のRに含まれる軽希土類元素(主としてNd及び/又はPr)の一部を重希土類元素(主としてDy及び/又はTb)で置換すると、HcJが向上することが知られている。重希土類元素の置換量の増加に伴いHcJは向上する。 In the RTB-based sintered magnet, a part of the light rare earth elements (mainly Nd and / or Pr) contained in R in the R 2 T 14 B compound is a heavy rare earth element (mainly Dy and / or Tb). Substitution is known to improve H cJ . H cJ improves as the amount of replacement of heavy rare earth elements increases.

しかし、R14B化合物中の軽希土類元素を重希土類元素で置換するとR−T−B系焼結磁石のHcJが向上する一方、残留磁束密度B(以下、単に「B」という場合がある)が低下する。また、重希土類元素、特にDyなどは資源存在量が少ないうえ産出地が限定されているなどの理由から供給が安定しておらず、価格が大きく変動するなどの問題を有している。そのため、近年、ユーザーから重希土類元素をできるだけ使用することなくHcJを向上させることが求められている。 However, while improving the H cJ of R 2 T 14 B when the light rare earth element in the compound is replaced with the heavy rare-earth element R-T-B based sintered magnet, the remanence B r (hereinafter, simply "B r" In some cases) decreases. In addition, heavy rare earth elements, especially Dy, have problems such as unstable supply due to a small amount of resources present and limited production areas, and prices fluctuate significantly. Therefore, in recent years, users have requested to improve HcJ without using heavy rare earth elements as much as possible.

特許文献1には、Dyの含有量を低減しつつ保磁力を高めたR−T−B系希土類焼結磁石が開示されている。この焼結磁石の組成は、一般に用いられてきたR−T−B系合金に比べてB量が相対的に少ない特定の範囲に限定され、かつ、Al、Ga、Cuのうちから選ばれる1種以上の金属元素Mを含有している。その結果、粒界にR17相が生成され、このR17相から粒界に形成される遷移金属リッチ相(R13M)の体積比率が増加することにより、HcJが向上する。 Patent Document 1 discloses an RTB-based rare earth sintered magnet in which the coercive force is increased while reducing the Dy content. The composition of this sintered magnet is limited to a specific range in which the amount of B is relatively small as compared with the generally used RTB-based alloy, and is selected from Al, Ga, and Cu1. It contains more than one kind of metal element M. As a result, an R 2 T 17 phase is generated at the grain boundary, and the volume ratio of the transition metal rich phase (R 6 T 13 M) formed at the grain boundary from this R 2 T 17 phase increases, so that H cJ Is improved.

国際公開第2013/008756号International Publication No. 2013/0087756

特許文献1に記載されている方法は、重希土類元素の含有量を抑制しつつR−T−B系焼結磁石を高保磁力化できる点で注目に値する。しかし、Bが大幅に低下するという問題があった。また、近年、電気自動車用モータ等の用途において更に高いHcJを有するR−T−B系焼結磁石が求められている。また、R−T−B系焼結磁石は、特に電気自動車用モータ向けなどで需要が今後大きく拡大することが予想されている。そのため、重希土類元素の低減だけでなく、希土類元素使用の多様化もはかる必要がある。具体的な手段として希土類元素の中で存在量が比較的豊富なLa(ほかにCe)などを使用することが挙げられる。 It is noteworthy that the method described in Patent Document 1 can increase the coercive magnetic force of the RTB-based sintered magnet while suppressing the content of heavy rare earth elements. However, there is a problem that Br is significantly reduced. Further, in recent years, RTB -based sintered magnets having a higher HcJ have been demanded for applications such as motors for electric vehicles. Demand for RTB-based sintered magnets is expected to grow significantly in the future, especially for motors for electric vehicles. Therefore, it is necessary not only to reduce heavy rare earth elements but also to diversify the use of rare earth elements. As a specific means, La (in addition to Ce), which is relatively abundant among rare earth elements, may be used.

本開示の実施形態は、Laを使用し、重希土類元素の含有量を低減しつつ、高いB及び高いHcJを有するR−T−B系焼結磁石の製造方法を提供する。 Embodiments of the present disclosure, using La, while reducing the content of heavy rare earth elements, to provide a method of manufacturing a R-T-B based sintered magnet having a high B r and a high H cJ.

本開示のR−T−B系焼結磁石の製造方法は、例示的な実施形態において、R1−T1−B系焼結体を準備する工程と、R2−Ga−Cu系合金を準備する工程と、前記R1−T1−B系焼結体の表面の少なくとも一部に、前記R2−Ga−Cu系合金の少なくとも一部を接触させ、真空又は不活性ガス雰囲気中、450℃以上500℃以下の温度で熱処理を実施する工程を含み、前記R1−T1−B系焼結体において、R1は希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含み、R1の含有量は、R1−T1−B系焼結体全体の27mass%以上35mass%以下であり、T1はFe又はCo、Al、Mn、Siの少なくとも1つとFeであり、T1全体に対するFeの含有量が80mass%以上であり、Bに対するT1のmol比([T1]/[B])が14.0超15.0以下であり、前記R2−Ga−Cu系合金において、R2は希土類元素のうち少なくとも一種であり、Laを必ず含み、R2の含有量は、R2−Ga−Cu系合金全体の70mol%以上90mol%以下であり、かつ、希土類元素全体に対するLaの比率が、R1−T1―B系焼結体の希土類元素全体に対するLaの比率よりも高く、Gaの含有量は、R2−Ga−Cu系合金全体の5mol%以上20mol%以下であり、Cuの含有量は、R2−Ga−Cu系合金全体の5mol%以上20mol%以下である。 The method for producing an R-TB-based sintered magnet of the present disclosure is a step of preparing an R1-T1-B-based sintered body and a step of preparing an R2-Ga-Cu-based alloy in an exemplary embodiment. And, at least a part of the R2-Ga-Cu alloy is brought into contact with at least a part of the surface of the R1-T1-B-based sintered body, and in a vacuum or an inert gas atmosphere, 450 ° C. or more and 500 ° C. or less In the R1-T1-B-based sintered body, R1 is at least one of rare earth elements, and always contains at least one of Nd and Pr, and the content of R1 is determined by the above-mentioned step of performing heat treatment at the above temperature. It is 27 mass% or more and 35 mass% or less of the whole R1-T1-B-based sintered body, T1 is Fe or at least one of Co, Al, Mn, and Si and Fe, and the content of Fe with respect to the whole T1 is 80 mass% or more. The mol ratio of T1 to B ([T1] / [B]) is more than 14.0 and 15.0 or less, and in the R2-Ga—Cu alloy, R2 is at least one of the rare earth elements. , La is always contained, the content of R2 is 70 mol% or more and 90 mol% or less of the whole R2-Ga-Cu alloy, and the ratio of La to the whole rare earth element is R1-T1-B-based sintered body. The content of Ga is 5 mol% or more and 20 mol% or less of the whole R2-Ga-Cu alloy, and the content of Cu is the whole R2-Ga-Cu alloy, which is higher than the ratio of La to the whole rare earth element. 5 mol% or more and 20 mol% or less.

ある実施形態において、前記R2−Ga−Cu系合金中のLaがR2全体の50mol%以上である。 In a certain embodiment, La in the R2-Ga—Cu based alloy is 50 mol% or more of the total amount of R2.

ある実施形態において、前記R2−Ga−Cu系合金中のR2はLaである(不純物は含む)。 In certain embodiments, R2 in the R2-Ga—Cu based alloy is La (including impurities).

ある実施形態において、前記R2−Ga−Cu系合金におけるR2、Ga,Cuの合計の含有量が80mass%以上である。 In a certain embodiment, the total content of R2, Ga, and Cu in the R2-Ga—Cu based alloy is 80 mass% or more.

ある実施形態において、前記R1−T1−B系焼結体を準備する工程は、原料合金を粒径D50が3μm以上10μm以下になるように粉砕した後、磁界中で配向させて焼結を行うことを含む。 In a certain embodiment, in the step of preparing the R1-T1-B-based sintered body, the raw material alloy is pulverized so that the particle size D 50 is 3 μm or more and 10 μm or less, and then oriented in a magnetic field for sintering. Including doing.

本開示の実施形態によると、Laを使用し、重希土類元素の含有量を低減しつつ、高いB及び高いHcJを有するR−T−B系焼結磁石の製造方法を提供することができる。 According to embodiments of the present disclosure, it is possible to use La, while reducing the content of heavy rare earth elements, to provide a method of manufacturing a R-T-B based sintered magnet having a high B r and a high H cJ it can.

