JP2020111476A - Method for producing visible light-responsive bismuth vanadate - Google Patents

Method for producing visible light-responsive bismuth vanadate Download PDF

Info

Publication number
JP2020111476A
JP2020111476A JP2019001764A JP2019001764A JP2020111476A JP 2020111476 A JP2020111476 A JP 2020111476A JP 2019001764 A JP2019001764 A JP 2019001764A JP 2019001764 A JP2019001764 A JP 2019001764A JP 2020111476 A JP2020111476 A JP 2020111476A
Authority
JP
Japan
Prior art keywords
bismuth
bismuth vanadate
compound
reaction
visible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019001764A
Other languages
Japanese (ja)
Other versions
JP7292703B2 (en
Inventor
山本 伸一
Shinichi Yamamoto
伸一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryukoku University
Original Assignee
Ryukoku University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryukoku University filed Critical Ryukoku University
Priority to JP2019001764A priority Critical patent/JP7292703B2/en
Publication of JP2020111476A publication Critical patent/JP2020111476A/en
Application granted granted Critical
Publication of JP7292703B2 publication Critical patent/JP7292703B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a method for producing bismuth vanadate with high photocatalytic efficiency.SOLUTION: A method for producing bismuth vanadate comprises a step of reacting in water a bismuth compound with a vanadium compound in an amount in which a molar ratio of vanadium atoms to bismuth atoms is 2 or greater.SELECTED DRAWING: None

Description

本発明は、可視光応答性バナジン酸ビスマスの製造方法に関する。 The present invention relates to a method for producing visible light-responsive bismuth vanadate.

現在、光触媒として広く活用されている酸化チタン(TiO)は、3.2eVのバンドギャップを有し、波長が388nm以下の紫外光を利用するものである。しかし、紫外光は太陽光中に3〜5%程度しか含まれておらず、酸化チタンを使用した触媒反応では、太陽光の約95%が利用できないことになる。 Titanium oxide (TiO 2 ) currently widely used as a photocatalyst has a band gap of 3.2 eV and utilizes ultraviolet light having a wavelength of 388 nm or less. However, ultraviolet light contains only about 3 to 5% of sunlight, which means that about 95% of sunlight cannot be used in the catalytic reaction using titanium oxide.

可視光応答性を示す光触媒として、バナジン酸ビスマス(BiVO)が知られている(特許文献1)。正方晶構造のバナジン酸ビスマスは2.9eVのバンドギャップを有し、単斜晶構造のバナジン酸ビスマスは2.4eVのバンドギャップを有する(非特許文献1)。これは、前者が約428nm以下の波長の光を吸収するのに対し、後者が約517nm以下の波長の光を吸収することを意味する。単斜晶構造の方が正方晶構造よりも広い波長領域の光を吸収するため、光触媒効率が高くなる。酸化チタンと比較すると、約3.5倍もの太陽光エネルギーを吸収することができる。 Bismuth vanadate (BiVO 4 ) is known as a photocatalyst exhibiting visible light response (Patent Document 1). Bismuth vanadate having a tetragonal structure has a band gap of 2.9 eV, and bismuth vanadate having a monoclinic structure has a band gap of 2.4 eV (Non-Patent Document 1). This means that the former absorbs light with a wavelength of about 428 nm or less, while the latter absorbs light with a wavelength of about 517 nm or less. Since the monoclinic structure absorbs light in a wider wavelength range than the tetragonal structure, the photocatalytic efficiency is higher. Compared with titanium oxide, it can absorb about 3.5 times as much solar energy.

バナジン酸ビスマスの作製方法として、固相反応法や液相反応法が知られている。しかし、固相反応法を用いて作製されたバナジン酸ビスマス粉末は、光触媒反応の効率が低い。その原因として、固相反応法で得られる粉末の粒径が不均一であることが考えられている。 As a method for producing bismuth vanadate, a solid phase reaction method and a liquid phase reaction method are known. However, the bismuth vanadate powder produced by the solid-phase reaction method has low photocatalytic reaction efficiency. As a cause for this, it is considered that the particle size of the powder obtained by the solid phase reaction method is not uniform.

