JP2020134875A - 光変調器 - Google Patents

光変調器 Download PDF

Info

Publication number
JP2020134875A
JP2020134875A JP2019031796A JP2019031796A JP2020134875A JP 2020134875 A JP2020134875 A JP 2020134875A JP 2019031796 A JP2019031796 A JP 2019031796A JP 2019031796 A JP2019031796 A JP 2019031796A JP 2020134875 A JP2020134875 A JP 2020134875A
Authority
JP
Japan
Prior art keywords
electrode
signal
signal electrode
buffer layer
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019031796A
Other languages
English (en)
Inventor
康弘 大森
Yasuhiro Omori
康弘 大森
土居 正治
Masaharu Doi
正治 土居
信太郎 竹内
Shintaro Takeuchi
信太郎 竹内
田中 剛人
Takehito Tanaka
剛人 田中
嘉伸 久保田
Yoshinobu Kubota
嘉伸 久保田
岩塚 信治
Shinji Iwatsuka
信治 岩塚
遠藤 謙二
Kenji Endo
謙二 遠藤
原 裕貴
Hirotaka Hara
裕貴 原
利典 松浦
Toshinori Matsuura
利典 松浦
菊川 隆
Takashi Kikukawa
隆 菊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Fujitsu Optical Components Ltd
Original Assignee
TDK Corp
Fujitsu Optical Components Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp, Fujitsu Optical Components Ltd filed Critical TDK Corp
Priority to JP2019031796A priority Critical patent/JP2020134875A/ja
Priority to US16/799,763 priority patent/US11003043B2/en
Publication of JP2020134875A publication Critical patent/JP2020134875A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • G02F1/0316Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2255Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure controlled by a high-frequency electromagnetic component in an electric waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/06Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 integrated waveguide
    • G02F2201/063Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 integrated waveguide ridge; rib; strip loaded
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/07Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 buffer layer

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】マイクロ波の実効屈折率を光の実効屈折率に近づけて速度整合を向上させる。
【解決手段】光変調器100は、電気光学効果を有する誘電体の薄膜にて形成されたリッジ型の光導波路10a,10bと、光導波路10a,10bを覆うバッファ層4と、バッファ層4を介して光導波路10a,10bと対向するようにバッファ層上に形成された信号電極7a,7bと、信号電極7a,7bと共にバッファ層4上に形成された接地電極8a,8bと、空気よりも高い誘電率を有し、信号電極7a,7b及び接地電極8a,8bそれぞれの露出面及びバッファ層4の露出面の少なくとも一部を覆う誘電体膜6とを備える。
【選択図】図2

