JP2020092229A - Semiconductor device, manufacturing method of semiconductor device, and clip lead - Google Patents

Semiconductor device, manufacturing method of semiconductor device, and clip lead Download PDF

Info

Publication number
JP2020092229A
JP2020092229A JP2018229906A JP2018229906A JP2020092229A JP 2020092229 A JP2020092229 A JP 2020092229A JP 2018229906 A JP2018229906 A JP 2018229906A JP 2018229906 A JP2018229906 A JP 2018229906A JP 2020092229 A JP2020092229 A JP 2020092229A
Authority
JP
Japan
Prior art keywords
semiconductor device
joint
chip
clip lead
bent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018229906A
Other languages
Japanese (ja)
Other versions
JP7329919B2 (en
Inventor
大介 宮崎
Daisuke Miyazaki
大介 宮崎
奈津紀 竹原
Natsuki Takehara
奈津紀 竹原
洋平 篠竹
Yohei Shinotake
洋平 篠竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP2018229906A priority Critical patent/JP7329919B2/en
Publication of JP2020092229A publication Critical patent/JP2020092229A/en
Application granted granted Critical
Publication of JP7329919B2 publication Critical patent/JP7329919B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/4005Shape
    • H01L2224/4009Loop shape
    • H01L2224/40095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/8484Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

To provide a semiconductor device, capable of conducting a relatively large current, yet highly resistant to thermal cycling stress.SOLUTION: A semiconductor device 1 includes: a chip 10; a first electrode unit 20; a second electrode unit 22; and a clip lead 100 having a first junction 110, a second junction 120, and a cross-linked unit 130. The cross-linked unit 130 has a flat plate unit 131 having a predetermined thickness, a first bending unit 132, and a second bending unit 133. The first junction 110 and the first bending unit 132 configure a thermal stress relief structure 140 for relieving thermal stress on the first junction member 30 between the chip 10 and the first junction 110. The thermal stress relief structure 140 has a structure in which at least the first junction 110 and the first bending unit 132 are thinner than the flat plate unit 131.SELECTED DRAWING: Figure 1

Description

本発明は、半導体装置、半導体装置の製造方法及びクリップリードに関する。 The present invention relates to a semiconductor device, a semiconductor device manufacturing method, and a clip lead.

従来、チップと電極部とを電気的に接続するクリップリードを備える半導体装置が知られている(例えば、特許文献1参照。)。 Conventionally, a semiconductor device including a clip lead that electrically connects a chip and an electrode portion is known (for example, refer to Patent Document 1).

図11は、従来の半導体装置800を示す図である。図11中、符号850は接合部材を示し、符号Sは基板を示す。
従来の半導体装置800は、図11に示すように、一方の面及び他方の面にそれぞれ表面電極812,814を有するチップ810と、一方の面の表面電極812と電気的に接続されている第1電極部820と、第1電極部820と間隔をあけて配置された第2電極部822と、チップ810の他方の面の表面電極814と接合部材830を介して接合された第1接合部910、第1接合部910と間隔をあけて配置され、第2電極部822と接合部材840を介して接合された第2接合部920、及び、第1接合部910と第2接合部920とを架橋する架橋部930とを有し、チップ810と第2電極部822とを電気的に接続するクリップリード900とを備える。第1電極部820と第2電極部822とは同一の基板上に配置されており、クリップリード900においては、第1接合部910、第2接合部920及び架橋部930は、いずれも同じ厚さである。
FIG. 11 is a diagram showing a conventional semiconductor device 800. In FIG. 11, reference numeral 850 indicates a joining member, and reference numeral S indicates a substrate.
As shown in FIG. 11, a conventional semiconductor device 800 is electrically connected to a chip 810 having surface electrodes 812 and 814 on one surface and the other surface, and a surface electrode 812 on one surface. 1st electrode part 820, 2nd electrode part 822 arrange|positioned with the 1st electrode part 820 at intervals, 1st joining part joined by surface electrode 814 of the other surface of chip 810 via joining member 830 910, a second joining portion 920 that is arranged with a gap from the first joining portion 910, and is joined to the second electrode portion 822 via a joining member 840; and a first joining portion 910 and a second joining portion 920. And a clip lead 900 that electrically connects the chip 810 and the second electrode portion 822. The first electrode portion 820 and the second electrode portion 822 are arranged on the same substrate, and in the clip lead 900, the first joint portion 910, the second joint portion 920, and the bridging portion 930 all have the same thickness. That's it.

