JP2020145052A - Stacked battery and method for manufacturing stacked battery - Google Patents

Stacked battery and method for manufacturing stacked battery Download PDF

Info

Publication number
JP2020145052A
JP2020145052A JP2019039916A JP2019039916A JP2020145052A JP 2020145052 A JP2020145052 A JP 2020145052A JP 2019039916 A JP2019039916 A JP 2019039916A JP 2019039916 A JP2019039916 A JP 2019039916A JP 2020145052 A JP2020145052 A JP 2020145052A
Authority
JP
Japan
Prior art keywords
active material
material layer
electrode active
current collector
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019039916A
Other languages
Japanese (ja)
Other versions
JP7334427B2 (en
Inventor
岸 和人
Kazuto Kishi
和人 岸
後河内 透
Toru Gokochi
透 後河内
鈴木 栄子
Eiko Suzuki
栄子 鈴木
英雄 柳田
Hideo Yanagida
英雄 柳田
木村 興利
Okitoshi Kimura
興利 木村
正巳 高井
Masami Takai
正巳 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2019039916A priority Critical patent/JP7334427B2/en
Publication of JP2020145052A publication Critical patent/JP2020145052A/en
Application granted granted Critical
Publication of JP7334427B2 publication Critical patent/JP7334427B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Primary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a stacked battery capable of improving the degree of freedom in shape.SOLUTION: The present stacked battery is a stacked battery 1 including a plurality of electrodes 101, 201, 102, 202 stacked via ion conductive layers 301, 302, 303, the plurality of electrodes including: electrode current collectors 11a, 21a, 11b, 21b; electrode active material layers 12a, 22b 12c formed on first sides of the electrode current collectors; and electrode active material layers 22a, 12b, 22c formed on second sides, which are opposite to the respective first sides, of the electrode current collectors. The plurality of electrodes include at least one electrode in which the area of the electrode active material layer thereof formed on the first side is different from the area of the electrode active material layer thereof formed on the second side.SELECTED DRAWING: Figure 2

Description

本発明は、積層型電池、積層型電池の製造方法に関する。 The present invention relates to a laminated battery and a method for manufacturing a laminated battery.

電池は一般に円筒形や直方体の形状であるが、個々の機器や装置に適した自由な形状の電池の要望が高い。これは主に電池の大容量化とデザインの自由度を確保するためである。電池のエネルギー密度は年々向上しているが、電池を利用する機器の電力消費量も急速に増大している。このため、少しでも容量の高い電池を利用するため、装置形状に応じた形状の電池が望まれている。又、機器の小型化により部品の搭載スペースや形状に制約があると共に装置のデザインに適した既存の電池形状とは異なる形状の電池が望まれている。そのため、電池形状の自由度を向上する様々な技術が検討されている。 Batteries are generally in the shape of a cylinder or a rectangular parallelepiped, but there is a strong demand for a battery having a free shape suitable for individual devices and devices. This is mainly to increase the capacity of the battery and ensure the degree of freedom in design. The energy density of batteries is increasing year by year, but the power consumption of devices that use batteries is also increasing rapidly. Therefore, in order to use a battery having a high capacity as much as possible, a battery having a shape corresponding to the shape of the device is desired. Further, there is a limitation on the mounting space and shape of parts due to the miniaturization of the device, and a battery having a shape different from the existing battery shape suitable for the design of the device is desired. Therefore, various techniques for improving the degree of freedom in battery shape are being studied.

電池形状の自由度を向上する技術の一例として、面積の異なる電極を積み上げることにより、積層方向の形状の自由度を向上させたラミネート型電池が挙げられる。この技術によれば、面積が異なる複数の組電極を積層することで、積層方向に段差をつけられる階段状のラミネート型電池を提供可能である(例えば、特許文献1参照)。 An example of a technique for improving the degree of freedom in the shape of a battery is a laminated battery in which the degree of freedom in the shape in the stacking direction is improved by stacking electrodes having different areas. According to this technique, it is possible to provide a stepped laminated battery in which a step can be provided in the stacking direction by laminating a plurality of assembled electrodes having different areas (see, for example, Patent Document 1).

しかしながら、上記の技術では、積層方向で電池のサイズを変更するためにサイズが異なる複数種類のセルを用意し、これを積層して複数セルを組電池として接続する必要がある。しかし、多様なサイズの空隙への配置に対応する多種類のセルの準備は困難である。又、厚いセルを階段状に積層するため、段差が大きく、無駄な空隙が残りやすいという問題があり、形状の自由度を更に向上することが求められている。 However, in the above technique, it is necessary to prepare a plurality of types of cells having different sizes in order to change the size of the battery in the stacking direction, stack the cells, and connect the plurality of cells as an assembled battery. However, it is difficult to prepare a wide variety of cells that can be placed in voids of various sizes. Further, since thick cells are laminated in a stepped manner, there is a problem that a step is large and unnecessary voids are likely to remain, and it is required to further improve the degree of freedom in shape.

本発明は、上記に鑑みてなされたものであり、形状の自由度を向上可能な積層型電池を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a laminated battery capable of improving the degree of freedom in shape.

本積層型電池は、電極集電体、前記電極集電体の第1面に形成された電極活物質層、及び前記電極集電体の前記第1面の反対面である第2面に形成された電極活物質層、を有する複数の電極がイオン導電層を介して積層された積層型電池であって、前記複数の電極は、前記第1面に形成された前記電極活物質層の面積と前記第2面に形成された前記電極活物質層の面積が異なる電極を少なくとも1つ含むことを要件とする。 The laminated battery is formed on an electrode current collector, an electrode active material layer formed on the first surface of the electrode current collector, and a second surface opposite to the first surface of the electrode current collector. A laminated battery in which a plurality of electrodes having the electrode active material layer formed therein are laminated via an ion conductive layer, wherein the plurality of electrodes are the areas of the electrode active material layer formed on the first surface. It is a requirement that at least one electrode having a different area of the electrode active material layer formed on the second surface is included.

開示の技術によれば、形状の自由度を向上可能な積層型電池を提供できる。 According to the disclosed technology, it is possible to provide a laminated battery capable of improving the degree of freedom in shape.

第1実施形態に係る積層型蓄電池を例示する斜視図である。It is a perspective view which illustrates the laminated type storage battery which concerns on 1st Embodiment. 第1実施形態に係る積層型蓄電池を例示する断面図である。It is sectional drawing which illustrates the laminated type storage battery which concerns on 1st Embodiment. 第1実施形態に係る積層型蓄電池の外装部材内部を例示する斜視図である。It is a perspective view which illustrates the inside of the exterior member of the laminated storage battery which concerns on 1st Embodiment. 第1実施形態に係る積層型蓄電池の電極活物質層の面積及び形成位置について説明する図である。It is a figure explaining the area and formation position of the electrode active material layer of the laminated type storage battery which concerns on 1st Embodiment. 第1実施形態の変形例1に係る積層型蓄電池の外装部材内部を例示する断面図である。It is sectional drawing which illustrates the inside of the exterior member of the laminated type storage battery which concerns on modification 1 of 1st Embodiment. 第1実施形態の変形例1に係る積層型蓄電池の外装部材内部を例示する斜視図である。It is a perspective view which illustrates the inside of the exterior member of the laminated storage battery which concerns on modification 1 of 1st Embodiment. 第1実施形態の変形例1に係る積層型蓄電池の電極活物質層の面積及び形成位置について説明する図である。It is a figure explaining the area and formation position of the electrode active material layer of the laminated storage battery which concerns on modification 1 of 1st Embodiment. 第2実施形態に係る積層型蓄電池を例示する斜視図である。It is a perspective view which illustrates the laminated type storage battery which concerns on 2nd Embodiment. 第2実施形態に係る積層型蓄電池を例示する断面図である。It is sectional drawing which illustrates the laminated type storage battery which concerns on 2nd Embodiment. インクジェット方式を用いた積層型蓄電池の製造方法を例示する図である。It is a figure which illustrates the manufacturing method of the laminated type storage battery using the inkjet method. 第2実施形態の変形例1に係る積層型蓄電池を例示する斜視図である。It is a perspective view which illustrates the laminated type storage battery which concerns on the modification 1 of the 2nd Embodiment. 第2実施形態の変形例1に係る積層型蓄電池の外装部材内部を例示する断面図である。It is sectional drawing which illustrates the inside of the exterior member of the laminated storage battery which concerns on modification 1 of 2nd Embodiment. 第2実施形態の変形例2に係る積層型蓄電池の外装部材内部を例示する断面図である。It is sectional drawing which illustrates the inside of the exterior member of the laminated type storage battery which concerns on modification 2 of 2nd Embodiment. 第3実施形態に係る積層型蓄電池を例示する断面図である。It is sectional drawing which illustrates the laminated type storage battery which concerns on 3rd Embodiment. 第3実施形態に係る積層型蓄電池の電極活物質層の面積及び形成位置について説明する図である。It is a figure explaining the area and formation position of the electrode active material layer of the laminated type storage battery which concerns on 3rd Embodiment.

