JP2020133655A - Method for manufacturing vacuum heat insulating panel, and vacuum heat insulating panel - Google Patents

Method for manufacturing vacuum heat insulating panel, and vacuum heat insulating panel Download PDF

Info

Publication number
JP2020133655A
JP2020133655A JP2019023269A JP2019023269A JP2020133655A JP 2020133655 A JP2020133655 A JP 2020133655A JP 2019023269 A JP2019023269 A JP 2019023269A JP 2019023269 A JP2019023269 A JP 2019023269A JP 2020133655 A JP2020133655 A JP 2020133655A
Authority
JP
Japan
Prior art keywords
heat insulating
heating
panel
metal plate
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019023269A
Other languages
Japanese (ja)
Other versions
JP7269468B2 (en
Inventor
努 東
Tsutomu Azuma
努 東
直人 松久
Naoto Matsuhisa
直人 松久
冨村 宏紀
Hiroki Tomimura
宏紀 冨村
雅人 大塚
Masahito Otsuka
雅人 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2019023269A priority Critical patent/JP7269468B2/en
Publication of JP2020133655A publication Critical patent/JP2020133655A/en
Application granted granted Critical
Publication of JP7269468B2 publication Critical patent/JP7269468B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/242Slab shaped vacuum insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation

Abstract

To provide a method for manufacturing a heat insulating panel that can be used under high temperature at low cost and has excellent heat insulating performance even under high temperature, and the vacuum heat insulating panel.SOLUTION: A method for manufacturing a vacuum heat insulating panel 1 comprises: a first heating step of heating an inorganic heat insulating material 10 to remove bound water of the heat insulating material 10; a heat insulating material arrangement step of arranging the heat insulating material 10 between a first metal plate 20 and a second metal plate 30 one of which has an opening 32 for exhaust; a welding step of welding the first metal plate 20 and the outer peripheral side of the second metal plate 30 to manufacture a vacuuming front panel 1B, in a state where the heat insulating material 10 is arranged; a second heating step of heating the vacuuming front panel to remove moisture adhering to the vacuuming front panel; a vacuuming step of vacuuming the internal space of the vacuuming front panel through the opening 32; and a sealing step of closing the opening 32 with a sealing material 60.SELECTED DRAWING: Figure 4

Description

本発明は、真空断熱パネルの製造方法及び真空断熱パネルに関する。 The present invention relates to a method for manufacturing a vacuum insulation panel and a vacuum insulation panel.

冷蔵庫等に使用されている真空断熱パネルは、薄くて優れた断熱性能を有する。しかし、包材にラミネートフィルムを使用しているため、耐熱温度が低く、200℃を超える温度では使用できない。また、ヒートシール構造のためシール部よりガス(空気や水蒸気)が透過し、性能が経年劣化する問題もある。
一方、200℃以上で使用可能な優れた断熱性能を有する断熱材として、フュームドシリカ系(耐熱温度1000℃以上)の断熱材が各社より販売されている。しかし、フュームドシリカ系の断熱材は高価である。
このため、安価で経年劣化がなく、且つ高温においても優れた断熱性能を有する真空断熱パネルが求められている。
Vacuum insulation panels used in refrigerators and the like are thin and have excellent insulation performance. However, since a laminated film is used as the packaging material, the heat resistant temperature is low, and it cannot be used at a temperature exceeding 200 ° C. Further, since the heat-sealed structure, gas (air or water vapor) permeates through the sealed portion, and there is a problem that the performance deteriorates over time.
On the other hand, as a heat insulating material having excellent heat insulating performance that can be used at 200 ° C. or higher, fumed silica-based (heat resistant temperature 1000 ° C. or higher) heat insulating material is sold by each company. However, fumed silica-based insulation is expensive.
Therefore, there is a demand for a vacuum heat insulating panel that is inexpensive, does not deteriorate over time, and has excellent heat insulating performance even at high temperatures.

上記問題を顧みてアルミやステンレス等金属製の包材を使用し、シーム溶接やレーザ溶接等で真空封止を行い、シール部からのガス透過と耐熱性を改善した真空断熱パネルも提案されている。このような真空断熱パネルであればシール部からのガスの透過が無く80℃以下の温度領域では良好な断熱性能が維持できる。しかしながら、80℃を超える高温温度領域において使用した場合、真空断熱パネルの内部から種々のガスが発生し真空度を低下し、断熱性能が悪化する。このため、80℃を超える高温温度領域においても優れた断熱性能を有した真空断熱パネルを得るためには、このガスの発生を防止する必要がある。 In consideration of the above problems, a vacuum insulation panel has been proposed that uses metal packaging materials such as aluminum and stainless steel, performs vacuum sealing by seam welding, laser welding, etc., and improves gas permeation from the seal and heat resistance. There is. With such a vacuum heat insulating panel, good heat insulating performance can be maintained in a temperature range of 80 ° C. or lower without permeation of gas from the seal portion. However, when it is used in a high temperature region exceeding 80 ° C., various gases are generated from the inside of the vacuum heat insulating panel, the degree of vacuum is lowered, and the heat insulating performance is deteriorated. Therefore, in order to obtain a vacuum heat insulating panel having excellent heat insulating performance even in a high temperature region exceeding 80 ° C., it is necessary to prevent the generation of this gas.

このような高温時に発生するガスを除去する方法として、500℃で真空加熱処理を行いガス吸着剤で発生したガスを吸着する技術が提案されている(特許文献1参照)。
更に、芯材に対して、高周波加熱、マイクロ波加熱等の誘電加熱処理を行い、無機繊維断熱材に吸着した微量水分を除去し再吸着を防止する技術が提案されている(特許文献2参照)。
As a method for removing the gas generated at such a high temperature, a technique has been proposed in which a vacuum heat treatment is performed at 500 ° C. to adsorb the gas generated by the gas adsorbent (see Patent Document 1).
Further, a technique has been proposed in which the core material is subjected to a dielectric heating treatment such as high frequency heating or microwave heating to remove trace moisture adsorbed on the inorganic fiber heat insulating material and prevent re-adsorption (see Patent Document 2). ).

特許4365736号公報Japanese Patent No. 43657736 特開2007−24268号公報Japanese Unexamined Patent Publication No. 2007-24268

しかし、特許文献1は、真空中で500℃まで加熱するための大型の真空加熱炉が必要となり、経済的ではなく、生産性も悪い。
特許文献2は、無機繊維断熱材に吸着した水分を除去するために高周波加熱、マイクロ波加熱等の誘電加熱処理で加熱する方法が提案されているが、誘電加熱装置はコストが高く経済的ではない。
However, Patent Document 1 requires a large vacuum heating furnace for heating to 500 ° C. in a vacuum, which is not economical and has poor productivity.
Patent Document 2 proposes a method of heating by a dielectric heating treatment such as high frequency heating or microwave heating in order to remove the moisture adsorbed on the inorganic fiber heat insulating material, but the dielectric heating device is costly and economical. Absent.

本発明は、安価で、高温での使用が可能で、且つ高温においても優れた断熱性能を有する断熱パネルを製造する方法、及びその真空断熱パネルを提供することを目的とする。 An object of the present invention is to provide a method for producing a heat insulating panel which is inexpensive, can be used at a high temperature, and has excellent heat insulating performance even at a high temperature, and a vacuum heat insulating panel thereof.

