JP2020118322A - Deicing completion detection method of ice making machine - Google Patents

Deicing completion detection method of ice making machine Download PDF

Info

Publication number
JP2020118322A
JP2020118322A JP2019008025A JP2019008025A JP2020118322A JP 2020118322 A JP2020118322 A JP 2020118322A JP 2019008025 A JP2019008025 A JP 2019008025A JP 2019008025 A JP2019008025 A JP 2019008025A JP 2020118322 A JP2020118322 A JP 2020118322A
Authority
JP
Japan
Prior art keywords
ice
ice making
deicing
plate
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019008025A
Other languages
Japanese (ja)
Inventor
森本 了司
Norikazu Morimoto
了司 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Corp
Original Assignee
Hoshizaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Corp filed Critical Hoshizaki Corp
Priority to JP2019008025A priority Critical patent/JP2020118322A/en
Publication of JP2020118322A publication Critical patent/JP2020118322A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

To solve a problem in detecting completion of deicing in an ice making machine for making a plurality of ice plates or a number of ice blocks, that as the detection is performed by detecting a temperature of a hot gas for deicing, passing through an evaporator, that is, completion of deicing is determined by detecting sudden temperature rise of the hot gas in the evaporator as heat load does not exist when the ice is discharged from the ice making portion, however, a deicing time must be set longer for safety as time lag exists in the temperature detection, which requires a longer time for detecting deicing, and causes degradation of ice making efficiency.SOLUTION: Physical symbols in falling plate ice from a plurality of ice making portions are detected by a sensor and counted, for example, in an ice making machine of plate ice, and completion of deicing is determined when the counted number is agreed with the prescribed number of sheets of ice plates.SELECTED DRAWING: Figure 2

Description

この発明は、複数の板氷や多数の氷塊を製造する製氷機の除氷完了検知に要する時間を短縮して、製氷効率を向上させ得るようにした製氷機の除氷完了検知方法に関するものである。 The present invention relates to a deicing completion detection method for an ice maker that shortens the time required to detect the deicing completion of an ice maker that manufactures a plurality of plate ices and a large number of ice blocks, and improves the ice making efficiency. is there.

大量の氷を自動的に製造する製氷機が、レストランや喫茶店その他漁船や漁港等の各種施設で広く使用されている。この製氷機には、求められる氷の形状に対応して、例えばクローズドセル式、流下式、オーガ式等の各種機構が存在する。本発明は、複数の板氷を製造する製氷機や、多数の角氷その他半月氷等の氷塊を製造する製氷機の除氷完了検知方法に関するものであるので、当該方法が適用される製氷機の概略構造を先に説明する。 Ice machines that automatically produce large amounts of ice are widely used in restaurants, coffee shops, and various facilities such as fishing boats and fishing ports. In this ice making machine, there are various mechanisms such as a closed cell type, a downflow type, and an auger type corresponding to the required shape of ice. The present invention relates to an ice maker for producing a plurality of plate ices, and a method for detecting deicing completion of an ice maker for producing ice blocks such as a large number of ice cubes and other half-moon ice. The schematic structure of will be described first.

図4は板氷を製造する製氷機10の概略構成を示すもので、板氷17を製造する複数の製氷ユニット14と、この製氷ユニット14を冷却する冷凍回路30とを備え、前記製氷ユニット14で形成された板氷17は、斜め下方に配置された貯氷庫12へ落下して貯留される。前記製氷ユニット14は、縦方向に対向配置した一対の製氷板16,16と、両製氷板16,16の下方に設けられて製氷水を貯留すると共に、両製氷板16,16から流下する未氷結の製氷水(未氷結水)や除氷水を回収する製氷水タンク18とを備えている。前記製氷板16,16の間には、前記冷凍回路30から導出した蒸発器EPが密着配置されている。更に製氷ユニット14の上方には、各製氷板16の表面(製氷面)へ製氷水タンク18からの製氷水を供給する散水部20と、該製氷板16の製氷面と反対側の面(裏面)に除氷水を供給する除氷水供給手段24とが配設されている。なお、図示の製氷機10では、一対の製氷板16,16からなる製氷ユニット14が所要間隔で6つ縦配置されている。 FIG. 4 shows a schematic configuration of an ice making machine 10 for producing plate ice. The ice making unit 14 includes a plurality of ice making units 14 for producing plate ice 17, and a refrigeration circuit 30 for cooling the ice making units 14. The plate ice 17 formed in 1 is dropped and stored in the ice storage 12 arranged diagonally below. The ice-making unit 14 is provided below the pair of ice-making plates 16 and 16 arranged to face each other in the vertical direction and stores ice-making water at the bottom of the ice-making plates 16 and 16 while flowing down from the ice-making plates 16 and 16. It is provided with an ice making water tank 18 for collecting frozen ice making water (unfrozen water) and deicing water. An evaporator EP drawn from the refrigeration circuit 30 is closely arranged between the ice making plates 16, 16. Further, above the ice making unit 14, a water sprinkling section 20 for supplying ice making water from the ice making water tank 18 to the surface (ice making surface) of each ice making plate 16, and a surface (back surface) opposite to the ice making surface of the ice making plate 16 ) Is provided with deicing water supply means 24. In the illustrated ice making machine 10, six ice making units 14 each consisting of a pair of ice making plates 16, 16 are vertically arranged at a required interval.

前記製氷水タンク18の上部開口は、各製氷ユニット14を構成する製氷板16,16の直下に位置している。そして両製氷板16,16から流下する未氷結水および除氷水は前記製氷水タンク18に回収貯留されて、製氷運転時に製氷水として使用される。また、製氷水タンク18の上方には、除氷運転に際して両製氷板16,16から落下した氷を貯氷庫12に偏向させて案内する氷案内板28が斜めに配置されている。この氷案内板28の各傾斜面には多数のスリット28aが開設され、該氷案内板28に落下した未氷結水と除氷水とは該スリット28aを介して製氷水タンク18に回収される。また、前記製氷板16,16から落下した板氷17は氷案内板28に衝突して滑り落ち、前記貯氷庫12に向けて放出される。 The upper opening of the ice making water tank 18 is located directly below the ice making plates 16 and 16 which constitute each ice making unit 14. The unfrozen water and the deiced water flowing down from the ice making plates 16 and 16 are collected and stored in the ice making water tank 18 and used as ice making water during the ice making operation. Further, above the ice making water tank 18, an ice guide plate 28 for obliquely guiding the ice dropped from both the ice making plates 16 and 16 to the ice storage 12 during the deicing operation is obliquely arranged. A large number of slits 28a are formed on each inclined surface of the ice guide plate 28, and the uniced water and deicing water that have dropped onto the ice guide plate 28 are collected in the ice making water tank 18 through the slits 28a. Further, the plate ice 17 dropped from the ice making plates 16, 16 collides with an ice guide plate 28, slides down, and is discharged toward the ice storage 12.