本開示によるR−T−B系焼結磁石の製造方法における工程の例を示すフローチャートである。It is a flowchart which shows the example of the process in the manufacturing method of the RTB system sintered magnet by this disclosure. R−T−B系焼結磁石の主相と粒界相を示す模式図である。It is a schematic diagram which shows the main phase and the grain boundary phase of the RTB type sintered magnet. 図2Aの破線矩形領域内を更に拡大した模式図である。It is a schematic diagram which further enlarged the inside of the broken line rectangular area of FIG. 2A. 熱処理工程におけるR1−T1−B系焼結体とR2−Ga−Cu系合金との配置形態の例を模式的に示す説明図であるIt is explanatory drawing which shows typically the example of the arrangement form of the R1-T1-B-based sintered body and the R2-Ga-Cu-based alloy in the heat treatment step. No.1−4(本発明例)の焼結体表面近傍の断面を走査電子顕微鏡で観察した写真である。No. It is a photograph which observed the cross section near the surface of the sintered body of 1-4 (example of this invention) with a scanning electron microscope. No.1−4(本発明例)の表面から800μm領域の断面を走査電子顕微鏡で観察した写真である。No. It is a photograph which observed the cross section of 800 μm region from the surface of 1-4 (example of this invention) with a scanning electron microscope. No.1−4(本発明例)の中心部の断面を走査電子顕微鏡で観察した写真である。No. It is a photograph which observed the cross section of the central part of 1-4 (example of this invention) with a scanning electron microscope. No.1−4(本発明例)の焼結体表面近傍の断面をEDX分析した結果を示す図である。No. It is a figure which shows the result of EDX analysis of the cross section near the surface of the sintered body of 1-4 (example of this invention). No.1−4(本発明例)の表面から800μm領域の断面をEDX分析した結果を示す図である。No. It is a figure which shows the result of EDX analysis of the cross section of the region of 800 μm from the surface of 1-4 (example of this invention). No.1−4(本発明例)の中心部の断面をEDX分析した結果を示す図である。No. It is a figure which shows the result of EDX analysis of the cross section of the central part of 1-4 (example of this invention).

本開示において、希土類元素を総称して「R」と表記する場合がある。希土類元素Rのうちの特定の元素または元素群を指すとき、例えば「R1」及び「R2」の符号を用いて他の希土類元素から区別する。また、本開示において、Feを含む遷移金属元素の全体を「T」と表記する。遷移金属元素Tのうちの特定の元素または元素群及び主相のFeサイトと容易に置換される遷移金属元素以外の特定の元素または元素群の両方を含むとき、「T1」の符号を用いて他の遷移金属元素から区別する。 In the present disclosure, rare earth elements may be collectively referred to as "R". When referring to a specific element or group of elements in the rare earth element R, for example, the symbols "R1" and "R2" are used to distinguish it from other rare earth elements. Further, in the present disclosure, the entire transition metal element including Fe is referred to as "T". When both a specific element or element group of the transition metal element T and a specific element or element group other than the transition metal element that is easily replaced with the Fe site of the main phase are included, the reference numeral "T1" is used. Distinguish from other transition metal elements.

本開示によるR−T−B系焼結磁石の製造方法は、図1に示すように、R1−T1−B系焼結体を準備する工程S10と、R2−Ga−Cu系合金を準備する工程S20とを含む。R1−T1−B系焼結体を準備する工程S10と、R2−Ga−Cu系合金を準備する工程S20との順序は任意であり、それぞれ、異なる場所で製造されたR1−T1−B系焼結体及びR2−Ga−Cu系合金を用いてもよい。 As shown in FIG. 1, the method for producing an R-TB-based sintered magnet according to the present disclosure includes a step S10 for preparing an R1-T1-B-based sintered body and an R2-Ga-Cu-based alloy. Includes step S20. The order of the step S10 for preparing the R1-T1-B-based sintered body and the step S20 for preparing the R2-Ga-Cu-based alloy is arbitrary, and the R1-T1-B-based alloys are manufactured at different locations. A sintered body and an R2-Ga—Cu based alloy may be used.

本開示において、熱処理前及び熱処理中のR−T−B系焼結磁石をR1−T1−B系焼結体と称し、熱処理後のR1−T1−B系焼結体を単にR−T−B系焼結磁石と称する。 In the present disclosure, the R-TB-based sintered magnet before and during the heat treatment is referred to as an R1-T1-B-based sintered body, and the R1-T1-B-based sintered body after the heat treatment is simply RT-. It is called a B-based sintered magnet.

R1−T1−B系焼結体においては、下記(1)〜(3)が成立している。
(1)R1は希土類元素のうち少なくとも一種でありNd及びPrの少なくとも一方を必ず含み、R1の含有量は、R1−T1−B系焼結体全体の27mass%以上35mass%以下である。
(2)T1はFe又はCo、Al、Mn、Siの少なくとも1つとFeであり、T1全体に対するFeの含有量が80mass%以上である。
(3)Bに対するT1のmol比([T1]/[B])が14.0超15.0以下である。
In the R1-T1-B-based sintered body, the following (1) to (3) are established.
(1) R1 is at least one of rare earth elements and always contains at least one of Nd and Pr, and the content of R1 is 27 mass% or more and 35 mass% or less of the entire R1-T1-B-based sintered body.
(2) T1 is Fe or at least one of Co, Al, Mn, and Si and Fe, and the content of Fe with respect to the whole T1 is 80 mass% or more.
(3) The mol ratio of T1 to B ([T1] / [B]) is more than 14.0 and 15.0 or less.

本開示におけるBに対するT1のmol比([T1]/[B])とは、T1を構成する各元素(Fe又はCo、Al、Mn、Siの少なくとも1つとFe)の分析値(mass%)をそれぞれの元素の原子量で除したものを求め、それらの値を合計したもの(a)と、Bの分析値(mass%)をBの原子量で除したもの(b)との比(a/b)である。 The mol ratio of T1 to B ([T1] / [B]) in the present disclosure is an analytical value (mass%) of each element (Fe or at least one of Co, Al, Mn, Si and Fe) constituting T1. Was divided by the atomic weight of each element, and the ratio (a /) of the sum of those values (a) and the analytical value of B (mass%) divided by the atomic weight of B (b). b).

Bに対するT1のmol比([T1]/[B])が14.0を超えるということは、Bの含有比率がR14B化合物の化学量論組成比よりも低いことを意味している。言い換えると、R1−T1−B系焼結体において、主相(R14B化合物)の形成に使われるT1の量に対して相対的にB量が少ない。 Mol ratio of T1 for B ([T1] / [B ]) that is greater than 14.0, the content ratio of B is meant that less than the stoichiometric composition ratio of R 2 T 14 B compound There is. In other words, the R1-T1-B based sintered body, relative B amount relative to the amount of T1 to be used in the formation of the main phase (R 2 T 14 B compound) is small.

R2−Ga−Cu系合金においては、以下の(4)〜(6)が成立している。
(4)R2は希土類元素のうち少なくとも一種であり、Laを必ず含み、R2の含有量は、R2−Ga−Cu系合金全体の70mol%以上90mol%以下であり、かつ、希土類元素全体に対するLaの比率が、R1−T1―B系焼結体の希土類元素全体に対するLaの比率よりも高い。
(5)Gaの含有量は、R2−Ga−Cu系合金全体の5mol%以上20mol%以下である。
(6)Cuの含有量は、R2−Ga−Cu系合金全体の5mol%以上20mol%以下である。
In the R2-Ga—Cu based alloy, the following (4) to (6) are established.
(4) R2 is at least one of rare earth elements and always contains La, and the content of R2 is 70 mol% or more and 90 mol% or less of the whole R2-Ga—Cu based alloy, and La with respect to the whole rare earth element. Is higher than the ratio of La to the total rare earth elements of the R1-T1-B based sintered body.
(5) The Ga content is 5 mol% or more and 20 mol% or less of the entire R2-Ga—Cu based alloy.
(6) The Cu content is 5 mol% or more and 20 mol% or less of the entire R2-Ga—Cu based alloy.

本開示によるR−T−B系焼結磁石の製造方法は、主相(R14B化合物)形成に使われるTの量に対して化学量論比で相対的にB量が少ないR1−T1−B系焼結体の表面の少なくとも一部にR2−Ga−Cu系合金を接触させ、図1に示すように、真空又は不活性ガス雰囲気中、450℃以上500℃以下の温度で熱処理を実施する工程S30を行う。これにより、高いB及び高いHcJを有するR−T−B系焼結磁石を得ることが出来る。 Method for producing R-T-B based sintered magnet according to the present disclosure, the main phase (R 2 T 14 B compound) relatively B amount in stoichiometric ratio to the amount of T used for forming a small R1 An R2-Ga—Cu alloy is brought into contact with at least a part of the surface of the −T1-B-based sintered body, and as shown in FIG. 1, at a temperature of 450 ° C. or higher and 500 ° C. or lower in a vacuum or an inert gas atmosphere. The step S30 for carrying out the heat treatment is performed. Thus, it is possible to obtain the R-T-B based sintered magnet having a high B r and a high H cJ.

まず、R−T−B系焼結磁石の基本構造を説明する。 First, the basic structure of the RTB-based sintered magnet will be described.

R−T−B系焼結磁石は、原料合金の粉末粒子が焼結によって結合した構造を有しており、主としてR14B化合物からなる主相と、この主相の粒界部分に位置する粒界相とから構成されている。 R-T-B based sintered magnet, the powder particles of the raw material alloy has a structure bonded by sintering, mainly a main phase consisting of R 2 T 14 B compound, the grain boundary portion of the main phase It is composed of the positioned grain boundary phase.