本発明は、無機系の断熱材を加熱して、前記断熱材の結合水を除去する第1加熱工程と、一方が排気用の開口を備えた第1金属板と第2金属板との間に前記断熱材を配置する断熱材配置工程と、前記断熱材が間に配置された状態で、前記第1金属板と前記第2金属板の外周側を溶接して真空引き前パネルを製造する溶接工程と、前記真空引き前パネルを加熱して前記真空引き前パネルの付着水分を除去する第2加熱工程と、前記真空引き前パネルの内部空間を、前記開口を通じて真空引きする真空引き工程と、前記開口を封止材により塞ぐ封止工程と、を含む真空断熱パネルの製造方法を提供する。 In the present invention, there is a first heating step of heating an inorganic heat insulating material to remove the bound water of the heat insulating material, and between a first metal plate and a second metal plate having an opening for exhaust on one side. In the heat insulating material arranging step of arranging the heat insulating material and the outer peripheral side of the first metal plate and the second metal plate in a state where the heat insulating material is arranged between them, a pre-evacuation panel is manufactured. A welding step, a second heating step of heating the pre-evacuation panel to remove the adhering moisture of the pre-evacuation panel, and a vacuum drawing step of vacuuming the internal space of the pre-evacuation panel through the opening. Provided is a method for manufacturing a vacuum heat insulating panel, which comprises a sealing step of closing the opening with a sealing material.

前記第1加熱工程は、300°以上、熱間収縮温度以下で行うことが好ましい。 The first heating step is preferably performed at 300 ° C. or higher and a hot shrinkage temperature or lower.

前記第2加熱工程は、100〜300℃で行うことが好ましい。 The second heating step is preferably performed at 100 to 300 ° C.

前記真空引き工程は、前記内部空間の温度を80℃以上に保持した状態で行うことが好ましい。 The vacuuming step is preferably performed in a state where the temperature of the internal space is maintained at 80 ° C. or higher.

また、本発明は、第1金属板と第2金属板との間に真空状態で無機系の断熱材が配置され、
400℃での熱伝導率が10mW/m・K以下である、真空断熱パネルを提供する。
Further, in the present invention, an inorganic heat insulating material is arranged between the first metal plate and the second metal plate in a vacuum state.
Provided is a vacuum insulation panel having a thermal conductivity of 10 mW / m · K or less at 400 ° C.

本発明によれば、安価で、高温での使用が可能で、且つ高温においても優れた断熱性能を有する真空断熱パネルを製造する方法、及びその真空断熱パネルを提供することができる。 According to the present invention, it is possible to provide a method for manufacturing a vacuum heat insulating panel which is inexpensive, can be used at a high temperature, and has excellent heat insulating performance even at a high temperature, and the vacuum heat insulating panel thereof.

真空断熱パネル1の断面図である。It is sectional drawing of the vacuum insulation panel 1. FIG. 真空断熱パネル1の分解斜視図である。It is an exploded perspective view of the vacuum insulation panel 1. 真空断熱パネル製造装置2を示すブロック図である。It is a block diagram which shows the vacuum insulation panel manufacturing apparatus 2. 真空断熱パネル1の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of a vacuum insulation panel 1. 評価に用いた加熱試験装置100を説明する図であり、(a)は上面図、(b)は側面図である。It is a figure explaining the heating test apparatus 100 used for evaluation, (a) is a top view, (b) is a side view. 実施形態の真空断熱パネルの評価結果を示すグラフで、(a)は加熱温度ごとの冷却面温度を示したグラフで、(b)は加熱温度ごとの熱伝導率を示したグラフである。It is a graph which shows the evaluation result of the vacuum insulation panel of an embodiment, (a) is a graph which showed the cooling surface temperature for every heating temperature, and (b) is the graph which showed the thermal conductivity for every heating temperature.

(真空断熱パネル1)
以下、本発明の真空断熱パネル1の製造方法及びその製造方法で製造された真空断熱パネル1の実施形態を、図面を参照しながら説明する。図1は真空断熱パネル1の断面図である。図2は真空断熱パネル1の分解斜視図である。
(Vacuum insulation panel 1)
Hereinafter, a method for manufacturing the vacuum heat insulating panel 1 of the present invention and an embodiment of the vacuum heat insulating panel 1 manufactured by the manufacturing method will be described with reference to the drawings. FIG. 1 is a cross-sectional view of the vacuum insulation panel 1. FIG. 2 is an exploded perspective view of the vacuum heat insulating panel 1.

真空断熱パネル1は、無機系の断熱材10と、断熱材10を挟むように配置される第1金属板20及び第2金属板30と、を備える。 The vacuum heat insulating panel 1 includes an inorganic heat insulating material 10 and a first metal plate 20 and a second metal plate 30 arranged so as to sandwich the heat insulating material 10.

(断熱材10)
断熱材10は、断熱性を有する素材であるガラス繊維やロックウール等の無機繊維を用いて、所定の厚みを有するように積層されて構成されている。
(Insulation material 10)
The heat insulating material 10 is formed by being laminated so as to have a predetermined thickness by using inorganic fibers such as glass fiber and rock wool, which are materials having heat insulating properties.

(金属板20,30)
本実施形態で、第1金属板20及び第2金属板30は、平面視において断熱材10よりも一回り大きな矩形形状で、断熱材10の上面及び下面を覆うように配置される。
第1金属板20及び第2金属板30の材料としては、アルミニウム合金板及びステンレス鋼板等の各種金属板を用いることができるが、耐熱性や長期に亘っての外観維持の観点から、強度及び耐食性に優れたステンレス鋼板を用いることが好ましい。実施形態ではステンレス鋼板を用いた。
第1金属板20及び第2金属板30の厚さは、真空断熱パネル1の内部の真空状態を好適に保ちつつ、高温加熱時の変形に耐え、軽量化する観点から、0.1mm〜0.3mmであることが好ましい。
(Metal plates 20, 30)
In the present embodiment, the first metal plate 20 and the second metal plate 30 have a rectangular shape that is one size larger than the heat insulating material 10 in a plan view, and are arranged so as to cover the upper surface and the lower surface of the heat insulating material 10.
As the material of the first metal plate 20 and the second metal plate 30, various metal plates such as an aluminum alloy plate and a stainless steel plate can be used, but from the viewpoint of heat resistance and long-term appearance maintenance, strength and appearance are maintained. It is preferable to use a stainless steel plate having excellent corrosion resistance. In the embodiment, a stainless steel plate was used.
The thickness of the first metal plate 20 and the second metal plate 30 is 0.1 mm to 0 from the viewpoint of being able to withstand deformation during high-temperature heating and reducing the weight while maintaining a suitable vacuum state inside the vacuum heat insulating panel 1. It is preferably .3 mm.

(膨出部21,31)
第1金属板20及び第2金属板30の中央部には断熱材収容用に膨出部21,31が設けられている。膨出部21,31は、第1金属板20及び第2金属板30のそれぞれの内面側が断熱材10に対応する形状に凹んで外面側に膨出した形状を有する。
その膨出部21、31の内面側(凹状になっている側)に断熱材10を収容した状態で、第1金属板20と第2金属板30とが重ね合わされている。重ね合わされた第1金属板20及び第2金属板30の周縁部40(4辺)はシーム溶接されている。また、第2金属板30の中央には円形の開口32が設けられている。
(Bulging portions 21, 31)
The central portions of the first metal plate 20 and the second metal plate 30 are provided with bulging portions 21 and 31 for accommodating the heat insulating material. The bulging portions 21 and 31 have a shape in which the inner surface side of each of the first metal plate 20 and the second metal plate 30 is recessed in a shape corresponding to the heat insulating material 10 and bulges toward the outer surface side.
The first metal plate 20 and the second metal plate 30 are overlapped with each other in a state where the heat insulating material 10 is housed on the inner surface side (concave side) of the bulging portions 21 and 31. The peripheral portions 40 (four sides) of the overlapped first metal plate 20 and the second metal plate 30 are seam welded. Further, a circular opening 32 is provided in the center of the second metal plate 30.