前記散水部20は、夫々の製氷ユニット14における製氷板16,16の上方に位置し、製氷面に製氷水を散布し得る製氷水散水器22と、水供給管21を介して該製氷水散水器22に製氷水タンク18から製氷水を圧送する製氷水ポンプPMとから構成される。この散水部20は、製氷運転時に製氷水ポンプPMが駆動されると、製氷水タンク18からの製氷水を製氷水散水器22を介して各製氷板16(の製氷面)に散布供給する。また除氷運転時には、製氷水ポンプPMを停止して製氷ユニット14への製氷水の供給を停止する。前記除氷水供給手段24は、製氷水散水器22の下方に位置すると共に両製氷板16,16の間の上部に位置し、各製氷板16の裏面に除氷水を散布する除氷水散水器26と、外部水源に接続する給水管25に介挿した給水弁WVとから構成される。この除氷水供給手段24は、除氷運転時に給水弁WVを開放することで、除氷水散水器26から除氷水を各製氷板16の裏面に供給し、また製氷運転時は給水弁WVが閉成して製氷ユニット14への除氷水の供給を停止する。 The water sprinkling unit 20 is located above the ice making plates 16, 16 in each ice making unit 14, and is provided with an ice making water sprinkler 22 that can sprinkle ice making water on an ice making surface, and the ice making water sprinkler via a water supply pipe 21. An ice making water pump PM for sending ice making water from the ice making water tank 18 to the container 22. When the ice making water pump PM is driven during the ice making operation, the water sprinkling section 20 sprays and supplies the ice making water from the ice making water tank 18 to each ice making plate 16 (the ice making surface thereof) via the ice making water sprinkler 22. During the deicing operation, the ice making water pump PM is stopped to stop the supply of ice making water to the ice making unit 14. The deicing water supply means 24 is located below the ice making water sprinkler 22 and at an upper portion between the ice making plates 16 and 16, and the deicing water sprinkler 26 sprays the deicing water on the back surface of each ice making plate 16. And a water supply valve WV inserted in a water supply pipe 25 connected to an external water source. The deicing water supply means 24 supplies deicing water from the deicing water sprinkler 26 to the back surface of each ice making plate 16 by opening the water feeding valve WV during deicing operation, and also closes the water feeding valve WV during ice making operation. After that, the supply of deicing water to the ice making unit 14 is stopped.

図4に示す前記冷凍回路30は、圧縮機CM、凝縮器CDおよび減圧手段である膨張弁EVと、両製氷板16,16の間に密着配置した前記蒸発器EPとからなり、前記圧縮機CM、凝縮器CD、膨張弁EVおよび蒸発器EPの順に冷媒配管(冷媒循環管路)31で連通接続して冷媒を配管中に循環させるようになっている。更に冷凍回路30は、圧縮機CMから蒸発器EPにホットガス(冷媒)を導くバイパス管32と、このバイパス管32に介挿されたホットガス弁HVとからなるバイパス回路を備えている。そして冷凍回路30は、製氷運転に入ると、ホットガス弁HVを閉じると共にファンFMを駆動して、凝縮器CDを冷却しながら圧縮機CMを駆動する。また、膨張手段EVを開放して冷媒を断熱膨張させることで、蒸発器EPにより各製氷板16を氷点下に冷却し、上方から供給される製氷水を製氷面に凍結させて板氷17を形成する。なお冷凍回路30は、除氷運転に入ると圧縮機CMを駆動したままファンFMを停止し、ホットガス弁HVを開放して蒸発器EPにホットガスを供給する。このホットガスは、製氷板16を加熱して除氷を促進する。 The refrigeration circuit 30 shown in FIG. 4 includes a compressor CM, a condenser CD, an expansion valve EV which is a pressure reducing means, and the evaporator EP which is closely arranged between both ice making plates 16 and 16. The CM, the condenser CD, the expansion valve EV, and the evaporator EP are connected in this order by a refrigerant pipe (refrigerant circulation pipe line) 31 to circulate the refrigerant in the pipe. Furthermore, the refrigeration circuit 30 includes a bypass circuit including a bypass pipe 32 that guides hot gas (refrigerant) from the compressor CM to the evaporator EP, and a hot gas valve HV inserted in the bypass pipe 32. Then, when the refrigeration circuit 30 enters the ice making operation, the hot gas valve HV is closed and the fan FM is driven to drive the compressor CM while cooling the condenser CD. Further, the expansion means EV is opened to adiabatically expand the refrigerant to cool each ice making plate 16 below the freezing point by the evaporator EP, and the ice making water supplied from above is frozen on the ice making surface to form the plate ice 17. To do. When the defrosting operation is started, the refrigeration circuit 30 stops the fan FM while driving the compressor CM, opens the hot gas valve HV, and supplies hot gas to the evaporator EP. This hot gas heats the ice making plate 16 to promote deicing.

図4に示す前記蒸発器EPの出口側には温度センサ34が配設されて、該蒸発器EPを流通する冷媒(ホットガス)の温度を検知している。そして製氷運転から除氷運転に切り換わると、前述したように冷凍回路30のホットガス弁HVが開放し、圧縮機CMからのホットガスが前記バイパス管32を介して前記蒸発器EPへ供給される。これにより前記製氷板16は加温され、該製氷板16に成長している板氷17との氷結部位を融かすので、該板氷17は自重で落下して前記氷案内板28に衝突し、斜め下方に位置する前記貯氷庫12に放出貯留される。 A temperature sensor 34 is provided on the outlet side of the evaporator EP shown in FIG. 4 to detect the temperature of the refrigerant (hot gas) flowing through the evaporator EP. When the ice making operation is switched to the deicing operation, the hot gas valve HV of the refrigeration circuit 30 is opened as described above, and the hot gas from the compressor CM is supplied to the evaporator EP via the bypass pipe 32. It As a result, the ice making plate 16 is heated and melts the freezing portion of the ice making plate 16 growing on the ice making plate 16, so that the ice making plate 17 falls by its own weight and collides with the ice guiding plate 28. , Is stored in the ice storage 12 located obliquely below.

前記製氷板16から板氷17が離脱すると、該製氷板16には熱負荷がなくなるので、前記蒸発器EPで板氷17の熱負荷により抑えられていたホットガスの温度は急激に上昇する。そこで、蒸発器EPの冷媒出口側に配設した前記温度センサ34が前記温度上昇を検出し、その検出値が予め定めた閾値を超えると、製氷板16からの板氷17の離脱、すなわち除氷が完了したものと判断して除氷運転から製氷運転に切り換える。 When the plate ice 17 is detached from the ice making plate 16, the heat load on the ice making plate 16 disappears, so that the temperature of the hot gas suppressed by the heat load of the plate ice 17 on the evaporator EP rapidly rises. Therefore, when the temperature sensor 34 arranged on the refrigerant outlet side of the evaporator EP detects the temperature rise and the detected value exceeds a predetermined threshold value, the plate ice 17 is separated from the ice making plate 16, that is, removed. It is judged that the ice is completed and the deicing operation is switched to the ice making operation.