Description

本発明は、光通信及び光計測分野において用いられる光変調器に関し、特に、マッハツェンダー型光変調器の構造に関する。
インターネットの普及に伴い通信量は飛躍的に増大しており、光ファイバ通信の重要性が非常に高まっている。光ファイバ通信は、電気信号を光信号に変換し、光信号を光ファイバにより伝送するものであり、広帯域、低損失、ノイズに強いという特徴を有する。
電気信号を光信号に変換する方式としては、半導体レーザによる直接変調方式と光変調器を用いた外部変調方式が知られている。直接変調は光変調器が不要で低コストであるが、高速変調には限界があり、高速で長距離の用途では外部変調方式が使われている。
光変調器としては、ニオブ酸リチウム単結晶基板の表面付近にTi(チタン)拡散により光導波路を形成したマッハツェンダー型光変調器が実用化されている(例えば特許文献1参照)。マッハツェンダー型光変調器は、1つの光源から出た光を2つに分け、異なる経路を通過させた後、再び重ね合わせて干渉を起こさせるマッハツェンダー干渉計の構造を有する光導波路(マッハツェンダー光導波路)を用いるものであり、40Gb/s以上の高速の光変調器が商用化されているが、全長が10cm前後と長いことが大きな欠点になっている。
これに対して、特許文献2及び3にはc軸配向のニオブ酸リチウム膜を用いたマッハツェンダー型光変調器が開示されている。ニオブ酸リチウム膜を用いた光変調器は、ニオブ酸リチウム単結晶基板を用いた光変調器と比較して、大幅な小型化及び低駆動電圧化が可能である。
特許文献2に記載された従来の光変調器1000の断面構造を図11(a)に示す。サファイア基板21上にはニオブ酸リチウム膜による一対の光導波路22a,22bが形成され、光導波路22a、22bの上部にはバッファ層23を介して信号電極24a及び接地電極24bがそれぞれ配置されている。この光変調器1000は1つの信号電極24aを有するいわゆるシングル駆動型であり、信号電極24aと接地電極24bは対称構造なので、光導波路22a,22bに印加される電界は大きさが等しく、符号が逆となっており、変調光の波長チャープが発生しない構造である。しかし、接地電極24bの面積が狭いため、高周波で動作しないという問題がある。
特許文献3に記載された従来の光変調器1100の断面構造を図11(b)に示す。ニオブ酸リチウム膜による一対の光導波路22a,22bの上部にはバッファ層23を介して2つの信号電極24a,24aが配置されると共に、信号電極24a,24aと離間して3つの接地電極24c,24d,24eが配置されている。2つの信号電極24a,24aに大きさが等しく符号が逆の電圧を加えることで、一対の光導波路22a,22bに印加される電界は大きさが等しく、符号が逆となり、変調光の波長チャープは発生しない。また、一対の光導波路22a,22bに加える電圧を調整することで、チャープ量を調整可能という特徴を有している。さらに左右の接地電極24c,24dの面積が十分に確保されているので、高周波で動作可能な構造である。しかしながら、この光変調器1100は2つの信号電極24a,24aを有するデュアル駆動型であるため、電極構造が複雑になる。
特許第4485218号公報 特開2006−195383号公報 特開2014−6348号公報
光変調器において、現状の32Gbaudから64Gbaudへのさらなる高速化のためには35GHz以上の広帯域化が必要である。このような広帯域化を実現するためには、(1)高周波での電極損失の低減、(2)光とマイクロ波との速度整合、(3)インピーダンス整合の3つが重要である。
しかし、図11(b)に示した従来の光変調器は、薄膜のバッファ層23上に信号電極24a,24aが直接形成された構造を有するため、マイクロ波の実効屈折率がバッファ層23の誘電率によって実質的に固定され、マイクロ波の実効屈折率を光の実効屈折率に近づけることができず、光とマイクロ波との速度整合を取ることが難しいという問題がある。
また、マイクロ波の減衰、実効屈折率Nmとインピーダンス整合、駆動電圧Vnはトレードオフの関係にあり、各特性の両立が課題となっている。電極の幅や高さ、電極構造、バッファ層の厚さ等のパラメータを調整して各特性のバランスを取ることは一般的には可能である。しかし、各パラメータの調整のみでは各特性をドラスティックに改善することは困難である。
本発明は上記事情に鑑みてなされたものであり、マイクロ波の実効屈折率を光の実効屈折率に近づけて速度整合を向上させることが可能な光変調器を提供することを目的とする。
上記課題を解決するため、本発明による光変調器は、電気光学効果を有する誘電体の薄膜にて形成されたリッジ型の光導波路と、前記光導波路を覆うバッファ層と、前記バッファ層を介して前記光導波路と対向するように前記バッファ層上に形成された信号電極と、前記信号電極と共に前記バッファ層上に形成された接地電極と、空気よりも高い誘電率を有し、前記信号電極及び前記接地電極それぞれの露出面及び前記バッファ層の露出面の少なくとも一部を覆う誘電体膜とを備えることを特徴とする。
本発明によれば、バッファ層の誘電率に制約されることなく光導波路の周囲の誘電率を高めることができ、信号波(マイクロ波)の実効屈折率を光の実効屈折率に近づけることができる。したがって、光と信号波との速度整合を向上させることができる。さらに、誘電体膜を付与する部位や膜厚を自由に選定することができるので、従来よりも変調帯域、実効屈折率Nm、インピーダンス整合、駆動電圧Vn等の制御に対する設計の自由度を高めることができる。
本発明において、前記誘電体膜は、前記信号電極の上面及び側面と、前記接地電極の上面及び側面と、前記信号電極及び前記接地電極と平面視で重ならない前記バッファ層の上面を覆っていることが好ましい。このように、信号電極や接地電極が形成されたバッファ層の全面を誘電体膜で覆うことにより、光導波路の周囲の誘電率を高めることができ、信号波の実効屈折率を光の実効屈折率に近づけて光と信号波との速度整合を向上させることができる。
本発明において、前記誘電体膜は、前記バッファ層の上面に形成されており、前記信号電極及び前記接地電極は、前記誘電体膜の上面に形成されていることが好ましい。このような構成であっても、バッファ層の上面に誘電体膜を設けることにより、信号波の実効屈折率を光の実効屈折率に近づけて光と信号波との速度整合を向上させることができる。
本発明において、前記光導波路は、マッハツェンダー干渉計を形成する第1及び第2の導波路を含み、前記信号電極は、前記バッファ層を介して前記第1の導波路と対向する第1の信号電極と、前記バッファ層を介して前記第2の導波路と対向する第2の信号電極を含み、前記接地電極は、前記第1の信号電極の近傍であって前記第1の信号電極から見て前記第2の信号電極と反対側に設けられた第1の接地電極と、前記第2の信号電極の近傍であって前記第2の信号電極から見て前記第1の信号電極と反対側に設けられた第2の接地電極を含み、前記第1の信号電極と前記第2の信号電極との間の第1の電極間領域における前記バッファ層の上面は前記誘電体膜に覆われておらず、前記第1及び第2の信号電極それぞれの上面及び両側側面と、前記第1及び第2の接地電極それぞれの上面及び側面と、前記第1の信号電極と前記第1の接地電極との間の第2の電極間領域及び前記第2の信号電極と前記第2の接地電極との間の第3の電極間領域における前記バッファ層の上面は前記誘電体膜に覆われていることが好ましい。この構成によれば、信号波の実効屈折率を光の実効屈折率に近づけることによる光と信号波との速度整合の向上だけでなく、駆動電圧Vnのさらなる低減を図ることができる。
本発明において、前記光導波路は、マッハツェンダー干渉計を形成する第1及び第2の導波路を含み、前記信号電極は、前記バッファ層を介して前記第1の導波路と対向する第1の信号電極と、前記バッファ層を介して前記第2の導波路と対向する第2の信号電極を含み、前記接地電極は、前記第1の信号電極の近傍であって前記第1の信号電極から見て前記第2の信号電極と反対側に設けられた第1の接地電極と、前記第2の信号電極の近傍であって前記第2の信号電極から見て前記第1の信号電極と反対側に設けられた第2の接地電極を含み、前記第1の信号電極と前記第2の信号電極との間の第1の電極間領域における前記バッファ層の上面と、前記第1及び第2の信号電極それぞれの内側側面は前記誘電体膜に覆われておらず、前記第1及び第2の信号電極それぞれの上面及び外側側面と、前記第1及び第2の接地電極それぞれの上面及び側面と、前記第1の信号電極と前記第1の接地電極との間の第2の電極間領域及び前記第2の信号電極と前記第2の接地電極との間の第3の電極間領域における前記バッファ層の上面は、前記誘電体膜に覆われていることが好ましい。この構成によれば、誘電体膜を設けることによる上述の基本的な効果に加えて、駆動電圧Vnのさらなる低減とマイクロ波の減衰の低減を図ることができる。