(補強材50)
また、第2金属板30の上部には補強材50が配置されている。補強材50は、円環形状に形成され、中央に第2金属板30の開口32と略同径の円形の開口部51が設けられている。開口部51の中心と、開口32の中心とが一致するようにして、補強材50は第2金属板30上に配置され、補強材50と第2金属板30とは全周においてレーザ溶接されている。
(Reinforcing material 50)
Further, a reinforcing member 50 is arranged on the upper portion of the second metal plate 30. The reinforcing material 50 is formed in an annular shape, and a circular opening 51 having substantially the same diameter as the opening 32 of the second metal plate 30 is provided in the center. The reinforcing material 50 is arranged on the second metal plate 30 so that the center of the opening 51 and the center of the opening 32 coincide with each other, and the reinforcing material 50 and the second metal plate 30 are laser welded all around. ing.

(封止材60)
補強材50の上側には、円板状の封止材60が配置され、封止材60により開口部51が封止されている。実施形態では、封止材60は、補強材50と同一径である。補強材50と、封止材60とは、後述するようにレーザ溶接され、真空断熱パネル1の内部は真空状態に保たれている。
本実施形態では、補強材50及び封止材60として、磁性体であるSUS430が用いられている。ただし、これに限定されず、補強材50は磁性体に限らず他の金属部材であってもよく、また封止材60は他の磁性体であってもよい。
(Encapsulant 60)
A disk-shaped sealing material 60 is arranged on the upper side of the reinforcing material 50, and the opening 51 is sealed by the sealing material 60. In the embodiment, the sealing material 60 has the same diameter as the reinforcing material 50. The reinforcing material 50 and the sealing material 60 are laser welded as described later, and the inside of the vacuum heat insulating panel 1 is kept in a vacuum state.
In this embodiment, SUS430, which is a magnetic material, is used as the reinforcing material 50 and the sealing material 60. However, the present invention is not limited to this, and the reinforcing material 50 is not limited to the magnetic material and may be another metal member, and the sealing material 60 may be another magnetic material.

(真空断熱パネル製造装置2)
つぎに、上述の真空断熱パネル1を製造する真空断熱パネル製造装置2について説明する。図3は、真空断熱パネル製造装置2を示すブロック図である。真空断熱パネル製造装置2は、断熱材10を加熱する加熱装置4と、第1金属板20及び第2金属板30の外周のシーム溶接工程を行うシーム溶接装置5と、シーム溶接が行われて、まだ内部が真空にされていない状態のパネルの内部を真空にして封止する真空装置3と、を備える。真空装置3は、真空吸引部3Aとレーザ溶接部3Bとを備える。
(Vacuum insulation panel manufacturing equipment 2)
Next, the vacuum insulation panel manufacturing apparatus 2 for manufacturing the above-mentioned vacuum insulation panel 1 will be described. FIG. 3 is a block diagram showing a vacuum insulation panel manufacturing apparatus 2. The vacuum heat insulating panel manufacturing device 2 is seam welded with a heating device 4 for heating the heat insulating material 10 and a seam welding device 5 for performing a seam welding step on the outer periphery of the first metal plate 20 and the second metal plate 30. It is provided with a vacuum device 3 that evacuates and seals the inside of the panel in a state where the inside is not evacuated yet. The vacuum device 3 includes a vacuum suction portion 3A and a laser welding portion 3B.

(真空断熱パネル1の製造方法)
図4は真空断熱パネル1の製造方法を示すフローチャートである。
本実施形態の真空断熱パネル1の製造方法は、第1加熱工程と、補強材溶接工程と、第1シーム溶接工程と、断熱材配置工程と、第2シーム溶接工程と、第2加熱工程と、真空引き工程と、封止工程と、切断工程と、を備える。
(Manufacturing method of vacuum insulation panel 1)
FIG. 4 is a flowchart showing a manufacturing method of the vacuum heat insulating panel 1.
The method for manufacturing the vacuum heat insulating panel 1 of the present embodiment includes a first heating step, a reinforcing material welding step, a first seam welding step, a heat insulating material placement step, a second seam welding step, and a second heating step. A vacuuming step, a sealing step, and a cutting step are provided.

(第1加熱工程)
まず、断熱材10を、加熱装置4において、300℃以上、使用される断熱材10の熱間収縮温度以下、例えば400℃加熱の場合、0.5時間以上〜2時間以下、例えば400℃で1時間加熱し、断熱材10の結合水を除去する(ステップ11)。
(1st heating step)
First, in the heating device 4, the heat insulating material 10 is heated at 300 ° C. or higher and below the hot shrinkage temperature of the heat insulating material 10 used, for example, at 400 ° C. for 0.5 hours or more and 2 hours or less, for example 400 ° C. It is heated for 1 hour to remove the bound water of the heat insulating material 10 (step 11).

(熱間収縮温度以下の理由)
第1加熱工程は、断熱材10の結合水を除去することを主目的としている。結合水は、物質表面に付着している一般的な水分と違い、一旦除去すると再付着することは無く不可逆性のものと考えられる。このため、第1加熱工程において、断熱材10に付着した結合水を先ずは除去する。この加熱工程において一旦断熱材10に付着した水分も除去されるが、冷えると空気中の水蒸気を再吸着するため次項で述べる第2加熱工程で再除去する。結合水は断熱材10の主成分であるシリカの表面に存在する水酸基(−OH)と水素結合した水分子と考えられ、除去には高い熱エネルギーを必要とする。このため、300℃以上の高温で断熱材10を加熱することが好ましい。
しかし、断熱材10の熱間収縮温度以上になると、断熱材10が収縮して密度が増加し断熱効果が薄れるため、上限を熱間収縮温度以下とする。なお、熱間収縮温度は、グラスウールの場合、約400℃、ロックウールの場合、約600℃である。
(Reason below hot shrinkage temperature)
The main purpose of the first heating step is to remove the bound water of the heat insulating material 10. Unlike general water adhering to the surface of a substance, bound water does not reattach once it is removed and is considered to be irreversible. Therefore, in the first heating step, the bound water adhering to the heat insulating material 10 is first removed. Moisture once adhering to the heat insulating material 10 is also removed in this heating step, but when it cools down, it re-adsorbs water vapor in the air, so that it is re-removed in the second heating step described in the next section. Bonded water is considered to be water molecules hydrogen-bonded to hydroxyl groups (-OH) existing on the surface of silica, which is the main component of the heat insulating material 10, and requires high thermal energy for removal. Therefore, it is preferable to heat the heat insulating material 10 at a high temperature of 300 ° C. or higher.
However, when the temperature exceeds the hot shrinkage temperature of the heat insulating material 10, the heat insulating material 10 shrinks, the density increases, and the heat insulating effect diminishes. Therefore, the upper limit is set to the hot shrinkage temperature or lower. The hot shrinkage temperature is about 400 ° C. for glass wool and about 600 ° C. for rock wool.