以下、図面を参照して発明を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。 Hereinafter, modes for carrying out the invention will be described with reference to the drawings. In each drawing, the same components may be designated by the same reference numerals and duplicate description may be omitted.

〈第1実施形態〉
図1は、第1実施形態に係る積層型蓄電池を例示する斜視図である。図2は、第1実施形態に係る積層型蓄電池を例示する断面図であり、図1のA−A線に沿う断面を示している。図3は、第1実施形態に係る積層型蓄電池の外装部材内部を例示する斜視図である。
<First Embodiment>
FIG. 1 is a perspective view illustrating the stacked storage battery according to the first embodiment. FIG. 2 is a cross-sectional view illustrating the laminated storage battery according to the first embodiment, and shows a cross-sectional view taken along the line AA of FIG. FIG. 3 is a perspective view illustrating the inside of the exterior member of the laminated storage battery according to the first embodiment.

図4は、第1実施形態に係る積層型蓄電池の電極活物質層の面積及び形成位置について説明する図であり、図4(a)は負極20の負極集電体21aの上面側を、図4(b)は負極20の負極集電体21aの下面側を示している。又、図4(c)は正極10の正極集電体11bの上面側を、図4(d)は正極10の正極集電体11bの下面側を示している。又、図4(e)は積層体2の下面側から視た各電極活物質層の面積の違いを模式的に示している。 Figure 4 is a diagram for explaining the area and formation position of the electrode active material layer of the multilayer storage battery according to the first embodiment, the upper surface of the negative electrode current collector 21a in FIG. 4 (a) negative 20 1, FIG. 4 (b) shows a lower surface of the negative electrode current collector 21a of the negative electrode 20 1. Further, FIG. 4 (c) the upper surface of the cathode current collector 11b of positive electrode 10 2, FIG. 4 (d) shows a lower surface of the cathode current collector 11b of the positive electrode 10 2. Further, FIG. 4 (e) it is schematically shown the difference in area of each electrode active material layer as viewed from the lower surface side of the laminate 2 1.

図1〜図4を参照すると、積層型蓄電池1は、発電機能を有する積層体2と、積層体2から電力を取り出す端子3と、積層体2及び端子3を覆う外装部材5とを有している。外装部材5は、端部同士が接合された第1外装部材5aと第2外装部材5bとを含み、第1外装部材5a及び第2外装部材5bの内部には積層体2及び液体電解質が封止されている。 Referring to FIGS. 1-4, the multilayer storage battery 1 has a laminate 2 1 having a power generating function, a terminal 3 for taking out power from the laminate 2 1, the exterior member 5 covering the laminate 2 1 and the terminal 3 have. Package member 5 includes a first exterior member 5a and the second exterior member 5b which ends are joined, stack 2 1 and the liquid electrolyte within the first exterior member 5a and the second exterior member 5b is It is sealed.

なお、本実施形態では、便宜上、第2外装部材5bに近い側を上側、第2外装部材5bから遠い側を下側とする。又、各部位の第2外装部材5bに近い側の面を上面、第2外装部材5bから遠い側の面を下面とする。但し、積層型蓄電池1は天地逆の状態で用いることができ、又は任意の角度で配置できる。又、平面視とは対象物を積層型蓄電池1の各層の積層方向から視ることを指し、平面形状とは対象物を積層型蓄電池1の各層の積層方向から視た形状を指すものとする。 In the present embodiment, for convenience, the side closer to the second exterior member 5b is the upper side, and the side far from the second exterior member 5b is the lower side. Further, the surface of each part on the side close to the second exterior member 5b is the upper surface, and the surface on the side far from the second exterior member 5b is the lower surface. However, the laminated storage battery 1 can be used upside down, or can be arranged at an arbitrary angle. Further, the plan view means that the object is viewed from the stacking direction of each layer of the laminated storage battery 1, and the planar shape refers to the shape of the object viewed from the stacking direction of each layer of the laminated storage battery 1. ..

積層体2は、正極10及び10と、負極20及び20と、イオン導電層30〜30とを有している。正極10は、正極集電体11aと、正極集電体11aの下面に形成された正極活物質層12aとを有している。又、正極10は、正極集電体11bと、正極集電体11bの上面に形成された正極活物質層12bと、下面に形成された正極活物質層12cとを有しており、正極活物質層12bと正極活物質層12cとは面積が異なる。具体的には、正極活物質層12cの面積は、正極活物質層12bの面積よりも小さい。 Laminate 2 1 includes a positive electrode 10 1 and 10 2, a negative electrode 20 1 and 20 2, and a ion conductive layer 30 1 to 30 3. The positive electrode 10 1 has a positive electrode current collector 11a and a positive electrode active material layer 12a formed on the lower surface of the positive electrode current collector 11a. Further, the positive electrode 10 2 has a positive electrode current collector 11b, a positive electrode active material layer 12b formed on the upper surface of the positive electrode current collector 11b, and a positive electrode active material layer 12c formed on the lower surface, and has a positive electrode. The active material layer 12b and the positive electrode active material layer 12c have different areas. Specifically, the area of the positive electrode active material layer 12c is smaller than the area of the positive electrode active material layer 12b.

又、負極20は、負極集電体21aと、負極集電体21aの上面に形成された負極活物質層22aと、下面に形成された負極活物質層22bとを有しており、負極活物質層22aと負極活物質層22bとは面積が異なる。具体的には、負極活物質層22bの面積は、負極活物質層22aの面積よりも小さい。又、負極20は、負極集電体21bと、負極集電体21bの上面に形成された負極活物質層22cとを有している。 Moreover, the negative electrode 20 1 has a negative electrode current collector 21a, and negative active material layers 22a formed on the upper surface of the negative electrode current collector 21a, an anode active material layer 22b formed on the lower surface, a negative electrode The active material layer 22a and the negative electrode active material layer 22b have different areas. Specifically, the area of the negative electrode active material layer 22b is smaller than the area of the negative electrode active material layer 22a. Moreover, the negative electrode 20 2 includes a negative electrode current collector 21b, and a negative electrode active material layer 22c formed on the upper surface of the negative electrode current collector 21b.

正極10と負極20とは、正極活物質層12aと負極活物質層22aとがイオン導電層30と密着するように、イオン導電層30を挟んで互いに対向している。正極活物質層12aと負極活物質層22aとは略同じ面積で、平面視で略重複する位置に配置されている。 The positive electrode 10 1 and the negative electrode 20 1, so that the cathode active material layer 12a and the anode active material layer 22a in close contact with the ion-conducting layer 30 1 are opposed to each other across the ion conductive layer 30 1. The positive electrode active material layer 12a and the negative electrode active material layer 22a have substantially the same area and are arranged at substantially overlapping positions in a plan view.

負極20と正極10とは、負極活物質層22bと正極活物質層12bとがイオン導電層30と密着するように、イオン導電層30を挟んで互いに対向している。負極活物質層22bと正極活物質層12bとは略同じ面積で、平面視で略重複する位置に配置されている。 The negative electrode 20 1 and the positive electrode 10 2, as the anode active material layer 22b and the positive electrode active material layer 12b is in close contact with the ion-conducting layer 30 2, they are opposed to each other across the ion conductive layer 30 2. The negative electrode active material layer 22b and the positive electrode active material layer 12b have substantially the same area and are arranged at substantially overlapping positions in a plan view.