図2Aは、R−T−B系焼結磁石の主相と粒界相を示す模式図であり、図2Bは図2Aの破線矩形領域内を更に拡大した模式図である。図2Aには、一例として長さ5μmの矢印が大きさを示す基準の長さとして参考のために記載されている。図2A及び図2Bに示されるように、R−T−B系焼結磁石は、主としてR14B化合物からなる主相12と、主相12の粒界部分に位置する粒界相14とから構成されている。また、粒界相14は、図2Bに示されるように、2つのR14B化合物粒子(グレイン)が隣接する二粒子粒界相14aと、3つ以上のR14B化合物粒子が隣接する粒界三重点14bとを含む。 FIG. 2A is a schematic view showing the main phase and the grain boundary phase of the RTB-based sintered magnet, and FIG. 2B is a schematic view further enlarging the inside of the broken line rectangular region of FIG. 2A. In FIG. 2A, as an example, an arrow having a length of 5 μm is shown for reference as a reference length indicating the size. As shown in FIGS. 2A and 2B, R-T-B based sintered magnet includes a main phase 12 mainly composed of R 2 T 14 B compound, the grain boundary phase located grain boundary of the main phase 12 14 It is composed of and. Further, as shown in FIG. 2B, the grain boundary phase 14 is a two-particle grain boundary phase 14a in which two R 2 T 14 B compound particles (grains) are adjacent to each other, and three or more R 2 T 14 B compound particles. Includes adjacent grain boundary triple points 14b.

主相12であるR14B化合物は高い飽和磁化と異方性磁界を持つ強磁性相である。したがって、R−T−B系焼結磁石では、主相12であるR14B化合物の存在比率を高めることによってBを向上させることができる。R14B化合物の存在比率を高めるためには、原料合金中のR量、T量、B量を、R14B化合物の化学量論比(R量:T量:B量=2:14:1)に近づければよい。R14B化合物を形成するためのB量又はR量が化学量論比を下回ると、一般的には、粒界相14にFe相又はR17相等の強磁性体が生成し、HcJが急激に低下する。しかし、特許文献1に記載されている方法のように、B量をR14B化合物の化学量論比よりも少なくし、且つ、Al、Ga、Cuのうちから選ばれる1種以上の金属元素Mを含有させると、R17相から粒界に遷移金属リッチ相(例えばR−T−Ga相)が生成されて高いHcJを得ることできる。しかし、特許文献1に記載されている方法では、Bが大幅に低下してしまう。 The R 2 T 14 B compound, which is the main phase 12, is a ferromagnetic phase having a high saturation magnetization and an anisotropic magnetic field. Therefore, in the R-T-B based sintered magnet, it is possible to improve the B r by increasing the existence ratio of R 2 T 14 B compound is the main phase 12. In order to increase the abundance ratio of the R 2 T 14 B compound, the R amount, T amount, and B amount in the raw material alloy are changed to the stoichiometric ratio of the R 2 T 14 B compound (R amount: T amount: B amount = It should be close to 2:14: 1). When the amount of B or R for forming the R 2 T 14 B compound is less than the stoichiometric ratio, generally, a ferromagnet such as Fe phase or R 2 T 17 phase is generated in the grain boundary phase 14. , H cJ drops sharply. However, as in the method described in Patent Document 1, the B amount is less than the stoichiometric ratio of R 2 T 14 B compound, and, Al, Ga, of one or more selected among Cu When the metal element M is contained, a transition metal rich phase (for example, R-T-Ga phase) is generated from the R 2 T 17 phase to the grain boundary, and a high H cJ can be obtained. However, with the method described in Patent Document 1, Br is significantly reduced.

本開示のR−T−B系焼結磁石の製造方法は、低B組成である特定の組成を有するR1−T1−B系焼結体の表面の少なくとも一部に、希土類元素の中でも存在量が比較的豊富なLaをR2として含有するR2−Ga−Cu系合金を接触させて熱処理を行うことで、Laを含むR2とGa及びCuを磁石内部に拡散させている。発明者らは検討の結果、R2−Ga−Cu系合金におけるR2の含有量は、希土類元素全体に対するLaの比率が、R1−T1−B系焼結磁石体の希土類元素全体に対するLaの比率よりも高くする。そして、このような比率でR2中にLaを存在させたうえで、非常に狭い特定の温度(450℃以上500℃以下)で熱処理を行うと粒界拡散が促進されて、Gaを含む厚い二粒子粒界を焼結体の内部にまで容易に形成させることができることがわかった。これによりLaを使用し、重希土類元素の含有量を低減しつつ、高いBと高いHcJを得ることができる。また、Laと同じく希土類元素の中で存在量が比較的豊富なCeの場合は、本開示と同様な効果(高いBと高いHcJ)を実現することが困難であることも分かった。すなわち、本開示は、Laを含むR2とGa及びCuを含む合金を非常に狭い特定の温度で熱処理を行い上記特定組成の焼結体へ拡散させることで、高いBと高いHcJを実現できることを見出したものである。 The method for producing an R-TB-based sintered magnet of the present disclosure has an abundance among rare earth elements on at least a part of the surface of an R1-T1-B-based sintered body having a specific composition having a low B composition. By contacting an R2-Ga—Cu alloy containing a relatively abundant La as R2 and performing heat treatment, R2 containing La, Ga and Cu are diffused inside the magnet. As a result of examination by the inventors, the content of R2 in the R2-Ga-Cu alloy is such that the ratio of La to the whole rare earth element is higher than the ratio of La to the whole rare earth element of the R1-T1-B-based sintered magnet body. Also raise. Then, when La is present in R2 at such a ratio and heat treatment is performed at a very narrow specific temperature (450 ° C. or higher and 500 ° C. or lower), grain boundary diffusion is promoted and a thick second containing Ga is contained. It was found that the grain boundaries can be easily formed even inside the sintered body. Thus using La, while reducing the content of heavy rare earth elements, it is possible to obtain a high B r and high H cJ. In the case of relatively rich Ce is abundance in the same rare earth elements and La, also it has been found that it is difficult to realize the present disclosure similar effect (high B r and high H cJ). That is, the present disclosure is that to diffuse into the sintered body of the specific composition subjected to heat treatment the alloy containing R2 and Ga and Cu containing La in a very narrow specific temperature, realizing a high B r and high H cJ I found out what I could do.

(R1−T1−B系焼結体を準備する工程)
まず、R1−T1−B系焼結体(以下、単に「焼結体」という場合がある)を準備する工程における焼結体の組成を説明する。
(Step of preparing R1-T1-B-based sintered body)
First, the composition of the sintered body in the step of preparing the R1-T1-B-based sintered body (hereinafter, may be simply referred to as “sintered body”) will be described.

R1は希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含む。R1−T1−B系焼結体のHcJを向上させるために、一般的に用いられるDy、Tb、Gd、Hoなどの重希土類元素を少量含有してもよい。ただし、本開示による製造方法によれば、重希土類元素を多量に用いずとも十分に高いHcJを得ることができる。そのため、前記重希土類元素の含有量は、R1−T1−B系焼結体の1mass%以下であることが好ましく、0.5mass%以下であることがより好ましく、含有しない(実質的に0mass%)ことがさらに好ましい。 R1 is at least one of rare earth elements and always contains at least one of Nd and Pr. In order to improve the HcJ of the R1-T1-B-based sintered body, a small amount of commonly used heavy rare earth elements such as Dy, Tb, Gd, and Ho may be contained. However, according to the production method according to the present disclosure, a sufficiently high HcJ can be obtained without using a large amount of heavy rare earth elements. Therefore, the content of the heavy rare earth element is preferably 1 mass% or less, more preferably 0.5 mass% or less, and not contained (substantially 0 mass%) of the R1-T1-B-based sintered body. ) Is even more preferable.

R1の含有量は、R1−T1−B系焼結体全体の27mass%以上35mass%以下である。R1の含有量が27mass%未満では焼結過程で液相が十分に生成せず、R1−T1−B系焼結体を十分に緻密化することが困難になる。一方、R1の含有量が35mass%を超えても本開示の効果を得ることはできるが、R1−T1−B系焼結体の製造工程中における合金粉末が非常に活性になる。その結果、合金粉末の著しい酸化や発火などを生じることがあるため、35mass%以下が好ましい。R1の含有量は、27.5mass%以上33mass%以下であることがより好ましく、28mass%以上32mass%以下であることがさらに好ましい。 The content of R1 is 27 mass% or more and 35 mass% or less of the entire R1-T1-B-based sintered body. If the content of R1 is less than 27 mass%, a liquid phase is not sufficiently formed in the sintering process, and it becomes difficult to sufficiently densify the R1-T1-B-based sintered body. On the other hand, although the effect of the present disclosure can be obtained even if the content of R1 exceeds 35 mass%, the alloy powder in the manufacturing process of the R1-T1-B-based sintered body becomes very active. As a result, significant oxidation or ignition of the alloy powder may occur, so 35 mass% or less is preferable. The content of R1 is more preferably 27.5 mass% or more and 33 mass% or less, and further preferably 28 mass% or more and 32 mass% or less.