架橋部930は、所定の厚みを有する平板部931と、平板部931から下側に折り曲げられ、第1接合部910と接続されている第1折り曲げ部932と、平板部931から下側に折り曲げられ、第2接合部920と接続されている第2折り曲げ部933とを有する。 The bridge portion 930 includes a flat plate portion 931 having a predetermined thickness, a first bent portion 932 that is bent downward from the flat plate portion 931 and is connected to the first joint portion 910, and a flat plate portion 931 that is bent downward. And a second bent portion 933 connected to the second joint portion 920.

従来の半導体装置800によれば、クリップリード900によってチップ810と第2電極部822とを電気的に接続するため、ボンディングワイヤによってチップ810と第2電極部822とを電気的に接続した場合よりも大きな電流を導通可能な半導体装置となる。 According to the conventional semiconductor device 800, since the chip 810 and the second electrode portion 822 are electrically connected by the clip lead 900, compared to the case where the chip 810 and the second electrode portion 822 are electrically connected by the bonding wire. Also becomes a semiconductor device capable of conducting a large current.

特開2012−212712号公報JP 2012-212712 A

ところで近年、チップの性能が上がり、チップサイズが比較的小さく、かつ、定格電流が比較的大きいチップが登場したことに伴い、より大きな電流を導通可能で、かつ、小型化された電子機器が求められている。このような電子機器を実現するためには、クリップリードの断面積(電流の導通路に対する断面積)が大きく、より大きな電流を導通可能なクリップリードを用いる必要がある。 By the way, in recent years, the performance of chips has improved, and with the advent of chips with a relatively small chip size and a relatively large rated current, there has been a demand for electronic devices capable of conducting a larger current and downsized. Has been. In order to realize such an electronic device, it is necessary to use a clip lead having a large cross-sectional area (cross-sectional area with respect to a current conducting path) and capable of conducting a larger current.

しかしながら、単にクリップリードの断面積を大きくすると、クリップリードの第1接合部の厚さが大きくなるため、チップと第1接合部との間の接合部材(第1接合部材)に加わる応力が大きくなり、熱サイクルストレスに対する耐性が低下するおそれがある、という問題がある。 However, simply increasing the cross-sectional area of the clip lead increases the thickness of the first joint portion of the clip lead, so that the stress applied to the joint member (first joint member) between the chip and the first joint portion is large. Therefore, there is a risk that the resistance to thermal cycle stress may decrease.

そこで、本発明は上記した問題を解決するためになされたものであり、比較的大きな電流を導通可能でありながら熱サイクルストレスに対する耐性が高い半導体装置を提供することを目的とする。また、このような半導体装置を製造するための半導体装置の製造方法を提供することを目的とする。さらにまた、このような半導体装置に用いるクリップリードを提供することを目的とする。 Therefore, the present invention has been made to solve the above problems, and an object of the present invention is to provide a semiconductor device capable of conducting a relatively large current and having high resistance to thermal cycle stress. Another object is to provide a method for manufacturing a semiconductor device for manufacturing such a semiconductor device. Still another object is to provide a clip lead used in such a semiconductor device.

[1]本発明の半導体装置は、一方の面及び他方の面にそれぞれ表面電極を有するチップと、前記チップの前記一方の面の前記表面電極と電気的に接続されている第1電極部と、前記第1電極部と間隔をあけて配置された第2電極部と、前記チップの前記他方の面の前記表面電極と第1接合部材を介して接合された第1接合部、前記第1接合部と間隔をあけて配置され、前記第2電極部と第2接合部材を介して接合された第2接合部、及び、前記第1接合部と前記第2接合部とを架橋する架橋部を有し、前記チップと前記第2電極部とを電気的に接続するクリップリードとを備え、前記架橋部は、所定の厚みを有する平板部と、前記平板部から下側に折り曲げられ、前記第1接合部と接続されている第1折り曲げ部と、前記平板部から前記下側に折り曲げられ、前記第2接合部と接続されている第2折り曲げ部とを有し、前記第1接合部及び前記第1折り曲げ部は、前記チップと前記第1接合部との間の前記第1接合部材に対する熱応力を緩和するための熱応力緩和構造を構成し、前記熱応力緩和構造は、少なくとも前記第1接合部及び前記第1折り曲げ部が前記平板部よりも薄くなるように構成された構造を含むことを特徴とする。 [1] A semiconductor device of the present invention includes a chip having surface electrodes on one surface and the other surface, and a first electrode portion electrically connected to the surface electrode on the one surface of the chip. A second electrode portion spaced apart from the first electrode portion, a first joint portion joined to the surface electrode on the other surface of the chip via a first joint member, the first joint portion, A second joint portion that is arranged with a gap from the joint portion and is joined to the second electrode portion via a second joint member, and a bridge portion that bridges the first joint portion and the second joint portion. And a clip lead that electrically connects the chip and the second electrode portion, the bridging portion is a flat plate portion having a predetermined thickness, and the flat plate portion is bent downward, A first bent portion connected to a first joint portion; and a second bent portion bent from the flat plate portion to the lower side and connected to the second joint portion, the first joint portion And the first bent portion constitutes a thermal stress relaxation structure for relaxing thermal stress on the first bonding member between the chip and the first bonding portion, and the thermal stress relaxation structure is at least the thermal stress relaxation structure. The first joining portion and the first bent portion may include a structure configured to be thinner than the flat plate portion.