正極10と負極20とは、正極活物質層12cと負極活物質層22cとがイオン導電層30と密着するように、イオン導電層30を挟んで互いに対向している。正極活物質層12cと負極活物質層22cとは略同じ面積で、平面視で略重複する位置に配置されている。 The positive electrode 10 2 and the negative electrode 20 2, so that the positive electrode active material layer 12c and the negative electrode active material layer 22c in close contact with the ion-conducting layer 30 3, they are opposed to each other across the ion conductive layer 30 3. The positive electrode active material layer 12c and the negative electrode active material layer 22c have substantially the same area and are arranged at substantially overlapping positions in a plan view.

なお、本願において、正極と負極とを総称して電極、正極集電体と負極集電体とを総称して電極集電体、正極活物質層と負極活物質層とを総称して電極活物質層と称する場合がある。又、電極集電体の上面及び下面の何れか一方を第1面、他方を第2面と称する場合がある。又、電極活物質層の面積とは、電極活物質層の電極集電体と接する面の面積を指すものとする。 In the present application, the positive electrode and the negative electrode are collectively referred to as an electrode, the positive electrode current collector and the negative electrode current collector are collectively referred to as an electrode current collector, and the positive electrode active material layer and the negative electrode active material layer are collectively referred to as electrode activity. Sometimes referred to as a material layer. Further, either one of the upper surface and the lower surface of the electrode current collector may be referred to as a first surface and the other may be referred to as a second surface. Further, the area of the electrode active material layer refers to the area of the surface of the electrode active material layer in contact with the electrode current collector.

端子3は、正極端子3aと、負極端子3bとを含む。正極端子3aは正極集電体11a及び11bに接続されており、負極端子3bは負極集電体21a及び21bに接続されている。正極端子3a及び負極端子3bの一部は、外装部材5から外部に露出しており、積層型蓄電池1の外部との電気的接続を可能としている。 The terminal 3 includes a positive electrode terminal 3a and a negative electrode terminal 3b. The positive electrode terminal 3a is connected to the positive electrode current collectors 11a and 11b, and the negative electrode terminal 3b is connected to the negative electrode current collectors 21a and 21b. A part of the positive electrode terminal 3a and the negative electrode terminal 3b is exposed to the outside from the exterior member 5, and can be electrically connected to the outside of the laminated storage battery 1.

なお、図4に示すように、負極20の負極活物質層22a及び22bは積層型蓄電池1の端部まで形成されており、正極10の正極活物質層12b及び12cは積層型蓄電池1の端部まで形成されている。これにより、端子3の取り出しが容易となる。 As shown in FIG. 4, the negative electrode active material layer 22a and 22b of the negative electrode 20 1 is formed to the end portion of the laminated battery 1, the positive electrode active material layer 12b and 12c of the cathode 10 2 laminated battery 1 It is formed up to the end of. This makes it easy to take out the terminal 3.

但し、図4では、負極20の負極活物質層22a及び22bが積層型蓄電池1の端部まで形成され、正極10の正極活物質層12b及び12cが積層型蓄電池1の端部まで形成されている例を示したが、これには限定されない。例えば、図5〜図7に示す積層体2のように、電極活物質層は積層型蓄電池1の端部まで形成されていなくても構わない。 However, in FIG. 4, the negative electrode active material layer 22a and 22b of the negative electrode 20 1 is formed to the end portion of the laminated battery 1, forming a positive electrode active material layer 12b and 12c of the cathode 10 2 until the end of the stacked battery 1 The example is shown, but the present invention is not limited to this. For example, as the laminate 2 2 shown in FIGS. 5 to 7, the electrode active material layer may not be formed to the end portion of the laminated battery 1.

又、積層型蓄電池1では、積層体2の対向する2辺の一方側から正極端子3aを取り出し、他方側から負極端子3bを取り出しているが、何れか1辺側のみから正極端子3a及び負極端子3bを取り出す構造としてもよい。 Further, in the multilayer storage battery 1, from one side of two opposite sides of the stack 2 1 is taken out as a positive electrode terminal 3a, but from the other side is taken out as a negative electrode terminal 3b, the positive electrode terminal 3a and only any one edge side The structure may be such that the negative electrode terminal 3b is taken out.

なお、積層体2において、正極と負極の積層数は任意に決定できる。すなわち、図2では、2つの正極と2つの負極の合計4つを図示しているが、これには限定されず、更に多くの正極及び負極を積層できる。その際、正極の個数と負極の個数が同一であっても異なっていてもよい。 Incidentally, in the laminate 2 1, the number of stacked positive electrode and the negative electrode can be arbitrarily determined. That is, in FIG. 2, a total of four positive electrodes and two negative electrodes are shown, but the present invention is not limited to this, and more positive electrodes and negative electrodes can be laminated. At that time, the number of positive electrodes and the number of negative electrodes may be the same or different.

正極集電体11a及び11b、負極集電体21a及び21bの材質は、導電性材料であれば、特に制限はなく、目的に応じて適宜選択でき、例えば、アルミニウムや銅等の金属材料が挙げられる。正極集電体11a及び11b、負極集電体21a及び21bの大きさや形状は、積層型蓄電池1に使用可能であれば、特に制限はなく、目的に応じて適宜選択できる。 The materials of the positive electrode current collectors 11a and 11b and the negative electrode current collectors 21a and 21b are not particularly limited as long as they are conductive materials, and can be appropriately selected depending on the intended purpose. Examples thereof include metal materials such as aluminum and copper. Be done. The sizes and shapes of the positive electrode current collectors 11a and 11b and the negative electrode current collectors 21a and 21b are not particularly limited as long as they can be used in the laminated storage battery 1, and can be appropriately selected according to the purpose.

正極活物質層12a、12b、及び12cは、リチウムイオン等のアルカリ金属イオンを可逆的に吸蔵及び放出できる材料であれば特に限定されないが、例えば、マンガン酸リチウム、ニッケル酸リチウム、コバルト酸リチウム等の酸化物が挙げられる。 The positive electrode active material layers 12a, 12b, and 12c are not particularly limited as long as they are materials capable of reversibly occluding and releasing alkali metal ions such as lithium ions, and are, for example, lithium manganate, lithium nickel oxide, lithium cobalt oxide, and the like. Oxides include.

負極活物質層22a、22b、及び22cは、リチウムイオン等のアルカリ金属イオンを可逆的に吸蔵及び放出できる材料であれば特に限定されないが、例えば、カーボン材料やチタン酸リチウム等が挙げられる。 The negative electrode active material layers 22a, 22b, and 22c are not particularly limited as long as they are materials capable of reversibly occluding and releasing alkali metal ions such as lithium ions, and examples thereof include carbon materials and lithium titanate.

イオン導電層30〜30は、有機溶媒にリチウム塩を溶かした液体電解質等のリチウムイオンが通過することで導電性を実現する部材であり、微小な空孔を多数有するポリエチレン等のセパレータや繊維状物質からなり、液体電解質を含浸可能である。なお、イオン導電層30〜30は、液体電解質を含浸させたセパレータには限定されず、固体の電解質からなるイオン導電層としても構わない。 Ion conductive layers 30 1 to 30 3 are members that realize conductivity by passing lithium ions such as a liquid electrolyte in which a lithium salt is dissolved in an organic solvent, and are separators such as polyethylene having many minute pores. It consists of a fibrous material and can be impregnated with a liquid electrolyte. The ion conductive layers 30 1 to 30 3 are not limited to the separator impregnated with the liquid electrolyte, and may be an ion conductive layer made of a solid electrolyte.