一方、液相反応法の一種である沈殿法を用いて、バナジン酸ビスマスを製造する方法が知られている(特許文献1)。具体的には、硝酸水溶液中で、尿素の存在下、メタバナジン酸アンモニウム(NHVO)と硝酸ビスマス五水和物(Bi(NO・5HO)とをモル比1:1で混合し、90℃で加熱撹拌することにより、バナジン酸ビスマス粉末を得ている。得られたバナジン酸ビスマスが可視光応答性の光触媒活性を有し、内分泌攪乱物質であるノニルフェノール、ビスフェノールA又はエストロゲンを可視光下で分解できることも開示されている。しかしながら、短時間で単斜晶の粉末を得ることが難しく、また、使用する硝酸は劇物であり、保管取扱がきわめて難しいという問題がある。 On the other hand, a method for producing bismuth vanadate using a precipitation method, which is a type of liquid phase reaction method, is known (Patent Document 1). Specifically, an aqueous nitric acid solution in the presence of urea, ammonium metavanadate (NH 4 VO 3) and bismuth nitrate pentahydrate (Bi (NO 3) 3 · 5H 2 O) and the molar ratio of 1: 1 Then, the mixture is heated at 90° C. and stirred to obtain bismuth vanadate powder. It is also disclosed that the obtained bismuth vanadate has a photocatalytic activity responsive to visible light and can decompose endocrine disrupting substances such as nonylphenol, bisphenol A or estrogen under visible light. However, it is difficult to obtain monoclinic powder in a short time, and the nitric acid used is a deleterious substance, which makes storage and handling extremely difficult.

特開2004−24936号公報JP 2004-24936 A

A.Kudo,K.Omori,H.Kato,J.Am.Chem.Soc.,121,11459(1999).A. Kudo, K.; Omori, H.; Kato, J.; Am. Chem. Soc. , 121, 11459 (1999).

本発明は、光触媒効率が高いバナジン酸ビスマスを簡便に作製することを目的とする。 An object of the present invention is to easily produce bismuth vanadate with high photocatalytic efficiency.

本発明者らは、液相反応法によるバナジン酸ビスマスの製造方法について種々検討したところ、ビスマス原子1モルに対しバナジウム原子2モル以上となる量のバナジウム化合物をビスマス化合物と反応させることにより、硝酸水溶液を用いることなく、短時間で可視光応答性のバナジン酸ビスマスが得られることを見出し、本発明を完成した。 The present inventors have conducted various studies on a method for producing bismuth vanadate by a liquid phase reaction method. As a result, by reacting an amount of vanadium compound of 2 moles or more with 1 mole of bismuth atom with a bismuth compound, nitric acid The present invention has been completed by finding that visible light responsive bismuth vanadate can be obtained in a short time without using an aqueous solution.

すなわち、本発明は、水中で、ビスマス化合物と、ビスマス原子に対するバナジウム原子のモル比が2以上となる量のバナジウム化合物とを反応させる工程を含むバナジン酸ビスマスの製造方法に関する。 That is, the present invention relates to a method for producing bismuth vanadate, which comprises the step of reacting a bismuth compound with an amount of a vanadium compound in which the molar ratio of vanadium atom to bismuth atom is 2 or more in water.

バナジン酸ビスマスの結晶構造は単斜晶であることが好ましい。 The crystal structure of bismuth vanadate is preferably monoclinic.

ビスマス化合物が硝酸ビスマスであることが好ましい。 It is preferred that the bismuth compound is bismuth nitrate.

バナジウム化合物がメタバナジン酸アンモニウムであることが好ましい。 The vanadium compound is preferably ammonium metavanadate.

反応は60〜95℃で行うことが好ましい。 The reaction is preferably carried out at 60 to 95°C.

反応を尿素の存在下で行うことが好ましい。 It is preferred to carry out the reaction in the presence of urea.

反応時間は2時間以上であることが好ましい。 The reaction time is preferably 2 hours or more.

反応は硝酸の非存在下で行うことが好ましい。 The reaction is preferably carried out in the absence of nitric acid.

本発明では、ビスマス化合物と、ビスマス原子に対するバナジウム原子のモル比が2以上となる量のバナジウム化合物とを反応させるため、硝酸水溶液を用いることなく、可視光応答性のバナジン酸ビスマスを短時間で作製することができる。 In the present invention, the bismuth compound is reacted with the vanadium compound in an amount such that the molar ratio of the vanadium atom to the bismuth atom is 2 or more. Can be made.