[2]本発明の半導体装置において、前記熱応力緩和構造は、少なくとも前記第1接合部及び前記第1折り曲げ部が異形条材を折り曲げることによって形成された構造を含むことが好ましい。 [2] In the semiconductor device of the present invention, it is preferable that the thermal stress relaxation structure includes a structure in which at least the first joint portion and the first bent portion are formed by bending a profiled strip.

[3]本発明の半導体装置において、前記熱応力緩和構造は、前記第1接合部に対する前記第1折り曲げ部の傾斜角度が90°〜120°の範囲内になるように構成された構造を含むことが好ましい。 [3] In the semiconductor device of the present invention, the thermal stress relaxation structure includes a structure in which an inclination angle of the first bent portion with respect to the first joint portion is within a range of 90° to 120°. Preferably.

[4]本発明の半導体装置においては、前記クリップリードにおいて、前記第1折り曲げ部の前記チップ側の面全体が前記第1接合部材と接していることが好ましい。 [4] In the semiconductor device of the present invention, in the clip lead, it is preferable that the entire surface of the first bent portion on the chip side is in contact with the first joining member.

[5]本発明の半導体装置においては、前記第1接合部において、前記第1接合部の厚みのうちの少なくとも半分の厚みまで前記第1接合部材に埋められていることが好ましい。 [5] In the semiconductor device of the present invention, it is preferable that at the first bonding portion, at least half the thickness of the first bonding portion is filled with the first bonding member.

[6]本発明の半導体装置において、前記第2接合部及び前記第2折り曲げ部は、いずれも前記平板部よりも薄いことが好ましい。 [6] In the semiconductor device of the present invention, it is preferable that both the second joint portion and the second bent portion are thinner than the flat plate portion.

[7]本発明の半導体装置において、前記第1接合部、前記第2接合部、前記第1折り曲げ部及び前記第2折り曲げ部は、いずれも同じ厚さであることが好ましい。 [7] In the semiconductor device of the present invention, it is preferable that the first joint portion, the second joint portion, the first bent portion, and the second bent portion all have the same thickness.

[8]本発明の半導体装置において、前記第2接合部及び前記第2折り曲げ部は、いずれも前記平板部と同じ厚さであることが好ましい。 [8] In the semiconductor device of the present invention, it is preferable that both the second joint portion and the second bent portion have the same thickness as the flat plate portion.

[9]本発明の半導体装置において、前記架橋部は、前記平板部と前記第1折り曲げ部との間に前記平板部よりも薄い肩部をさらに有することが好ましい。 [9] In the semiconductor device of the present invention, it is preferable that the bridging portion further has a shoulder portion thinner than the flat plate portion between the flat plate portion and the first bent portion.

[10]本発明の半導体装置においては、前記肩部の下側の面と前記平板部の下側の面との間には段差部が形成されていることが好ましい。 [10] In the semiconductor device of the present invention, it is preferable that a step portion is formed between the lower surface of the shoulder portion and the lower surface of the flat plate portion.

[11]本発明の半導体装置においては、前記第1接合部材と前記クリップリードとの接触面の端部が前記段差部にあることが好ましい。 [11] In the semiconductor device of the present invention, it is preferable that an end portion of a contact surface between the first bonding member and the clip lead is in the step portion.

[12]本発明の半導体装置において、前記肩部は、側面から見て階段状の肩部であることが好ましい。 [12] In the semiconductor device of the present invention, it is preferable that the shoulder is a stepped shoulder when viewed from the side.

[13]本発明の半導体装置においては、前記第1接合部において、前記チップと接合する面とは反対側の面に溝が形成されていることが好ましい。 [13] In the semiconductor device of the present invention, it is preferable that a groove is formed on a surface of the first bonding portion opposite to a surface bonded to the chip.