このように、積層型蓄電池1では、電極集電体、電極集電体の第1面に形成された電極活物質層、及び電極集電体の第1面の反対面である第2面に形成された電極活物質層、を有する複数の電極がイオン導電層を介して積層されている。そして、複数の電極は、第1面に形成された電極活物質層の面積と第2面に形成された電極活物質層の面積が異なる電極を少なくとも1つ含む。具体的には、積層型蓄電池1では、正極10において正極活物質層12cの面積を正極活物質層12bの面積よりも小さくし、負極20において負極活物質層22bの面積を負極活物質層22aの面積よりも小さくしている。 As described above, in the laminated storage battery 1, the electrode current collector, the electrode active material layer formed on the first surface of the electrode current collector, and the second surface opposite to the first surface of the electrode current collector A plurality of electrodes having the formed electrode active material layer are laminated via an ion conductive layer. The plurality of electrodes include at least one electrode having a different area of the electrode active material layer formed on the first surface and an area of the electrode active material layer formed on the second surface. Specifically, the multilayer storage battery 1, the area of the positive electrode active material layer 12c is made smaller than the area of the positive electrode active material layer 12b in the positive electrode 10 2, the negative electrode active material area of the negative electrode active material layer 22b at the negative electrode 20 1 It is smaller than the area of the layer 22a.

これにより、電池形状のデザインの自由度が向上するため、積層型蓄電池1の形状に依存して発生する隙間を有効利用して積層体2の形状を決定可能となる。具体的には、傾斜を有する第1外装部材5aに合わせて積層体2の形状を容易に決定できる。その結果、積層型蓄電池1の形状に依存して発生する隙間を有効利用し、積層型蓄電池1の容量を向上できる。又、電極活物質の量を少なくできるため、積層型蓄電池1の重量エネルギー密度を向上できる。 Thus, to improve the degree of freedom in design of the battery shape, allows determining the laminate 2 1 shape by effectively utilizing the gap generated depending on the shape of the stacked battery 1. Specifically, a laminate 2 first shape can be easily determined in accordance with the first exterior member 5a having inclined. As a result, the capacity of the laminated storage battery 1 can be improved by effectively utilizing the gap generated depending on the shape of the laminated storage battery 1. Further, since the amount of the electrode active material can be reduced, the weight energy density of the laminated storage battery 1 can be improved.

なお、積層型蓄電池1のイオン導電層を介して対向する負極活物質層及び正極活物質層において、負極活物質層の面積が正極活物質層の面積よりも大きいことが好ましい。これにより、デンドライトの発生を抑制し、積層型蓄電池1の安全性を向上できる。 In the negative electrode active material layer and the positive electrode active material layer facing each other via the ion conductive layer of the laminated storage battery 1, the area of the negative electrode active material layer is preferably larger than the area of the positive electrode active material layer. As a result, the generation of dendrites can be suppressed and the safety of the stacked storage battery 1 can be improved.

〈第2実施形態〉
第2実施形態では、基材の上に積層体が配置された積層型蓄電池の例を示す。なお、第2実施形態において、既に説明した実施形態と同一構成部についての説明は省略する場合がある。
<Second Embodiment>
In the second embodiment, an example of a laminated storage battery in which a laminated body is arranged on a base material is shown. In the second embodiment, the description of the same components as those in the above-described embodiment may be omitted.

図8は、第2実施形態に係る積層型蓄電池を例示する斜視図である。図9は、第2実施形態に係る積層型蓄電池を例示する断面図であり、図8のB−B線に沿う断面を示している。 FIG. 8 is a perspective view illustrating the stacked storage battery according to the second embodiment. FIG. 9 is a cross-sectional view illustrating the laminated storage battery according to the second embodiment, and shows a cross-sectional view taken along the line BB of FIG.

図8及び図9を参照すると、積層型蓄電池1Aでは、基材6の下面側に積層体2が形成されている。 8 and 9, the multilayer battery 1A, the laminate 2 1 to the lower surface side of the substrate 6 is formed.

又、積層型蓄電池1Aでは、絶縁物質からなる充填部材7を、各電極及び各イオン導電層と接するように積層体2の周囲に形成し、絶縁性を確保している。周囲に充填部材7が形成された積層体2は、外装カバー8により覆われている。充填部材7としては、例えば、絶縁性の樹脂を用いることができる。 Further, in the multilayer battery 1A, the filling member 7 made of an insulating material, formed around the laminate 2 1 so as to be in contact with the electrodes and the ion conductive layer to ensure insulation. The laminated body 2 1 having the filling member 7 formed around it is covered with an exterior cover 8. As the filling member 7, for example, an insulating resin can be used.

充填部材7は、多孔質又は繊維形状であることが好ましい。これにより、充填部材7を介して積層体2への電解液の含浸が容易となる。 The filling member 7 is preferably porous or fibrous. This facilitates impregnation of the electrolyte into the laminate 2 1 via the filling member 7.

積層体2は、例えば、インクジェット方式を用いて形成できる。例えば、各電極集電体として金属箔を使用し、各電極集電体の上面及び/又は下面にインクジェット方式によりで電極活物質層を形成する。インクジェット方式は任意の位置や任意の形状で素材を形成可能であるため、積層型蓄電池1Aのように電極集電体の上面と下面で電極活物質層の形状や面積が異なる場合に好適である。インクジェット方式により形成した形状の異なる電極を積層していくことで、積層体2を任意の形状に形成可能である。 The laminate 2 1 can be formed by using, for example, an inkjet method. For example, a metal foil is used as each electrode current collector, and an electrode active material layer is formed on the upper surface and / or the lower surface of each electrode current collector by an inkjet method. Since the material can be formed at any position and at any shape in the inkjet method, it is suitable when the shape and area of the electrode active material layer are different between the upper surface and the lower surface of the electrode current collector as in the laminated storage battery 1A. .. By going by laminating electrodes of different forms and shapes by an inkjet method, it is possible to form a laminate 2 1 in an arbitrary shape.

なお、電極毎に電極活物質層をインクジェット方式で形成した後、各電極を積層して積層体2を形成する方法を用いてもよいし、平板形状の基材6の上に積層体2となる各層の材料をインクジェット方式で順次塗布し、基材6の上に積層体2を直接形成する方法を用いてもよい。 Note that after the electrode active material layer was formed by an ink jet method for each electrode, may be used a method of forming a laminate 2 1 by stacking the electrodes, the laminate on the substrate 6 of the flat plate 2 1 become the material of each layer sequentially applied by an ink jet method, a method may be used to directly form a laminate 2 1 on the substrate 6.

基材6の上に積層体2を直接形成する場合、電極活物質層の形成に用いるインクジェットヘッドとインクジェット組成物(インク)によっては、インクジェットヘッドと基材6との距離を相当程度離すことが可能である。そのため、基材6は3次元曲面を備えていてもよいし、柔軟な素材であってもよい。 If directly form a laminate 2 1 on the substrate 6, the ink jet head and the ink jet composition for use in the formation of the electrode active material layer (ink), by releasing considerable distance between the inkjet head and the substrate 6 Is possible. Therefore, the base material 6 may have a three-dimensional curved surface or may be a flexible material.

なお、図8及び図9では、外装部材5(図1及び図2参照)を用いていないが、充填部材7の代わりに外装部材5を用いてもよい。或いは、充填部材7と外装部材5を併用してもよい。例えば、積層体2の形状を整えるために外装部材5の内部において充填部材7を用いることができる。 Although the exterior member 5 (see FIGS. 1 and 2) is not used in FIGS. 8 and 9, the exterior member 5 may be used instead of the filling member 7. Alternatively, the filling member 7 and the exterior member 5 may be used together. For example, it is possible to use a filling member 7 in the package member 5 in order to adjust the stack 2 1 shape.

ここで、インクジェット方式についてより具体的に説明する。図10は、インクジェット方式を用いた積層型蓄電池の製造方法を例示する図である。 Here, the inkjet method will be described more specifically. FIG. 10 is a diagram illustrating a method for manufacturing a laminated storage battery using an inkjet method.