実施例1〜4及び比較例1で調製したバナジン酸ビスマス粉末のXRDの積分強度である。It is an integrated intensity of XRD of the bismuth vanadate powder prepared in Examples 1 to 4 and Comparative Example 1. 実施例1〜4及び比較例1で調製したバナジン酸ビスマス粉末の光触媒反応評価結果である。It is a photocatalytic reaction evaluation result of the bismuth vanadate powder prepared in Examples 1-4 and Comparative Example 1. 図2から算出した透過率の回復率である。It is the transmittance recovery rate calculated from FIG. 比較例2で調製したバナジン酸ビスマス粉末のXRDの積分強度である。It is the integrated intensity of XRD of the bismuth vanadate powder prepared in Comparative Example 2. 比較例2で調製したバナジン酸ビスマス粉末の光触媒反応評価結果である。4 is a photocatalytic reaction evaluation result of the bismuth vanadate powder prepared in Comparative Example 2. 図5から算出した透過率の回復率である。It is the recovery rate of the transmittance calculated from FIG.

本発明のバナジン酸ビスマスの製造方法は、水中で、ビスマス化合物と、ビスマス原子に対するバナジウム原子のモル比が2以上となる量のバナジウム化合物とを反応させる工程を含む。 The method for producing bismuth vanadate of the present invention includes a step of reacting a bismuth compound with an amount of the vanadium compound in which the molar ratio of vanadium atom to bismuth atom is 2 or more in water.

ビスマス原子に対するバナジウム原子のモル比(バナジウム原子のモル数/ビスマス原子のモル数)は、2以上であり、3以上がより好ましく、4以上がさらに好ましい。上限は特に限定されないが、10以下が好ましく、5以下がより好ましい。2未満では、正方晶系結晶が生成しやすくなる傾向があり、2を超えると、少しずつ正方晶系の割合が減少し、単斜晶系に置き換わっていく傾向がある。 The molar ratio of vanadium atoms to bismuth atoms (the number of vanadium atoms/the number of bismuth atoms) is 2 or more, preferably 3 or more, and more preferably 4 or more. The upper limit is not particularly limited, but is preferably 10 or less, more preferably 5 or less. When it is less than 2, tetragonal crystals tend to be easily generated, and when it exceeds 2, the proportion of tetragonal systems gradually decreases and monoclinic systems tend to be replaced.

ビスマス化合物としては、水に可溶な化合物であればよく、硝酸ビスマスが好ましい。 As the bismuth compound, any compound soluble in water may be used, and bismuth nitrate is preferable.

バナジウム化合物としては、水に可溶な化合物であればよく、取り扱いやすく、安価で毒性も低い点から、メタバナジン酸アンモニウムが好ましい。 As the vanadium compound, any compound that is soluble in water may be used, and ammonium metavanadate is preferable because it is easy to handle, inexpensive, and low in toxicity.

ビスマス化合物は、水100重量部に対しビスマス原子換算で0.001〜5モル使用することが好ましい。 The bismuth compound is preferably used in an amount of 0.001 to 5 mol in terms of bismuth atom based on 100 parts by weight of water.

バナジウム化合物とビスマス化合物の混合方法は特に限定されず、バナジウム化合物とビスマス化合物が入った反応容器に水を加えてもよく、水が入った反応容器にバナジウム化合物とビスマス化合物を加えてもよく、反応容器にバナジウム化合物の水溶液とビスマス化合物の水溶液とを加えてもよい。 The method for mixing the vanadium compound and the bismuth compound is not particularly limited, and water may be added to the reaction vessel containing the vanadium compound and the bismuth compound, or the vanadium compound and the bismuth compound may be added to the reaction vessel containing the water, An aqueous solution of vanadium compound and an aqueous solution of bismuth compound may be added to the reaction vessel.

本発明の製造方法では、反応系中に沈殿剤を存在させることが好ましい。沈殿剤としては特に限定されないが、尿素、ミョウバン、石灰乳等を挙げることができる。中でも、取扱いが容易で安価である点から、尿素が好ましい。
沈殿剤の量は、ビスマス化合物1モルに対し、0.001〜100モルが好ましい。
In the production method of the present invention, it is preferable that a precipitant is present in the reaction system. The precipitating agent is not particularly limited, and examples thereof include urea, alum, lime milk and the like. Of these, urea is preferable because it is easy to handle and inexpensive.
The amount of the precipitating agent is preferably 0.001 to 100 mol per 1 mol of the bismuth compound.

ビスマス化合物とバナジウム化合物は、両者を含む水溶液に、必要に応じて沈殿剤を混合し、必要に応じて加熱しながら撹拌する。その後、生成した沈殿物を回収し、洗浄、乾燥する。 The bismuth compound and the vanadium compound are mixed with an aqueous solution containing both of them, if necessary, with a precipitant, and stirred with heating as necessary. Then, the generated precipitate is collected, washed and dried.