前述した製氷機10の製氷運転に際しては、製氷水タンク18の製氷水を製氷水ポンプPMにより製氷水散水器22へ圧送し、該製氷水散水器22から各製氷ユニット14における製氷板16,16の製氷面に流下供給させる。供給された製氷水の一部は製氷板16,16の製氷面に凍結して板氷17に成長し、氷結しなかった製氷水(未氷結水)は製氷板16,16を流れて落下し、前記氷案内板28のスリット28aから製氷水タンク18に回収されて再び循環に供される。なお、除氷運転については、先に温度センサ34の検知動作に関連して説明した通りである。 In the ice making operation of the ice making machine 10 described above, the ice making water in the ice making water tank 18 is pressure-fed to the ice making water sprinkler 22 by the ice making water pump PM, and the ice making plates 16, 16 in each ice making unit 14 from the ice making water sprinkler 22. Supply it to the ice-making surface of. Part of the supplied ice making water freezes on the ice making surfaces of the ice making plates 16 and 16 and grows into plate ice 17, and the ice making water that has not frozen (unfreezing water) flows through the ice making plates 16 and 16 and falls. The water is collected from the slit 28a of the ice guide plate 28 to the ice making water tank 18 and is recycled. The deicing operation is as described above in relation to the detection operation of the temperature sensor 34.

図4に関して説明したのは板氷を製造する製氷機であったが、本発明に係る方法は図5に示す断面が半月状をなす氷(半月氷という)を製造する製氷機にも応用される。すなわち図5は、半月氷を製造する製氷機の概略を示すもので、縦に配置された製氷板(製氷部)38の裏面に、冷凍装置40の一部を構成する蒸発器EPが密着配置され、製氷運転時に該蒸発器EPに冷媒を循環させて製氷板38を強制冷却する。この製氷板38の直下には、除氷運転により該製氷板38から離氷し落下する半月氷43を、斜め下方に位置する貯氷庫44へ案内する案内板46が傾斜配置されている。この案内板46には多数の通孔が穿設され、製氷運転に際し前記製氷板38の前面(製氷面)に供給された製氷水、および除氷運転に際し該製氷板38の裏面に供給された除氷水は、該案内板46の通孔を介して下方の製氷水タンク48に回収される。 Although described with reference to FIG. 4 was an ice maker for producing plate ice, the method according to the present invention is also applied to an ice maker for producing ice having a half-moon-shaped cross section (referred to as half-moon ice) shown in FIG. It That is, FIG. 5 shows an outline of an ice making machine for producing half-moon ice, and an evaporator EP constituting a part of the refrigerating device 40 is closely arranged on the back surface of the vertically arranged ice making plate (ice making part) 38. The refrigerant is circulated in the evaporator EP during the ice making operation to forcibly cool the ice making plate 38. Immediately below the ice making plate 38, a guide plate 46 is arranged so as to guide the meniscus ice 43, which is separated from the ice making plate 38 by the deicing operation and falls, to the ice storage 44 located obliquely below. The guide plate 46 is provided with a large number of through holes, and the ice making water supplied to the front surface (ice making surface) of the ice making plate 38 in the ice making operation and the back surface of the ice making plate 38 in the deicing operation. The deicing water is collected in the ice making water tank 48 below through the through hole of the guide plate 46.

前記製氷水タンク48から製氷水ポンプPMを介して導出した製氷水供給管50は、前記製氷板38の上方に設けた製氷水散布器52に接続している。この製氷水散布器52には多数の散水孔が穿設され、製氷運転時に製氷水タンク48からポンプ圧送される製氷水を、前記散水孔から前記製氷板38の製氷面(氷結温度まで冷却されている)に散布する。そして、前記製氷板38の製氷面を流下する途中で製氷水が氷結することで、該製氷面に断面が半月状をなす半月氷43が生成される。 An ice making water supply pipe 50 led out from the ice making water tank 48 via an ice making water pump PM is connected to an ice making water sprinkler 52 provided above the ice making plate 38. A large number of water sprinkling holes are formed in this ice making water sprayer 52, and the ice making water pumped from the ice making water tank 48 during the ice making operation is supplied from the water making holes to the ice making surface of the ice making plate 38 (cooled to the freezing temperature). Spray). Then, the ice-making water freezes while flowing down the ice-making surface of the ice-making plate 38, so that half-moon ice 43 having a half-moon-shaped cross section is generated on the ice-making surface.

図5の製氷機には、除氷運転に際して、前記製氷板38の裏面に常温の水(除氷水)を散布して除氷を促進させる除氷水供給系が、前述した製氷水供給系とは別に設けられている。すなわち外部水道系に接続する除氷水供給管54は、前記製氷板38の上部に設けた除氷水散布器57に給水弁WVを介して接続されている。そして、除氷運転に際し給水弁WVを開放することで、外部水道系から供給された除氷水は、除氷水散布器57に穿設した多数の散水孔を介して製氷板38の裏側に散布供給されて流下し、製氷板38と半月氷43との氷結面を融解するようになっている。なお、製氷板38の裏側を流下した除氷水は、製氷水と同様に前記案内板46の通孔を介して製氷水タンク48に回収され、これが次回の製氷水として使用される。 In the ice making machine shown in FIG. 5, the deicing water supply system that sprinkles water at normal temperature (deicing water) on the back surface of the ice making plate 38 to accelerate deicing is different from the above-described ice making water supply system. It is provided separately. That is, the deicing water supply pipe 54 connected to the external water supply system is connected to the deicing water sprinkler 57 provided on the upper part of the ice making plate 38 via the water supply valve WV. Then, by opening the water supply valve WV during the deicing operation, the deicing water supplied from the external water supply system is spray-supplied to the back side of the ice making plate 38 via a large number of sprinkling holes formed in the deicing water sprinkler 57. Then, the ice-making plate 38 and the half-moon ice 43 are melted down and melted. The deicing water that has flowed down on the back side of the ice making plate 38 is collected in the ice making water tank 48 through the through hole of the guide plate 46 as in the case of the ice making water, and is used as the next ice making water.