(加熱時間の影響)
なお、結合水の除去は、加熱時間を長くするよりも加熱温度を上げる方が効果が高いと考えられる。この理由は、断熱材を300℃で2時間加熱した物と300℃で24時間加熱した物で高温加熱時の熱伝導率に大きな差が見られなかったためである。
300℃が結合水を完全除去できる温度であれば、長時間加熱することで結合水は次第に減少し、高温加熱時において熱伝導率に改善効果が見られるが、結果は同じであった。
つまり、両条件とも除去された結合水の量は同じだったと考えられる。一方、400℃で2時間加熱した物は300℃で2時間加熱した物より高温加熱時において熱伝導率が低くなっており性能改善効果が顕著であった。400℃で1時間加熱の物も性能は良好であった。
以上の結果より、加熱温度は300以上で熱間収縮温度以下が好ましい。また加熱時間は0.5〜2時間が好ましい。
300℃では1〜2時間加熱が必要で、但しこの条件では完全に結合水は除去できていないと考えられるが、性能改善効果が見られる。
400℃では、0.5〜1時間必要で、1時間で結合水は除去され、より高性能な真空断熱パネルを得ることができる。
(Effect of heating time)
It is considered that the removal of the bound water is more effective when the heating temperature is raised than when the heating time is lengthened. The reason for this is that there was no significant difference in thermal conductivity between the heat insulating material heated at 300 ° C. for 2 hours and the heat insulating material heated at 300 ° C. for 24 hours.
If 300 ° C. is a temperature at which the bound water can be completely removed, the bound water gradually decreases by heating for a long time, and an effect of improving the thermal conductivity is observed at the time of high temperature heating, but the result is the same.
In other words, it is considered that the amount of bound water removed was the same in both conditions. On the other hand, the product heated at 400 ° C. for 2 hours had a lower thermal conductivity at the time of high temperature heating than the product heated at 300 ° C. for 2 hours, and the performance improving effect was remarkable. The performance of the product heated at 400 ° C. for 1 hour was also good.
From the above results, it is preferable that the heating temperature is 300 or more and the hot shrinkage temperature or less. The heating time is preferably 0.5 to 2 hours.
Heating is required for 1 to 2 hours at 300 ° C. However, it is considered that the bound water cannot be completely removed under this condition, but a performance improving effect can be seen.
At 400 ° C., 0.5 to 1 hour is required, and the bound water is removed in 1 hour, and a higher performance vacuum insulation panel can be obtained.

以上のように300℃以上熱間収縮温度以下で、0.5時間以上〜2時間以下の時間で加熱することにより、断熱材10の結合水を除去できる。 As described above, the bound water of the heat insulating material 10 can be removed by heating at 300 ° C. or higher and the hot shrinkage temperature or lower for 0.5 hours or longer and 2 hours or shorter.

(補強材溶接工程)
第2金属板30の開口32と補強材50の開口部51が一致するように重ね、レーザ接合により第2金属板30と補強材50を円周溶接する(ステップ12)。
(Reinforcing material welding process)
The opening 32 of the second metal plate 30 and the opening 51 of the reinforcing material 50 are overlapped so as to coincide with each other, and the second metal plate 30 and the reinforcing material 50 are circumferentially welded by laser joining (step 12).

(第1シーム溶接工程)
膨出部21が形成された第1金属板20を膨出部21が下方を向くように配置する。そして、その第1金属板20の上に、補強材50が取付けられた第2金属板30を膨出部31が上側を向くように重ね合わせる。この際、第2金属板30に接合された補強材50は外面側になるよう配置する。
そして、第1金属板20と第2金属板30の外周の、対向する2辺をシーム溶接により溶接する(ステップ13)。
(1st seam welding process)
The first metal plate 20 on which the bulging portion 21 is formed is arranged so that the bulging portion 21 faces downward. Then, the second metal plate 30 to which the reinforcing member 50 is attached is superposed on the first metal plate 20 so that the bulging portion 31 faces upward. At this time, the reinforcing member 50 joined to the second metal plate 30 is arranged so as to be on the outer surface side.
Then, two opposing sides of the outer periphery of the first metal plate 20 and the second metal plate 30 are welded by seam welding (step 13).

(断熱材配置工程)
上述のように2辺がシーム溶接されたる第1金属板20と第2金属板30とのシーム溶接されていない側面を楕円状に開いて、膨出部21と膨出部31との間に、第1加熱工程において結合水が除去された断熱材10を挿入する(ステップ14)。
(Insulation material placement process)
As described above, the non-seam-welded side surfaces of the first metal plate 20 and the second metal plate 30 whose two sides are seam-welded are opened in an elliptical shape between the bulging portion 21 and the bulging portion 31. , The heat insulating material 10 from which the bound water has been removed in the first heating step is inserted (step 14).

(第2シーム溶接工程)
断熱材10の位置を微調整後、第1シーム溶接工程と同一条件で、第1シーム溶接工程で残された2辺の金属板周縁部を第1シーム溶接工程のシーム溶接部と交差するように接合する(ステップ15)。
この時点で、残された開口部は補強材50の開口部51のみとなる。
以上の工程により、内部が真空にされていない真空引き前パネルが製造される。
(2nd seam welding process)
After fine-tuning the position of the heat insulating material 10, under the same conditions as in the first seam welding process, the peripheral edges of the two metal plates left in the first seam welding process should intersect the seam welded portion in the first seam welding process. (Step 15).
At this point, the only remaining opening is the opening 51 of the reinforcing material 50.
Through the above steps, a pre-evacuation panel whose inside is not evacuated is manufactured.

(第2加熱工程)
真空引き前パネルを加熱装置4で再度加熱して、パネル内の包材と芯材に付着した水分を除去する(ステップ17)。
(Second heating step)
The pre-evacuation panel is reheated by the heating device 4 to remove the moisture adhering to the packaging material and the core material in the panel (step 17).

第2加熱工程での加熱温度の範囲は、第1加熱工程より低温で、100℃以上300℃以下が好ましく、例えば300℃である。加熱時間は1時間以上3時間以下、例えば2時間である。第2加熱工程における加熱温度を100℃以上とすることで、真空引き前パネルの付着水分を好適に除去できる。また、第2加熱工程における加熱温度を300℃以下とすることで、加熱により真空断熱パネル製造装置2に与える影響を低減できる。 The range of the heating temperature in the second heating step is lower than that in the first heating step, preferably 100 ° C. or higher and 300 ° C. or lower, for example, 300 ° C. The heating time is 1 hour or more and 3 hours or less, for example, 2 hours. By setting the heating temperature in the second heating step to 100 ° C. or higher, the moisture adhering to the pre-evacuation panel can be suitably removed. Further, by setting the heating temperature in the second heating step to 300 ° C. or lower, the influence of heating on the vacuum heat insulating panel manufacturing apparatus 2 can be reduced.

(真空引き工程)
加熱直後に真空装置3に真空引き前パネルをセットし、補強材50の開口部51より真空引きを行う(ステップ17)。
この真空引き工程は、第2加熱工程直後に実施する事が好ましい。加熱直後に実施することでパネル内部が高温に保たれており、パネル内部で残存する空気及び水蒸気分子が活発に熱運動を起こしており真空引きの際に容易に排気が行えるからである。更に、真空引きはパネルを加熱しながら行うことでより効率的に排気が行える。加熱温度は、パネル内部が80℃以上、200℃以下で行うことが好ましく、例えば、パネルの片面側を300℃で加熱するとよい。
次いで図示しない真空ポンプを作動させ。チャンバ内が目標真空度2Pa以下になるまで真空引きを行う。
(Vacuum process)
Immediately after heating, the pre-evacuation panel is set in the vacuum device 3 and evacuated from the opening 51 of the reinforcing material 50 (step 17).
This evacuation step is preferably carried out immediately after the second heating step. This is because the inside of the panel is kept at a high temperature by carrying out immediately after heating, and the air and water vapor molecules remaining inside the panel actively cause thermal motion, so that exhaust can be easily performed at the time of evacuation. Further, evacuation can be performed more efficiently by performing evacuation while heating the panel. The heating temperature is preferably 80 ° C. or higher and 200 ° C. or lower inside the panel. For example, one side of the panel may be heated at 300 ° C.
Then operate a vacuum pump (not shown). Evacuate until the inside of the chamber becomes the target vacuum degree of 2 Pa or less.