反応温度は特に限定されないが、60℃以上が好ましく、80℃以上がより好ましく、90℃以上がさらに好ましい。また、100℃以下が好ましく、98℃以下がより好ましく、95℃以下がさらに好ましい。60℃未満であると、尿素の加水分解が行われない傾向がある。また、100℃を超えると、水が蒸発するおそれがある。 The reaction temperature is not particularly limited, but is preferably 60°C or higher, more preferably 80°C or higher, and further preferably 90°C or higher. Further, it is preferably 100°C or lower, more preferably 98°C or lower, and further preferably 95°C or lower. If it is lower than 60°C, hydrolysis of urea tends not to occur. If it exceeds 100°C, water may be evaporated.

反応時間は特に限定されないが、2時間以上が好ましく、3時間以上がより好ましく、4時間以上がさらに好ましい。また、12時間以下が好ましく、10時間以下がより好ましい。2時間未満であると、正方晶系結晶が高い割合で生成する傾向がある。一方、12時間を超えると、単斜晶系が支配的に存在する、あるいは単斜晶系のみとなり、正方晶系が消滅しやすい傾向がある。 Although the reaction time is not particularly limited, it is preferably 2 hours or longer, more preferably 3 hours or longer, still more preferably 4 hours or longer. Further, it is preferably 12 hours or less, more preferably 10 hours or less. If it is less than 2 hours, a high proportion of tetragonal crystals tends to be generated. On the other hand, if it exceeds 12 hours, the monoclinic system is predominantly present or only the monoclinic system is present, and the tetragonal system tends to disappear.

本発明の製造方法では、硝酸を添加してもよい。硝酸の添加量は、水100重量部に対して、30重量部以下が好ましく、10重量部以下がより好ましい。安全性かつ簡便性の観点から、硝酸を添加せずに、すなわち、硝酸の非存在下で、反応を行うことが最も好ましい。 In the manufacturing method of the present invention, nitric acid may be added. The addition amount of nitric acid is preferably 30 parts by weight or less, and more preferably 10 parts by weight or less with respect to 100 parts by weight of water. From the viewpoint of safety and convenience, it is most preferable to carry out the reaction without adding nitric acid, that is, in the absence of nitric acid.

生成するバナジン酸ビスマスは、単斜晶系結晶を含むことが好ましい。単斜晶系結晶と正方晶系結晶の混合物である場合は、重量比(単斜晶/正方晶)は、100/100以上であることが好ましく、100/50以上であることがより好ましく、100/33以上であることがさらに好ましい。 The resulting bismuth vanadate preferably contains monoclinic crystals. In the case of a mixture of monoclinic crystals and tetragonal crystals, the weight ratio (monoclinic/tetragonal) is preferably 100/100 or more, more preferably 100/50 or more, It is more preferably 100/33 or more.

本発明の製造方法によれば、単斜晶系結晶の割合が高いバナジン酸ビスマスを製造することができるので、可視光領域を含む幅広い波長領域の光を利用する光触媒反応に適用することができる。よって、可視光下でも、有害物質の分解、汚染された物質の浄化、水の分解等を高効率で行うことができ、例えば、内分泌攪乱物質であるノニルフェノール、ビスフェノールA、天然エストロゲン等で汚染された物質の浄化に応用できる。 According to the production method of the present invention, it is possible to produce bismuth vanadate with a high proportion of monoclinic crystals, and thus it can be applied to a photocatalytic reaction utilizing light in a wide wavelength range including a visible light range. .. Therefore, even under visible light, it is possible to decompose harmful substances, purify contaminated substances, and decompose water with high efficiency. For example, nonylphenol, bisphenol A, natural estrogen, etc., which are endocrine disruptors, are contaminated. It can be applied to the purification of substances.

有害物質の分解方法や汚染された物質の浄化方法としては、公知の方法を用いることができ、例えば、バナジン酸ビスマスを有害物質の水溶液に分散させ、光を照射しながら一定時間撹拌する方法が挙げられる。バナジン酸ビスマスは、濾別により除去・回収することができる。 As a method for decomposing harmful substances or a method for cleaning contaminated substances, known methods can be used, for example, a method of dispersing bismuth vanadate in an aqueous solution of harmful substances and stirring for a certain period of time while irradiating with light. Can be mentioned. Bismuth vanadate can be removed and recovered by filtration.