前記冷凍装置40は、図5に示す如く、圧縮機CM、凝縮器CD、膨張弁EVおよび前記蒸発器EPを、この順で管体59,61により接続して構成される。そして、製氷運転において、圧縮機CMで圧縮された気化冷媒は、吐出管(管体)59を経て凝縮器CDで凝縮液化してから膨張弁EVで減圧され、蒸発器EPに流入してここで一挙に膨張して蒸発し、前記製氷板38と熱交換を行なって、該製氷板38を氷点下に冷却させる。この蒸発器EPで蒸発した気化冷媒は、吸入管(管体)61を経て圧縮機CMに帰還して再度凝縮器CDに供給されるサイクルを反復する。また冷凍装置40は、圧縮機CMの吐出管59から分岐するバイパス管63を備え、このバイパス管63はホットガス弁HVを経て蒸発器EPの入口側に連通されている。ホットガス弁HVは、製氷運転の際には閉成し、除氷運転に際して開放するよう制御される。そして除氷運転では、圧縮機CMから吐出されるホットガスを、ホットガス弁HVおよびバイパス管63を介して蒸発器EPにバイパスさせ、製氷板38を加熱することにより、製氷面に生成される半月氷43の氷結面を融解させて、該半月氷43を自重により落下させる。なお、図中の符号FMは、製氷運転時に回転して凝縮器CDを空冷するファンを示す。 As shown in FIG. 5, the refrigerating apparatus 40 is configured by connecting a compressor CM, a condenser CD, an expansion valve EV and the evaporator EP in this order by pipes 59 and 61. Then, in the ice making operation, the vaporized refrigerant compressed by the compressor CM is condensed and liquefied by the condenser CD through the discharge pipe (tubular body) 59, depressurized by the expansion valve EV, and flows into the evaporator EP. Then, it is expanded and evaporated all at once, and heat is exchanged with the ice making plate 38 to cool the ice making plate 38 below the freezing point. The vaporized refrigerant evaporated in the evaporator EP returns to the compressor CM via the suction pipe (tube body) 61 and is supplied to the condenser CD again, thus repeating the cycle. Further, the refrigeration system 40 includes a bypass pipe 63 branched from the discharge pipe 59 of the compressor CM, and the bypass pipe 63 communicates with the inlet side of the evaporator EP via the hot gas valve HV. The hot gas valve HV is controlled to close during the ice making operation and open during the deicing operation. Then, in the deicing operation, hot gas discharged from the compressor CM is bypassed to the evaporator EP via the hot gas valve HV and the bypass pipe 63, and the ice making plate 38 is heated to be generated on the ice making surface. The freezing surface of the half moon ice 43 is melted and the half moon ice 43 is dropped by its own weight. Reference numeral FM in the drawing denotes a fan that rotates during the ice making operation to cool the condenser CD by air.

特開2009−79839号公報JP, 2009-79839, A

図4に関して述べた板氷の製氷機では、除氷運転が進行すると製氷部から氷が離脱して落下し、貯氷庫に放出貯留される。この製氷部からの氷の離脱、すなわち除氷完了は、前述したように氷(熱負荷)の離脱により蒸発器に供給されているホットガスの温度上昇を温度センサにより検知している。しかし、このような蒸発器の出口側におけるホットガスの温度変化の検知では、製氷部から氷が離脱して温度検知するまでにタイムラグがあるため、必然的に除氷時間が長くなる欠点がある。これは、製氷効率の低下を意味して不経済である。 In the plate ice making machine described with reference to FIG. 4, as the deicing operation proceeds, the ice separates from the ice making unit, falls, and is discharged and stored in the ice storage. As for the detachment of ice from the ice making unit, that is, the completion of deicing, the temperature sensor detects the temperature rise of the hot gas supplied to the evaporator due to the detachment of ice (heat load) as described above. However, in detecting the temperature change of the hot gas at the outlet side of such an evaporator, there is a time lag until the temperature of the ice is separated from the ice-making unit and the temperature is detected, so that the deicing time inevitably becomes long. .. This is uneconomical, meaning that the efficiency of ice making decreases.

また、図5で述べた半月氷の製氷機でも、前記と同様の除氷検知が行われている。しかし、製氷板に製造される多数の半月氷は、除氷運転に移行してホットガスが製氷板を加温しても、全ての半月氷が一挙に落下するのではなく、多少の時間差を置いて順次落下して行くのが普通である。しかも、夫々の半月氷は小さいためにそれ自体の熱負荷が小さく、従って多数の半月氷が個々に落下する状況で前記温度センサにより精度良く検知するのは難しい。このため半月氷の製氷機では、除氷検知を確実に行うべく(安全を期して)、除氷検知に要する閾値の時間を長くしているのが実情である。しかし、これは除氷時間が長くなるので、製氷運転に移行する時間が遅くなり製氷効率が低下する欠点が指摘される。 Further, the half-moon ice making machine described in FIG. 5 also performs deicing detection similar to the above. However, the large number of half-moon ice produced on the ice-making plate does not drop all at once even if the hot gas warms the ice-making plate after shifting to deicing operation, and there is a slight time difference. It is normal to leave them and drop them one after another. Moreover, since each crescent ice is small, the heat load of the crescent ice itself is small. Therefore, it is difficult to detect with high accuracy by the temperature sensor in the situation where many crescent ice individually fall. For this reason, in the half-moon ice making machine, the threshold time required for deicing detection is set to be long in order to ensure deicing detection (for safety). However, it is pointed out that the deicing time becomes long, so that the time to shift to the ice making operation is delayed and the ice making efficiency is lowered.

前記課題を解決し、所期の目的を達成するため請求項1に記載の発明は、
冷凍回路に接続する蒸発器を一方の面に備え、他方の面に上方から製氷水を供給して板氷を製造する製氷板と、前記製氷板を複数並べて配置した製氷ユニットと、前記製氷ユニットの下方に配設され、前記製氷板に製造されて落下する板氷を受容する貯氷庫とからなる製氷機の除氷完了検知方法であって、
除氷運転時に前記製氷板から前記貯氷庫へ板氷が落下する毎に生ずる物理的表徴をセンサで順次検知し、
前記センサで検知した物理的表徴を前記板氷の落下回数としてカウントし、
前記製氷板の数で規定される板氷の枚数に前記カウント数が達したところで、前記製氷ユニットから全ての板氷の除氷が完了したと判定することを要旨とする。
請求項1に係る発明によれば、板氷が落下したときの音や振動のような物理的表徴を直ちに検出することによって除氷完了を検知するので、除氷時間を短縮することができて製氷効率を向上させることができる。
In order to solve the above problems and achieve the intended purpose, the invention according to claim 1
An ice-making plate that is provided with an evaporator connected to a refrigeration circuit on one surface and supplies ice-making water to the other surface from above to manufacture plate ice; an ice-making unit in which a plurality of the ice-making plates are arranged side by side; and the ice-making unit. A method for detecting deicing completion of an ice making machine, which is arranged below the ice making plate, and which comprises an ice storage for receiving plate ice produced and falling on the ice making plate,
Sensors sequentially detect physical manifestations that occur each time plate ice falls from the ice making plate to the ice storage during deicing operation,
Counting the physical manifestations detected by the sensor as the number of times the ice cubes fall,
The gist is to determine that the deicing of all the plate ices from the ice making unit is completed when the count reaches the number of plate ices defined by the number of ice making plates.
According to the invention of claim 1, since the completion of deicing is detected by immediately detecting a physical sign such as a sound or a vibration when the plate ice falls, the deicing time can be shortened. The ice making efficiency can be improved.