本発明において、前記光導波路は、マッハツェンダー干渉計を形成する第1及び第2の導波路を含み、前記信号電極は、前記バッファ層を介して前記第1の導波路と対向する第1の信号電極と、前記バッファ層を介して前記第2の導波路と対向する第2の信号電極を含み、前記接地電極は、前記第1の信号電極の近傍であって前記第1の信号電極から見て前記第2の信号電極と反対側に設けられた第1の接地電極と、前記第2の信号電極の近傍であって前記第2の信号電極から見て前記第1の信号電極と反対側に設けられた第2の接地電極を含み、前記第1及び第2の信号電極それぞれの上面と、前記第1及び第2の接地電極それぞれの上面と、前記第1の信号電極と前記第1の接地電極との間の第2の電極間領域、及び前記第2の信号電極と前記第2の接地電極との間の第3の電極間領域における前記バッファ層の上面は、前記誘電体膜に覆われておらず、前記第1及び第2の信号電極それぞれの両側側面と、前記第1及び第2の接地電極それぞれの側面と、前記第1の信号電極と前記第2の信号電極との間の第1の電極間領域における前記バッファ層の上面は、前記誘電体膜に覆われていることが好ましい。この構成によれば、誘電体膜を設けることによる上述の基本的な効果に加えて、駆動電圧Vnのさらなる低減とマイクロ波の減衰の低減を図ることができる。
本発明において、前記光導波路は、マッハツェンダー干渉計を形成する第1及び第2の導波路を含み、前記信号電極は、前記バッファ層を介して前記第1の導波路と対向する第1の信号電極と、前記バッファ層を介して前記第2の導波路と対向する第2の信号電極を含み、前記接地電極は、前記第1の信号電極の近傍であって前記第1の信号電極から見て前記第2の信号電極と反対側に設けられた第1の接地電極と、前記第2の信号電極の近傍であって前記第2の信号電極から見て前記第1の信号電極と反対側に設けられた第2の接地電極を含み、前記第1及び第2の信号電極それぞれの上面及び両側側面と、前記第1及び第2の接地電極それぞれの上面及び側面は前記誘電体膜に覆われておらず、前記第1の信号電極と前記第2の信号電極との間の第1の電極間領域、前記第1の信号電極と前記第1の接地電極との間の第2の電極間領域、及び前記第2の信号電極と前記第2の接地電極との間の第3の電極間領域における前記バッファ層の上面は、前記誘電体膜に覆われていることが好ましい。この構成によれば、マイクロ波の減衰のさらなる低減を図ることができる。
本発明において、前記光導波路は、マッハツェンダー干渉計を形成する第1及び第2の導波路を含み、前記信号電極は、前記バッファ層を介して前記第1の導波路と対向する第1の信号電極と、前記バッファ層を介して前記第2の導波路と対向する第2の信号電極を含み、前記接地電極は、前記第1の信号電極の近傍であって前記第1の信号電極から見て前記第2の信号電極と反対側に設けられた第1の接地電極と、前記第2の信号電極の近傍であって前記第2の信号電極から見て前記第1の信号電極と反対側に設けられた第2の接地電極を含み、前記第1及び第2の信号電極それぞれの上面及び両側側面と、前記第1及び第2の接地電極それぞれの上面及び側面と、前記第1の信号電極と前記第1の接地電極との間の第2の電極間領域、及び前記第2の信号電極と前記第2の接地電極との間の第3の電極間領域における前記バッファ層の上面は、前記誘電体膜に覆われておらず、前記第1の信号電極と前記第2の信号電極との間の第1の電極間領域は、前記誘電体膜に覆われていることが好ましい。この構成によれば、マイクロ波の減衰のさらなる低減を図ることができる。
本発明において、前記信号電極と前記接地電極との間の電極間領域における前記誘電体膜の少なくとも一部が前記バッファ層と共に除去された構造を有することが好ましい。この構成によれば、いわゆるDCドリフトを抑制する効果を高めることができる。
本発明において、前記誘電体膜の誘電率は、前記バッファ層の誘電率よりも高いことが好ましい。これにより、信号波の実効屈折率を高めて光と信号波との速度整合を向上させることができる。
本発明によれば、マイクロ波の実効屈折率を光の実効屈折率に近づけて速度整合を向上させることが可能な光変調器を提供することができる。
図1は、本発明の第1の実施の形態による光変調器の構成を示す略平面図であり、図1(a)は光導波路のみ図示し、図1(b)は進行波電極を含めた光変調器の全体を図示している。 図2は、本発明の第1の実施の形態による光変調器の構造を示す略断面図である。 図3は、本発明の第2の実施の形態による光変調器の構成を示す略断面図である。 図4は、本発明の第3の実施の形態による光変調器の構成を示す略断面図である。 図5は、本発明の第4の実施の形態による光変調器の構成を示す略断面図である。 図6は、本発明の第5の実施の形態による光変調器の構成を示す略断面図である。 図7は、本発明の第6の実施の形態による光変調器の構成を示す略断面図である。 図8は、本発明の第7の実施の形態による光変調器の構成を示す略断面図である。 図9(a)及び(b)は、本発明の第8の実施の形態による光変調器の構成を示す略断面図である。 図10は、本発明の第9の実施の形態による光変調器の構成を示す略平面図であり、図10(a)は光導波路のみ図示し、図10(b)は進行波電極を含めた光変調器の全体を図示している。 図11(a)及び(b)は、従来の光変調器の構造を示す略断面図である。
以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。
図1は、本発明の第1の実施の形態による光変調器の構成を示す略平面図であり、図1(a)は光導波路のみ図示し、図1(b)は進行波電極を含めた光変調器の全体を図示している。
図1(a)及び(b)に示すように、この光変調器100は、基板1上に形成された単一のマッハツェンダー光変調素子であって、互いに平行に設けられた第1及び第2の光導波路10a,10bを有するマッハツェンダー光導波路10と、第1の光導波路10aに沿って設けられた第1の信号電極7aと、第2の光導波路10bに沿って設けられた第2の信号電極7bと、第1及び第2の信号電極7a,7bを挟み込むように設けられた第1及び第2の接地電極8a,8bと、第1の光導波路10aに沿って設けられた第1のバイアス電極9aと、第2の光導波路10bに沿って設けられた第2のバイアス電極9bとを備えている。
マッハツェンダー光導波路10は、マッハツェンダー干渉計の構造を有する光導波路である。一本の入力導波路10iから分波部10cによって分岐した第1及び第2の光導波路10a,10bは合波部10dによって一本の出力導波路10oにまとめられる。入力光Siは、分波部10cで分波されて第1及び第2の光導波路10a,10bをそれぞれ進行した後、合波部10dで合波され、変調光Soとして出力導波路10oから出力される。
第1及び第2の信号電極7a,7bは平面視で第1及び第2の光導波路10a,10bと重なる線状の電極であって、接地電極8a,8b間に位置している。第1及び第2の信号電極7a,7bの両端は基板1の外周端まで引き出されている。第1及び第2の信号電極7a,7bの一端7a,7bは信号入力端であり、第1及び第2の信号電極7a,7bの他端7a,7bは終端抵抗12を介して互いに接続されている。あるいは、第1の信号電極7aの他端7aは第1の終端抵抗を介して第1の接地電極8aに接続され、第2の信号電極7bの他端7bは第2の終端抵抗を介して第2の接地電極8bに接続されてもよい。これにより、第1及び第2の信号電極7a,7bは、第1及び第2の接地電極8a,8bと共に差動のコプレーナ型進行波電極として機能する。
第1及び第2のバイアス電極9a,9bは、第1及び第2の光導波路10a,10bに直流バイアス電圧(DCバイアス)を印加するために第1及び第2の信号電極7a,7bとは独立に設けられている。第1及び第2のバイアス電極9a,9bの一端9a,9bはDCバイアスの入力端である。本実施形態において、第1及び第2のバイアス電極9a,9bの形成領域は、第1及び第2の信号電極7a,7bの形成領域よりもマッハツェンダー光導波路10の出力端側に設けられているが、入力端側に設けられていてもよい。また、第1及び第2のバイアス電極9a,9bを省略し、DCバイアスを予め重畳させた変調信号を第1及び第2の信号電極7a,7bに入力することも可能である。