本実施形態に係る積層型蓄電池の製造方法は、電極活物質層をインクジェット方式で形成する工程を含む。具体的には、電極活物質層となるインクジェット組成物を、インクジェット方式を用いて、電極集電体上に吐出する工程を含む。ここでは、正極集電体11a上に正極活物質層12aを形成する場合の例について説明する。 The method for manufacturing a laminated storage battery according to the present embodiment includes a step of forming an electrode active material layer by an inkjet method. Specifically, it includes a step of ejecting an inkjet composition to be an electrode active material layer onto an electrode current collector using an inkjet method. Here, an example in which the positive electrode active material layer 12a is formed on the positive electrode current collector 11a will be described.

まず、アルミニウムや銅等の金属箔からなる細長状の正極集電体11aを準備する。そして、正極集電体11aを筒状の芯に巻き付け、正極活物質層12aを形成するべき側が上側になるように、送り出しローラ304と巻き取りローラ305にセットする。ここで、送り出しローラ304と巻き取りローラ305は、反時計回りに回転し、正極集電体11aは、右から左の方向に搬送される。 First, an elongated positive electrode current collector 11a made of a metal foil such as aluminum or copper is prepared. Then, the positive electrode current collector 11a is wound around the tubular core, and set on the sending roller 304 and the winding roller 305 so that the side on which the positive electrode active material layer 12a should be formed is on the upper side. Here, the sending roller 304 and the winding roller 305 rotate counterclockwise, and the positive electrode current collector 11a is conveyed in the right-to-left direction.

又、分散媒と、負極材料と、バインダとを含み、必要に応じて、導電助剤、活物質分散剤を加えてスラリー状とした正極活物質層12a用のインクジェット組成物120を作製する。そして、インクジェット組成物120をタンク307に貯蔵し、タンク307からチューブ308を経由して液体吐出機構306に供給可能とする。なお、液体吐出機構306は、送り出しローラ304と巻き取りローラ305の間の正極集電体11aの上部に設置されている。 Further, an inkjet composition 120 for the positive electrode active material layer 12a, which contains a dispersion medium, a negative electrode material, and a binder, and, if necessary, is added with a conductive auxiliary agent and an active material dispersant to form a slurry. Then, the inkjet composition 120 is stored in the tank 307, and can be supplied from the tank 307 to the liquid discharge mechanism 306 via the tube 308. The liquid discharge mechanism 306 is installed above the positive electrode current collector 11a between the delivery roller 304 and the take-up roller 305.

次に、液体吐出機構306から、搬送される正極集電体11a上にインクジェット組成物120の液滴を吐出する。インクジェット組成物120の液滴は、正極集電体11aの少なくとも一部を覆うように吐出される。なお、液体吐出機構306は、正極集電体11aの搬送方向に対して、略平行な方向又は略垂直な方向に、複数設置されてもよい。 Next, the liquid discharge mechanism 306 discharges the droplets of the inkjet composition 120 onto the positive electrode current collector 11a to be conveyed. The droplets of the inkjet composition 120 are ejected so as to cover at least a part of the positive electrode current collector 11a. A plurality of liquid discharge mechanisms 306 may be installed in a direction substantially parallel to or substantially perpendicular to the transport direction of the positive electrode current collector 11a.

次に、インクジェット組成物120で部分的に覆われた正極集電体11aは、送り出しローラ304と巻き取りローラ305によって、乾燥機構309に搬送される。その結果、正極集電体11a上のインクジェット組成物120が乾燥して正極活物質層12aとなり、正極集電体11a上に正極活物質層12aが結着する。以上の工程を必要に応じ繰り返してもよい。 Next, the positive electrode current collector 11a partially covered with the inkjet composition 120 is conveyed to the drying mechanism 309 by the feeding roller 304 and the winding roller 305. As a result, the inkjet composition 120 on the positive electrode current collector 11a dries to become the positive electrode active material layer 12a, and the positive electrode active material layer 12a is bound on the positive electrode current collector 11a. The above steps may be repeated as necessary.

乾燥機構309としては、インクジェット組成物120に直接接触しない機構であれば、特に制限はなく、適宜選択できる。例えば、抵抗加熱ヒータ、赤外線ヒータ、ファンヒータ等が挙げられる。なお、乾燥機構309は、正極集電体11aの上下の何れか一方に設置されてもよい。又、乾燥機構309は、複数設置されてもよい。 The drying mechanism 309 is not particularly limited as long as it does not come into direct contact with the inkjet composition 120, and can be appropriately selected. For example, a resistance heater, an infrared heater, a fan heater and the like can be mentioned. The drying mechanism 309 may be installed on either the upper or lower side of the positive electrode current collector 11a. Further, a plurality of drying mechanisms 309 may be installed.

インクジェット方式は、下層の狙ったところに対象物を塗布ができる点で好適である。又、インクジェット方式は、正極集電体11aと正極活物質層12aの上下に接する面同士を結着できる点で好適である。又、インクジェット方式は、正極活物質層12aの膜厚を均一にできる点で好適である。 The inkjet method is suitable in that the object can be applied to the target portion of the lower layer. Further, the inkjet method is suitable in that the surfaces of the positive electrode current collector 11a and the positive electrode active material layer 12a that are in contact with each other above and below can be bound to each other. Further, the inkjet method is suitable in that the film thickness of the positive electrode active material layer 12a can be made uniform.

なお、インクジェット組成物中の電極活物質の含有量は10質量%以上であることが好ましく、15質量%以上であることがより好ましい。インクジェット組成物中の電極活物質の含有量が10質量%以上であると、所定の目付量の電極活物質層を形成するために必要な印刷回数が少なくなる。 The content of the electrode active material in the inkjet composition is preferably 10% by mass or more, and more preferably 15% by mass or more. When the content of the electrode active material in the inkjet composition is 10% by mass or more, the number of printings required to form the electrode active material layer having a predetermined basis weight is reduced.

インクジェット組成物の25℃における粘度は30mPa・s以下が好ましい。インクジェット組成物の25℃における粘度が30mPa・s以下であると、インクジェット組成物の貯蔵安定性及び吐出安定性を確保できる。 The viscosity of the inkjet composition at 25 ° C. is preferably 30 mPa · s or less. When the viscosity of the inkjet composition at 25 ° C. is 30 mPa · s or less, the storage stability and ejection stability of the inkjet composition can be ensured.

電極活物質は、平均粒子径が3μm以下であることが好ましく、1μm以下であることがより好ましい。電極活物質の平均粒子径が3μm以下であると、インクジェット組成物の吐出安定性及び耐沈降性が向上する。電極活物質の平均粒子径は、レーザ回折法を利用した粒度分布計により測定できる。 The electrode active material preferably has an average particle size of 3 μm or less, and more preferably 1 μm or less. When the average particle size of the electrode active material is 3 μm or less, the ejection stability and sediment resistance of the inkjet composition are improved. The average particle size of the electrode active material can be measured by a particle size distribution meter using a laser diffraction method.

電極活物質のメジアン径(d10)は、0.1μm以上であることが好ましく、0.15μm以上であることがより好ましい。電極活物質のメジアン径(d10)が0.1μm以上であると、インクジェット組成物の貯蔵安定性が向上する。電極活物質のメジアン径は、レーザ回折法を利用した粒度分布計により測定できる。 The median diameter (d10) of the electrode active material is preferably 0.1 μm or more, and more preferably 0.15 μm or more. When the median diameter (d10) of the electrode active material is 0.1 μm or more, the storage stability of the inkjet composition is improved. The median diameter of the electrode active material can be measured by a particle size distribution meter using a laser diffraction method.

図11は、第2実施形態の変形例1に係る積層型蓄電池を例示する斜視図である。図12は、第2実施形態の変形例1に係る積層型蓄電池の外装部材内部を例示する断面図であり、図11のC−C線に沿う断面を示している。なお、図11及び図12では充填部材の図示を省略している。 FIG. 11 is a perspective view illustrating the laminated storage battery according to the first modification of the second embodiment. FIG. 12 is a cross-sectional view illustrating the inside of the exterior member of the laminated storage battery according to the first modification of the second embodiment, and shows a cross section taken along the line CC of FIG. In addition, in FIGS. 11 and 12, the illustration of the filling member is omitted.