目標真空度到達後、封止材60により開口部51を塞ぐ。そして、封止材60を補強材50側に押圧する。この押圧により、降下した封止材60と、補強材50と第2金属板30とが重ねられた部分とは、隙間なく押さえられた状態になる。 After reaching the target vacuum degree, the opening 51 is closed with the sealing material 60. Then, the sealing material 60 is pressed toward the reinforcing material 50 side. By this pressing, the lowered sealing material 60 and the portion where the reinforcing material 50 and the second metal plate 30 are overlapped are pressed without a gap.

(封止工程)
そして、レーザ溶接機を用い、封止板と補強材50を接合して真空封止する(ステップ18)。
(Seal process)
Then, using a laser welder, the sealing plate and the reinforcing material 50 are joined and vacuum-sealed (step 18).

(切断工程)
真空断熱パネルの外周部における余剰部分を切断する(ステップ19)。
以上の工程により、真空断熱パネル1が完成する。
(Cutting process)
The excess portion on the outer peripheral portion of the vacuum insulation panel is cut (step 19).
The vacuum insulation panel 1 is completed by the above steps.

(性能評価)
上述の製造方法により製造した真空断熱パネル1と、比較のために製造した比較例1及び比較例2の真空断熱パネルとの性能評価を行った結果について説明する。
(Performance evaluation)
The results of performance evaluation of the vacuum heat insulating panel 1 manufactured by the above-mentioned manufacturing method and the vacuum heat insulating panels of Comparative Example 1 and Comparative Example 2 manufactured for comparison will be described.

比較例1の真空断熱パネルは、断熱材に第1加熱工程を行わなかった点と、第2加熱工程は200℃で2時間である点以外は実施形態の真空断熱パネル1と同様である。
比較例2の真空断熱パネルは、断熱材に第1加熱工程を行わなかった点以外は実施形態の真空断熱パネル1と同様であり、実施形態と同様に第2加熱工程を300℃で2時間行った。
The vacuum heat insulating panel of Comparative Example 1 is the same as the vacuum heat insulating panel 1 of the embodiment except that the heat insulating material is not subjected to the first heating step and the second heating step is at 200 ° C. for 2 hours.
The vacuum heat insulating panel of Comparative Example 2 is the same as the vacuum heat insulating panel 1 of the embodiment except that the heat insulating material is not subjected to the first heating step, and the second heating step is performed at 300 ° C. for 2 hours as in the embodiment. went.

断熱材10としては、寸法が350mm×350mm×10mmのグラスウールを用いた。
補強材50及び封止材60は、厚さ0.3mm、外径寸法70mmである。補強材50の開口部51は、第2金属板30に設けた開口32と同一となる直径20mmである。
As the heat insulating material 10, glass wool having dimensions of 350 mm × 350 mm × 10 mm was used.
The reinforcing material 50 and the sealing material 60 have a thickness of 0.3 mm and an outer diameter dimension of 70 mm. The opening 51 of the reinforcing material 50 has a diameter of 20 mm, which is the same as the opening 32 provided in the second metal plate 30.

第1加熱工程では断熱材10を400℃で2時間加熱した。 In the first heating step, the heat insulating material 10 was heated at 400 ° C. for 2 hours.

補強材溶接工程及び封止工程では、レーザ溶接機はIPG社製のファイバーレーザ溶接機を使用した。溶接速度:10m/min、出力:550W、レーザスポット径:φ0.2mm、レーザ発振方式は連続発振である。溶接条件は、出力のみ異なり補強材溶接工程では550W、封止工程では700Wの条件で溶接した。第1金属板20及び第2金属板30は、SUS304の鋼板を用い、寸法は400mm×400mm×0.1mmである。第2金属板30の中央には開口32があり、開口32の直径は20mmである。 In the reinforcing material welding process and the sealing process, a fiber laser welding machine manufactured by IPG was used as the laser welding machine. Welding speed: 10 m / min, output: 550 W, laser spot diameter: φ0.2 mm, laser oscillation method is continuous oscillation. Welding conditions differed only in output, and welding was performed under the conditions of 550 W in the reinforcing material welding process and 700 W in the sealing process. The first metal plate 20 and the second metal plate 30 are made of SUS304 steel plate and have dimensions of 400 mm × 400 mm × 0.1 mm. There is an opening 32 in the center of the second metal plate 30, and the diameter of the opening 32 is 20 mm.

第1シーム溶接工程及び第2シーム溶接工程では、シーム溶接機は直流インバーター式の溶接機を使用した。上側電極は、直径120mmで厚さ6mmの電極先端部がフラットの円盤状の物を用い、下側電極は、直径120mmで厚さ6mmの電極先端部の曲率が20Rの円盤状の物を用いた。溶接条件は、加圧力150N、溶接速度2m/min、溶接電流1.8kA、通電時間のON/OFF比は、3ms/2msとした。 In the first seam welding process and the second seam welding process, a DC inverter type welding machine was used as the seam welding machine. For the upper electrode, a disk-shaped object having a diameter of 120 mm and a thickness of 6 mm and a flat electrode tip is used, and for the lower electrode, a disk-shaped object having a diameter of 120 mm and a thickness of 6 mm and a curvature of 20R is used. There was. The welding conditions were a pressing force of 150 N, a welding speed of 2 m / min, a welding current of 1.8 kA, and an ON / OFF ratio of the energizing time of 3 ms / 2 ms.

第2加熱工程では、真空引き前パネルを300℃で2時間加熱した。 In the second heating step, the pre-evacuation panel was heated at 300 ° C. for 2 hours.

(常温での評価)
英弘精機社製の熱伝導率測定装置(型式:FOX200)を用い、真空断熱パネルの中央部の平均温度が25℃となる条件で熱伝導率を測定した。
その結果、比較例1,2、実施例のいずれの場合も熱伝導率は2.5〜3.0mW/m・Kの範囲であり、常温においては断熱性能に差はなかった。
(Evaluation at room temperature)
Using a thermal conductivity measuring device (model: FOX200) manufactured by Eiko Seiki Co., Ltd., the thermal conductivity was measured under the condition that the average temperature at the center of the vacuum insulation panel was 25 ° C.
As a result, in both Comparative Examples 1 and 2 and Examples, the thermal conductivity was in the range of 2.5 to 3.0 mW / m · K, and there was no difference in heat insulation performance at room temperature.

(高温での評価)
次に高温加熱時の断熱性能について評価した。
図5は評価に用いた加熱試験装置100を説明する図であり、(a)は上面図、(b)は側面図である。加熱試験装置100は、180mm角サイズのヒータ加熱部101を備えるホットプレートと、ヒータ加熱部101の外周に配置されて真空断熱パネルPを保持する断熱保持部材102と、真空断熱パネルPの加熱面(下面)と冷却面(上面)との中央部にそれぞれに取り付けられる2つの熱電対103と、真空断熱パネルPの冷却面に取り付ける1つの熱流計104と、を備える。熱電対103は、真空断熱パネルPの加熱面と冷却面の温度差を測定するために用い、熱流計104は真空断熱パネルPを通過した熱量を測定し、温度差、通過熱量、厚みより真空断熱パネルPの熱伝導率を算出した。
(Evaluation at high temperature)
Next, the heat insulation performance during high-temperature heating was evaluated.
5A and 5B are views for explaining the heating test apparatus 100 used for the evaluation, where FIG. 5A is a top view and FIG. 5B is a side view. The heating test device 100 includes a hot plate provided with a heater heating unit 101 having a size of 180 mm square, a heat insulating holding member 102 arranged on the outer periphery of the heater heating unit 101 to hold the vacuum heat insulating panel P, and a heating surface of the vacuum heat insulating panel P. It includes two thermocouples 103 attached to the central portions of the (lower surface) and the cooling surface (upper surface), and one heat flow meter 104 attached to the cooling surface of the vacuum insulation panel P. The thermocouple 103 is used to measure the temperature difference between the heating surface and the cooling surface of the vacuum insulation panel P, and the heat flow meter 104 measures the amount of heat that has passed through the vacuum insulation panel P, and is vacuumed from the temperature difference, the amount of heat passing through, and the thickness. The thermal conductivity of the heat insulating panel P was calculated.