第1の信号電極7aの一端7a及び第2の信号電極7bの一端7bには、絶対値が同じで正負の異なる差動信号(変調信号)が入力される。第1及び第2の光導波路10a,10bはニオブ酸リチウムなどの電気光学効果を有する材料からなるので、第1及び第2の光導波路10a,10bに与えられる電界によって第1及び第2の光導波路10a,10bの屈折率がそれぞれ+Δn、−Δnのように変化し、一対の光導波路間の位相差が変化する。この位相差の変化により変調された信号光が出力導波路10oから出力される。
このように、本実施形態による光変調器100は、一対の信号電極7a,7bで構成されたデュアル駆動型であるため、一対の光導波路に印加される電界の対称性を高めることができ、波長チャープを抑制することができる。
図2は、本発明の第1の実施の形態による光変調器の構造を示す略断面図である。
図2に示すように、本実施形態による光変調器100は、基板1、導波層2、バッファ層4、電極層5及び誘電体層(誘電体膜)6がこの順で積層された多層構造を有している。
基板1は例えばサファイア基板であり、基板1の表面にはニオブ酸リチウムに代表される電気光学材料からなる導波層2が形成されている。導波層2はリッジ部2rからなる第1及び第2の光導波路10a、10bを有している。第1及び第2の光導波路10a、10bのリッジ幅は例えば1μmとすることができる。
バッファ層4は、第1及び第2の光導波路10a,10b中を伝搬する光が第1及び第2の信号電極7a,7bに吸収されることを防ぐため、リッジ部2rの上面を覆うように形成されている。バッファ層4は、導波層2よりも屈折率が小さく、透明性が高い材料からなることが好ましく、例えば、Al、SiO、LaAlO、LaYO、ZnO、HfO、MgO、Yなどを用いることができる。リッジ部2rの上面上のバッファ層4の厚さは0.2〜1μm程度であればよい。本実施形態において、バッファ層4は、第1及び第2の光導波路10a,10bの上面のみならずスラブ部の上面を含む下地面の全面を覆っているが、第1及び第2の光導波路10a,10bの上面付近だけを選択的に覆うようにパターニングされたものであってもよい。
バッファ層4の膜厚は、電極の光吸収を低減するためには厚いほど良く、光導波路10a、10bに高い電界を印加するためには薄いほど良い。電極の光吸収と電極の印加電圧とは、トレードオフの関係にあるので、目的に応じて適切な膜厚を設定する必要がある。バッファ層4の誘電率は高い程、VπL(電界効率を表す指標)を低減できるので好ましく、バッファ層4の屈折率は低い程、バッファ層4を薄くできるので好ましい。通常、誘電率が高い材料は屈折率も高くなるので、両者のバランスを考慮して、誘電率が高く、かつ、屈折率が比較的低い材料を選定することが重要である。一例として、Alは、比誘電率が約9、屈折率が約1.6であり、好ましい材料である。LaAlOは、比誘電率が約13、屈折率が約1.7であり、またLaYOは、比誘電率が約17、屈折率が約1.7であり、特に好ましい材料である。
電極層5には、第1の信号電極7a及び第2の信号電極7bが設けられている。第1の信号電極7aは、第1の光導波路10a内を進行する光を変調するために第1の光導波路10aに対応するリッジ部2rに重ねて設けられ、バッファ層4を介して第1の光導波路10aと対向している。第2の信号電極7bは、第2の光導波路10b内を進行する光を変調するために第2の光導波路10bに対応するリッジ部2rに重ねて設けられ、バッファ層4を介して第2の光導波路10bと対向している。
電極層5には、第1の接地電極8a及び第2の接地電極8bが設けられている。第1の接地電極8aは、第1の信号電極7aから見て第2の信号電極7bと反対側であって、第1の信号電極7aの近傍に設けられている。第2の接地電極8bは、第2の信号電極7bから見て第1の信号電極7aと反対側であって、第2の信号電極7bの近傍に設けられている。すなわち、第1及び第2の接地電極8a,8bは、一対の信号電極7a,7bを挟み込むようにそれらの外側に設けられている。
誘電体膜6は、少なくとも空気よりも高い誘電率を有する材料からなり、電極層5が形成された下地面の全面を覆うように設けられている。誘電体膜6の誘電率は、バッファ層4の誘電率よりも高いことが好ましい。誘電体膜6の厚さは特に限定されないが、0.1〜5μm程度であることが好ましい。
誘電体膜6は、第1及び第2の信号電極7a,7bそれぞれの上面及び側面と、第1及び第2の接地電極8a,8bそれぞれの上面及び側面と、第1及び第2の信号電極7a,7b及び第1及び第2の接地電極8a,8bと平面視で重ならないバッファ層4の上面を覆っている。バッファ層4の上面は、第1の信号電極7aと第2の信号電極7bとの間の第1の電極間領域S1、第1の信号電極7aと第1の接地電極8aとの間の第2の電極間領域S2、及び、第2の信号電極7bと第2の接地電極8bとの間の第3の電極間領域S3において露出している。
導波層2を覆うバッファ層4の誘電率と膜厚は、上述したように、光損失やVπLに影響するため、ほぼ固定されてしまう。しかし、本実施形態による光変調器100の構造であれば、誘電体膜6の誘電率を自由に設定することができ、高誘電膜材料の選択により信号波の実効屈折率を光の実効屈折率に近づけることができる。また、誘電体膜6の付与部分や膜厚も自由に選定することが可能であり、従来よりも変調帯域、実効屈折率Nm、インピーダンス整合、駆動電圧Vn等の制御に対する設計の自由度を高めることができる。
導波層2は電気光学材料であれば特に限定されないが、ニオブ酸リチウム(LiNbO)からなることが好ましい。ニオブ酸リチウムは大きな電気光学定数を有し、光変調器等の光学デバイスの構成材料として好適だからである。以下、導波層2をニオブ酸リチウム膜とした場合の本実施形態の構成について詳しく説明する。
基板1としてはニオブ酸リチウム膜より屈折率が低いものであれば特に限定されないが、ニオブ酸リチウム膜をエピタキシャル膜として形成させることができる基板が好ましく、サファイア単結晶基板もしくはシリコン単結晶基板が好ましい。単結晶基板の結晶方位は特に限定されない。ニオブ酸リチウム膜はさまざまな結晶方位の単結晶基板に対して、c軸配向のエピタキシャル膜として形成されやすいという性質を持っている。c軸配向のニオブ酸リチウム膜は3回対称の対称性を有しているので、下地の単結晶基板も同じ対称性を有していることが望ましく、サファイア単結晶基板の場合はc面、シリコン単結晶基板の場合は(111)面の基板が好ましい。
ここで、エピタキシャル膜とは、下地の基板もしくは下地膜の結晶方位に対して、そろって配向している膜のことである。膜面内をX−Y面とし、膜厚方向をZ軸としたとき、結晶がX軸、Y軸及びZ軸方向にともにそろって配向しているものである。例えば、第1に2θ−θX線回折による配向位置でのピーク強度の確認と、第2に極点の確認を行うことで、エピタキシャル膜を証明できる。
具体的には、第1に2θ−θX線回折による測定を行ったとき、目的とする面以外の全てのピーク強度が目的とする面の最大ピーク強度の10%以下、好ましくは5%以下である必要がある。例えば、ニオブ酸リチウムのc軸配向エピタキシャル膜では、(00L)面以外のピーク強度が、(00L)面の最大ピーク強度の10%以下、好ましくは5%以下である。(00L)は、(001)や(002)などの等価な面を総称する表示である。
第2に、極点測定において、極点が見えることが必要である。前述の第1の配向位置でのピーク強度の確認の条件においては、一方向における配向性を示しているのみであり、前述の第1の条件を得たとしても、面内において結晶配向がそろっていない場合には、特定角度位置でX線の強度が高まることはなく、極点は見られない。LiNbOは三方晶系の結晶構造であるため、単結晶におけるLiNbO(014)の極点は3つとなる。ニオブ酸リチウム膜の場合、c軸を中心に180°回転させた結晶が対称的に結合した、いわゆる双晶の状態にてエピタキシャル成長することが知られている。この場合、3つの極点が対称的に2つ結合した状態になるため、極点は6つとなる。また、(100)面のシリコン単結晶基板上にニオブ酸リチウム膜を形成した場合は、基板が4回対称となっているため、4×3=12個の極点が観測される。なお、本発明では、双晶の状態にてエピタキシャル成長したニオブ酸リチウム膜もエピタキシャル膜に含める。