以下、本発明の実施例について説明するが、本発明は、以下の実施例に限定されない。
下記の実施例及び比較例で使用した材料及び調製したバナジン酸ビスマス粉末の評価方法を以下に示す。
Hereinafter, examples of the present invention will be described, but the present invention is not limited to the following examples.
The materials used in the following Examples and Comparative Examples and the evaluation method of the prepared bismuth vanadate powder are shown below.

<X線回折(XRD)測定>
X線回折装置(RINT2500V、株式会社リガク製)を使用してバナジン酸ビスマス粉末の結晶性を評価した。
<X-ray diffraction (XRD) measurement>
The crystallinity of the bismuth vanadate powder was evaluated using an X-ray diffractometer (RINT2500V, manufactured by Rigaku Corporation).

<光触媒反応評価>
バナジン酸ビスマス粉末(0.2g)をメチレンブルー溶液(800μl)に加え、撹拌しながら太陽光シミュレーター装置(XES−301S+EL−100、株式会社三永電機製作所製)を用いて光(波長100〜1400nm)を1時間照射した。メチレンブルー溶液の上澄み300μlをガラス基板上に滴下し、分光器(大塚電子株式会社製)を用いて、波長200〜800nmの光の透過率を測定した。水及びメチレンブルー溶液の透過率も測定した。
また、波長664nmの光の透過率の測定結果をもとに、下記の方法により透過率の回復率を算出した。
回復率{%}=(溶液の透過率/水の透過率)×100
<Photocatalytic reaction evaluation>
Bismuth vanadate powder (0.2 g) was added to a methylene blue solution (800 μl), and light (wavelength 100 to 1400 nm) was obtained by using a solar simulator device (XES-301S+EL-100, manufactured by Sanei Electric Co., Ltd.) while stirring. Was irradiated for 1 hour. 300 μl of the supernatant of the methylene blue solution was dropped on a glass substrate, and the transmittance of light having a wavelength of 200 to 800 nm was measured using a spectroscope (manufactured by Otsuka Electronics Co., Ltd.). The transmittance of water and methylene blue solution was also measured.
Further, the recovery rate of the transmittance was calculated by the following method based on the measurement result of the transmittance of the light having the wavelength of 664 nm.
Recovery rate {%}=(solution transmittance/water transmittance)×100

実施例1
硝酸ビスマス五水和物(5.8g、12mmol)とメタバナジン酸アンモニウム(2.8g、24mmol)をビーカー内で混合した上、超純水(150ml)と尿素(10g)を加え、90℃、500rpmで2時間加熱撹拌した。上澄みを捨てて、得られた沈殿物に超純水を加え5分間以上撹拌する作業を2回以上繰り返したのち、遠心分離機(3000rpm、15分)を用いて沈殿物を回収した。100℃で2時間乾燥し、粉末化した。
Example 1
Bismuth nitrate pentahydrate (5.8 g, 12 mmol) and ammonium metavanadate (2.8 g, 24 mmol) were mixed in a beaker, then ultrapure water (150 ml) and urea (10 g) were added, and 90° C., 500 rpm The mixture was heated and stirred for 2 hours. The supernatant was discarded, ultrapure water was added to the obtained precipitate, and the operation of stirring for 5 minutes or more was repeated twice or more, and then the precipitate was recovered using a centrifuge (3000 rpm, 15 minutes). It was dried at 100° C. for 2 hours and pulverized.

実施例2〜4
硝酸ビスマス五水和物(5.8g、12mmol)に対し、メタバナジン酸アンモニウムをそれぞれ4.2g(36mmol)、5.6g(48mmol)、7.00g(60mmol)用いた以外は、実施例1と同様にして沈殿物を得た。
Examples 2-4
Example 1 except that 4.2 g (36 mmol), 5.6 g (48 mmol), and 7.00 g (60 mmol) of ammonium metavanadate were used for bismuth nitrate pentahydrate (5.8 g, 12 mmol), respectively. A precipitate was obtained in the same manner.

比較例1
硝酸ビスマス五水和物(5.8g、12mmol)に対し、メタバナジン酸アンモニウムを1.4g(12mmol)用いた以外は、実施例1と同様にして沈殿物を得た。
Comparative Example 1
A precipitate was obtained in the same manner as in Example 1 except that 1.4 g (12 mmol) of ammonium metavanadate was used with respect to bismuth nitrate pentahydrate (5.8 g, 12 mmol).