T1はFe又はCo、Al、Mn、Siの少なくとも1つとFeであり、T1全体に対するFeの含有量が80mass%以上である。すなわち、T1はFeのみであってもよいし、Co、Al、Mn、Siの少なくとも1つとFeからなってもよい。但し、T1全体に対するFeの含有量は80mass%以上である。Feの含有量が80mass%未満であると、B及びHcJが低下する可能性がある。ここで、「T1全体に対するFeの含有量は80mass%以上」とは、例えばR1−T1−B系焼結体中におけるT1の含有量が70mass%である場合、R1−T1−B系焼結体の56mass%以上がFeであることを言う。好ましくはT1全体に対するFeの含有量は90mass%以上である。より高いBと高いHcJを得ることができるからである。Co、Al、Mn、Siを含有する場合の好ましい含有量は、Coは5.0mass%以下、Alは1.5mass%以下、Mn及びSiはそれぞれ0.2mass%以下である。 T1 is Fe or at least one of Co, Al, Mn, and Si and Fe, and the content of Fe with respect to the entire T1 is 80 mass% or more. That is, T1 may be Fe alone, or may be composed of at least one of Co, Al, Mn, and Si and Fe. However, the content of Fe with respect to the whole T1 is 80 mass% or more. When the content of Fe is less than 80 mass%, B r and H cJ may be reduced. Here, "the content of Fe with respect to the entire T1 is 80 mass% or more" means, for example, when the content of T1 in the R1-T1-B-based sintered body is 70 mass%, the R1-T1-B-based sintered body. It means that 56 mass% or more of the body is Fe. Preferably, the Fe content with respect to the entire T1 is 90 mass% or more. This is because it is possible to obtain a higher B r and a high H cJ. When Co, Al, Mn, and Si are contained, the preferable contents of Co are 5.0 mass% or less, Al is 1.5 mass% or less, and Mn and Si are 0.2 mass% or less, respectively.

Bに対するT1のmol比([T1]/[B])は14.0超15.0以下である。 The mol ratio of T1 to B ([T1] / [B]) is more than 14.0 and 15.0 or less.

Bに対するT1のmol比([T1]/[B])が14.0以下であると高いHcJを得ることができない。一方、Bに対するT1のmol比([T1]/[B])が15.0を超えるとBが低下する可能性がある。Bに対するT1のmol比([T1]/[B])は14.3以上15.0以下であることが好ましい。さらに高いBと高いHcJを得ることができる。また、Bの含有量はR1−T1−B系焼結体全体の0.85mass%以上0.95mass%未満が好ましい。 If the mol ratio of T1 to B ([T1] / [B]) is 14.0 or less, a high H cJ cannot be obtained. On the other hand, if the mol ratio of T1 to B ([T1] / [B]) exceeds 15.0, Br may decrease. The mol ratio of T1 to B ([T1] / [B]) is preferably 14.3 or more and 15.0 or less. It is possible to obtain a higher B r and a high H cJ. The B content is preferably 0.85 mass% or more and less than 0.95 mass% of the entire R1-T1-B-based sintered body.

R1−T1−B系焼結体は、上記元素の他にGa、Cu、Ag、Zn、In、Sn、Zr、Nb、Ti、Ni、Hf、Ta、W、Ge、Mo、V、Y、La、Ce、Sm、Ca、Mg、Cr、H、F、P、S、Cl、O、N、C等を含有してもよい。含有量は、Ga、Cu、Ag、Zn、In、Sn、Zr、Nb、及びTiはそれぞれ0.5mass%以下、Ni、Hf、Ta、W、Ge、Mo、V、Y、La、Ce、Sm、Ca、Mg、Crはそれぞれ0.2mass%以下、H、F、P、S、Clは500ppm以下、Oは6000ppm以下、Nは1000ppm以下、Cは1500ppm以下が好ましい。これらの元素の合計の含有量は、R1−T1−B系焼結体全体の5mass%以下が好ましい。これらの元素の合計の含有量がR1−T1−B系焼結体全体の5mass%を超えると高いBと高いHcJを得ることができない可能性がある。 In addition to the above elements, the R1-T1-B-based sintered body includes Ga, Cu, Ag, Zn, In, Sn, Zr, Nb, Ti, Ni, Hf, Ta, W, Ge, Mo, V, Y, It may contain La, Ce, Sm, Ca, Mg, Cr, H, F, P, S, Cl, O, N, C and the like. The contents of Ga, Cu, Ag, Zn, In, Sn, Zr, Nb, and Ti are 0.5 mass% or less, respectively, and Ni, Hf, Ta, W, Ge, Mo, V, Y, La, Ce, It is preferable that Sm, Ca, Mg and Cr are 0.2 mass% or less, H, F, P, S and Cl are 500 ppm or less, O is 6000 ppm or less, N is 1000 ppm or less, and C is 1500 ppm or less. The total content of these elements is preferably 5 mass% or less of the entire R1-T1-B-based sintered body. The total content of these elements may not be able to obtain the high B r and high H cJ exceeds 5 mass% of the total R1-T1-B based sintered body.

次にR1−T1−B系焼結体を準備する工程について説明する。R1−T1−B系焼結体を準備する工程は、R−T−B系焼結磁石に代表される一般的な製造方法を用いて準備することができる。R1−T1−B系焼結体は、原料合金を粒径D50(気流分散式レーザー回折法による測定で得られる体積中心値=D50)が3μm以上10μm以下になるように粉砕した後、磁界中で配向させて焼結を行うことが好ましい。一例を挙げると、ストリップキャスト法などで作製された原料合金を、ジェットミル装置などを用いて粒径D50が3μm以上10μm以下になるように粉砕した後、磁界中で成形し、900℃以上1100℃以下の温度で焼結することにより準備することができる。原料合金の粒径D50が3μm未満では粉砕粉を作製するのが非常に困難であり、生産効率が大幅に低下するため好ましくない。一方、粒径D50が10μmを超えると最終的に得られるR1−T1−B系焼結体の結晶粒径が大きくなり過ぎ、高いHcJを得ることが困難となるため好ましくない。粒径D50は好ましくは、3μm以上5μm以下である。 Next, a step of preparing the R1-T1-B-based sintered body will be described. The step of preparing the R1-T1-B-based sintered body can be prepared by using a general manufacturing method typified by the R-TB-based sintered magnet. In the R1-T1-B-based sintered body, the raw material alloy is pulverized so that the particle size D 50 (volume center value obtained by measurement by the air flow dispersion laser diffraction method = D 50 ) is 3 μm or more and 10 μm or less, and then the raw material alloy is pulverized. It is preferable to perform sintering by orienting in a magnetic field. As an example, a raw material alloy produced by a strip casting method or the like is pulverized using a jet mill device or the like so that the particle size D 50 is 3 μm or more and 10 μm or less, and then molded in a magnetic field at 900 ° C. or higher. It can be prepared by sintering at a temperature of 1100 ° C. or lower. If the particle size D 50 of the raw material alloy is less than 3 μm, it is very difficult to produce pulverized powder, and the production efficiency is significantly reduced, which is not preferable. On the other hand, if the particle size D 50 exceeds 10 μm, the crystal particle size of the finally obtained R1-T1-B-based sintered body becomes too large, and it becomes difficult to obtain a high H cJ, which is not preferable. The particle size D 50 is preferably 3 μm or more and 5 μm or less.

R1−T1−B系焼結体は、前記の各条件を満たしていれば、一種類の原料合金(単一原料合金)から作製してもよいし、二種類以上の原料合金を用いてそれらを混合する方法(ブレンド法)によって作製してもよい。また、得られたR1−T1−B系焼結体は、必要に応じて切断や切削など公知の機械加工を行った後、後述する熱処理を実施してもよい。 The R1-T1-B-based sintered body may be produced from one kind of raw material alloy (single raw material alloy) as long as each of the above conditions is satisfied, or two or more kinds of raw material alloys are used for them. May be produced by a method of mixing (blending method). Further, the obtained R1-T1-B-based sintered body may be subjected to known machining such as cutting or cutting if necessary, and then heat treatment described later may be performed.

(R2−Ga−Cu系合金を準備する工程)
まず、R2−Ga−Cu系合金を準備する工程におけるR2−Ga−Cu系合金の組成を説明する。以下に説明する特定の範囲でR2及びGa、Cuを含有することにより、後述する熱処理を実施する工程においてR2−Ga−Cu系合金中のR2及びGa、CuをR1−T1−B系焼結体内部に導入することができる。
(Step of preparing R2-Ga-Cu alloy)
First, the composition of the R2-Ga-Cu-based alloy in the step of preparing the R2-Ga-Cu-based alloy will be described. By containing R2, Ga, and Cu in a specific range described below, R2, Ga, and Cu in the R2-Ga—Cu alloy are sintered by R1-T1-B in the step of performing the heat treatment described later. It can be introduced inside the body.

R2は希土類元素のうち少なくとも一種であり、Laを必ず含み、R2の含有量はR2−Ga−Cu系合金全体の70mol%以上90mol%以下である。R2の含有量が70mol%未満では後述する熱処理で拡散が十分に進行しない可能性がある。一方、R2の含有量が90mol%を超えても本開示の効果を得ることはできるが、R2−Ga−Cu系合金の製造工程中における合金粉末が非常に活性になる。その結果、合金粉末の著しい酸化や発火などを生じることがあるため、R2の含有量はR2−Ga−Cu系合金全体の90mol%以下が好ましい。R2の含有量は75mol%以上85mol%以下であることがより好ましい。より高いHcJを得ることができるからである。また、上述したように、Ndの供給不足が懸念されている中、希土類元素使用の多様化の観点から前記R2−Ga−Cu系合金中のLaがR2全体の50mol%以上であることが好ましく、さらに好ましくは、前記R2−Ga−Cu系合金中のR2はLaである(不純物は含む)。 R2 is at least one of rare earth elements and always contains La, and the content of R2 is 70 mol% or more and 90 mol% or less of the entire R2-Ga—Cu based alloy. If the content of R2 is less than 70 mol%, diffusion may not proceed sufficiently by the heat treatment described later. On the other hand, although the effect of the present disclosure can be obtained even if the content of R2 exceeds 90 mol%, the alloy powder in the manufacturing process of the R2-Ga—Cu based alloy becomes very active. As a result, the alloy powder may be significantly oxidized or ignited. Therefore, the R2 content is preferably 90 mol% or less of the total R2-Ga—Cu alloy. The content of R2 is more preferably 75 mol% or more and 85 mol% or less. This is because a higher H cJ can be obtained. Further, as described above, while there is a concern that the supply of Nd will be insufficient, it is preferable that La in the R2-Ga-Cu alloy is 50 mol% or more of the total amount of R2 from the viewpoint of diversifying the use of rare earth elements. More preferably, R2 in the R2-Ga—Cu based alloy is La (including impurities).