ニオブ酸リチウム膜の組成はLixNbAyOzである。Aは、Li、Nb、O以外の元素を表している。xは0.5〜1.2であり、好ましくは、0.9〜1.05である。yは、0〜0.5である。zは1.5〜4であり、好ましくは2.5〜3.5である。Aの元素としては、K、Na、Rb、Cs、Be、Mg、Ca、Sr、Ba、Ti、Zr、Hf、V、Cr、Mo、W、Fe、Co、Ni、Zn、Sc、Ceなどがあり、2種類以上の組み合わせでも良い。
ニオブ酸リチウム膜の膜厚は2μm以下であることが望ましい。膜厚が2μmよりも厚くなると、高品質な膜を形成することが困難になるからである。一方、ニオブ酸リチウム膜の膜厚が薄すぎる場合は、ニオブ酸リチウム膜における光の閉じ込めが弱くなり、基板1やバッファ層4に光が漏れることになる。ニオブ酸リチウム膜に電界を印加しても、光導波路(10a、10b)の実効屈折率の変化が小さくなるおそれがある。そのため、ニオブ酸リチウム膜は、使用する光の波長の1/10程度以上の膜厚が望ましい。
ニオブ酸リチウム膜の形成方法としては、スパッタ法、CVD法、ゾルゲル法などの膜形成方法を利用するのが望ましい。ニオブ酸リチウムのc軸が基板1の主面に垂直に配向されており、c軸に平行に電界を印加することで、電界に比例して光学屈折率が変化する。単結晶基板としてサファイアを用いる場合は、サファイア単結晶基板上に直接、ニオブ酸リチウム膜をエピタキシャル成長させることができる。単結晶基板としてシリコンを用いる場合は、クラッド層(図示せず)を介して、ニオブ酸リチウム膜をエピタキシャル成長により形成する。クラッド層(図示せず)としては、ニオブ酸リチウム膜より屈折率が低く、エピタキシャル成長に適したものを用いる。例えば、クラッド層(図示せず)としてYを用いると、高品質のニオブ酸リチウム膜を形成できる。
なお、ニオブ酸リチウム膜の形成方法として、ニオブ酸リチウム単結晶基板を薄く研磨したりスライスしたりする方法も知られている。この方法は、単結晶と同じ特性が得られるという利点があり、本発明に適用することが可能である。
以上説明したように、本実施形態による光変調器100は、電極間領域S1,S2,S3において露出するバッファ層4の上面を含む電極層5の上面全体が誘電体膜6に覆われているので、マイクロ波の実効屈折率を光の実効屈折率に近づけることができ、信号波と光の速度整合を向上させることができる。
図3は、本発明の第2の実施の形態による光変調器の構成を示す略断面図である。
図3に示すように、本実施形態による光変調器200の特徴は、誘電体膜6がバッファ層4と電極層5との間に設けられている点にある。すなわち、誘電体膜6はバッファ層4の上面に形成されており、第1及び第2の信号電極7a,7b及び第1及び第2の接地電極8a,8bは誘電体膜6の上面に形成されている。誘電体膜6はバッファ層4の上面全体を覆っているため、第1及び第2の信号電極7a,7b及び第1及び第2の接地電極8a,8bと平面視で重ならない領域のみならず、第1及び第2の信号電極7a,7b及び第1及び第2の接地電極8a,8bと平面視で重なる領域にも形成されている。一方、第1及び第2の信号電極7a,7bの上面及び両側側面と、第1及び第2の接地電極8a,8bの上面及び側面は、誘電体膜6に覆われることなく露出している。その他の構成は第1の実施の形態と同様である。
このように、本実施形態による光変調器200は、空気よりも高い誘電率を持つ誘電体膜6がバッファ層4の上面に設けられているので、第1の実施の形態と同様にマイクロ波の実効屈折率を高めることができ、信号波と光の速度整合を向上させることができる。
図4は、本発明の第3の実施の形態による光変調器の構成を示す略断面図である。
図4に示すように、本実施形態による光変調器300の特徴は、第1及び第2の信号電極7a,7bの上面及び両側側面、第1及び第2の接地電極8a,8bの上面及び側面、第1の信号電極7aと第1の接地電極8aとの間の電極間領域S2及び第2の信号電極7bと第2の接地電極8bとの間の電極間領域S3におけるバッファ層4の上面が誘電体膜6に覆われているが、第1の信号電極7aと第2の信号電極7bとの間の電極間領域S1におけるバッファ層4の上面は誘電体膜6に覆われることなく露出している点にある。すなわち、第1の信号電極7aと第2の信号電極7bとの間の電極間領域S1を除く露出面の全面が誘電体膜6に覆われている。その他の構成は第1の実施の形態と同様である。
このように、本実施形態による光変調器300は、第1の実施の形態と比べて第1の信号電極7aと第2の信号電極7bとの間の電極間領域S1における誘電体膜6を除去しているので、第1の実施の形態よりも駆動電圧Vnの低減を図ることができる。
図5は、本発明の第4の実施の形態による光変調器の構成を示す略断面図である。
図5に示すように、本実施形態による光変調器400の特徴は、第1及び第2の信号電極7a,7bの上面及び外側側面、第1及び第2の接地電極8a,8bの上面及び側面、第1の信号電極7aの第1の接地電極8aとの間の電極間領域S2及び第2の信号電極7bと第2の接地電極8bとの間の電極間領域S3におけるバッファ層4の上面が誘電体膜6に覆われているが、第1の信号電極7aと第2の信号電極7bとの間の電極間領域S1におけるバッファ層4の上面、第2の信号電極7bと対向する第1の信号電極7aの内側側面、及び、第1の信号電極7aと対向する第2の信号電極7bの内側側面は、誘電体膜6に覆われることなく露出している点にある。すなわち、すなわち、第1及び第2の信号電極7a,7bそれぞれの内側側面と、第1の信号電極7aと第2の信号電極7bとの間の電極間領域S1を除く露出面の全面が誘電体膜6に覆われている。その他の構成は第1の実施の形態と同様である。
このように、本実施形態による光変調器400は、第3の実施の形態と比べて第1及び第2の信号電極7a,7bの内側側面を覆う誘電体膜6をさらに除去しているので、駆動電圧Vnのさらなる低減とマイクロ波の減衰の低減を図ることができる。
図6は、本発明の第5の実施の形態による光変調器の構成を示す略断面図である。
図6に示すように、本実施形態による光変調器500の特徴は、第1及び第2の信号電極7a,7bの両側側面と、第1及び第2の接地電極8a,8bの側面と、第1の信号電極7aと第2の信号電極7bとの間の電極間領域S1におけるバッファ層4の上面が誘電体膜6に覆われているが、第1及び第2の信号電極7a,7bの上面と、第1の信号電極7aと第1の接地電極8aとの間の電極間領域S2及び第2の信号電極7bと第2の接地電極8bとの間の電極間領域S3におけるバッファ層4の上面は、誘電体膜6に覆われることなく露出している点にある。このような構成であっても、第5の実施の形態と同様に駆動電圧Vnのさらなる低減とマイクロ波の減衰の低減を図ることができる。
図7は、本発明の第7の実施の形態による光変調器の構成を示す略断面図である。
図7に示すように、本実施形態による光変調器600の特徴は、
第1の信号電極7aと第2の信号電極7bとの間の電極間領域S1、
第1の信号電極7aと第1の接地電極8aとの間の電極間領域S2、及び、
第2の信号電極7bと第2の接地電極8bとの間の電極間領域S3におけるバッファ層4の上面が誘電体膜6に覆われているが、第1及び第2の信号電極7a,7bの上面及び外側側面と第1及び第2の接地電極8a,8bの上面及び側面は誘電体膜6に覆われることなく露出している点にある。すなわち、電極間領域S1,S2,S3だけが誘電体膜6に覆われている。その他の構成は第1の実施の形態と同様である。
このように、本実施形態による光変調器600は、電極間領域S1,S2、S3におけるバッファ層4の上面だけを誘電体膜6で覆っているので、第6の実施の形態よりもマイクロ波の減衰のさらなる低減を図ることができる。
図8は、本発明の第8の実施の形態による光変調器の構成を示す略断面図である。