図11及び図12を参照すると、積層型蓄電池1Bでは、図8及び図9に示した基材6の代わりに、半導体素子や受動部品(抵抗、コンデンサ等)を含む電子部品9が実装された基材6Bを用いている。そして、基材6Bの上の電子部品9が実装されていない領域に、積層体2が形成されている。 With reference to FIGS. 11 and 12, in the laminated storage battery 1B, an electronic component 9 including a semiconductor element and a passive component (resistor, capacitor, etc.) is mounted instead of the base material 6 shown in FIGS. 8 and 9. The base material 6B is used. Then, in a region where the electronic component 9 on the substrate 6B is not implemented, the laminate 2 3 is formed.

積層体2は、積層体2と同一層構成であるが、電極合材層の形成されている位置が積層体2とは異なっており、積層型蓄電池1Bの外装カバー8Bの形状に合わせて最適化されている。これにより、外装カバー8Bの内部空間を有効に利用して積層型蓄電池1Bの体積を増やすことができる。 Laminate 2 3 is a laminate 2 1 and the same layer structure, the position which is formed of the electrode mixture layer is different from the laminate 2 1, the shape of the exterior cover 8B of the stacked battery 1B It has been optimized accordingly. As a result, the volume of the laminated storage battery 1B can be increased by effectively utilizing the internal space of the exterior cover 8B.

なお、積層体2は、複数の電極が端面の位置を合わせて積層された部分を有し、複数の電極と接続される端子3を、同一位置にある端面の側に設けている。これにより、端子3を取り出すことが容易になると共に、積層型蓄電池1Bの内部での短絡を防止できる。 Note that the laminate 2 3 has a plurality of electrodes are stacked by aligning the end face portion, a terminal 3 connected to a plurality of electrodes are provided on the side of the end face in the same position. As a result, the terminal 3 can be easily taken out, and a short circuit inside the laminated storage battery 1B can be prevented.

図13は、第2実施形態の変形例2に係る積層型蓄電池の外装部材内部を例示する断面図であり、図12に対応する断面を示している。 FIG. 13 is a cross-sectional view illustrating the inside of the exterior member of the laminated storage battery according to the second embodiment, and shows a cross section corresponding to FIG.

図13を参照すると、積層型蓄電池1Cでは、基材6Bの上に形成された電子部品9の一部を覆うように、表面を平坦にした充填部材7Bを形成している。そして、充填部材7Bの表面にインクジェット方式等により各電極を積層して積層体2を形成し、更に積層体2を充填部材7で封止している。積層型蓄電池1Cでは、基材6Bの面積をより広く使用可能となる。充填部材7Bとしては、例えば、絶縁性の樹脂を用いることができる。 Referring to FIG. 13, in the laminated storage battery 1C, a filling member 7B having a flat surface is formed so as to cover a part of the electronic component 9 formed on the base material 6B. Then, by stacking the electrodes by an inkjet method or the like to form a laminate 2 3 on the surface of the filling member 7B, and further sealed laminate 2 3 with the filling member 7. In the laminated storage battery 1C, the area of the base material 6B can be used more widely. As the filling member 7B, for example, an insulating resin can be used.

なお、充填部材7Bを発熱量の少ない部品の上に形成することや、充填部材7Bと接するように薄いアルミニウム等からなる熱伝導層を一層形成することが、積層型蓄電池1Cの各部材の長期的な耐久性向上の面で望ましい。又、イオン導電層を介して対向する負極活物質層の面積が正極活物質層の面積よりも大きいことが望ましい。 It should be noted that forming the filling member 7B on a component having a small amount of heat generation and forming a layer of a heat conductive layer made of thin aluminum or the like so as to be in contact with the filling member 7B are long-term conditions for each member of the laminated storage battery 1C. It is desirable in terms of improving durability. Further, it is desirable that the area of the negative electrode active material layer facing the ion conductive layer is larger than the area of the positive electrode active material layer.

このように、積層型蓄電池1A、1B、及び1Cでは、電極集電体、電極集電体の第1面に形成された電極活物質層、及び電極集電体の第1面の反対面である第2面に形成された電極活物質層、を有する複数の電極がイオン導電層を介して積層されている。そして、複数の電極は、第1面に形成された電極活物質層の面積と第2面に形成された電極活物質層の面積が異なる電極を少なくとも1つ含む。 As described above, in the laminated storage batteries 1A, 1B, and 1C, the electrode current collector, the electrode active material layer formed on the first surface of the electrode current collector, and the opposite surface of the first surface of the electrode current collector. A plurality of electrodes having an electrode active material layer formed on a second surface are laminated via an ion conductive layer. The plurality of electrodes include at least one electrode having a different area of the electrode active material layer formed on the first surface and an area of the electrode active material layer formed on the second surface.

これにより、電池形状のデザインの自由度が向上するため、積層型蓄電池1A、1B、及び1Cの形状に依存して発生する隙間を有効利用して積層体2や積層体2の形状を決定可能となり、その結果、積層型蓄電池1A、1B、及び1Cの容量を向上できる。又、電極活物質の量を少なくできるため、積層型蓄電池1A、1B、及び1Cの重量エネルギー密度を向上できる。 As a result, the degree of freedom in designing the battery shape is improved, so that the shapes of the laminated body 2 1 and the laminated body 2 3 can be effectively utilized by effectively utilizing the gaps generated depending on the shapes of the laminated storage batteries 1A, 1B, and 1C. It becomes possible to determine, and as a result, the capacities of the stacked storage batteries 1A, 1B, and 1C can be improved. Further, since the amount of the electrode active material can be reduced, the weight energy densities of the laminated storage batteries 1A, 1B, and 1C can be improved.

又、絶縁物質からなる充填部材7を積層体2や積層体2の周囲に形成することで、段差の少ない積層体2や積層体2の外形形状を得ることができる。又、絶縁物質からなる充填部材7を積層体2や積層体2の周囲に形成することで、積層型蓄電池1A、1B、及び1Cの内部の意図しない領域での短絡を防止できる。 Also, the filling member 7 made of an insulating material by forming on the periphery of the laminate 2 1 and laminate 2 3, it is possible to obtain a step less laminate 2 1 and laminate 2 3 outer shape. Further, by forming the filling member 7 made of an insulating material around the laminate 2 1 and laminate 2 3, stacked battery 1A, 1B, and a short circuit within the unintended areas of 1C can be prevented.

又、積層体2や積層体2をインクジェット方式を用いて形成することで、電極集電体の第1面に形成された電極活物質層の面積と第2面に形成された電極活物質層の面積を容易に変えることができる。 Further, by forming the laminated body 2 1 and the laminated body 2 3 by using an inkjet method, the area of the electrode active material layer formed on the first surface of the electrode current collector and the electrode activity formed on the second surface. The area of the material layer can be easily changed.

〈第3実施形態〉
第3実施形態では、積層体の少なくとも一部の電極の電極活物質層が複数の領域に存在している積層型蓄電池の例を示す。なお、第3実施形態において、既に説明した実施形態と同一構成部についての説明は省略する場合がある。
<Third Embodiment>
In the third embodiment, an example of a laminated storage battery in which the electrode active material layer of at least a part of the electrodes of the laminated body is present in a plurality of regions is shown. In the third embodiment, the description of the same components as those in the above-described embodiment may be omitted.

図14は、第3実施形態に係る積層型蓄電池を例示する断面図である。図15は、第3実施形態に係る積層型蓄電池の電極活物質層の面積及び形成位置について説明する図であり、図15(a)は負極20の負極集電体21aの上面側を、図15(b)は負極20の負極集電体21aの下面側を示している。又、図15(c)は正極10の正極集電体11bの上面側を、図15(d)は正極10の正極集電体11bの下面側を示している。又、図15(e)は積層体2の上面側から視た各電極活物質層の面積の違いを模式的に示している。 FIG. 14 is a cross-sectional view illustrating the stacked storage battery according to the third embodiment. Figure 15 is a diagram for explaining the area and formation position of the third electrode active material layer of the multilayer storage battery according to the embodiment, the upper surface of the negative electrode current collector 21a in FIG. 15 (a) negative 20 1, FIG. 15 (b) shows a lower surface of the negative electrode current collector 21a of the negative electrode 20 1. Moreover, and FIG. 15 (c) the upper surface of the cathode current collector 11b of positive electrode 10 2, FIG. 15 (d) shows a lower surface of the cathode current collector 11b of the positive electrode 10 2. Further, FIG. 15 (e) it is schematically shown the difference in area of each electrode active material layer as viewed from the upper surface side of the laminate 2 4.