評価方法は以下である。
断熱保持部材102上に比較例1、比較例2、実施例の真空断熱パネルPをそれぞれ載置し、ヒータ加熱部101により加熱面を加熱した。そして、熱流計104により真空断熱パネルPの冷却面での熱流束を測定した。外気温は25℃と一定とした。
比較例1、比較例2、実施例それぞれの真空断熱パネルPの加熱面を、ヒータ加熱部101により、100℃、200℃、300℃、400℃、500℃のそれぞれの加熱温度に加熱し、冷却面の表面が平衡状態となった温度を熱電対103により測定し、冷却面温度とした。
The evaluation method is as follows.
The vacuum heat insulating panels P of Comparative Example 1, Comparative Example 2, and Example were placed on the heat insulating holding member 102, and the heated surface was heated by the heater heating unit 101. Then, the heat flux on the cooling surface of the vacuum insulation panel P was measured by the heat flow meter 104. The outside air temperature was kept constant at 25 ° C.
The heating surface of the vacuum heat insulating panel P of Comparative Example 1, Comparative Example 2, and Example was heated by the heater heating unit 101 to the respective heating temperatures of 100 ° C., 200 ° C., 300 ° C., 400 ° C., and 500 ° C. The temperature at which the surface of the cooling surface was in equilibrium was measured with a thermocouple 103 and used as the cooling surface temperature.

評価結果を図6に示す。(a)は加熱温度ごとの冷却面温度を示したグラフで、(b)は加熱温度ごとの熱伝導率を示したグラフである。 The evaluation results are shown in FIG. (A) is a graph showing the cooling surface temperature for each heating temperature, and (b) is a graph showing the thermal conductivity for each heating temperature.

(冷却面温度の差)
図6(a)のグラフに示すように、加熱温度が100℃と200℃とにおいて、比較例1、比較例2、実施例の真空断熱パネルPの間で冷却面温度に差は見られなかった。
加熱温度が300℃において、比較例1に対して、比較例2及び実施例の真空断熱パネルPの冷却面温度は低かった。
加熱温度が400℃において、真空断熱パネルPの熱伝導率は、比較例1、比較例2、実施例の順で低くなった。
加熱温度が500℃において、比較例1及び比較例2と、実施例との真空断熱パネルPの間で冷却面温度の差がより顕著となり、比較例1に対する実施例は表面温度が35℃以上低くなった。
(Difference in cooling surface temperature)
As shown in the graph of FIG. 6A, when the heating temperature was 100 ° C. and 200 ° C., no difference was observed in the cooling surface temperature between the vacuum insulation panel P of Comparative Example 1, Comparative Example 2 and Example. It was.
When the heating temperature was 300 ° C., the cooling surface temperature of the vacuum heat insulating panel P of Comparative Example 2 and Example was lower than that of Comparative Example 1.
At a heating temperature of 400 ° C., the thermal conductivity of the vacuum insulation panel P decreased in the order of Comparative Example 1, Comparative Example 2, and Example.
When the heating temperature is 500 ° C., the difference in cooling surface temperature between Comparative Example 1 and Comparative Example 2 and the vacuum heat insulating panel P of Example becomes more remarkable, and the surface temperature of Example with respect to Comparative Example 1 is 35 ° C. or higher. It became low.

(熱伝導率の差)
図6(b)のグラフに示すように、加熱温度が100℃と200℃とにおいて、比較例1、比較例2、実施例の真空断熱パネルPの間で熱伝導率にあまり差は見られなかった。
加熱温度が300℃において、比較例1に対して、比較例2及び実施例の真空断熱パネルPの熱伝導率は低かった。
加熱温度が400℃において、真空断熱パネルPの熱伝導率は、実施例が一番低く次いで比較例2、比較例1の順で低くなった。
(Difference in thermal conductivity)
As shown in the graph of FIG. 6B, when the heating temperature is 100 ° C. and 200 ° C., there is not much difference in thermal conductivity between the vacuum insulation panels P of Comparative Example 1, Comparative Example 2 and Example. There wasn't.
At a heating temperature of 300 ° C., the thermal conductivity of the vacuum heat insulating panel P of Comparative Example 2 and Example was lower than that of Comparative Example 1.
At a heating temperature of 400 ° C., the thermal conductivity of the vacuum insulation panel P was the lowest in Examples, followed by Comparative Example 2 and Comparative Example 1.

加熱温度が500℃において、比較例1及び比較例2と、実施例の真空断熱パネルPの間での熱伝導率の差がより顕著となり、比較例1での熱伝導率は32mW/m・K程度、比較例2での熱伝導率28mW/m・K程度であったが、実施例では熱伝導率が10mW/m・Kと非常に小さい値となった。 At a heating temperature of 500 ° C., the difference in thermal conductivity between Comparative Example 1 and Comparative Example 2 and the vacuum heat insulating panel P of Example became more remarkable, and the thermal conductivity in Comparative Example 1 was 32 mW / m. It was about K, and the thermal conductivity in Comparative Example 2 was about 28 mW / m · K, but in the example, the thermal conductivity was 10 mW / m · K, which was a very small value.

真空断熱パネルPは、理想的には、内部が真空であるため高温状態において対流による熱伝導は発生せず、輻射熱の増加により熱伝導率が高くなると考えられている。しかし、真空断熱パネルPは、実際には高温状態において断熱材として使用しているグラスウールからガスが発生する。これにより真空断熱パネルPの内部の真空度が低下し、熱伝導率が上昇する。ゆえに輻射熱だけでなく対流が発生して滞留による熱伝導が発生する。 Ideally, since the inside of the vacuum heat insulating panel P is a vacuum, heat conduction due to convection does not occur in a high temperature state, and it is considered that the heat conductivity increases due to an increase in radiant heat. However, in the vacuum heat insulating panel P, gas is actually generated from the glass wool used as the heat insulating material in a high temperature state. As a result, the degree of vacuum inside the vacuum heat insulating panel P decreases, and the thermal conductivity increases. Therefore, not only radiant heat but also convection is generated and heat conduction due to retention occurs.

グラスウールはシリカを主成分とするが、このような断熱材は親水性が高く、表面に水分が付着しやすく、更に結合力が強固な不可逆性の結合水も同時に付着している。高温状態で発生するガスは、このような付着水分や結合水によるものと考えられる。 Glass wool contains silica as a main component, but such a heat insulating material has high hydrophilicity, moisture easily adheres to the surface, and irreversible bound water having a strong binding force also adheres at the same time. The gas generated in the high temperature state is considered to be due to such adhered water and bound water.