[14]本発明の半導体装置の製造方法は、[1]〜[13]のいずれかに記載の半導体装置を製造するための半導体装置の製造方法であって、第1接合部、前記第1接合部と間隔をあけて配置された第2接合部、及び、前記第1接合部と前記第2接合部とを架橋する架橋部を有し、前記架橋部は、所定の厚みを有する平板部と、前記平板部から一方側に折り曲げられ、前記第1接合部と接続されている第1折り曲げ部と、前記平板部から前記一方側に折り曲げられ、前記第2接合部と接続されている第2折り曲げ部とを有するクリップリードをチップ及び電極部上に接合部材を介して配置するクリップリード配置工程と、前記チップと前記第1接合部との間、及び、前記電極部と前記第2接合部との間をそれぞれ前記接合部材で接合する接合工程とを含み、前記クリップリード配置工程においては、前記クリップリードとして、前記第1接合部及び前記第1折り曲げ部が前記第1接合部と前記チップとの間の前記接合部材に対する熱応力を緩和するための熱応力緩和構造を構成するクリップリードを前記チップ及び前記電極部上に配置することを特徴とする。 [14] A semiconductor device manufacturing method according to the present invention is a semiconductor device manufacturing method for manufacturing the semiconductor device according to any one of [1] to [13], wherein It has a 2nd joining part arranged at a gap with a joining part, and a bridge part which bridges the 1st joining part and the 2nd joining part, and the bridge part has a flat part which has a predetermined thickness. A first bent portion that is bent from the flat plate portion to one side and is connected to the first joint portion; and a first bent portion that is bent from the flat plate portion to the one side and is connected to the second joint portion. Clip lead disposing step of disposing a clip lead having two bent parts on the chip and the electrode part via a bonding member, between the chip and the first bonding part, and the electrode part and the second bonding And a joining step of joining each of the portions with a joining member by the joining member. In the clip lead arranging step, the first joining portion and the first bent portion serve as the clip leads and the first joining portion and the first joining portion. A clip lead forming a thermal stress relaxation structure for relaxing thermal stress on the joining member between the chip and the chip is arranged on the chip and the electrode portion.

[15]本発明のクリップリードは、[1]〜[13]のいずれかに記載の半導体装置に用いることを特徴とする。 [15] The clip lead of the present invention is used in the semiconductor device according to any one of [1] to [13].

本発明の半導体装置及びクリップリードによれば、架橋部は、所定の厚みを有する平板部を有するため、クリップリードの断面積(電流の導通路に対する断面積)が大きく、クリップリードは、比較的大きな電流を導通可能なクリップリードとなる。従って、チップサイズが小さく、かつ、定格電流が比較的大きいチップに対応したクリップリードとなり、その結果、比較的大きな電流を導通可能で、かつ、小型化された電子機器を実現することができる半導体装置及びクリップリードとなる。 According to the semiconductor device and the clip lead of the present invention, since the bridging portion has the flat plate portion having a predetermined thickness, the cross-sectional area of the clip lead (the cross-sectional area for the current conducting path) is large, and the clip lead is relatively large. It becomes a clip lead that can conduct a large current. Accordingly, the clip lead corresponds to a chip having a small chip size and a relatively large rated current, and as a result, a semiconductor capable of conducting a relatively large current and realizing a downsized electronic device. It becomes the device and the clip lead.

また、本発明の半導体装置及びクリップリードによれば、第1接合部及び第1折り曲げ部は、チップと第1接合部との間の第1接合部材に対する熱応力を緩和するための熱応力緩和構造を構成するため、比較的大きな電流を導通した場合でも、チップと第1接合部との間の第1接合部材に加わる熱応力を比較的小さくすることができ、その結果、熱サイクルストレスに対する耐性を比較的高くすることができる。 Further, according to the semiconductor device and the clip lead of the present invention, the first joint portion and the first bent portion relax the thermal stress for relieving the thermal stress on the first joint member between the chip and the first joint portion. Since the structure is configured, the thermal stress applied to the first joining member between the chip and the first joining portion can be made relatively small even when a relatively large current is conducted, and as a result, the thermal stress against the thermal cycle stress can be reduced. The resistance can be made relatively high.

また、本発明の半導体装置及びクリップリードによれば、熱応力緩和構造は、少なくとも第1接合部及び第1折り曲げ部が平板部よりも薄くなるように構成された構造を含むため、第1接合部の剛性を比較的小さくすることができ、チップと第1接合部との熱膨張係数の違いに起因する第1接合部材の応力が比較的小さくなる。その結果、熱サイクルストレスに対する耐性を比較的高くすることができる。 Further, according to the semiconductor device and the clip lead of the present invention, since the thermal stress relaxation structure includes a structure in which at least the first joint portion and the first bent portion are thinner than the flat plate portion, the first joint portion The rigidity of the portion can be made relatively small, and the stress of the first joining member due to the difference in thermal expansion coefficient between the chip and the first joining portion becomes relatively small. As a result, the resistance to thermal cycle stress can be made relatively high.