図14及び図15を参照すると、積層型蓄電池1Dでは、積層体2の少なくとも一部の電極の電極活物質層が複数の領域に存在している。具体的には、正極10の正極集電体11bの上面の2つの領域に正極活物質層12bが形成されている。又、負極20の負極集電体21aの下面の2つの領域に負極活物質層22bが形成されている。 Referring to FIGS. 14 and 15, in the multilayer battery 1D, the electrode active material layer of at least a portion of the electrode of the laminate 2 4 exists in a plurality of regions. Specifically, the positive electrode active material layer 12b is formed on two regions of the upper surface of the cathode current collector 11b of the positive electrode 10 2. Further, the anode active material layer 22b is formed on two regions of the lower surface of the negative electrode current collector 21a of the negative electrode 20 1.

このように、積層型蓄電池1Dでは、複数の電極は、電極集電体の同一の面の複数の領域に電極活物質層が形成された電極を少なくとも1つ含む。これにより、インクジェット方式等で積層型蓄電池1Dを形成する際に、積層型蓄電池1Dの形状の自由度をより向上でき、より複雑な形状の積層型蓄電池1Dを形成可能となる。 As described above, in the laminated storage battery 1D, the plurality of electrodes include at least one electrode in which an electrode active material layer is formed in a plurality of regions on the same surface of the electrode current collector. As a result, when forming the laminated storage battery 1D by an inkjet method or the like, the degree of freedom in the shape of the laminated storage battery 1D can be further improved, and the laminated storage battery 1D having a more complicated shape can be formed.

以上、好ましい実施形態等について詳説したが、上述した実施形態等に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施形態等に種々の変形及び置換を加えることができる。 Although the preferred embodiments and the like have been described in detail above, they are not limited to the above-described embodiments and the like, and various modifications and substitutions are made to the above-mentioned embodiments and the like without departing from the scope described in the claims. Can be added.

例えば、上記の各実施形態では、本発明をリチウムイオン二次電池等の積層型蓄電池に適用する例を示したが、これには限定されず、本発明は、リチウムイオン二次電池以外の全固体電池を含む二次電池(積層型蓄電池)、及び一次電池(積層型電池)にも適用可能である。なお、単に積層型電池と記載した場合には、積層型電池と積層型蓄電池の両方を含むものとする。 For example, in each of the above embodiments, an example in which the present invention is applied to a stacked storage battery such as a lithium ion secondary battery is shown, but the present invention is not limited to this, and the present invention is the whole except for the lithium ion secondary battery. It can also be applied to a secondary battery (stacked storage battery) including a solid-state battery and a primary battery (stacked battery). In addition, when it is simply described as a laminated battery, it shall include both a laminated battery and a laminated storage battery.

1、1A、1B、1C、1D 積層型蓄電池
、2、2、2 積層体
3 端子
3a 正極端子
3b 負極端子
5 外装部材
5a 第1外装部材
5b 第2外装部材
6、6B 基材
7 充填部材
8、8B 外装カバー
9 電子部品
10、10 正極
11a、11b 正極集電体
12a、12b、12c 正極活物質層
20、20 負極
21a、21b 負極集電体
22a、22b、22c 負極活物質層
30、30、30 イオン導電層
120 インクジェット組成物
1, 1A, 1B, 1C, 1D Laminated storage battery 2 1 , 2 2 , 2 3 , 2 4 Laminated body 3 Terminal 3a Positive electrode terminal 3b Negative electrode terminal 5 Exterior member 5a First exterior member 5b Second exterior member 6, 6B material 7 filling member 8,8B outer cover 9 electronic component 10 1, 10 2 positive electrode 11a, 11b cathode current collector 12a, 12b, 12c cathode active material layer 20 1, 20 2 anode 21a, 21b the anode current collector 22a, 22b , 22c Negative electrode active material layer 30 1 , 30 2 , 30 3 Ion conductive layer 120 Inkjet composition

特表2015−510241号公報Special Table 2015-510241

Claims (8)

電極集電体、前記電極集電体の第1面に形成された電極活物質層、及び前記電極集電体の前記第1面の反対面である第2面に形成された電極活物質層、を有する複数の電極がイオン導電層を介して積層された積層型電池であって、
前記複数の電極は、前記第1面に形成された前記電極活物質層の面積と前記第2面に形成された前記電極活物質層の面積が異なる電極を少なくとも1つ含むことを特徴とする積層型電池。
The electrode current collector, the electrode active material layer formed on the first surface of the electrode current collector, and the electrode active material layer formed on the second surface opposite to the first surface of the electrode current collector. A laminated battery in which a plurality of electrodes having, are laminated via an ion conductive layer.
The plurality of electrodes are characterized by including at least one electrode having a different area of the electrode active material layer formed on the first surface and the area of the electrode active material layer formed on the second surface. Stacked battery.
前記電極及び前記イオン導電層と接して絶縁物質からなる充填部材が形成されたことを特徴とする請求項1に記載の積層型電池。 The laminated battery according to claim 1, wherein a filling member made of an insulating substance is formed in contact with the electrode and the ion conductive layer. 前記充填部材が多孔質であることを特徴とする請求項2に記載の積層型電池。 The laminated battery according to claim 2, wherein the filling member is porous. 前記複数の電極は、前記電極集電体の同一の面の複数の領域に前記電極活物質層が形成された電極を少なくとも1つ含むことを特徴とする請求項1乃至3の何れか一項に記載の積層型電池。 Any one of claims 1 to 3, wherein the plurality of electrodes include at least one electrode in which the electrode active material layer is formed in a plurality of regions on the same surface of the electrode current collector. The laminated battery described in. 前記複数の電極が端面を合わせて積層された部分を有し、
前記複数の電極と接続される端子を前記端面の側に設けたことを特徴とする請求項1乃至4の何れか一項に記載の積層型電池。
It has a portion in which the plurality of electrodes are laminated with their end faces aligned with each other.
The laminated battery according to any one of claims 1 to 4, wherein terminals connected to the plurality of electrodes are provided on the end face side.
前記複数の電極は、
正極集電体、前記正極集電体の第1面に形成された正極活物質層、及び前記正極集電体の前記第1面の反対面である第2面に形成された正極活物質層、を有する正極と、
負極集電体、前記負極集電体の第1面に形成された負極活物質層、及び前記負極集電体の前記第1面の反対面である第2面に形成された負極活物質層、を有する負極と、を有し、
前記正極と前記負極が前記イオン導電層を介して積層されていることを特徴とする請求項1乃至5の何れか一項に記載の積層型電池。
The plurality of electrodes
A positive electrode current collector, a positive electrode active material layer formed on the first surface of the positive electrode current collector, and a positive electrode active material layer formed on the second surface opposite to the first surface of the positive electrode current collector. With a positive electrode,
The negative electrode current collector, the negative electrode active material layer formed on the first surface of the negative electrode current collector, and the negative electrode active material layer formed on the second surface opposite to the first surface of the negative electrode current collector. With a negative electrode, and
The laminated battery according to any one of claims 1 to 5, wherein the positive electrode and the negative electrode are laminated via the ion conductive layer.
前記イオン導電層を介して対向する前記負極活物質層及び前記正極活物質層において、前記負極活物質層の面積が前記正極活物質層の面積よりも大きいことを特徴とする請求項6に記載の積層型電池。 The sixth aspect of claim 6, wherein the area of the negative electrode active material layer is larger than the area of the positive electrode active material layer in the negative electrode active material layer and the positive electrode active material layer facing each other via the ion conductive layer. Stacked battery. 電極集電体、前記電極集電体の第1面に形成された電極活物質層、及び前記電極集電体の前記第1面の反対面である第2面に形成された電極活物質層、を有する複数の電極がイオン導電層を介して積層された積層型電池の製造方法であって、
前記電極活物質層をインクジェット方式で形成する工程を含み、
前記複数の電極は、前記第1面に形成された前記電極活物質層の面積と前記第2面に形成された前記電極活物質層の面積が異なる電極を少なくとも1つ含むことを特徴とする積層型電池の製造方法。
The electrode current collector, the electrode active material layer formed on the first surface of the electrode current collector, and the electrode active material layer formed on the second surface opposite to the first surface of the electrode current collector. A method for manufacturing a laminated battery in which a plurality of electrodes having the above are laminated via an ion conductive layer.
Including the step of forming the electrode active material layer by an inkjet method.
The plurality of electrodes are characterized by including at least one electrode having a different area of the electrode active material layer formed on the first surface and the area of the electrode active material layer formed on the second surface. A method for manufacturing a laminated battery.
JP2019039916A 2019-03-05 2019-03-05 LAMINATED BATTERY, METHOD FOR MANUFACTURING LAMINATED BATTERY Active JP7334427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019039916A JP7334427B2 (en) 2019-03-05 2019-03-05 LAMINATED BATTERY, METHOD FOR MANUFACTURING LAMINATED BATTERY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019039916A JP7334427B2 (en) 2019-03-05 2019-03-05 LAMINATED BATTERY, METHOD FOR MANUFACTURING LAMINATED BATTERY