R2は、希土類元素全体に対するLaの比率が、R1−T1―B系焼結体の希土類元素全体に対するLaの比率よりも高い。これにより粒界拡散が促進され、磁石内部にGaやCuを拡散させることができる。Laの比率がR1−T1―B系焼結体の希土類元素全体に対するLaの比率よりも低いと、粒界拡散が促進されずGaやCuの拡散は焼結体の表面近傍にとどまる可能性がある。そのため、Ga−Cuの磁石表面から内部への導入量が不十分となり、高いBと高いHcJを有するR−T−B系焼結磁石を得ることができない可能性がある。好ましくは、前記R1−T1−B系焼結体中の[La]/[R1]をα、R2−Ga−Cu系合金中の[La]/[R2]をβとしたとき、β/α≧1.5である。 In R2, the ratio of La to the whole rare earth element is higher than the ratio of La to the whole rare earth element of the R1-T1-B-based sintered body. As a result, grain boundary diffusion is promoted, and Ga and Cu can be diffused inside the magnet. If the ratio of La is lower than the ratio of La to the total rare earth elements of the R1-T1-B-based sintered body, the intergranular diffusion is not promoted and the diffusion of Ga and Cu may stay near the surface of the sintered body. is there. Therefore, the introduction amount to the inside from the magnet surface of the Ga-Cu is insufficient, there is a possibility that it is impossible to obtain a R-T-B based sintered magnet having a high B r and high H cJ. Preferably, when [La] / [R1] in the R1-T1-B-based sintered body is α and [La] / [R2] in the R2-Ga-Cu-based alloy is β, β / α ≧ 1.5.

Gaは、R2−Ga−Cu系合金全体の5mol%以上20mol%以下である。Gaが5mol%未満では、後述する熱処理を実施する工程においてR2−Ga−Cu系合金中のGaやCuがR1−T1−B系焼結体の内部に導入され難くなり高いHcJを得ることが出来ない。一方、Gaが20mol%超であると、Bが大幅に低下する可能性がある。Gaは5mol%以上20mol%以下であることがより好ましい。より高いBと高いHcJを得ることができるからである。 Ga is 5 mol% or more and 20 mol% or less of the whole R2-Ga—Cu based alloy. If Ga is less than 5 mol%, it becomes difficult for Ga and Cu in the R2-Ga-Cu-based alloy to be introduced into the R1-T1-B-based sintered body in the step of performing the heat treatment described later, and a high HcJ is obtained. I can't. On the other hand, if Ga is a 20 mol% excess, B r may be lowered significantly. Ga is more preferably 5 mol% or more and 20 mol% or less. This is because it is possible to obtain a higher B r and a high H cJ.

Cuは、R2−Ga−Cu系合金全体の5mol%以上20mol%以下含有する。5mol%未満であると高いHcJを得ることが出来ない可能性があり、Cuが20mol%を超えると、粒界におけるGaの存在比率が低下する可能性があるため、20mol%以下が好ましい。 Cu is contained in an amount of 5 mol% or more and 20 mol% or less of the entire R2-Ga—Cu based alloy. If it is less than 5 mol%, high H cJ may not be obtained, and if Cu exceeds 20 mol%, the abundance ratio of Ga at the grain boundary may decrease. Therefore, 20 mol% or less is preferable.

R2−Ga−Cu系合金は、上記元素の他にCo、Al、Ag、Zn、Si、In、Sn、Zr、Nb、Ti、Ni、Hf、Ta、W、Ge、Mo、V、Y、La、Ce、Sm、Ca、Mg、Mn、Cr、H、F、P、S、Cl、O、N、C等を含有してもよい。 In addition to the above elements, R2-Ga—Cu alloys include Co, Al, Ag, Zn, Si, In, Sn, Zr, Nb, Ti, Ni, Hf, Ta, W, Ge, Mo, V, Y, It may contain La, Ce, Sm, Ca, Mg, Mn, Cr, H, F, P, S, Cl, O, N, C and the like.

Coは、耐食性の向上のために0.5mass%以上10mass%以下含有してもよい。また、Alは1.0mass%以下、Ag、Zn、Si、In、Sn、Zr、Nb、及びTiはそれぞれ0.5mass%以下、Ni、Hf、Ta、W、Ge、Mo、V、Y、La、Ce、Sm、Ca、Mg、Mn、Si、Crはそれぞれ0.2mass%以下、H、F、P、S、Clは500ppm以下、Oは6000ppm以下、Nは1000ppm以下、Cは1500ppm以下の含有量が好ましい。但し、これらの元素の合計の含有量が20mass%を超えると、R2−Ga−Cu系合金におけるR2、Ga、Cuの含有量が少なくなり、高いBと高いHcJを得ることが出来ない可能性がある。そのため、R2−Ga−Cu系合金におけるR2、Ga、Cuの合計の含有量は80mass%以上が好ましく、90mass%以上がさらに好ましい。 Co may be contained in an amount of 0.5 mass% or more and 10 mass% or less in order to improve corrosion resistance. Al is 1.0 mass% or less, Ag, Zn, Si, In, Sn, Zr, Nb, and Ti are 0.5 mass% or less, respectively, Ni, Hf, Ta, W, Ge, Mo, V, Y, La, Ce, Sm, Ca, Mg, Mn, Si, Cr are 0.2 mass% or less, H, F, P, S, Cl are 500 ppm or less, O is 6000 ppm or less, N is 1000 ppm or less, C is 1500 ppm or less. Content is preferred. However, the total content of these elements exceeds 20 mass%, R2 in R2-Ga-Cu-based alloy, Ga, then the amount of Cu, it is impossible to obtain a high B r and high H cJ there is a possibility. Therefore, the total content of R2, Ga, and Cu in the R2-Ga—Cu alloy is preferably 80 mass% or more, and more preferably 90 mass% or more.

次にR2−Ga−Cu系合金を準備する工程について説明する。R2−Ga−Cu系合金は、Nd−Fe−B系焼結磁石に代表される一般的な製造方法において採用されている原料合金の作製方法、例えば、金型鋳造法やストリップキャスト法や単ロール超急冷法(メルトスピニング法)やアトマイズ法などを用いて準備することができる。また、R2−Ga−Cu系合金は、前記によって得られた合金をピンミルなどの公知の粉砕手段によって粉砕されたものであってもよい。また、前記によって得られた合金の粉砕性を向上させるために、水素雰囲気中で700℃以下の熱処理を行って水素を含有させてから粉砕を行っても良い。 Next, the step of preparing the R2-Ga—Cu based alloy will be described. The R2-Ga-Cu based alloy is a method for producing a raw material alloy adopted in a general manufacturing method represented by an Nd-Fe-B based sintered magnet, for example, a mold casting method, a strip casting method, or a simple method. It can be prepared by using a roll ultra-quenching method (melt spinning method) or an atomizing method. Further, the R2-Ga—Cu based alloy may be an alloy obtained by pulverizing the alloy obtained by the above by a known pulverizing means such as a pin mill. Further, in order to improve the pulverizability of the alloy obtained as described above, pulverization may be performed after heat treatment at 700 ° C. or lower is performed in a hydrogen atmosphere to contain hydrogen.