図8に示すように、本実施形態による光変調器700の特徴は、第1の信号電極7aと第2の信号電極7bとの間の電極間領域S1におけるバッファ層4の上面が誘電体膜6に覆われているが、それ以外は誘電体膜6に覆われることなく露出している点にある。すなわち、電極間領域S1だけが誘電体膜6に覆われている。その他の構成は第1の実施の形態と同様である。このように、本実施形態による光変調器700は、電極間領域S1におけるバッファ層4の上面だけを誘電体膜6で覆っているので、第7の実施の形態よりもマイクロ波の減衰のさらなる低減を図ることができる。
図9(a)及び(b)は、本発明の第8の実施の形態による光変調器の構成を示す略断面図である。
図9(a)及び(b)に示すように、本実施形態による光変調器800A,800Bの特徴は、第1及び第2の信号電極7a,7b間、第1の信号電極7aと第1の接地電極8aとの間、及び、第2の信号電極7bと第2の接地電極8bとの間における電極間領域S1,S2,S3を掘り込んで誘電体膜6の少なくとも一部をバッファ層4と共に除去した構造を有する点にある。特に、図9(a)に示す光変調器800Aは、図2に示した光変調器100の構造において、電極間領域S1〜S3における誘電体膜6及びバッファ層4を除去したものであり、図9(b)に示す光変調器800Bは、図3に示した光変調器200の構造において、電極間領域S1〜S3における誘電体膜6及びバッファ層4を除去したものである。さらに図示しないが、図4〜図8に示した構造において、本実施形態を適用することも可能である。
電極間領域S1〜S3における誘電体膜6はDCドリフトの発生因子の一つであるが、本実施形態のように電極間領域S1,S2,S3における誘電体膜6をバッファ層4と共に除去した場合には、DCドリフトの抑制効果を高めることができる。
図10は、本発明の第9の実施の形態による光変調器の構成を示す略平面図であり、図10(a)は光導波路のみ図示し、図10(b)は進行波電極を含めた光変調器の全体を図示している。
図10(a)及び(b)に示すように、本実施形態による光変調器900の特徴は、マッハツェンダー光導波路10が直線部と湾曲部との組み合わせにより構成されている点にある。より具体的には、マッハツェンダー光導波路10は、互いに並行に配置された第1乃至第3の直線部10e,10e,10eと、第1の直線部10eと第2の直線部10eとをつなぐ第1の湾曲部10fと、第2の直線部10eと第3の直線部10eとをつなぐ第2の湾曲部10fとを有している。第1及び第2の湾曲部10f,10fは、光導波路の進行方向を180度方向転換するため、同心半円状に形成されている。
そして本実施形態による光変調器900は、図中のA−A'線に沿ったマッハツェンダー光導波路10の直線部及び湾曲部の断面構造が、図2〜図9に示した断面構造となるように構成されている。すなわち、第1の信号電極7aの下面は、バッファ層4を介して第1の直線部10e、第1の湾曲部10f、第2の直線部10e、第2の湾曲部10f及び第3の直線部10eにおける第1の光導波路10aを覆っており、第2の信号電極7bの下面は、バッファ層4を介して第1の直線部10e、第1の湾曲部10f,第2の直線部10e,第2の湾曲部10f及び第3の直線部10eにおける第2の光導波路10bを覆っている。第1及び第2のバイアス電極9a,9bの位置は特に限定されないが、第3の直線部10eの他の一部における第1及び第2の光導波路10a,10bを覆っている。本実施形態において、第1及び第2の信号電極7a,7bは、第1及び第2の直線部10e,10eの全体と、第3の直線部10eの一部を覆っているが、例えば第1の直線部10eだけを覆っていてもよい。
本実施形態において、入力光Siは、第1の直線部10eの一端に入力され、第1の直線部10eの一端から他端に向かって進行し、第1の湾曲部10fで折り返して第2の直線部10eの一端から他端に向かって第1の直線部10eとは逆方向に進行し、さらに第2の湾曲部10fで折り返して第3の直線部10eの一端から他端に向かって第1の直線部10eと同じ方向に進行する。
光変調器では素子長が長いことが実用上の大きな課題となっているが、図示のように光導波路を折り返すことで素子長を大幅に短くでき、小型化に対する顕著な効果が得られる。特に、ニオブ酸リチウム膜により形成された光導波路は、湾曲部の曲率半径を例えば50μm程度まで小さくしても損失が小さいという特徴があり、本実施形態に適している。また、光導波路の直線部のみならず湾曲部にも信号電極を設けることにより電極長を長くして低駆動電圧化を図ることができ、さらに誘電体膜6を設けることによって湾曲部に信号電極を設けることによる高周波損失の問題を改善することができる。
以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
例えば、上記実施形態においては、基板1上にエピタキシャル成長させたニオブ酸リチウム膜によって形成された一対の光導波路10a,10bを有する光変調器を挙げたが、本発明はそのような構造に限定にされず、チタン酸バリウム、チタン酸ジルコン酸鉛などの電気光学材料により光導波路を形成したものであってもよい。また、導波層2として、電気光学効果を有する半導体材料、高分子材料などを用いてもよい。
1 基板
2 導波層
2r リッジ部
4 バッファ層
5 電極層
6 誘電体膜(誘電体層)
7a 第1の信号電極
7a 第1の信号電極の一端
7a 第1の信号電極の他端
7b 第2の信号電極
7b 第2の信号電極の一端
7b 第2の信号電極の他端
8a 第1の接地電極
8b 第2の接地電極
9a 第1のバイアス電極
9a 第1のバイアス電極の一端
9b 第2のバイアス電極
9b 第2のバイアス電極の一端
10 マッハツェンダー光導波路
10a 第1の光導波路
10b 第2の光導波路
10c 分波部
10d 合波部
10e,10e,10e マッハツェンダー光導波路の直線部
10f,10f マッハツェンダー光導波路の湾曲部
10i 入力導波路
10o 出力導波路
12 終端抵抗
21 サファイア基板
22a,22b 光導波路
23 バッファ層
24a,24a,24a 信号電極
24b,24c,24d,24e 接地電極
100,200,300,400,500,600,700,800A,800B,900,1000,1100 光変調器
S1,S2,S3 電極間領域
Si 入力光
So 変調光
誘電体膜6は、第1及び第2の信号電極7a,7bそれぞれの上面及び側面と、第1及び第2の接地電極8a,8bそれぞれの上面及び側面と、第1及び第2の信号電極7a,7b及び第1及び第2の接地電極8a,8bと平面視で重ならないバッファ層4の上面を覆っている。バッファ層4の上面は、第1の信号電極7aと第2の信号電極7bとの間の第1の電極間領域S1、第1の信号電極7aと第1の接地電極8aとの間の第2の電極間領域S2、及び、第2の信号電極7bと第2の接地電極8bとの間の第3の電極間領域S3において露出していない
図7は、本発明の第6の実施の形態による光変調器の構成を示す略断面図である。
図7に示すように、本実施形態による光変調器600の特徴は、第1の信号電極7aと第2の信号電極7bとの間の電極間領域S1、第1の信号電極7aと第1の接地電極8aとの間の電極間領域S2、及び、第2の信号電極7bと第2の接地電極8bとの間の電極間領域S3におけるバッファ層4の上面が誘電体膜6に覆われているが、第1及び第2の信号電極7a,7bの上面及び側面と第1及び第2の接地電極8a,8bの上面及び側面は誘電体膜6に覆われることなく露出している点にある。すなわち、電極間領域S1,S2,S3だけが誘電体膜6に覆われている。その他の構成は第1の実施の形態と同様である。
このように、本実施形態による光変調器600は、電極間領域S1,S2、S3におけるバッファ層4の上面だけを誘電体膜6で覆っているので、第5の実施の形態よりもマイクロ波の減衰のさらなる低減を図ることができる。
図8は、本発明の第7の実施の形態による光変調器の構成を示す略断面図である。
図8に示すように、本実施形態による光変調器700の特徴は、第1の信号電極7aと第2の信号電極7bとの間の電極間領域S1におけるバッファ層4の上面が誘電体膜6に覆われているが、それ以外は誘電体膜6に覆われることなく露出している点にある。すなわち、電極間領域S1だけが誘電体膜6に覆われている。その他の構成は第1の実施の形態と同様である。このように、本実施形態による光変調器700は、電極間領域S1におけるバッファ層4の上面だけを誘電体膜6で覆っているので、第6の実施の形態よりもマイクロ波の減衰のさらなる低減を図ることができる。