本発明の半導体装置の製造方法によれば、クリップリード配置工程において、所定の厚みを有する平板部を有する架橋部を有するクリップリード、すなわち、クリップリードの断面積(電流の導通路に対する断面積)が大きく、比較的大きな電流を導通可能なクリップリードをチップ及び電極部上に配置するため、チップサイズが小さく、かつ、定格電流が比較的大きいチップに対応したクリップリードを配置することとなり、その結果、比較的大きな電流を導通可能で、かつ、小型化された電子機器を実現することができる半導体装置を製造することができる。 According to the semiconductor device manufacturing method of the present invention, in the clip lead arranging step, the clip lead having the bridging portion having the flat plate portion having the predetermined thickness, that is, the cross-sectional area of the clip lead (the cross-sectional area with respect to the current conducting path). Since the large size of the clip lead that can conduct a relatively large current is arranged on the chip and the electrode portion, the clip lead corresponding to the chip having a small chip size and a relatively large rated current is arranged. As a result, it is possible to manufacture a semiconductor device capable of conducting a relatively large current and realizing a downsized electronic device.

また、本発明の半導体装置の製造方法によれば、クリップリードとして、第1接合部及び第1折り曲げ部が第1接合部とチップとの間の第1接合部材に対する熱応力を緩和するための熱応力緩和構造を構成するクリップリードをチップ及び電極部上に配置するため、比較的大きな電流を導通した場合でも、第1接合部材に加わる熱応力を比較的小さくすることができ、その結果、熱サイクルストレスに対する耐性の高い半導体装置を製造することができる。 Further, according to the method for manufacturing a semiconductor device of the present invention, as the clip lead, the first joint portion and the first bent portion are provided to reduce thermal stress on the first joint member between the first joint portion and the chip. Since the clip lead forming the thermal stress relaxation structure is arranged on the chip and the electrode portion, the thermal stress applied to the first joining member can be made relatively small even when a relatively large current is conducted, and as a result, A semiconductor device having high resistance to thermal cycle stress can be manufactured.

また、本発明の半導体装置の製造方法によれば、クリップリード配置工程においては、クリップリードとして、第1接合部及び第1折り曲げ部が第1接合部とチップとの間の接合部材に対する熱応力を緩和するための熱応力緩和構造を構成し、熱応力緩和構造は、少なくとも第1接合部及び第1折り曲げ部が平板部よりも薄くなるように構成された構造を含むクリップリードをチップ及び電極部上に配置するため、製造された半導体装置は、第1接合部の剛性を小さくすることができ、チップと第1接合部との熱膨張係数の違いに起因する第1接合部材の応力が小さくなる。その結果、熱サイクルストレスに対する耐性の高い半導体装置を製造することができる。 Further, according to the method of manufacturing a semiconductor device of the present invention, in the clip lead disposing step, the first bonding portion and the first bent portion serve as the clip lead, and thermal stress is exerted on the bonding member between the first bonding portion and the chip. And a clip lead including a structure in which at least the first joint portion and the first bent portion are configured to be thinner than the flat plate portion. In the manufactured semiconductor device, the rigidity of the first joint can be reduced, and the stress of the first joint member due to the difference in thermal expansion coefficient between the chip and the first joint can be reduced. Get smaller. As a result, a semiconductor device having high resistance to thermal cycle stress can be manufactured.

実施形態1に係る半導体装置1の断面図である。3 is a cross-sectional view of the semiconductor device 1 according to the first embodiment. FIG. 実施形態1に係るクリップリード100の製造方法を説明するために示す図である。6A and 6B are views for explaining the method for manufacturing the clip lead 100 according to the first embodiment. 異形条材100’を説明するために示す図である。It is a figure shown in order to demonstrate the profile strip 100'. 実施形態1に係る半導体装置の製造方法を説明するために示す図である。FIG. 6 is a diagram shown for explaining the method for manufacturing the semiconductor device according to the first embodiment. 実施形態1に係る半導体装置の製造方法を説明するために示す図である。FIG. 6 is a diagram shown for explaining the method for manufacturing the semiconductor device according to the first embodiment. 実施形態2に係る半導体装置2の断面図である。6 is a cross-sectional view of a semiconductor device 2 according to a second embodiment. FIG. 実施形態3に係る半導体装置3の断面図である。6 is a cross-sectional view of a semiconductor device 3 according to a third embodiment. FIG. 実施形態4に係る半導体装置4の断面図である。FIG. 9 is a cross-sectional view of a semiconductor device 4 according to a fourth embodiment. 実施形態5に係る半導体装置5の断面図である。FIG. 9 is a cross-sectional view of a semiconductor device 5 according to a fifth embodiment. 変形例に係る半導体装置6を示す図である。It is a figure which shows the semiconductor device 6 which concerns on a modification. 従来の半導体装置800を示す図である。It is a figure which shows the conventional semiconductor device 800.