(熱処理を実施する工程)
前記によって準備したR1−T1−B系焼結体の表面の少なくとも一部に、前記R2−Ga−Cu系合金の少なくとも一部を接触させ、真空又は不活性ガス雰囲気中、450℃以上500℃以下の温度で熱処理をする。これにより、R2−Ga−Cu系合金からLaを含むR2及びGa、Cuを含む液相が生成し、その液相がR1−T1−B系焼結体の粒界を経由して焼結体表面から内部に拡散導入され、粒界にR−T−Ga相が生成される。熱処理温度が450℃未満であると、Laを含むR2及びGa,Cuを含む液相量が少なすぎて、高いBと高いHcJを得ることが出来ない可能性がある。一方、500℃を超えると、理由は不明であるが、R1−T1−B系焼結体へのR2−Ga−Cu系合金の拡散が阻害されて高いHcJが得られない可能性がある。熱処理温度は、460℃以上490℃以下が好ましい。より高いBと高いHcJを得ることができるからである。なお、熱処理時間はR1−T1−B系焼結体やR2−Ga−Cu系合金の組成や寸法、熱処理温度などによって適正値を設定するが、5分以上24時間以下が好ましく、10分以上20時間以下がより好ましく、30分以上16時間以下がさらに好ましい。また、熱処理は1回だけ行ってもよく、複数回行ってもよい。また、R2−Ga−Cu系合金は、R1−T1−B系焼結体の重量に対し2mass%以上30mass%以下準備することが好ましい。R2−Ga−Cu系合金がR1−T1−B系焼結体の重量に対し2mass%未満であると高いHcJが得られない可能性がある。一方、30mass%を超えるとBが大幅に低下する可能性がある。
(Step of performing heat treatment)
At least a part of the R2-Ga—Cu alloy is brought into contact with at least a part of the surface of the R1-T1-B-based sintered body prepared as described above, and the temperature is 450 ° C. or higher and 500 ° C. in a vacuum or an inert gas atmosphere. Heat treatment is performed at the following temperature. As a result, a liquid phase containing R2 containing La and Ga and Cu is generated from the R2-Ga—Cu based alloy, and the liquid phase passes through the grain boundaries of the R1-T1-B based sintered body and is sintered. It is diffusely introduced from the surface to the inside, and an RT-Ga phase is generated at the grain boundaries. If the heat treatment temperature is lower than 450 ° C., R2 and Ga containing La, and too small amount of liquid phase containing Cu, it may not be able to obtain a high B r and high H cJ. On the other hand, if the temperature exceeds 500 ° C., for unknown reasons, the diffusion of the R2-Ga—Cu alloy into the R1-T1-B sintered body may be inhibited and a high HcJ may not be obtained. .. The heat treatment temperature is preferably 460 ° C. or higher and 490 ° C. or lower. This is because it is possible to obtain a higher B r and a high H cJ. The heat treatment time is set to an appropriate value depending on the composition and dimensions of the R1-T1-B-based sintered body and the R2-Ga-Cu-based alloy, the heat treatment temperature, etc., but is preferably 5 minutes or more and 24 hours or less, preferably 10 minutes or more. 20 hours or less is more preferable, and 30 minutes or more and 16 hours or less is further preferable. Further, the heat treatment may be performed only once or a plurality of times. Further, it is preferable to prepare the R2-Ga—Cu based alloy in an amount of 2 mass% or more and 30 mass% or less based on the weight of the R1-T1-B based sintered body. If the R2-Ga—Cu alloy is less than 2 mass% with respect to the weight of the R1-T1-B sintered body, high HcJ may not be obtained. On the other hand, there is a possibility that B r exceeds 30 mass% is greatly reduced.

前記熱処理は、R1−T1−B系焼結体表面に、任意形状のR2−Ga−Cu系合金を配置し、公知の熱処理装置を用いて行うことができる。例えば、R1−T1−B系焼結体表面をR2−Ga−Cu系合金の粉末層で覆い、熱処理を行うことができる。例えば、R2−Ga−Cu系合金を分散媒中に分散させたスラリーをR1−T1−B系焼結体表面に塗布した後、分散媒を蒸発させてR2−Ga−Cu系合金とR1−T1−B系焼結体とを接触させてもよい。また、後述する実験例に示すように、R2−Ga−Cu系合金は、少なくともR1−T1−B系焼結体の配向方向に対して垂直な表面に接触させるように配置することが好ましい。なお、分散媒として、アルコール(エタノール等)、NMP(N−メチルピロリドン)、アルデヒド及びケトンを例示できる。また、熱処理が実施されたR1−T1−B系焼結体に対して切断や切削など公知の機械加工を行ってもよい。 The heat treatment can be performed by arranging an R2-Ga-Cu alloy having an arbitrary shape on the surface of the R1-T1-B-based sintered body and using a known heat treatment apparatus. For example, the surface of the R1-T1-B-based sintered body can be covered with a powder layer of an R2-Ga-Cu-based alloy to perform heat treatment. For example, a slurry in which an R2-Ga-Cu alloy is dispersed in a dispersion medium is applied to the surface of an R1-T1-B-based sintered body, and then the dispersion medium is evaporated to form an R2-Ga-Cu alloy and R1-. It may be brought into contact with the T1-B based sintered body. Further, as shown in an experimental example described later, it is preferable that the R2-Ga-Cu alloy is arranged so as to be in contact with the surface perpendicular to the orientation direction of at least the R1-T1-B sintered body. Examples of the dispersion medium include alcohol (ethanol and the like), NMP (N-methylpyrrolidone), aldehyde and ketone. Further, the R1-T1-B-based sintered body that has been heat-treated may be subjected to known machining such as cutting or cutting.

本発明を実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。 The present invention will be described in more detail by way of examples, but the present invention is not limited thereto.

実験例1
[R1−T1−B系焼結体の準備]
Ndメタル、Prメタル、フェロボロン合金、電解鉄を用いて(メタルはいずれも純度99%以上)、焼結体がおよそ表1に示す符号1−Aから1−Cの組成となるように配合し、それらの原料を溶解してストリップキャスト法により鋳造し、厚さ0.2〜0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金を水素粉砕した後、550℃まで真空中で加熱後冷却する脱水素処理を施し粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100mass%に対して0.04mass%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粉砕粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、粉砕粒径D50は、気流分散法によるレーザー回折法で得られた体積中心値(体積基準メジアン径)である。
Experimental Example 1
[Preparation of R1-T1-B-based sintered body]
Using Nd metal, Pr metal, ferrobolon alloy, and electrolytic iron (all metals have a purity of 99% or more), the sintered body is blended so as to have a composition of reference numerals 1-A to 1-C shown in Table 1. , These raw materials were melted and cast by a strip casting method to obtain a flake-shaped raw material alloy having a thickness of 0.2 to 0.4 mm. The obtained flake-shaped raw material alloy was pulverized with hydrogen, and then subjected to a dehydrogenation treatment of heating to 550 ° C. in a vacuum and then cooling to obtain a coarsely pulverized powder. Next, zinc stearate as a lubricant was added to the obtained coarsely pulverized powder in an amount of 0.04 mass% with respect to 100 mass% of the coarsely pulverized powder, mixed, and then nitrogen was used using an airflow type pulverizer (jet mill device). Dry pulverization was performed in an air stream to obtain a finely pulverized powder (alloy powder) having a pulverized particle size D 50 of 4 μm. The pulverized particle size D 50 is a volume center value (volume-based median diameter) obtained by a laser diffraction method based on an air flow dispersion method.

前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100mass%に対して0.05mass%添加、混合した後磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。 Zinc stearate as a lubricant was added to the finely pulverized powder in an amount of 0.05 mass% based on 100 mass% of the finely pulverized powder, mixed, and then molded in a magnetic field to obtain a molded product. As the molding apparatus, a so-called right-angled magnetic field forming apparatus (transverse magnetic field forming apparatus) in which the magnetic field application direction and the pressurizing direction are orthogonal to each other was used.

得られた成形体を、真空中、1000℃以上1040℃以下(サンプル毎に焼結による緻密化が十分起こる温度を選定)で4時間焼結した後急冷し、R1−T1−B系焼結体を得た。得られた焼結体の密度は7.5Mg/m以上であった。得られた焼結体の組成を表1に示す。なお、表1における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。なお、焼結体の酸素量をガス融解−赤外線吸収法で測定した結果、すべて0.4mass%前後であることを確認した。表1における「[T1]/[B]」は、T1を構成する各元素(不可避の不純物を含む、本実験例ではFe、Al、Si、Mn)に対し、分析値(mass%)をその元素の原子量で除したものを求め、それらの値を合計したもの(a)と、Bの分析値(mass%)をBの分析値(mass%)をBの原子量で除したもの(b)との比(a/b)である。以下の全ての表も同様である。なお、表1の各組成を合計しても100mass%にはならない。これは、前記の通り、各成分によって分析方法が異なるため、さらには、表1に挙げた成分以外の成分(例えばC(カーボン)やN(窒素)など)が存在するためである。その他表についても同様である。 The obtained molded product was sintered in vacuum at 1000 ° C. or higher and 1040 ° C. or lower (select a temperature at which sufficient densification by sintering occurs for each sample) for 4 hours, and then rapidly cooled, and then R1-T1-B-based sintering. I got a body. The density of the obtained sintered body was 7.5 Mg / m 3 or more. The composition of the obtained sintered body is shown in Table 1. Each component in Table 1 was measured using high frequency inductively coupled plasma emission spectroscopy (ICP-OES). As a result of measuring the amount of oxygen in the sintered body by the gas melting-infrared absorption method, it was confirmed that all of them were around 0.4 mass%. “[T1] / [B]” in Table 1 indicates the analytical value (mass%) of each element (including unavoidable impurities, Fe, Al, Si, Mn in this experimental example) constituting T1. Divided by the atomic weight of the element, the sum of those values (a) and the analytical value of B (mass%) divided by the atomic weight of B (mass%) divided by the atomic weight of B (b) Is the ratio (a / b) with. The same applies to all the tables below. The total composition of Table 1 does not reach 100 mass%. This is because, as described above, the analysis method differs depending on each component, and further, there are components other than the components listed in Table 1 (for example, C (carbon), N (nitrogen), etc.). The same applies to other tables.