実施例1〜4および比較例1で得られた各バナジン酸ビスマス粉末のXRDの積分強度を図1に示す。比較例1(V原子とBi原子のモル比が1)では、正方晶系結晶のピークが確認された。これに対し、実施例1、2及び4では、正方晶系結晶のピークがごくわずか確認される程度で、単斜晶系結晶が高い割合を占めることが確認された。V原子とBi原子のモル比が4の実施例3では、正方晶系結晶のピークは見られず、単斜晶系結晶のピークのみが確認された。 FIG. 1 shows the integrated intensity of XRD of each bismuth vanadate powder obtained in Examples 1 to 4 and Comparative Example 1. In Comparative Example 1 (the molar ratio of V atom and Bi atom was 1), a peak of a tetragonal crystal was confirmed. On the other hand, in Examples 1, 2 and 4, it was confirmed that the monoclinic system crystals occupy a high proportion to the extent that the peaks of the tetragonal system crystals were confirmed only slightly. In Example 3 in which the molar ratio of V atom to Bi atom was 4, no peak of the tetragonal crystal was observed and only the peak of the monoclinic crystal was confirmed.

実施例1〜4および比較例1で得られた各バナジン酸ビスマス粉末の光触媒反応評価結果を図2に、透過率の回復率を図3に、それぞれ示す。
V原子とBi原子のモル比が2以上で透過率の回復が確認された。特に、実施例4では透過率が約98%にまで回復した。これは、単斜晶系結晶の比率が高いと可視光領域での光触媒反応を効率的に行えることを示している。
The photocatalytic reaction evaluation results of the bismuth vanadate powders obtained in Examples 1 to 4 and Comparative Example 1 are shown in FIG. 2, and the transmittance recovery rate is shown in FIG.
It was confirmed that the transmittance was recovered when the molar ratio of V atom and Bi atom was 2 or more. Particularly, in Example 4, the transmittance was recovered to about 98%. This indicates that the photocatalytic reaction in the visible light region can be efficiently performed when the ratio of monoclinic crystals is high.

比較例2
硝酸ビスマス五水和物(5.8g、12mmol)とメタバナジン酸アンモニウム(1.4g、12mmol)をビーカー内で混合した上、超純水(150ml)と尿素(10g)を加え、90℃、500rpmで、2時間、6時間又は12時間加熱撹拌した。上澄みを捨てて、得られた沈殿物に超純水を加え5分間以上撹拌する作業を2回以上繰り返したのち、遠心分離機(3000rpm、15分)を用いて沈殿物を回収した。100℃で2時間乾燥し、粉末化した。
Comparative example 2
After mixing bismuth nitrate pentahydrate (5.8 g, 12 mmol) and ammonium metavanadate (1.4 g, 12 mmol) in a beaker, ultrapure water (150 ml) and urea (10 g) were added, and 90°C, 500 rpm Then, the mixture was heated and stirred for 2 hours, 6 hours, or 12 hours. The supernatant was discarded, ultrapure water was added to the obtained precipitate, and the operation of stirring for 5 minutes or more was repeated twice or more, and then the precipitate was recovered using a centrifuge (3000 rpm, 15 minutes). It was dried at 100° C. for 2 hours and pulverized.

バナジン酸ビスマス粉末のXRDの積分強度を図4に示す。反応時間が2時間では、正方晶系結晶のピークのみが確認された。6時間では正方晶系結晶と単斜晶系結晶の混合物が得られ、12時間では正方晶系結晶の割合はかなり低くなった。 The integrated intensity of XRD of the bismuth vanadate powder is shown in FIG. When the reaction time was 2 hours, only the peak of the tetragonal crystal was confirmed. A mixture of tetragonal crystals and monoclinic crystals was obtained in 6 hours, and the proportion of tetragonal crystals was considerably low in 12 hours.

各バナジン酸ビスマス粉末の光触媒反応評価結果を図5に、この結果をもとに算出した透過率の回復率を図6に、それぞれ示す。
V原子とBi原子のモル比が1である場合、12時間反応させても透過率が90%近くまでしか回復しないことが確認された。
The photocatalytic reaction evaluation results of each bismuth vanadate powder are shown in FIG. 5, and the transmittance recovery rates calculated based on these results are shown in FIG.
It was confirmed that when the molar ratio of V atom and Bi atom was 1, the transmittance was recovered to almost 90% even after reacting for 12 hours.