以下、本発明の半導体装置、半導体装置の製造方法及びクリップリードについて、図に示す実施形態に基づいて説明する。なお、各図面は模式図であり、必ずしも実際の寸法を厳密に反映したものではない。また、各実施形態においては、基本的な構成、特徴、機能が同じ構成要素(形状が完全に同一でない構成要素を含む)については、実施形態をまたいで同じ符号を使用するとともに再度の説明を省略することがある。 Hereinafter, a semiconductor device, a method for manufacturing a semiconductor device, and a clip lead of the present invention will be described based on the embodiments shown in the drawings. It should be noted that each drawing is a schematic diagram and does not necessarily reflect the actual dimensions strictly. Further, in each embodiment, components having the same basic configuration, characteristics, and functions (including components not completely identical in shape) will be denoted by the same reference numerals across the embodiments and will not be described again. May be omitted.

[実施形態1]
1.実施形態1に係る半導体装置1の構成
図1は、実施形態1に係る半導体装置1を示す図である。図1(a)は半導体装置1の断面図を示し、図1(b)はチップ10近傍の要部拡大断面図を示し、図1(c)は第2電極部22近傍の要部拡大断面図を示す。
図2は、実施形態1に係るクリップリード100を説明するために示す図である。図2(a)は折り曲げ前の異形条材100’を示す断面図であり、図2(b)はクリップリード100を示す断面図である。
図3は、異形条材100’を説明するために示す図である。図3(a)は銅平条材100’’の断面図を示し、図3(b)は銅平条材100’’を圧延している様子を示す図であり、図3(c)は異形条材100’の断面図を示す図である。
[Embodiment 1]
1. Configuration of Semiconductor Device 1 According to First Embodiment FIG. 1 is a diagram showing the semiconductor device 1 according to the first embodiment. 1A is a sectional view of the semiconductor device 1, FIG. 1B is an enlarged sectional view of an essential part near the chip 10, and FIG. 1C is an enlarged sectional view of an essential part near the second electrode part 22. The figure is shown.
FIG. 2 is a diagram for explaining the clip lead 100 according to the first embodiment. 2A is a cross-sectional view showing the deformed strip 100′ before bending, and FIG. 2B is a cross-sectional view showing the clip lead 100.
FIG. 3 is a diagram shown for explaining the profiled strip 100′. FIG. 3A is a cross-sectional view of the copper flat strip 100″, FIG. 3B is a view showing a state of rolling the copper flat strip 100″, and FIG. It is a figure which shows the cross section of profile strip 100'.

実施形態1に係る半導体装置1は、図1に示すように、チップ10と、表面上に第1電極部20及び第2電極部22が配置された基板Sと、クリップリード100と、第1接合部材30と、第2接合部材40と、端子70と、樹脂80とを備える。 As shown in FIG. 1, the semiconductor device 1 according to the first embodiment includes a chip 10, a substrate S on which a first electrode portion 20 and a second electrode portion 22 are arranged, a clip lead 100, and a first electrode. The joining member 30, the second joining member 40, the terminal 70, and the resin 80 are provided.

チップ10は、一方の面(基板側)及び他方の面(基板とは反対側)にそれぞれ表面電極12,14を有する半導体チップである。チップ10は、基板S上に配置された第1電極部20上に第3接合部材50を介して接合されている。実施形態1においては2端子の半導体チップを用いるが、3端子や4端子等適宜の半導体チップを用いてもよい。 The chip 10 is a semiconductor chip having surface electrodes 12 and 14 on one surface (on the side of the substrate) and the other surface (on the side opposite to the substrate), respectively. The chip 10 is bonded to the first electrode portion 20 arranged on the substrate S via the third bonding member 50. Although a two-terminal semiconductor chip is used in the first embodiment, an appropriate semiconductor chip such as a three-terminal or a four-terminal semiconductor chip may be used.