前記課題を解決し、所期の目的を達成するため請求項2に記載の発明は、
冷凍回路に接続する蒸発器を一方の面に備え、他方の面に製氷水を供給して多数の氷塊を製造する製氷部と、前記製氷部の下方に配設され、前記製氷部で製造されて落下する前記氷塊を受容する貯氷庫とからなる製氷機の除氷完了検知方法であって、
除氷運転時に前記製氷部から前記貯氷庫へ落下する個々の氷塊により生ずる物理的表徴をセンサで時系列で検知し、
前記センサで検知した個々の物理的表徴がピーク値に達するまでの時間分布を正規分布として標準偏差を演算し、
前記標準偏差に基づき予測される時間の経過をもって、前記製氷部から全ての氷塊の除氷が完了したと判定することを要旨とする。
請求項2に係る発明によれば、氷塊が落下したときの音や振動のような物理的表徴を直ちに検出すると共に、その物理的表徴のピークを求めて標準偏差を算出する統計手法を応用しているので、除氷完了を検知するので除氷時間を短縮することができ、これにより製氷効率を向上させることができる。
In order to solve the above problems and achieve the intended purpose, the invention of claim 2 is
An evaporator that is connected to a refrigeration circuit is provided on one surface, and an ice making unit that supplies ice making water to the other surface to produce a large number of ice blocks, and is arranged below the ice making unit, and is made by the ice making unit. A method for detecting deicing completion of an ice making machine comprising an ice storage for receiving the ice blocks that fall as
A sensor detects the physical manifestations caused by individual ice blocks falling from the ice making unit to the ice storage during deicing in time series,
The standard deviation is calculated using the normal distribution as the time distribution until each physical manifestation detected by the sensor reaches a peak value,
The gist of the present invention is to determine that deicing of all ice blocks from the ice making unit is completed after the elapse of time predicted based on the standard deviation.
According to the second aspect of the invention, the physical method such as sound and vibration when the ice block is dropped is immediately detected, and the statistical method of calculating the standard deviation by obtaining the peak of the physical expression is applied. Since the completion of deicing is detected, the deicing time can be shortened and the ice making efficiency can be improved.

本発明によれば、製氷機の除氷運転に際し、除氷検知に要する時間を短縮できるために、寸法や質量の小さい氷塊であっても除氷の完了を正確かつ速やかに検知して、除氷運転から製氷運転へそれだけ速く移行し得るので製氷効率が向上する。 According to the present invention, during deicing operation of an ice maker, the time required for deicing detection can be shortened. The ice-making efficiency can be improved because the ice-making operation can be shifted to the ice-making operation faster.

本発明に係る除氷完了検知方法を実行する制御系統のブロック図である。It is a block diagram of a control system which performs a deicing completion detection method concerning the present invention. 板氷の製氷機において、本発明に係る除氷完了検知方法を実行する際にセンサにより検知した物理的表徴の経時的な挙動を示すグラフである。It is a graph which shows the time-dependent behavior of the physical manifestation detected by the sensor when performing the deicing completion detection method which concerns on this invention in a plate ice making machine. 氷塊の製氷機において、本発明に係る除氷完了検知方法を実行する際にセンサにより検知した物理的表徴の経時的な挙動を示すグラフである。7 is a graph showing the behavior over time of physical manifestations detected by a sensor when the deicing completion detection method according to the present invention is executed in an ice lump ice making machine. 従来技術に係る多数の板氷を製造する製氷機の全体構成を示す概略図である。It is the schematic which shows the whole structure of the ice making machine which manufactures many plate ices based on a prior art. 従来技術に係る多数の半月氷を製造する製氷機の概略構造図である。FIG. 1 is a schematic structural diagram of an ice maker that produces a large number of half-moon ices according to the related art.

次に、本発明に係る製氷機の除氷完了検知方法について、好適な実施例を挙げて説明する。本発明に係る除氷完了検知方法が応用される製氷機は、先に述べたように板氷の製氷機と半月氷の製氷機とに分かたれ、その夫々につき実施する方法が部分的に異なるので、以下個別に説明する。なお、前記半月状の氷(半月氷)は寸法や質量が小さいので、本発明では前記半月氷を氷塊ともいう。 Next, a method for detecting the completion of deicing of an ice making machine according to the present invention will be described with reference to preferred embodiments. The ice making machine to which the deicing completion detecting method according to the present invention is applied is divided into a plate ice making machine and a half-moon ice making machine as described above, and the method to be carried out is partially different for each. Therefore, each will be described below. Since the half-moon ice (half-moon ice) has a small size and mass, the half-moon ice is also referred to as an ice block in the present invention.

(板氷の製氷機について)
図4に関して説明した板氷の製氷機では、各製氷ユニット14で製造される個々の板氷17は寸法が比較的大きく重量がある。また、製氷ユニット14で製造される板氷17の枚数は、多くて20枚程度で比較的少ない傾向にある。そこで、本願における板氷製氷機の除氷完了検知では、従来の蒸発器EPの出口側におけるホットガスの温度検知を指標とする方法に代え、板氷17の落下音や振動(これらを纏めて「物理的表徴」ともいう)を図1のセンサ58で検出し、その物理的表徴をカウントして除氷完了検知するようにしている。
(About plate ice machine)
In the plate ice making machine described with reference to FIG. 4, the individual plate ices 17 produced by each ice making unit 14 are relatively large in size and heavy. Further, the number of the plate ices 17 produced by the ice making unit 14 is at most about 20 and tends to be relatively small. Therefore, in the deicing completion detection of the plate ice making machine in the present application, instead of the conventional method of using the temperature detection of the hot gas at the outlet side of the evaporator EP as an index, the falling sound and vibration of the plate ice 17 (collectively, these are described. The sensor 58 shown in FIG. 1 detects "physical manifestation" and counts the physical manifestation to detect deicing completion.

すなわち、図4に示す板氷製氷機の製氷運転により、夫々の製氷ユニット14の各製氷板16に生成された板氷17は、次の除氷運転により該製氷板16との氷結部位が融解して自重で落下し、下方に位置する前記氷案内板28に衝突してから偏向させられ、斜め下方の貯氷庫12へ回収される。この板氷17が落下して氷案内板28に衝突すると、該板氷17の自重が大きいこともあって大きな衝撃音や振動を生ずる。しかも、前記製氷ユニット14(2枚の製氷板16を備える)は多数が並列状態で設けられているから、夫々の製氷板16で製造された板氷17は、多少の時間間隔でバラバラに該製氷板16から落下することが多い。 That is, the plate ice 17 generated on each ice making plate 16 of each ice making unit 14 by the ice making operation of the ice making machine shown in FIG. 4 melts the freezing portion with the ice making plate 16 by the next deicing operation. Then, it falls by its own weight, collides with the ice guide plate 28 located below, is deflected, and is collected in the ice storage 12 at an obliquely lower position. When the plate ice 17 falls and collides with the ice guide plate 28, a large impact sound or vibration is generated because the plate ice 17 has a large weight. Moreover, since a large number of the ice making units 14 (which are provided with two ice making plates 16) are provided in parallel, the ice sheets 17 produced by the respective ice making plates 16 are scattered at some time intervals. It often falls from the ice making plate 16.