本発明によれば、可視光応答性のバナジン酸ビスマスが簡便に得られるため、可視光下での有機物質の分解手段、例えば、内分泌攪乱物質等の環境汚染物質を分解・浄化する手段等に応用することができる。 According to the present invention, since visible light responsive bismuth vanadate can be easily obtained, it can be used as a means for decomposing organic substances under visible light, for example, a means for decomposing/purifying environmental pollutants such as endocrine disrupting substances. It can be applied.

Claims (8)

水中で、ビスマス化合物と、ビスマス原子に対するバナジウム原子のモル比が2以上となる量のバナジウム化合物とを反応させる工程を含むバナジン酸ビスマスの製造方法。 A method for producing bismuth vanadate, comprising the step of reacting a bismuth compound with an amount of a vanadium compound having a molar ratio of vanadium atoms to bismuth atoms of 2 or more in water. バナジン酸ビスマスの結晶構造が単斜晶である請求項1に記載の製造方法。 The method according to claim 1, wherein the crystal structure of bismuth vanadate is monoclinic. ビスマス化合物が硝酸ビスマスである請求項1または2に記載の製造方法。 The method according to claim 1, wherein the bismuth compound is bismuth nitrate. バナジウム化合物がメタバナジン酸アンモニウムである請求項1〜3のいずれかに記載の製造方法。 The method according to claim 1, wherein the vanadium compound is ammonium metavanadate. 反応を60〜95℃で行う請求項1〜4のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the reaction is performed at 60 to 95°C. 反応を尿素の存在下で行う請求項1〜5のいずれかに記載の製造方法。 The production method according to claim 1, wherein the reaction is performed in the presence of urea. 反応時間が2時間以上である請求項1〜6のいずれかに記載の製造方法。 The production method according to claim 1, wherein the reaction time is 2 hours or more. 反応を硝酸の非存在下で行う請求項1〜7のいずれかに記載の製造方法。

The production method according to claim 1, wherein the reaction is carried out in the absence of nitric acid.

JP2019001764A 2019-01-09 2019-01-09 Method for producing visible-light-responsive bismuth vanadate Active JP7292703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019001764A JP7292703B2 (en) 2019-01-09 2019-01-09 Method for producing visible-light-responsive bismuth vanadate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019001764A JP7292703B2 (en) 2019-01-09 2019-01-09 Method for producing visible-light-responsive bismuth vanadate

Publications (2)

Publication Number Publication Date
JP2020111476A true JP2020111476A (en) 2020-07-27
JP7292703B2 JP7292703B2 (en) 2023-06-19

Family

ID=71668138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019001764A Active JP7292703B2 (en) 2019-01-09 2019-01-09 Method for producing visible-light-responsive bismuth vanadate

Country Status (1)

Country Link
JP (1) JP7292703B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020080150A (en) * 2018-11-13 2020-05-28 株式会社すなおネット Commodity information management system and service information management system
CN115779942A (en) * 2022-08-29 2023-03-14 湖南大学 Modified fern-shaped bismuth vanadate photocatalytic nano material and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156508A (en) * 1982-02-08 1983-09-17 ユニオン・オイル・コンパニ−・オブ・カリフオルニア Oxidizing catalyst for hydrogen sulfide and its oxidation method
JPS5957915A (en) * 1982-09-27 1984-04-03 Res Dev Corp Of Japan Amorphous bismuth-vanadium compound material and its manufacture
JP2004024936A (en) * 2002-06-21 2004-01-29 Japan Science & Technology Corp New synthetic method for fine powder of visible light-responsive bismuth vanadate, photocatalyst of fine powder of new visible light-responsive bismuth vanadate and cleaning method using the same
JP2004202335A (en) * 2002-12-25 2004-07-22 Sk Kaken Co Ltd Photocatalyst compound powder having visible light responsiveness
US20090226354A1 (en) * 2008-03-04 2009-09-10 Worleyparsons Group, Inc. Process for Catalytic Tail Gas Incineration
CN102963930A (en) * 2012-11-09 2013-03-13 陕西科技大学 Method for preparing BiVO4 with photocatalytic performance under visible lights
WO2014136783A1 (en) * 2013-03-07 2014-09-12 学校法人東京理科大学 Bismuth-vanadate-laminate manufacturing method and bismuth-vanadate laminate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156508A (en) * 1982-02-08 1983-09-17 ユニオン・オイル・コンパニ−・オブ・カリフオルニア Oxidizing catalyst for hydrogen sulfide and its oxidation method
JPS5957915A (en) * 1982-09-27 1984-04-03 Res Dev Corp Of Japan Amorphous bismuth-vanadium compound material and its manufacture
JP2004024936A (en) * 2002-06-21 2004-01-29 Japan Science & Technology Corp New synthetic method for fine powder of visible light-responsive bismuth vanadate, photocatalyst of fine powder of new visible light-responsive bismuth vanadate and cleaning method using the same
JP2004202335A (en) * 2002-12-25 2004-07-22 Sk Kaken Co Ltd Photocatalyst compound powder having visible light responsiveness
US20090226354A1 (en) * 2008-03-04 2009-09-10 Worleyparsons Group, Inc. Process for Catalytic Tail Gas Incineration
CN102963930A (en) * 2012-11-09 2013-03-13 陕西科技大学 Method for preparing BiVO4 with photocatalytic performance under visible lights
WO2014136783A1 (en) * 2013-03-07 2014-09-12 学校法人東京理科大学 Bismuth-vanadate-laminate manufacturing method and bismuth-vanadate laminate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OHATA Y. ET AL., 第65回応用物理学会春季学術講演会講演予稿集, JPN7022005578, 17 March 2018 (2018-03-17), JP, pages 5 - 27, ISSN: 0004931194 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020080150A (en) * 2018-11-13 2020-05-28 株式会社すなおネット Commodity information management system and service information management system
CN115779942A (en) * 2022-08-29 2023-03-14 湖南大学 Modified fern-shaped bismuth vanadate photocatalytic nano material and preparation method and application thereof
CN115779942B (en) * 2022-08-29 2024-01-26 湖南大学 Modified fern-shaped bismuth vanadate photocatalytic nanomaterial as well as preparation method and application thereof