基板Sは、一方の表面に、第1電極部20及び第2電極部22が配置されており、他方面には放熱用のフィンFが配置されている。基板Sとしては、一般的なプリント基板を用いてもよいし、DCB基板(Direct Cоpper Bonding基板)を用いてもよいし、その他適宜の基板を用いてもよい。第1電極部20及び第2電極部22はいずれも基板上のパターン配線である。
第1電極部20は、チップ10の一方の面の表面電極12と電気的に接続されている。
第2電極部22は、第1電極部20と間隔をあけて配置されている。第2電極部22の所定の領域においては、第2接合部材40を介してクリップリード100の第2接合部120と接合されており、第2電極部22の別の領域においては、第4接合部材60を介して外部接続用の端子70が接合されている。
The first electrode portion 20 and the second electrode portion 22 are arranged on one surface of the substrate S, and the fins F for heat dissipation are arranged on the other surface. As the board S, a general printed board may be used, a DCB board (Direct Copper Bonding board) may be used, or any other suitable board may be used. Both the first electrode portion 20 and the second electrode portion 22 are pattern wiring on the substrate.
The first electrode portion 20 is electrically connected to the surface electrode 12 on one surface of the chip 10.
The second electrode portion 22 is arranged with a space from the first electrode portion 20. In a predetermined area of the second electrode portion 22, it is joined to the second joining portion 120 of the clip lead 100 via the second joining member 40, and in a different area of the second electrode portion 22, a fourth joining portion. A terminal 70 for external connection is joined via the member 60.

クリップリード100は、チップ10の他方の面の表面電極14と第1接合部材30を介して接合された第1接合部110、第1接合部110と間隔をあけて配置され、第2電極部22と第2接合部材40を介して接合された第2接合部120、及び、第1接合部110と第2接合部120とを架橋する架橋部130を有し、チップ10と第2電極部22とを電気的に接続する。なお、熱応力緩和構造140については後述する。 The clip lead 100 is disposed with a space between the first bonding portion 110 and the first bonding portion 110, which are bonded to the surface electrode 14 on the other surface of the chip 10 via the first bonding member 30, and the second electrode portion. 22 and the second bonding member 40 and the second bonding portion 120, and the bridge portion 130 that bridges the first bonding portion 110 and the second bonding portion 120, and the chip 10 and the second electrode portion. 22 is electrically connected. The thermal stress relaxation structure 140 will be described later.

クリップリード100は、銅などの金属からなる。クリップリード100は、一方側に突出した凸部の形状(台地状の形状)をした板厚部131’と板薄部132’,133’を有する異形条材100’が折り曲げられてなる(図2参照。)。異形条材100’は、銅平条材100’’から(例えばロールR等で)圧延することによって板厚部131’と板薄部132’,133’とが形成されたものである(図3参照。)。 The clip lead 100 is made of metal such as copper. The clip lead 100 is formed by bending a deformed strip 100′ having a thick plate portion 131′ and a thin plate portion 132′, 133′ having a convex shape (plateau shape) protruding to one side (see FIG. 2). The deformed strip 100' is formed by rolling the flat copper strip 100'' (for example, with a roll R) to form a thick portion 131' and thin portions 132' and 133' (Fig. See 3.).

なお、本明細書において、異形条材とは、フープ材のように異形状の断面を有するものがロール状に巻かれているもののみならず、当該フープ材から切り離されて個片化したものも異形条材というものとする。 In the present specification, the deformed strip material is not limited to one in which a hoop material having an irregularly shaped cross section is wound in a roll shape, but is also separated into individual pieces from the hoop material. Is also called profiled strip.

クリップリード100は、異形条材100’の板薄部132’,133’における板厚部131’側の部分において、板薄部132’,133’を他方側(図2の紙面下側)に向かって折り曲げることにより、第1折り曲げ部132及び第2折り曲げ部133が形成されている。さらに、板薄部132’の中途で折り曲げることにより第1接合部110が形成され、板薄部133’の中途で折り曲げることにより第2接合部120が形成されている(図2参照。)。 In the clip lead 100, the thin plate portions 132' and 133' are arranged on the other side (the lower side of the plane of FIG. 2) at the thin plate portions 132' and 133' of the deformed strip 100' on the plate thickness portion 131' side. The first bent portion 132 and the second bent portion 133 are formed by bending toward each other. Further, the first joint portion 110 is formed by bending the sheet thin portion 132' in the middle thereof, and the second joint portion 120 is formed by bending the sheet thin portion 133' in the middle thereof (see FIG. 2).

第1接合部110は、平面的に見てチップ10の他方の面の表面電極14と対応する位置に配置されており、第1接合部材30を介してチップ10の他方の面の表面電極14と接続されている。第1接合部110は、平板部131よりも薄い平板形状であり、チップ10の他方の面の表面電極14とほぼ平行になるように配置されている。 The first bonding portion 110 is arranged at a position corresponding to the surface electrode 14 on the other surface of the chip 10 in plan view, and the surface electrode 14 on the other surface of the chip 10 is interposed via the first bonding member 30. Connected with. The first bonding portion 110 has a flat plate shape thinner than the flat plate portion 131, and is arranged so as to be substantially parallel to the surface electrode 14 on the other surface of the chip 10.