(付着水分除去)
比較例1は第2加熱工程において200℃で真空引き前パネルPを加熱している。比較例2及び実施例では第2加熱工程において300℃で真空引き前パネルPを加熱している。
上述の評価において、比較例1の真空断熱パネルPと、比較例2及び実施例の真空断熱パネルPとは、加熱温度300℃以上で冷却面温度と熱伝導率とに差が表れている。
このことより、比較例2及び実施例のように第2加熱工程を300℃で行うことで、クラスウール表面に付着した水分が除去されたと考えられる。
(Removal of adhering water)
In Comparative Example 1, the pre-evacuation panel P is heated at 200 ° C. in the second heating step. In Comparative Example 2 and Example, the pre-evacuation panel P is heated at 300 ° C. in the second heating step.
In the above evaluation, the vacuum heat insulating panel P of Comparative Example 1 and the vacuum heat insulating panel P of Comparative Example 2 and Examples show a difference in the cooling surface temperature and the thermal conductivity at a heating temperature of 300 ° C. or higher.
From this, it is considered that the water adhering to the surface of the class wool was removed by performing the second heating step at 300 ° C. as in Comparative Example 2 and Example.

(結合水除去)
比較例1及び比較例2では400℃の第1加熱を行っていないが、実施例では400℃の第1加熱を行っている。
上述の評価において、比較例1の真空断熱パネルPと、比較例2及び実施例の真空断熱パネルPと、実施例の真空断熱パネルP(1)は、加熱温度が400℃において、真空断熱パネルPの冷却面温度が、実施例、比較例2、比較例1の順で低くなり、熱伝導率も、実施例、比較例2、比較例1の順で低くなっている。
このことにより、除去には高い加熱温度(熱エネルギー)での熱処理が必要な結合水が、実施形態のように、400℃の第1加熱工程を行うことで、除去されたと考えられる。
(Removal of bound water)
In Comparative Example 1 and Comparative Example 2, the first heating at 400 ° C. was not performed, but in the examples, the first heating at 400 ° C. was performed.
In the above evaluation, the vacuum insulation panel P of Comparative Example 1, the vacuum insulation panel P of Comparative Examples 2 and Examples, and the vacuum insulation panel P (1) of Examples are vacuum insulation panels at a heating temperature of 400 ° C. The cooling surface temperature of P decreases in the order of Example, Comparative Example 2, and Comparative Example 1, and the thermal conductivity also decreases in the order of Example, Comparative Example 2, and Comparative Example 1.
As a result, it is considered that the bound water, which requires heat treatment at a high heating temperature (heat energy) for removal, was removed by performing the first heating step at 400 ° C. as in the embodiment.

(真空引き時の水分除去)
更に、実施形態によると真空引き時にパネル内部の温度は80℃以上を維持しており、この状態で真空引きした事により、水分の再吸着を防止できたと考えられる。
(Moisture removal during evacuation)
Further, according to the embodiment, the temperature inside the panel is maintained at 80 ° C. or higher at the time of evacuation, and it is considered that the re-adsorption of water can be prevented by evacuation in this state.

以上、本実施形態によると、400℃で予め加熱した断熱材10を、真空断熱パネル1に組み込むことで、高温加熱時にパネル内部の断熱材10から発生するガスを防止し、対流による熱伝導を抑制可能となり、その結果、熱伝導率が低い高性能な真空断熱パネル1を得ることが可能となる。
実施形態で得られた真空断熱パネル1は加熱温度が500℃においても熱伝導率が10mW/m・Kと小さい値であり、高温でも高性能な真空断熱パネル1を得ることができた。
As described above, according to the present embodiment, by incorporating the heat insulating material 10 preheated at 400 ° C. into the vacuum heat insulating panel 1, gas generated from the heat insulating material 10 inside the panel during high temperature heating is prevented, and heat conduction due to convection is achieved. It becomes possible to suppress it, and as a result, it becomes possible to obtain a high-performance vacuum heat insulating panel 1 having a low thermal conductivity.
The vacuum insulation panel 1 obtained in the embodiment has a small thermal conductivity of 10 mW / m · K even at a heating temperature of 500 ° C., and a high-performance vacuum insulation panel 1 can be obtained even at a high temperature.

1 真空断熱パネル
2 真空断熱パネル製造装置
3 真空装置
3A 真空吸引部
3B レーザ溶接部
4 加熱装置
5 シーム溶接装置
10 断熱材
20 第1金属板
30 第2金属板
31 膨出部
32 開口
40 周縁部
50 補強材
51 開口部
60 封止材
100 加熱試験装置、
101 ヒータ加熱部
102 断熱材
103 熱電対
104 熱流計
1 Vacuum insulation panel 2 Vacuum insulation panel manufacturing equipment 3 Vacuum equipment 3A Vacuum suction part 3B Laser welding part 4 Heating device 5 Seam welding equipment 10 Insulation material 20 1st metal plate 30 2nd metal plate 31 Swelling part 32 Opening 40 Peripheral part 50 Reinforcing material 51 Opening 60 Encapsulant 100 Heating test equipment,
101 Heater heating unit 102 Insulation material 103 Thermocouple 104 Heat flow meter

Claims (5)

無機系の断熱材を加熱して、前記断熱材の結合水を除去する第1加熱工程と、
一方が排気用の開口を備えた第1金属板と第2金属板との間に前記断熱材を配置する断熱材配置工程と、
前記断熱材が間に配置された状態で、前記第1金属板と前記第2金属板の外周側を溶接して真空引き前パネルを製造する溶接工程と、
前記真空引き前パネルを加熱して前記真空引き前パネルの付着水分を除去する第2加熱工程と、
前記真空引き前パネルの内部空間を、前記開口を通じて真空引きする真空引き工程と、
前記開口を封止材により塞ぐ封止工程と、
を含む真空断熱パネルの製造方法。
The first heating step of heating the inorganic heat insulating material to remove the bound water of the heat insulating material, and
A heat insulating material arranging step of arranging the heat insulating material between the first metal plate and the second metal plate, one of which has an opening for exhaust,
A welding step of manufacturing a pre-evacuation panel by welding the outer peripheral side of the first metal plate and the second metal plate with the heat insulating material arranged between them.
A second heating step of heating the pre-evacuation panel to remove adhering moisture to the pre-evacuation panel,
A vacuuming step of vacuuming the internal space of the pre-evacuating panel through the opening,
A sealing step of closing the opening with a sealing material and
Manufacturing method of vacuum insulation panel including.
前記第1加熱工程は、300℃以上、熱間収縮温度以下で行う、
請求項1に記載の真空断熱パネルの製造方法。
The first heating step is performed at 300 ° C. or higher and a hot shrinkage temperature or lower.
The method for manufacturing a vacuum insulation panel according to claim 1.
前記第2加熱工程は、100〜300℃で行う、
請求項1または2に記載の真空断熱パネルの製造方法。
The second heating step is performed at 100 to 300 ° C.
The method for manufacturing a vacuum insulation panel according to claim 1 or 2.
前記真空引き工程を、前記内部空間の温度を80℃以上に保持した状態で行う、請求項1から3のいずれか1項に記載の真空断熱パネルの製造方法。 The method for manufacturing a vacuum heat insulating panel according to any one of claims 1 to 3, wherein the vacuuming step is performed in a state where the temperature of the internal space is maintained at 80 ° C. or higher. 第1金属板と第2金属板との間に真空状態で無機系の断熱材が配置され、
400℃での熱伝導率が10mW/m・K以下である、
真空断熱パネル。
An inorganic heat insulating material is placed between the first metal plate and the second metal plate in a vacuum state.
The thermal conductivity at 400 ° C. is 10 mW / m · K or less.
Vacuum insulation panel.
JP2019023269A 2019-02-13 2019-02-13 Vacuum insulation panel manufacturing method and vacuum insulation panel Active JP7269468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019023269A JP7269468B2 (en) 2019-02-13 2019-02-13 Vacuum insulation panel manufacturing method and vacuum insulation panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019023269A JP7269468B2 (en) 2019-02-13 2019-02-13 Vacuum insulation panel manufacturing method and vacuum insulation panel