[R2−Ga−Cu系合金の準備]
Laメタル、Gaメタル、Cuメタルを用いて(メタルはいずれも純度99%以上)、合金がおよそ表2に示す符号1−aの組成になるように配合し、それらの原料を溶解して、単ロール超急冷法(メルトスピニング法)により、リボンまたはフレーク状の合金を得た。得られた合金を乳鉢を用いてアルゴン雰囲気中で粉砕した後、目開き425μmの篩を通過させ、R2−Ga−Cu系合金を準備した。得られたR2−Ga−Cu系合金の組成を表2に示す。
[Preparation of R2-Ga-Cu alloy]
Using La metal, Ga metal, and Cu metal (all metals have a purity of 99% or more), the alloys are blended so as to have a composition of reference numeral 1-a shown in Table 2, and the raw materials thereof are dissolved. A ribbon or flake-shaped alloy was obtained by a single-roll ultra-quenching method (melt spinning method). The obtained alloy was pulverized in an argon atmosphere using a mortar and then passed through a sieve having an opening of 425 μm to prepare an R2-Ga—Cu based alloy. The composition of the obtained R2-Ga—Cu based alloy is shown in Table 2.

[熱処理]
表1の符号1−Aから1−CのR1−T1−B系焼結体を切断、切削加工し、4.4mm×4.4mm×4.4mm(配向方向)の直方体とした。次に、図3に示すように、ニオブ箔により作製した処理容器3中に、主にR1−T1−B系焼結体1の配向方向(図中の矢印方向)と垂直な面がR2−Si系合金2と接触するように、表2に示す符号1−aのR2−Ga−Cu系合金を、符号1−Aから1−IのR1−T1−B系焼結体のそれぞれの上下に配置した。
[Heat treatment]
The R1-T1-B-based sintered bodies of reference numerals 1-A to 1-C in Table 1 were cut and machined to obtain a rectangular parallelepiped of 4.4 mm × 4.4 mm × 4.4 mm (orientation direction). Next, as shown in FIG. 3, in the processing container 3 made of niobium foil, the plane perpendicular to the orientation direction (arrow direction in the figure) of the R1-T1-B-based sintered body 1 is mainly R2-. The R2-Ga-Cu alloys of reference numerals 1-a shown in Table 2 are placed above and below the R1-T1-B-based sintered bodies of reference numerals 1-A to 1-I so as to come into contact with the Si-based alloy 2. Placed in.

その後、管状流気炉を用いて、200Paに制御した減圧アルゴン中で、表3に示す熱処理温度及び時間で熱処理を行った後、冷却した。熱処理後の各サンプルの表面近傍に存在するR2−Ga−Cu系合金の濃化部を除去するため、表面研削盤を用いて各サンプルの全面を0.2mmずつ切削加工し、4.0mm×4.0mm×4.0mmの立方体状のサンプル(R−T−B系焼結磁石)を得た。 Then, using a tubular air-flow furnace, heat treatment was performed in reduced pressure argon controlled at 200 Pa at the heat treatment temperature and time shown in Table 3, and then cooled. In order to remove the concentrated portion of the R2-Ga-Cu alloy existing near the surface of each sample after heat treatment, the entire surface of each sample is cut by 0.2 mm using a surface grinding machine, and 4.0 mm × A cubic sample (RTB-based sintered magnet) having a size of 4.0 mm × 4.0 mm was obtained.

[サンプル評価]
BHトレーサーにより得られたサンプルの残留磁束密度(B)および保磁力(HcJ)を測定した。測定結果を表3に示す。表3の通り、R1−T1−B系焼結体におけるBに対するT1のmol比([T1]/[B])を14.0以上とし、熱処理温度を450℃以上500℃以下に設定したとき、高い特性が得られた。
[Sample evaluation]
Residual magnetic flux density of the sample obtained by the BH tracer (B r) and coercivity (H cJ) were measured. The measurement results are shown in Table 3. As shown in Table 3, when the mol ratio of T1 to B ([T1] / [B]) in the R1-T1-B-based sintered body is set to 14.0 or more and the heat treatment temperature is set to 450 ° C or higher and 500 ° C or lower. , High characteristics were obtained.

表3に示すサンプルのうち、No.1−4(本発明例)の焼結体表面近傍、表面から800μm領域、および中心部の断面を走査電子顕微鏡(SEM:日本電子製JSM−7800F)にて、加速電圧5kVで反射電子像を取得した。結果を図4A〜図4Cに示す。磁石表面近傍から磁石の中央部まで100nm以上の厚い二粒子粒界が形成されていた。 Among the samples shown in Table 3, No. A scanning electron microscope (SEM: JSM-7800F manufactured by JEOL Ltd.) is used to scan the cross section of 1-4 (example of the present invention) near the surface of the sintered body, 800 μm from the surface, and the center of the sintered body. Obtained. The results are shown in FIGS. 4A-4C. A thick two-particle boundary of 100 nm or more was formed from the vicinity of the magnet surface to the central portion of the magnet.

さらに、本発明例であるNo.1−4の焼結体について、表面近傍、表面から800μm領域、および中心部の断面をSEM(日本電子製JSM−7800F)付属装置(日本電子製JED−2300 SD30)によるエネルギー分散X線分光分析(EDS)を実施した。分析箇所は、図4A及び図4Bは、1、4、6、7及び8、図4Cでは、1、4、5、7及び8である。EDX分析のプローブ径は1μmとし、観察領域の平均組成は200μm角の分析結果から得た。結果を図5A〜図5Cに示す。図5A〜図5Cに示すように、主相へのLaの置換はほとんど確認できなかった。また、各観察領域において複数の組成の粒界相が観察されたが、それぞれの相の希土類元素Rに対するLaのモル比は、R−T−B系焼結磁石表面のほうが内部よりも高くなっていた。また、各観察領域において領域では、Rが25mol%以上35mol%以下、Feが55mol%以上65mol%以下の相が確認された。この相はGaおよびCuを含んでいることから、RFe13M(MはGa,Cuなど)相であると推定され、かつ、同一視野内でLa量の異なる2種類以上の組成の相が存在していた。 Furthermore, No. 1 which is an example of the present invention. Energy dispersive X-ray spectroscopic analysis of the sintered body 1-4 in the vicinity of the surface, 800 μm region from the surface, and the cross section of the central part by SEM (JSM-7800F manufactured by JEOL Ltd.) accessory device (JED-2300 SD30 manufactured by JEOL Ltd.). (EDS) was carried out. The analysis points are 1, 4, 6, 7 and 8 in FIGS. 4A and 4B, and 1, 4, 5, 7 and 8 in FIG. 4C. The probe diameter for EDX analysis was 1 μm, and the average composition of the observation area was obtained from the analysis results of 200 μm square. The results are shown in FIGS. 5A-5C. As shown in FIGS. 5A to 5C, the substitution of La with the main phase could hardly be confirmed. In addition, although multiple grain boundary phases were observed in each observation region, the molar ratio of La to the rare earth element R in each phase was higher on the surface of the RTB-based sintered magnet than on the inside. Was there. Further, in each observation region, a phase in which R was 25 mol% or more and 35 mol% or less and Fe was 55 mol% or more and 65 mol% or less was confirmed. Since this phase contains Ga and Cu, it is presumed to be the R 6 Fe 13 M (M is Ga, Cu, etc.) phase, and two or more types of phases having different La amounts within the same field of view. Was present.

実験例2
焼結体がおよそ表4に示す符号2−Aの組成となるように配合する以外は実験例1と同様の方法でR1−T1−B系焼結体を複数個作製した。得られた焼結体の成分分析の結果を表4に示す。
Experimental Example 2
A plurality of R1-T1-B-based sintered bodies were prepared in the same manner as in Experimental Example 1 except that the sintered bodies were blended so as to have the composition of reference numeral 2-A shown in Table 4. Table 4 shows the results of component analysis of the obtained sintered body.

合金組成がおよそ表5に示す符号2−aから2−mとなるように配合する以外は実験例1と同様の方法でR2−Ga−Cu系合金を作製した。 An R2-Ga-Cu based alloy was prepared in the same manner as in Experimental Example 1 except that the alloy compositions were blended so as to have a code number of 2-a to 2-m shown in Table 5.

複数個のR1−T1−B系焼結体を実験例1と同様に加工した後、実験例1と同様に符号2−aから2−mのR2−Ga−Cu系合金と符号2−AのR1−T1−B系焼結体とが接触するよう配置し、実験例1と同様に熱処理および加工を行い、サンプル(R−T−B系焼結磁石)を得た。得られたサンプルを実験例1と同様な方法により測定し、残留磁束密度(B)および保磁力(HcJ)を求めた。その結果を表6に示す。表6の通り、R2−Ga−Cu系合金を特定の範囲に設定することで、高い磁気特性を有するR−T−B系焼結磁石が得られた。 After processing a plurality of R1-T1-B-based sintered bodies in the same manner as in Experimental Example 1, R2-Ga-Cu-based alloys of reference numerals 2-a to 2-m and reference numerals 2-A as in Experimental Example 1 The sample (RTB-based sintered magnet) was obtained by arranging the above-mentioned R1-T1-B-based sintered body in contact with the above and performing heat treatment and processing in the same manner as in Experimental Example 1. The obtained sample was measured in the same manner as in Experimental Example 1 was determined remanence (B r) and coercivity (H cJ). The results are shown in Table 6. As shown in Table 6, by setting the R2-Ga—Cu alloy in a specific range, an RTB-based sintered magnet having high magnetic properties was obtained.

本発明の実施形態により得られたR−T−B系焼結磁石は、ハードディスクドライブのボイスコイルモータ(VCM)や、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品などに好適に利用することができる。 The RTB-based sintered magnets obtained by the embodiment of the present invention include voice coil motors (VCMs) for hard disk drives, motors for electric vehicles (EV, HV, PHV, etc.), motors for industrial equipment, and the like. It can be suitably used for various motors and home appliances.