そこで、例えば前記氷案内板28の適宜の部位に、前記板氷17が落下して生ずる音を検出する音センサまたは落下時の衝撃により生ずる振動を検出する振動センサ(以下センサ58という)で検知するようにする。これを包括的に表現すれば、氷案内板28へ板氷17が落下した際に生ずる物理的表徴(音や振動)をセンサ58(音センサや振動センサ)により検知するものである。なお、センサ58としての音センサや振動センサは、一般に公知のものが適宜使用される。 Therefore, for example, a sound sensor that detects a sound generated when the plate ice 17 falls or a vibration sensor (hereinafter referred to as a sensor 58) that detects a vibration generated when the plate ice 17 falls is detected at an appropriate portion of the ice guide plate 28. To do so. If this is comprehensively expressed, the sensor 58 (sound sensor or vibration sensor) detects a physical sign (sound or vibration) generated when the plate ice 17 falls onto the ice guide plate 28. As the sound sensor and the vibration sensor as the sensor 58, generally known ones are appropriately used.

前記センサ58により検出される物理的表徴は板氷17が落下したことを示しているから、この物理的表徴の回数をカウントすれば、該板氷17の落下した枚数が判明することになる。そこで、多数の製氷ユニット14で製造される板氷17の数は予め判っているから、その判明している枚数に前記物理的表徴のカウント数が達したところで除氷の完了(全ての製氷板16から板氷17が離脱)を検知し、製氷機10における制御回路へ指令を送って除氷運転から製氷運転に切り換える。このように、予め判明している板氷17の枚数に到達した時点で除氷完了を検知するので、従来のように除氷完了の検知までにタイムラグを生ずるのを回避でき、除氷運転の短縮に伴い製氷効率を向上させることができる。 Since the physical sign detected by the sensor 58 indicates that the plate ice 17 has fallen, the number of the dropped plate ice 17 can be determined by counting the number of physical signs. Therefore, since the number of plate ices 17 to be produced by a large number of ice making units 14 is known in advance, the deicing is completed when the number of the physical signs reaches the known number (all the ice making plates). It is detected that the plate ice 17 has separated from 16), and a command is sent to the control circuit in the ice making machine 10 to switch from the deicing operation to the ice making operation. In this way, the completion of deicing is detected when the number of the plate ices 17 that is known in advance is reached, so that it is possible to avoid the occurrence of a time lag before the detection of the completion of deicing as in the conventional case, and to perform the deicing operation. As the time is shortened, the ice making efficiency can be improved.

図1は、前述した除氷完了検知方法を実行する制御系統のブロック図であって、前記センサ58が物理的表徴を1回検知する毎にカウンタ60へ信号を送る。前記カウンタ60からの信号は、板氷17の枚数が予め設定された比較部62へ送られ、ここで設定枚数とカウント数との比較が行われる。このカウント数が設定枚数に到達すると、除氷が完了したものと判断して、製氷機の制御回路64へ信号を送って除氷運転を終了し、次の製氷運転へ切り換える。 FIG. 1 is a block diagram of a control system that executes the above-described deicing completion detection method, and sends a signal to a counter 60 each time the sensor 58 detects a physical manifestation. The signal from the counter 60 is sent to the comparison unit 62 in which the number of ice sheets 17 is preset, and the set number of sheets is compared with the count number. When the counted number reaches the set number, it is determined that the deicing is completed, and a signal is sent to the control circuit 64 of the ice making machine to end the deicing operation and switch to the next ice making operation.

図2は、前述したセンサ58により検出した個々の物理的表徴の挙動をグラフで示すものであって、図2(a)の縦軸は物理的表徴(音圧/振動)の大きさを示し、横軸は時間経過を示している。なお、横軸に沿った一点鎖線は物理的表徴に予め設定した閾値を示す。また図2(b)の縦軸は板氷の落下をカウントした回数を示し、横軸は時間経過を示している。例えば図2(a)において、板氷17が落下して氷案内板28に衝突すると、前述した物理的表徴(音圧や振動)が発生する。この物理的表徴の程度が前記閾値を超えた場合は、板氷17が製氷板16から確実に落下したものとしてカウントする。一般に板氷17は時間差を置いて落下するので、時系列に従い前記閾値を超えているものだけ順次カウントする。図2(b)は、前記物理的表徴のカウント数を時系列に従って示すもので、例えば(1)〜(6)は6枚の板氷17が落下したことを示している。従って、仮に板氷の枚数が6枚であれば、カウント数が6回になったところで除氷完了とする。 FIG. 2 is a graph showing the behavior of each physical manifestation detected by the sensor 58 described above, and the vertical axis of FIG. 2A shows the magnitude of the physical manifestation (sound pressure/vibration). The horizontal axis indicates the passage of time. The alternate long and short dash line along the horizontal axis indicates the threshold value set in advance in the physical manifestation. Further, the vertical axis of FIG. 2(b) shows the number of times the falling of the plate ice is counted, and the horizontal axis shows the passage of time. For example, in FIG. 2A, when the plate ice 17 falls and collides with the ice guide plate 28, the above-described physical manifestations (sound pressure and vibration) occur. When the degree of this physical manifestation exceeds the threshold value, it is counted that the plate ice 17 has surely dropped from the ice making plate 16. In general, the plate ice 17 falls with a time lag, so that only those that exceed the threshold value are sequentially counted in time series. FIG. 2B shows the number of counts of the physical manifestation in time series, and, for example, (1) to (6) show that six ice sheets 17 have fallen. Therefore, if the number of plate ice pieces is 6, the deicing is completed when the count number reaches 6.

なお、板氷17が落下する場合に、複数枚が同時に落下してしまうことがある。この場合は、前記センサ58によるカウント数が板氷17の所定枚数に達しないことになる。このように板氷17の最初の落下開始から所定時間を経過してもカウントアップしない場合は、従来の温度センサ34による除氷完了検知でバックアップする。 When the plate ice 17 falls, a plurality of sheets may fall at the same time. In this case, the number counted by the sensor 58 does not reach the predetermined number of ice sheets 17. In this way, when the count does not increase even after a predetermined time has elapsed from the start of the first fall of the plate ice 17, the conventional temperature sensor 34 backs up by detecting the completion of the deicing.