Also Published As

Publication number Publication date
JP7292703B2 (en) 2023-06-19

Similar Documents

Publication Publication Date Title
Sun et al. Efficient methylene blue removal over hydrothermally synthesized starlike BiVO4
US7763149B2 (en) Solar photocatalysis using transition-metal oxides combining d0 and d6 electron configurations
WO2005014170A1 (en) Photocatalyst material being activated by visible light, raw material for the same and method for producing the same
JP4587485B2 (en) Method for producing brookite type titanium dioxide
CN102351242A (en) Solvent-thermal method for preparing single-phase bismuth titanate Bi2Ti2O7
Vega et al. Visible light photocatalytic activity of sol–gel Ni-doped TiO 2 on p-arsanilic acid degradation
JP6186246B2 (en) Method for producing crystalline titanium oxide and method for regenerating denitration catalyst
JP7292703B2 (en) Method for producing visible-light-responsive bismuth vanadate
TW201741025A (en) Bimetal oxysulfide solid-solution catalyst and manufacturing method thereof, method for carbon dioxide reduction, method for heavy metal reduction, and method for hydrogenation of organic compounds
EP1492729B1 (en) Method for preparing a photocatalyst containing titanium dioxide
JP2017081812A (en) Manganese-zirconium-based composite oxide and manufacturing method therefor and application thereof
Phiankoh et al. Effect of pH on crystal structure and morphology of hydrothermally-synthesized BiVO4
KR100840750B1 (en) Titanium oxide mixture powder solution for photocatalystic
CN104607176A (en) Preparation method of nano bismuth tantalite photocatalyst and application of nano bismuth tantalite photocatalyst to photocatalytic degradation of organic pollutants
KR20120095855A (en) Copper ion-modified titanium oxide and process for producing the same, and photocatalyst
EP4282523A1 (en) Denitration catalyst and method for producing same
JP5050182B2 (en) Catalyst for amide dehydration reaction and method for producing nitrile using the same
Febiyanto et al. Facile synthesis of Ag3PO4 photocatalyst with varied ammonia concentration and its photocatalytic activities for dye removal
JPS61136902A (en) Manufacture of chlorine
RU2435733C1 (en) Method of producing photocatalytic nanocomposite containing titanium dioxide
JP5356841B2 (en) Method for treating aqueous solution containing ammonia
CN104998661B (en) Preparation method for visible light photocatalyst SnO2/ZnS nanosphere composite material
KR20060128465A (en) Nitrogen fixation at vegetable caused by titanium oxide mixture powder photo catalyst and utilization
Putta et al. Characterization and activity of visible-light driven TiO2 photocatalyst doped with tungsten
JP2023158859A (en) Visible light-responsive photocatalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230531

R150 Certificate of patent or registration of utility model

Ref document number: 7292703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150