1 R1−T1−B系焼結体
2 R2−Ga−Cu系合金
3 処理容器
1 R1-T1-B-based sintered body 2 R2-Ga-Cu-based alloy 3 Processing container

Claims (5)

R1−T1−B系焼結体を準備する工程と、
R2−Ga−Cu系合金を準備する工程と、
前記R1−T1−B系焼結体の表面の少なくとも一部に、前記R2−Ga−Cu系合金の少なくとも一部を接触させ、真空又は不活性ガス雰囲気中、450℃以上500℃以下の温度で熱処理を実施する工程を含み、
前記R1−T1−B系焼結体において、
R1は希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含み、R1の含有量は、R1−T1−B系焼結体全体の27mass%以上35mass%以下であり、
T1はFe又はCo、Al、Mn、Siの少なくとも1つとFeであり、T1全体に対するFeの含有量が80mass%以上であり、
Bに対するT1のmol比([T1]/[B])が14.0超15.0以下であり、
前記R2−Ga−Cu系合金において、
R2は希土類元素のうち少なくとも一種であり、Laを必ず含み、R2の含有量は、R2−Ga−Cu系合金全体の70mol%以上90mol%以下であり、かつ、希土類元素全体に対するLaの比率が、R1−T1―B系焼結体の希土類元素全体に対するLaの比率よりも高く、
Gaの含有量は、R2−Ga−Cu系合金全体の5mol%以上20mol%以下であり、
Cuの含有量は、R2−Ga−Cu系合金全体の5mol%以上20mol%以下である、R−T−B系焼結磁石の製造方法。
The process of preparing the R1-T1-B-based sintered body and
The process of preparing R2-Ga-Cu alloy and
At least a part of the R2-Ga—Cu alloy is brought into contact with at least a part of the surface of the R1-T1-B-based sintered body, and the temperature is 450 ° C. or higher and 500 ° C. or lower in a vacuum or an inert gas atmosphere. Including the process of performing heat treatment in
In the R1-T1-B-based sintered body,
R1 is at least one of rare earth elements and always contains at least one of Nd and Pr, and the content of R1 is 27 mass% or more and 35 mass% or less of the entire R1-T1-B-based sintered body.
T1 is Fe or at least one of Co, Al, Mn, and Si and Fe, and the content of Fe with respect to the whole T1 is 80 mass% or more.
The mol ratio of T1 to B ([T1] / [B]) is more than 14.0 and 15.0 or less.
In the R2-Ga—Cu based alloy,
R2 is at least one of the rare earth elements and always contains La, the content of R2 is 70 mol% or more and 90 mol% or less of the whole R2-Ga-Cu alloy, and the ratio of La to the whole rare earth element is , Higher than the ratio of La to the total rare earth elements of the R1-T1-B based sintered body,
The content of Ga is 5 mol% or more and 20 mol% or less of the entire R2-Ga—Cu based alloy.
A method for producing an RTB-based sintered magnet, wherein the Cu content is 5 mol% or more and 20 mol% or less of the entire R2-Ga—Cu-based alloy.
前記R2−Ga−Cu系合金中のLaがR2全体の50mol%以上である、請求項1に記載のR−T−B系焼結磁石の製造方法。 The method for producing an RTB-based sintered magnet according to claim 1, wherein La in the R2-Ga-Cu-based alloy is 50 mol% or more of the total amount of R2. 前記R2−Ga−Cu系合金中のR2はLaである(不純物は含む)、請求項1に記載のR−T−B系焼結磁石の製造方法。 The method for producing an R-TB-based sintered magnet according to claim 1, wherein R2 in the R2-Ga-Cu-based alloy is La (including impurities). 前記R2−Ga−Cu系合金におけるR2、Ga,Cuの合計の含有量が80mass%以上である、請求項1から3のいずれかに記載のR−T−B系焼結磁石の製造方法。 The method for producing an R-TB-based sintered magnet according to any one of claims 1 to 3, wherein the total content of R2, Ga, and Cu in the R2-Ga-Cu-based alloy is 80 mass% or more. 前記R1−T1−B系焼結体を準備する工程は、原料合金を粒径D50が3μm以上10μm以下になるように粉砕した後、磁界中で配向させて焼結を行うことを含む、請求項1から4のいずれかに記載のR−T−B系焼結磁石の製造方法。 The step of preparing the R1-T1-B-based sintered body includes crushing the raw material alloy so that the particle size D 50 is 3 μm or more and 10 μm or less, and then aligning and sintering in a magnetic field. The method for producing an RTB-based sintered magnet according to any one of claims 1 to 4.
JP2019054079A 2019-03-22 2019-03-22 Method for producing RTB based sintered magnet Active JP7228096B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019054079A JP7228096B2 (en) 2019-03-22 2019-03-22 Method for producing RTB based sintered magnet
JP2023010682A JP2023052675A (en) 2019-03-22 2023-01-27 R-t-b system based sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019054079A JP7228096B2 (en) 2019-03-22 2019-03-22 Method for producing RTB based sintered magnet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023010682A Division JP2023052675A (en) 2019-03-22 2023-01-27 R-t-b system based sintered magnet

Publications (2)

Publication Number Publication Date
JP2020155657A true JP2020155657A (en) 2020-09-24
JP7228096B2 JP7228096B2 (en) 2023-02-24

Family

ID=72559752

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019054079A Active JP7228096B2 (en) 2019-03-22 2019-03-22 Method for producing RTB based sintered magnet
JP2023010682A Pending JP2023052675A (en) 2019-03-22 2023-01-27 R-t-b system based sintered magnet

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023010682A Pending JP2023052675A (en) 2019-03-22 2023-01-27 R-t-b system based sintered magnet

Country Status (1)

Country Link
JP (2) JP7228096B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7130156B1 (en) * 2021-08-04 2022-09-02 三菱電機株式会社 Rare earth sintered magnet, method for producing rare earth sintered magnet, rotor and rotating machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028602A (en) * 2004-07-16 2006-02-02 Aichi Steel Works Ltd Rare-earth anisotropic magnet powder
JP2008263179A (en) * 2007-03-16 2008-10-30 Shin Etsu Chem Co Ltd Rare earth permanent magnet and method of manufacturing the same
WO2015020181A1 (en) * 2013-08-09 2015-02-12 Tdk株式会社 R-t-b-based sintered magnet and motor
WO2016133071A1 (en) * 2015-02-18 2016-08-25 日立金属株式会社 Method for producing r-t-b system sintered magnet
JP2018019079A (en) * 2016-07-15 2018-02-01 Tdk株式会社 R-t-b based rare earth permanent magnet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028602A (en) * 2004-07-16 2006-02-02 Aichi Steel Works Ltd Rare-earth anisotropic magnet powder
JP2008263179A (en) * 2007-03-16 2008-10-30 Shin Etsu Chem Co Ltd Rare earth permanent magnet and method of manufacturing the same
WO2015020181A1 (en) * 2013-08-09 2015-02-12 Tdk株式会社 R-t-b-based sintered magnet and motor
WO2016133071A1 (en) * 2015-02-18 2016-08-25 日立金属株式会社 Method for producing r-t-b system sintered magnet
JP2018019079A (en) * 2016-07-15 2018-02-01 Tdk株式会社 R-t-b based rare earth permanent magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7130156B1 (en) * 2021-08-04 2022-09-02 三菱電機株式会社 Rare earth sintered magnet, method for producing rare earth sintered magnet, rotor and rotating machine
WO2023012929A1 (en) * 2021-08-04 2023-02-09 三菱電機株式会社 Rare earth sintered magnet, method for producing rare earth sintered magnet, rotor, and rotary machine

Also Published As

Publication number Publication date
JP2023052675A (en) 2023-04-11
JP7228096B2 (en) 2023-02-24

Similar Documents

Publication Publication Date Title
JP6361813B2 (en) Method for producing RTB-based sintered magnet
CN109478452B (en) R-T-B sintered magnet
JP6380652B2 (en) Method for producing RTB-based sintered magnet
JP6414653B1 (en) Method for producing RTB-based sintered magnet
JP6489201B2 (en) Method for producing RTB-based sintered magnet
JP6414654B1 (en) Method for producing RTB-based sintered magnet
JP2018056188A (en) Rare earth-iron-boron based sintered magnet
JP6750543B2 (en) R-T-B system sintered magnet
JP6451900B2 (en) R-Fe-B sintered magnet and method for producing the same
JP6860808B2 (en) Manufacturing method of RTB-based sintered magnet
CN109671547B (en) R-T-B sintered magnet and method for producing same
JP6624455B2 (en) Method for producing RTB based sintered magnet
JP6508447B1 (en) Method of manufacturing RTB based sintered magnet
JP2023052675A (en) R-t-b system based sintered magnet
JP6623998B2 (en) Method for producing RTB based sintered magnet
JP7020224B2 (en) RTB-based sintered magnet and its manufacturing method
JP7059995B2 (en) RTB-based sintered magnet
JP6610957B2 (en) Method for producing RTB-based sintered magnet
JP7476601B2 (en) Manufacturing method of RTB based sintered magnet
JP2021153148A (en) Method for manufacturing r-t-b based sintered magnet and alloy for diffusion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230123

R150 Certificate of patent or registration of utility model

Ref document number: 7228096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150