(半月氷の製氷機について)
本発明が適用される半月氷43の製氷機についても、前述した板氷17の製氷機に関する除氷完了検知方法が基本的に採用される。この場合、図5に示す製氷板38に関連して配置した温度センサ(図示せず)により、前述した物理的表徴を検知するようになっている。しかし、製氷板38で製造される個々の半月氷43は、先に述べたように寸法や質量が小さく、また製造される個数はかなり多いのが普通である。このため、半月氷落下時の音や振動等の物理的表徴を前述したセンサ58(図5では案内板46の裏面に配置)で検知するにしても、半月氷43が落下する際の物理的表徴を、全数正確にカウントするのは技術的に困難である。
(About half-moon ice machine)
Also for the half-moon ice 43 to which the present invention is applied, the above-described deicing completion detection method for the plate ice 17 is basically adopted. In this case, a temperature sensor (not shown) arranged in association with the ice making plate 38 shown in FIG. 5 detects the above-mentioned physical manifestation. However, the individual meniscus ices 43 produced by the ice making plate 38 are usually small in size and mass as described above, and are usually produced in a large number. Therefore, even if the sensor 58 (disposed on the back surface of the guide plate 46 in FIG. 5) detects physical manifestations such as sound and vibration when the half-moon ice 43 falls, the physical characteristics when the half-moon ice 43 falls. It is technically difficult to accurately count all signs.

そこで本発明に係る半月氷43の製氷機では、多数の半月氷43が或る程度の時間内に落下した際に生ずる物理的表徴の回数が統計的な正規分布に納まるものとして、除氷完了を検知するようにした。これは、多数の半月氷43が製氷板38から個々バラバラに落下したり、複数個が或る程度纏まって落下したりすることが多いため、1個ずつの半月氷43の落下による前記物理的表徴を前記センサ58で検知することが難しいので、前記検出方法を基本的に採用すると共に、これを補完するものとして、統計学的な正規分布により標準偏差σを算出するようにしたものである。 Therefore, in the ice making machine of the meniscus ice 43 according to the present invention, the number of physical manifestations that occur when a large number of meniscus ice 43 fall within a certain period of time falls within a statistical normal distribution, and deicing is completed. Is detected. This is because a large number of crescent moons 43 often fall individually from the ice making plate 38 or a plurality of crescent moons 43 collectively fall down to some extent, so that the physical damage due to the falling of the crescent moons 43 one by one may be physical. Since it is difficult to detect a sign with the sensor 58, the detection method is basically adopted, and as a complement to this, the standard deviation σ is calculated by a statistical normal distribution. ..

すなわち、製氷板38から剥離した半月氷43が落下した際に生じる前記物理的表徴をセンサ58で検出するが、該センサ58により検出した電気信号のピークの回数を時系列に従ってカウントする。また、前記センサ58により測定した電気信号の波がピークに達した時点での該ピークの分布を正規分布として取り扱い、これから標準偏差σ(統計学的に分散状態にあるピークが平均値の周りにどのように散らばっているかを表す値である)を算出する。そして、前記ピークから求めた標準偏差σにより予測される経過時間をもって、除氷完了時間とするものである。 In other words, the sensor 58 detects the physical manifestation that occurs when the meniscus ice 43 separated from the ice making plate 38 falls, and the number of peaks of the electric signal detected by the sensor 58 is counted in time series. Further, the distribution of the peak when the wave of the electric signal measured by the sensor 58 reaches the peak is treated as a normal distribution, and from this, the standard deviation σ (a peak in a statistically dispersed state is around an average value). It is a value that represents how scattered). The elapsed time predicted by the standard deviation σ obtained from the peak is used as the deicing completion time.

図3は、前述したところをグラフで示すものであって、図3(a)の縦軸は物理的表徴(音圧/振動)の大きさを示し、横軸は時間経過を示している。また図3(b)の縦軸は半月氷43の落下をカウントした回数を示し、横軸は時間経過を示している。例えば図3(a)において半月氷43が落下して前記案内板46に衝突すると物理的表徴を発生する。この物理的表徴は前記センサ58で検出するが、該センサ58で検出される個々の電気的信号は山形になっているので、この山形をなす信号のピーク値を時系列に沿い測定する。そして図3(b)において、前記センサ58で検出され電気的処理を経た個々の電気的信号のピーク値を個別にカウントする。このカウントされた個々のピーク値の標準偏差σの合計が、予め該標準偏差σに安全度を見込んで決定した係数χに達したところで、除氷運転を完了する。このように氷落下の分布をピーク時まで計測し、その分布を正規分布として統計解析することで標準偏差σを算出するようにしたので、除氷途中に除氷完了時間を予測することができるようになった。また、統計的な手法を用いるために、除氷完了検知の精度が安定する利点がある。 FIG. 3 is a graph showing the above-mentioned part, in which the vertical axis of FIG. 3(a) shows the magnitude of physical manifestations (sound pressure/vibration) and the horizontal axis shows the passage of time. The vertical axis of FIG. 3B shows the number of times the falling of the meniscus ice 43 is counted, and the horizontal axis shows the passage of time. For example, in FIG. 3(a), when the meniscus ice 43 falls and collides with the guide plate 46, physical manifestation occurs. This physical manifestation is detected by the sensor 58. Since the individual electric signals detected by the sensor 58 are mountain-shaped, the peak value of the mountain-shaped signal is measured in time series. Then, in FIG. 3B, the peak value of each electric signal detected by the sensor 58 and subjected to the electric processing is individually counted. The deicing operation is completed when the total of the standard deviations σ of the individual counted peak values reaches the coefficient χ which is determined in advance by taking the safety degree into the standard deviation σ. In this way, the distribution of ice drops is measured up to the peak time, and the standard deviation σ is calculated by statistically analyzing that distribution as a normal distribution, so the deicing completion time can be predicted during deicing. It became so. Further, since a statistical method is used, there is an advantage that the accuracy of deicing completion detection is stable.

なお、半月氷43が落下する場合に、かなり多くの数が纏まって一挙に落下することがある。この場合は、半月氷43の所定個数に前記センサ58によるカウント数が達しないことになる。このように半月氷43の最初の落下開始から所定時間を経過してもカウントアップしないときは、従来の温度センサによる除氷完了検知でバックアップする。 In addition, when the half-moon ice 43 falls, a large number of them may collectively fall. In this case, the number counted by the sensor 58 does not reach the predetermined number of half moon ice 43. In this way, when the countdown does not increase even after the lapse of a predetermined time from the start of the first fall of the meniscus ice 43, the conventional defrosting completion detection by the temperature sensor is used for backup.