Claims (10)

  1. 電気光学効果を有する誘電体の薄膜にて形成されたリッジ型の光導波路と、
    前記光導波路を覆うバッファ層と、
    前記バッファ層を介して前記光導波路と対向するように前記バッファ層上に形成された信号電極と、
    前記信号電極と共に前記バッファ層上に形成された接地電極と、
    空気よりも高い誘電率を有し、前記信号電極及び前記接地電極それぞれの露出面及び前記バッファ層の露出面の少なくとも一部を覆う誘電体膜とを備えることを特徴とする光変調器。
  2. 前記誘電体膜は、前記信号電極の上面及び側面と、前記接地電極の上面及び側面と、前記信号電極及び前記接地電極と平面視で重ならない前記バッファ層の上面を覆っている、請求項1に記載の光変調器。
  3. 前記誘電体膜は、前記バッファ層の上面に形成されており、
    前記信号電極及び前記接地電極は、前記誘電体膜の上面に形成されている、請求項1に記載の光変調器。
  4. 前記光導波路は、マッハツェンダー干渉計を形成する第1及び第2の導波路を含み、
    前記信号電極は、前記バッファ層を介して前記第1の導波路と対向する第1の信号電極と、前記バッファ層を介して前記第2の導波路と対向する第2の信号電極を含み、
    前記接地電極は、前記第1の信号電極の近傍であって前記第1の信号電極から見て前記第2の信号電極と反対側に設けられた第1の接地電極と、前記第2の信号電極の近傍であって前記第2の信号電極から見て前記第1の信号電極と反対側に設けられた第2の接地電極を含み、
    前記第1の信号電極と前記第2の信号電極との間の第1の電極間領域における前記バッファ層の上面は前記誘電体膜に覆われておらず、
    前記第1及び第2の信号電極それぞれの上面及び両側側面と、前記第1及び第2の接地電極それぞれの上面及び側面と、前記第1の信号電極と前記第1の接地電極との間の第2の電極間領域及び前記第2の信号電極と前記第2の接地電極との間の第3の電極間領域における前記バッファ層の上面は前記誘電体膜に覆われている、請求項1に記載の光変調器。
  5. 前記光導波路は、マッハツェンダー干渉計を形成する第1及び第2の導波路を含み、
    前記信号電極は、前記バッファ層を介して前記第1の導波路と対向する第1の信号電極と、前記バッファ層を介して前記第2の導波路と対向する第2の信号電極を含み、
    前記接地電極は、前記第1の信号電極の近傍であって前記第1の信号電極から見て前記第2の信号電極と反対側に設けられた第1の接地電極と、前記第2の信号電極の近傍であって前記第2の信号電極から見て前記第1の信号電極と反対側に設けられた第2の接地電極を含み、
    前記第1の信号電極と前記第2の信号電極との間の第1の電極間領域における前記バッファ層の上面と、前記第1及び第2の信号電極それぞれの内側側面は前記誘電体膜に覆われておらず、
    前記第1及び第2の信号電極それぞれの上面及び外側側面と、前記第1及び第2の接地電極それぞれの上面及び側面と、前記第1の信号電極と前記第1の接地電極との間の第2の電極間領域及び前記第2の信号電極と前記第2の接地電極との間の第3の電極間領域における前記バッファ層の上面は、前記誘電体膜に覆われている、請求項1に記載の光変調器。
  6. 前記光導波路は、マッハツェンダー干渉計を形成する第1及び第2の導波路を含み、
    前記信号電極は、前記バッファ層を介して前記第1の導波路と対向する第1の信号電極と、前記バッファ層を介して前記第2の導波路と対向する第2の信号電極を含み、
    前記接地電極は、前記第1の信号電極の近傍であって前記第1の信号電極から見て前記第2の信号電極と反対側に設けられた第1の接地電極と、前記第2の信号電極の近傍であって前記第2の信号電極から見て前記第1の信号電極と反対側に設けられた第2の接地電極を含み、
    前記第1及び第2の信号電極それぞれの上面と、前記第1及び第2の接地電極それぞれの上面と、前記第1の信号電極と前記第1の接地電極との間の第2の電極間領域、及び前記第2の信号電極と前記第2の接地電極との間の第3の電極間領域における前記バッファ層の上面は、前記誘電体膜に覆われておらず、
    前記第1及び第2の信号電極それぞれの両側側面と、前記第1及び第2の接地電極それぞれの側面と、前記第1の信号電極と前記第2の信号電極との間の第1の電極間領域における前記バッファ層の上面は、前記誘電体膜に覆われている、請求項1に記載の光変調器。
  7. 前記光導波路は、マッハツェンダー干渉計を形成する第1及び第2の導波路を含み、
    前記信号電極は、前記バッファ層を介して前記第1の導波路と対向する第1の信号電極と、前記バッファ層を介して前記第2の導波路と対向する第2の信号電極を含み、
    前記接地電極は、前記第1の信号電極の近傍であって前記第1の信号電極から見て前記第2の信号電極と反対側に設けられた第1の接地電極と、前記第2の信号電極の近傍であって前記第2の信号電極から見て前記第1の信号電極と反対側に設けられた第2の接地電極を含み、
    前記第1及び第2の信号電極それぞれの上面及び両側側面と、前記第1及び第2の接地電極それぞれの上面及び側面は前記誘電体膜に覆われておらず、
    前記第1の信号電極と前記第2の信号電極との間の第1の電極間領域、前記第1の信号電極と前記第1の接地電極との間の第2の電極間領域、及び前記第2の信号電極と前記第2の接地電極との間の第3の電極間領域における前記バッファ層の上面は、前記誘電体膜に覆われている、請求項1に記載の光変調器。
  8. 前記光導波路は、マッハツェンダー干渉計を形成する第1及び第2の導波路を含み、
    前記信号電極は、前記バッファ層を介して前記第1の導波路と対向する第1の信号電極と、前記バッファ層を介して前記第2の導波路と対向する第2の信号電極を含み、
    前記接地電極は、前記第1の信号電極の近傍であって前記第1の信号電極から見て前記第2の信号電極と反対側に設けられた第1の接地電極と、前記第2の信号電極の近傍であって前記第2の信号電極から見て前記第1の信号電極と反対側に設けられた第2の接地電極を含み、
    前記第1及び第2の信号電極それぞれの上面及び両側側面と、前記第1及び第2の接地電極それぞれの上面及び側面と、前記第1の信号電極と前記第1の接地電極との間の第2の電極間領域、及び前記第2の信号電極と前記第2の接地電極との間の第3の電極間領域における前記バッファ層の上面は、前記誘電体膜に覆われておらず、
    前記第1の信号電極と前記第2の信号電極との間の第1の電極間領域は、前記誘電体膜に覆われている、請求項1に記載の光変調器。
  9. 前記信号電極と前記接地電極との間の電極間領域における前記誘電体膜の少なくとも一部が前記バッファ層と共に除去された構造を有する、請求項1に記載の光変調器。
  10. 前記誘電体膜の誘電率は、前記バッファ層の誘電率よりも高い、請求項1乃至9のいずれか一項に記載の光変調器。
JP2019031796A 2019-02-25 2019-02-25 光変調器 Pending JP2020134875A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019031796A JP2020134875A (ja) 2019-02-25 2019-02-25 光変調器
US16/799,763 US11003043B2 (en) 2019-02-25 2020-02-24 Optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019031796A JP2020134875A (ja) 2019-02-25 2019-02-25 光変調器