Publications (2)

Publication Number Publication Date
JP2020145052A true JP2020145052A (en) 2020-09-10
JP7334427B2 JP7334427B2 (en) 2023-08-29

Family

ID=72353831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019039916A Active JP7334427B2 (en) 2019-03-05 2019-03-05 LAMINATED BATTERY, METHOD FOR MANUFACTURING LAMINATED BATTERY

Country Status (1)

Country Link
JP (1) JP7334427B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116130787A (en) * 2023-04-17 2023-05-16 江苏嘉拓新能源智能装备股份有限公司 Method and system for manufacturing laminated battery cell

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106366A (en) * 1998-08-21 2000-04-11 Korea Advanced Inst Of Sci Technol Thin film cell integrated element and fabrication thereof
JP2002279949A (en) * 2001-03-16 2002-09-27 Hitachi Maxell Ltd Circuit board for battery
JP2003282142A (en) * 2002-03-26 2003-10-03 Matsushita Electric Ind Co Ltd Thin film laminate, thin film battery, capacitor, and manufacturing method and device of thin film laminate
JP2005183073A (en) * 2003-12-17 2005-07-07 Nissan Motor Co Ltd Bipolar battery
JP2005339825A (en) * 2004-05-24 2005-12-08 Nissan Motor Co Ltd Battery-incorporated circuit device
JP2006236994A (en) * 2005-01-28 2006-09-07 Nec Tokin Corp Multilayer secondary battery and its manufacturing method
JP2007026725A (en) * 2005-07-12 2007-02-01 Nissan Motor Co Ltd Lithium ion secondary battery
JP2008159331A (en) * 2006-12-21 2008-07-10 Toyota Motor Corp Electricity storage device
JP2014526133A (en) * 2012-05-31 2014-10-02 エルジー・ケム・リミテッド Electrode assembly having step, battery cell, battery pack and device including the same
US20150280201A1 (en) * 2014-03-31 2015-10-01 Google Inc. Forming an Interconnection for Solid-State Batteries
JP2017204437A (en) * 2016-05-13 2017-11-16 セイコーエプソン株式会社 Lithium ion secondary battery
JP2018055871A (en) * 2016-09-27 2018-04-05 株式会社日立製作所 Secondary battery
WO2018155210A1 (en) * 2017-02-24 2018-08-30 株式会社村田製作所 Secondary battery and method for producing secondary battery
JP2019021621A (en) * 2017-07-14 2019-02-07 パナソニックIpマネジメント株式会社 battery

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106366A (en) * 1998-08-21 2000-04-11 Korea Advanced Inst Of Sci Technol Thin film cell integrated element and fabrication thereof
JP2002279949A (en) * 2001-03-16 2002-09-27 Hitachi Maxell Ltd Circuit board for battery
JP2003282142A (en) * 2002-03-26 2003-10-03 Matsushita Electric Ind Co Ltd Thin film laminate, thin film battery, capacitor, and manufacturing method and device of thin film laminate
JP2005183073A (en) * 2003-12-17 2005-07-07 Nissan Motor Co Ltd Bipolar battery
JP2005339825A (en) * 2004-05-24 2005-12-08 Nissan Motor Co Ltd Battery-incorporated circuit device
JP2006236994A (en) * 2005-01-28 2006-09-07 Nec Tokin Corp Multilayer secondary battery and its manufacturing method
JP2007026725A (en) * 2005-07-12 2007-02-01 Nissan Motor Co Ltd Lithium ion secondary battery
JP2008159331A (en) * 2006-12-21 2008-07-10 Toyota Motor Corp Electricity storage device
JP2014526133A (en) * 2012-05-31 2014-10-02 エルジー・ケム・リミテッド Electrode assembly having step, battery cell, battery pack and device including the same
US20150280201A1 (en) * 2014-03-31 2015-10-01 Google Inc. Forming an Interconnection for Solid-State Batteries
JP2017204437A (en) * 2016-05-13 2017-11-16 セイコーエプソン株式会社 Lithium ion secondary battery
JP2018055871A (en) * 2016-09-27 2018-04-05 株式会社日立製作所 Secondary battery
WO2018155210A1 (en) * 2017-02-24 2018-08-30 株式会社村田製作所 Secondary battery and method for producing secondary battery
JP2019021621A (en) * 2017-07-14 2019-02-07 パナソニックIpマネジメント株式会社 battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116130787A (en) * 2023-04-17 2023-05-16 江苏嘉拓新能源智能装备股份有限公司 Method and system for manufacturing laminated battery cell

Also Published As

Publication number Publication date
JP7334427B2 (en) 2023-08-29

Similar Documents

Publication Publication Date Title
JP6521323B2 (en) Secondary battery and method of manufacturing the same
JP2019145514A (en) Electrochemical cell including folded electrode and separator, battery including the cell, and method of forming them
JP6538023B2 (en) Electrochemical cell comprising a folded electrode, its components, a battery comprising said electrochemical cell, and a method of forming such a cell etc
US9929445B2 (en) Incorporating reference electrodes into battery pouch cells
JP6282857B2 (en) battery
CN108511787B (en) Lithium ion secondary battery and method for manufacturing same
CN105474454A (en) Secondary battery
JPH06140077A (en) Electrochemical element, lithium secondary battery and set battery and manufacture thereof
KR20140085323A (en) Three dimensional co-extruded battery electrodes
WO2018079817A1 (en) Electrode for electrochemical device, electrochemical device, and method for producing same
US20210305630A1 (en) Positive electrode for solid-state battery, manufacturing method for positive electrode for solid-state battery, and solid-state battery
CN110870106B (en) Method for manufacturing secondary battery
KR20200143979A (en) Electrode assembly and secondary battery having the same
JPH07122252A (en) Set battery
JP2011204511A (en) All-solid state lithium ion secondary battery
KR100912788B1 (en) Electrode Assembly of High Pulse Discharging Property
KR102496481B1 (en) Secondary battery and method of manufacturing secondary battery
JP6729236B2 (en) Method of manufacturing stacked all-solid-state battery
KR101551912B1 (en) Method for manufacturing Coin-type lithium ion secondary battery
KR102071622B1 (en) Electrode assembly and secondary battery comprising the same
JP7108052B2 (en) Storage element and method for manufacturing storage element
JP7168070B2 (en) solid state battery
JP2020145052A (en) Stacked battery and method for manufacturing stacked battery
KR101709391B1 (en) Nonaqueous electrolyte secondary battery
US20110177378A1 (en) Electrode assemblage and rechargeable battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230731

R151 Written notification of patent or utility model registration

Ref document number: 7334427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151