12 貯氷庫,14 製氷ユニット,16 製氷板(製氷部),17 板氷,
30 冷凍回路,38 製氷板(製氷部),43 半月氷(氷塊),58 センサ,
EP 蒸発器,σ 標準偏差
12 ice storage, 14 ice making unit, 16 ice making plate (ice making unit), 17 ice making,
30 refrigeration circuit, 38 ice making plate (ice making part), 43 half moon ice (ice block), 58 sensor,
EP evaporator, σ standard deviation

Claims (5)

冷凍回路(30)に接続する蒸発器(EP)を一方の面に備え、他方の面に上方から製氷水を供給して板氷(17)を製造する製氷板(16)と、前記製氷板(16)を複数並べて配置した製氷ユニット(14)と、前記製氷ユニット(14)の下方に配設され、前記製氷板(16)に製造されて落下する板氷(17)を受容する貯氷庫(12)とからなる製氷機の除氷完了検知方法であって、
除氷運転時に前記製氷板(16)から前記貯氷庫(12)へ板氷(17)が落下する毎に生ずる物理的表徴をセンサ(58)で順次検知し、
前記センサ(58)で検知した物理的表徴を前記板氷(17)の落下回数としてカウントし、
前記製氷板(16)の数で規定される板氷(17)の枚数に前記カウント数が達したところで、前記製氷ユニット(14)から全ての板氷(17)の除氷が完了したと判定する
ことを特徴とする製氷機の除氷完了検知方法。
An ice making plate (16) that is provided with an evaporator (EP) connected to the refrigeration circuit (30) on one surface, and supplies ice making water to the other surface from above to produce ice cubes (17), and the ice making plate. An ice making unit (14) in which a plurality of (16) are arranged side by side, and an ice storage that is arranged below the ice making unit (14) and receives the plate ice (17) produced and dropped on the ice making plate (16) (12) A method for detecting the completion of deicing of an ice making machine, comprising:
Sensors (58) sequentially detect physical manifestations that occur each time the plate ice (17) falls from the ice making plate (16) to the ice storage (12) during deicing operation,
Count the physical manifestation detected by the sensor (58) as the number of times the ice cubes (17) have fallen,
When the count number reached the number of plate ice (17) specified by the number of ice making plates (16), it was determined that deicing of all the plate ice (17) from the ice making unit (14) was completed. A method for detecting completion of deicing of an ice making machine, comprising:
冷凍回路(30)に接続する蒸発器(EP)を一方の面に備え、他方の面に製氷水を供給して多数の氷塊(43)を製造する製氷部(38)と、前記製氷部(38)の下方に配設され、前記製氷部(38)で製造されて落下する前記氷塊(43)を受容する貯氷庫(12)とからなる製氷機の除氷完了検知方法であって、
除氷運転時に前記製氷部(38)から前記貯氷庫(12)へ落下する個々の氷塊(43)により生ずる物理的表徴をセンサ(58)で時系列で検知し、
前記センサ(58)で検知した個々の物理的表徴がピーク値に達するまでの時間分布を正規分布として標準偏差(σ)を演算し、
前記標準偏差(σ)に基づき予測される時間の経過をもって、前記製氷部(38)から全ての氷塊(43)の除氷が完了したと判定する
ことを特徴とする製氷機の除氷完了検知方法。
An evaporator (EP) connected to the refrigeration circuit (30) is provided on one surface, and an ice making unit (38) for producing a large number of ice blocks (43) by supplying ice making water to the other surface, and the ice making unit ( 38) is provided below the ice making section (38) is an ice making machine comprising an ice storage (12) for receiving the ice lumps (43) produced and falling, and
During the deicing operation, the sensor (58) detects the physical manifestations caused by the individual ice blocks (43) falling from the ice making section (38) to the ice storage (12) in time series,
Calculate the standard deviation (σ) as a normal distribution time distribution until each physical manifestation detected by the sensor (58) reaches a peak value,
De-icing completion detection of an ice maker characterized by determining that deicing of all ice blocks (43) from the ice making section (38) has been completed with the passage of time predicted based on the standard deviation (σ) Method.
前記氷(17,43)が落下した際に生ずる物理的表徴は落下音であり、前記センサ(58)は音センサである請求項1または2記載の製氷機の除氷完了検知方法。 The method for detecting the completion of deicing of an ice maker according to claim 1 or 2, wherein a physical sign generated when the ice (17, 43) falls is a drop sound, and the sensor (58) is a sound sensor. 前記氷(17,43)が落下した際に生ずる物理的表徴は振動であり、前記センサ(58)は振動センサである請求項1または2記載の製氷機の除氷完了検知方法。 The method for detecting the completion of deicing of an ice maker according to claim 1 or 2, wherein the physical manifestation that occurs when the ice (17, 43) falls is vibration, and the sensor (58) is a vibration sensor. 前記製氷部(16,38)に製造された複数の氷(17,43)の落下状態により、前記センサ(58)による物理的表徴の正確なカウントが困難な場合は、前記蒸発器(EP)のホットガス出口側の温度を検知して除氷完了を検知するように制御される請求項1または2記載の製氷機の除氷完了検知方法。 Due to the falling state of the plurality of ice (17,43) produced in the ice making section (16,38), when it is difficult to accurately count the physical manifestation by the sensor (58), the evaporator (EP) 3. The deicing completion detecting method for an ice maker according to claim 1 or 2, which is controlled so as to detect the temperature of the hot gas outlet side to detect the completion of deicing.
JP2019008025A 2019-01-21 2019-01-21 Deicing completion detection method of ice making machine Pending JP2020118322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019008025A JP2020118322A (en) 2019-01-21 2019-01-21 Deicing completion detection method of ice making machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019008025A JP2020118322A (en) 2019-01-21 2019-01-21 Deicing completion detection method of ice making machine

Publications (1)

Publication Number Publication Date
JP2020118322A true JP2020118322A (en) 2020-08-06

Family

ID=71890434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019008025A Pending JP2020118322A (en) 2019-01-21 2019-01-21 Deicing completion detection method of ice making machine

Country Status (1)

Country Link
JP (1) JP2020118322A (en)

Similar Documents

Publication Publication Date Title
US7194868B2 (en) Multiple ice making decision method and operation method for automatic ice making machine
US8844312B2 (en) Method of operating ice making machine
KR200479462Y1 (en) Drum type ice maker
KR101754339B1 (en) Ice manufacturing apparatus and method for refrigerator
US20080216490A1 (en) Operation method for automatic ice maker
JP2009121768A (en) Automatic ice making machine and control method for it
US20100077774A1 (en) Abnormality detecting method for automatic ice making machine
JP5052240B2 (en) How to operate an ice machine
JP2020118322A (en) Deicing completion detection method of ice making machine
JP4532201B2 (en) How to operate an automatic ice machine
JP5052201B2 (en) Automatic ice maker and operation method of automatic ice maker
JP6934326B2 (en) Ice machine
JP2011179790A (en) Automatic ice making machine
JP2008057862A (en) Ice making machine
JP5591552B2 (en) Ice machine
JP2005043014A (en) Operation method of automatic ice making machine
WO2011004702A1 (en) Ice making machine
JP2006090691A (en) Operating method for flow down type ice maker
JP6954808B2 (en) De-icing control method for ice makers
JP7161946B2 (en) automatic ice machine
JP2020118321A (en) Flow-down type ice making machine
US4177648A (en) Freezing apparatus and method
JP4518875B2 (en) Deicing operation method of automatic ice maker
KR102249584B1 (en) An ice making machine
JP2020133908A (en) Automatic ice making machine