Publications (1)

Publication Number Publication Date
JP2020134875A true JP2020134875A (ja) 2020-08-31

Family

ID=72140527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019031796A Pending JP2020134875A (ja) 2019-02-25 2019-02-25 光変調器

Country Status (2)

Country Link
US (1) US11003043B2 (ja)
JP (1) JP2020134875A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020134874A (ja) * 2019-02-25 2020-08-31 Tdk株式会社 光変調器
WO2023007753A1 (ja) * 2021-07-30 2023-02-02 Tdk株式会社 可視光変調素子及びそれを備える光学エンジン
US12025866B2 (en) 2021-08-23 2024-07-02 Fujitsu Optical Components Limited Optical device and optical communication apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03253815A (ja) * 1990-03-02 1991-11-12 Fujitsu Ltd 光導波路デバイス
JPH0764126A (ja) * 1993-08-27 1995-03-10 Nec Corp 光制御デバイス
US5949944A (en) * 1997-10-02 1999-09-07 Lucent Technologies Inc. Apparatus and method for dissipating charge from lithium niobate devices
JP2002090702A (ja) * 2000-09-18 2002-03-27 Sumitomo Osaka Cement Co Ltd 導波路型光変調器およびその製造方法
JP2015230466A (ja) * 2014-06-06 2015-12-21 Tdk株式会社 光導波路素子およびこれを用いた光変調器
CN105974614A (zh) * 2016-06-30 2016-09-28 派尼尔科技(天津)有限公司 一种采用脊形波导的马赫曾德光调制器晶片结构及其制备工艺
WO2017183484A1 (ja) * 2016-04-21 2017-10-26 Tdk株式会社 光変調器
JP2018173454A (ja) * 2017-03-31 2018-11-08 住友大阪セメント株式会社 光変調素子
US10684530B1 (en) * 2019-02-28 2020-06-16 Globalfoundries Inc. Electro-optic modulators with layered arrangements

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4485218B2 (ja) 2004-02-06 2010-06-16 富士通オプティカルコンポーネンツ株式会社 光変調器
JP2006195383A (ja) 2005-01-17 2006-07-27 Nippon Telegr & Teleph Corp <Ntt> 光変調器およびその製造方法
JP5853880B2 (ja) 2012-06-22 2016-02-09 Tdk株式会社 光変調器
JP2014142411A (ja) 2013-01-22 2014-08-07 Tdk Corp 光変調器
US9244296B2 (en) 2013-11-15 2016-01-26 Tdk Corporation Optical modulator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03253815A (ja) * 1990-03-02 1991-11-12 Fujitsu Ltd 光導波路デバイス
JPH0764126A (ja) * 1993-08-27 1995-03-10 Nec Corp 光制御デバイス
US5949944A (en) * 1997-10-02 1999-09-07 Lucent Technologies Inc. Apparatus and method for dissipating charge from lithium niobate devices
JP2002090702A (ja) * 2000-09-18 2002-03-27 Sumitomo Osaka Cement Co Ltd 導波路型光変調器およびその製造方法
JP2015230466A (ja) * 2014-06-06 2015-12-21 Tdk株式会社 光導波路素子およびこれを用いた光変調器
WO2017183484A1 (ja) * 2016-04-21 2017-10-26 Tdk株式会社 光変調器
CN105974614A (zh) * 2016-06-30 2016-09-28 派尼尔科技(天津)有限公司 一种采用脊形波导的马赫曾德光调制器晶片结构及其制备工艺
JP2018173454A (ja) * 2017-03-31 2018-11-08 住友大阪セメント株式会社 光変調素子
US10684530B1 (en) * 2019-02-28 2020-06-16 Globalfoundries Inc. Electro-optic modulators with layered arrangements

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020134874A (ja) * 2019-02-25 2020-08-31 Tdk株式会社 光変調器
WO2023007753A1 (ja) * 2021-07-30 2023-02-02 Tdk株式会社 可視光変調素子及びそれを備える光学エンジン
US12025866B2 (en) 2021-08-23 2024-07-02 Fujitsu Optical Components Limited Optical device and optical communication apparatus

Also Published As

Publication number Publication date
US20200272020A1 (en) 2020-08-27
US11003043B2 (en) 2021-05-11

Similar Documents

Publication Publication Date Title
JP7115483B2 (ja) 光変調器
JP6787397B2 (ja) 光変調器
CN111164496B (zh) 光调制器
JP2020134874A (ja) 光変調器
US11003044B2 (en) Electro-optic device
JP2015230466A (ja) 光導波路素子およびこれを用いた光変調器
CN112558374A (zh) 光调制器
US11003043B2 (en) Optical modulator
JP2020166100A (ja) 電気光学デバイス
JP2022155577A (ja) 電気光学デバイス
JP7302516B2 (ja) 光変調器
JP2020134873A (ja) 光変調器
WO2021201133A1 (en) Optical modulator
WO2021161747A1 (ja) 光導波路素子及び光変調素子
WO2021192550A1 (ja) 光変調器及びその製造方法
JP2020181070A (ja) 光変調器
JP2020166101A (ja) 電気光学デバイス
WO2021161745A1 (ja) 光変調素子
WO2023181152A1 (ja) 光変調素子
WO2021161746A1 (ja) 光変調素子
WO2022071356A1 (en) Optical modulator
WO2021201132A1 (en) Electro-optical device
JP7322778B2 (ja) 光変調器の製造方法及びこれに用いるフォトマスク
JP2023522150A (ja) 電気光学デバイス

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200423

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230207