Publications (2)

Publication Number Publication Date
JP2020133655A true JP2020133655A (en) 2020-08-31
JP7269468B2 JP7269468B2 (en) 2023-05-09

Family

ID=72262653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019023269A Active JP7269468B2 (en) 2019-02-13 2019-02-13 Vacuum insulation panel manufacturing method and vacuum insulation panel

Country Status (1)

Country Link
JP (1) JP7269468B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013208990B4 (en) 2012-05-17 2024-04-11 Denso Corporation Gas sensor

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287350A (en) * 1985-10-15 1987-04-21 松下電器産業株式会社 Manufacture of vacuum structure
JPH094785A (en) * 1995-06-21 1997-01-07 Nippon Muki Co Ltd Vacuum heat insulation material
US5826780A (en) * 1994-07-06 1998-10-27 Mve, Inc Vacuum insulation panel and method for manufacturing
JP2002338335A (en) * 2001-02-28 2002-11-27 Ego Elektro Geraete Blanc & Fischer Heat insulating molding
JP2003532845A (en) * 2000-05-12 2003-11-05 コリア インスティテュート オブ サイエンス アンド テクノロジー Vacuum insulation material using glass white wool and method for manufacturing the same
US20040180176A1 (en) * 2003-03-14 2004-09-16 Rusek Stanley J. Vaccum insulation article
JP2008249003A (en) * 2007-03-30 2008-10-16 Hitachi Appliances Inc Vacuum insulation panel and appliance provided with it
JP2011033079A (en) * 2009-07-30 2011-02-17 Zojirushi Corp Heat insulating panel and method for manufacturing the same
US20120009376A1 (en) * 2010-07-12 2012-01-12 Rusek Jr Stanley J Vacuum Insulation Panel, Insulated Masonry Structure Comprising Same, And Method Of Construction
KR101330743B1 (en) * 2012-02-17 2013-11-18 금호석유화학 주식회사 Core material for vacuum insulator using glass fiber fabric and vacuum insulator using the same
JP2017053400A (en) * 2015-09-08 2017-03-16 日新製鋼株式会社 Manufacturing method and manufacturing device of vacuum heat insulation panel, and vacuum heat insulation panel
JP2017150548A (en) * 2016-02-23 2017-08-31 日新製鋼株式会社 Vacuum heat insulation panel and manufacturing method thereof
CN108382021A (en) * 2018-05-02 2018-08-10 苏州亿禾永利新能源有限公司 A kind of refractory metal foil vacuum heat insulation materials and preparation method thereof
JP2018141517A (en) * 2017-02-28 2018-09-13 日立アプライアンス株式会社 Vacuum heat insulation material, equipment including the same and manufacturing method of vacuum heat insulation material
JP2019039554A (en) * 2017-08-28 2019-03-14 ニチアス株式会社 Heat insulation material
JP2020106172A (en) * 2018-12-26 2020-07-09 Jfeスチール株式会社 Heat insulation method for facility

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287350A (en) * 1985-10-15 1987-04-21 松下電器産業株式会社 Manufacture of vacuum structure
US5826780A (en) * 1994-07-06 1998-10-27 Mve, Inc Vacuum insulation panel and method for manufacturing
JPH094785A (en) * 1995-06-21 1997-01-07 Nippon Muki Co Ltd Vacuum heat insulation material
JP2003532845A (en) * 2000-05-12 2003-11-05 コリア インスティテュート オブ サイエンス アンド テクノロジー Vacuum insulation material using glass white wool and method for manufacturing the same
JP2002338335A (en) * 2001-02-28 2002-11-27 Ego Elektro Geraete Blanc & Fischer Heat insulating molding
US20040180176A1 (en) * 2003-03-14 2004-09-16 Rusek Stanley J. Vaccum insulation article
JP2008249003A (en) * 2007-03-30 2008-10-16 Hitachi Appliances Inc Vacuum insulation panel and appliance provided with it
JP2011033079A (en) * 2009-07-30 2011-02-17 Zojirushi Corp Heat insulating panel and method for manufacturing the same
US20120009376A1 (en) * 2010-07-12 2012-01-12 Rusek Jr Stanley J Vacuum Insulation Panel, Insulated Masonry Structure Comprising Same, And Method Of Construction
KR101330743B1 (en) * 2012-02-17 2013-11-18 금호석유화학 주식회사 Core material for vacuum insulator using glass fiber fabric and vacuum insulator using the same
JP2017053400A (en) * 2015-09-08 2017-03-16 日新製鋼株式会社 Manufacturing method and manufacturing device of vacuum heat insulation panel, and vacuum heat insulation panel
JP2017150548A (en) * 2016-02-23 2017-08-31 日新製鋼株式会社 Vacuum heat insulation panel and manufacturing method thereof
JP2018141517A (en) * 2017-02-28 2018-09-13 日立アプライアンス株式会社 Vacuum heat insulation material, equipment including the same and manufacturing method of vacuum heat insulation material
JP2019039554A (en) * 2017-08-28 2019-03-14 ニチアス株式会社 Heat insulation material
CN108382021A (en) * 2018-05-02 2018-08-10 苏州亿禾永利新能源有限公司 A kind of refractory metal foil vacuum heat insulation materials and preparation method thereof
JP2020106172A (en) * 2018-12-26 2020-07-09 Jfeスチール株式会社 Heat insulation method for facility

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013208990B4 (en) 2012-05-17 2024-04-11 Denso Corporation Gas sensor

Also Published As

Publication number Publication date
JP7269468B2 (en) 2023-05-09

Similar Documents

Publication Publication Date Title
US8753471B2 (en) Vacuum heat insulating material, method of producing vacuum heat insulating material, and heat insulating box body using vacuum heat insulating material
JP5373202B2 (en) Method of sealing tempered vacuum glass and tempered vacuum glass
JP2008249003A (en) Vacuum insulation panel and appliance provided with it
CA2152833A1 (en) Vacuum insulation panel and method for manufacturing
JP5741397B2 (en) Manufacturing method of cooking device
JP5377763B2 (en) Beam welding method, vacuum packaging method, and vacuum heat insulating material produced by the vacuum packaging method
US2700633A (en) Insulating structure and method of forming same
JP6285749B2 (en) Manufacturing method of vacuum insulation panel
JP2020133655A (en) Method for manufacturing vacuum heat insulating panel, and vacuum heat insulating panel
JP5301816B2 (en) Heat resistant vacuum insulation
JP2003065490A5 (en)
JP2003065490A (en) Method of manufacturing heat insulator
JP2006017165A (en) Manufacturing method for vacuum heat insulating material and heat insulator
CN108382021A (en) A kind of refractory metal foil vacuum heat insulation materials and preparation method thereof
JP2018035922A (en) Vacuum heat insulation panel for structure
WO2018043712A1 (en) Vacuum insulation panel
US7476426B2 (en) Evacuated glass panel having degassing device
JP2013170652A (en) Method of manufacturing vacuum heat insulating panel
JP6143593B2 (en) Vacuum insulation panel
US11060342B2 (en) Vacuum insulated glazing unit
JP2018035924A (en) Vacuum heat insulation panel for electrical equipment
JP6793571B2 (en) Vacuum heat insulating material, equipment equipped with it, and manufacturing method of vacuum heat insulating material
US20200217125A1 (en) Internal tube for vacuum insulated glass (vig) unit evacuation and hermetic sealing, vig unit including internal tube, and associated methods
JP6301986B2 (en) Vacuum insulation panel and method for manufacturing the same
JP2014009723A (en) Heat insulating material and heating device including the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230404

R151 Written notification of patent or utility model registration

Ref document number: 7269468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151