第2接合部120は、平面的に見て第2電極部22の少なくとも一部と重なる位置に配置され、第2接合部材40を介して第2電極部22と接続されている。第2接合部120は、平板部131よりも薄い平板形状である。第1接合部110と第2接合部120とは同じ厚さである。 The second joint portion 120 is arranged at a position overlapping at least a part of the second electrode portion 22 when seen in a plan view, and is connected to the second electrode portion 22 via the second joint member 40. The second joint portion 120 has a flat plate shape thinner than the flat plate portion 131. The first joint 110 and the second joint 120 have the same thickness.

架橋部130は、平板部131と、第1折り曲げ部132と、第2折り曲げ部133と、肩部134,135とを有する。 The bridge portion 130 has a flat plate portion 131, a first bent portion 132, a second bent portion 133, and shoulder portions 134 and 135.

平板部131は、チップ10の定格電流に対応した電流量を導通可能な所定の厚みを有する。平板部131が所定の厚さを有するため、平板部131と樹脂80との接触面積が大きくなり、クリップリード100が固定されやすい。 The flat plate portion 131 has a predetermined thickness capable of conducting a current amount corresponding to the rated current of the chip 10. Since the flat plate portion 131 has a predetermined thickness, the contact area between the flat plate portion 131 and the resin 80 is large, and the clip lead 100 is easily fixed.

第1折り曲げ部132は、平板部131(肩部134)から下側に向かって折り曲げられており、平板部131と接続されている側とは反対側で第1接合部110と接続されている。第1折り曲げ部132は、第1接合部110に対する傾斜角度が90°〜120°の範囲内になっている。 The first bent portion 132 is bent downward from the flat plate portion 131 (shoulder portion 134) and is connected to the first joint portion 110 on the side opposite to the side connected to the flat plate portion 131. .. The inclination angle of the first bent portion 132 with respect to the first joint portion 110 is within the range of 90° to 120°.

第2折り曲げ部133は、平板部131(肩部135)から下側に向かって折り曲げられており、平板部131と接続されている側とは反対側で第2接合部120と接続されている。第2折り曲げ部133も、第2接合部120に対する傾斜角度が90°〜120°の範囲内になっている。 The second bent portion 133 is bent downward from the flat plate portion 131 (shoulder portion 135) and is connected to the second joint portion 120 on the side opposite to the side connected to the flat plate portion 131. .. The second bent portion 133 also has an inclination angle with respect to the second joint portion 120 within the range of 90° to 120°.

肩部134は、平板部131と第1折り曲げ部132との間に形成されており、平板部131よりも薄い。肩部135は、平板部131と第2折り曲げ部133との間に形成されており、平板部131よりも薄い。肩部134,135は、平板部131と接続されている部分から外側(平板部131とは離れていく方向)に向かうに従って薄くなっており、所定の厚さ(例えば、第1折り曲げ部132や第2折り曲げ部133と同じ厚さ)になった位置から当該所定の厚さで外側に延在している。平板部131の下側の表面と肩部134,135の下側の表面は同一面(段差がない状態)になっている。 The shoulder portion 134 is formed between the flat plate portion 131 and the first bent portion 132, and is thinner than the flat plate portion 131. The shoulder portion 135 is formed between the flat plate portion 131 and the second bent portion 133 and is thinner than the flat plate portion 131. The shoulders 134 and 135 become thinner from the portion connected to the flat plate portion 131 toward the outside (in the direction away from the flat plate portion 131), and have a predetermined thickness (for example, the first bent portion 132 or The second bent portion 133 has the same thickness as the second bent portion 133) and extends outward with a predetermined thickness. The lower surface of the flat plate portion 131 and the lower surface of the shoulder portions 134 and 135 are flush with each other (there is no step).

第1接合部110、第2接合部120、第1折り曲げ部132、第2折り曲げ部133の厚さ及び肩部134,135における外側に延在している部分の厚さはいずれも、平板部131よりも薄く、かつ、同じ厚さである。 The thicknesses of the first joint portion 110, the second joint portion 120, the first bent portion 132, the second bent portion 133 and the thicknesses of the shoulder portions 134 and 135 extending outward are all flat plate portions. It is thinner than 131 and has the same thickness.

第1接合部110及び第1折り曲げ部132は、第1接合部110とチップ10との間の第1接合部材30に対する熱応力を緩和するための熱応力緩和構造140を構成する。
熱応力緩和構造140は、第1接合部110及び第1折り曲げ部132が平板部131よりも薄くなるように構成された構造、異形条材が折り曲げられた構造及び第1接合部に対する第1折り曲げ部の傾斜角度が90°〜120°の範囲内になるように構成された構造を含む。
The first joint portion 110 and the first bent portion 132 configure a thermal stress relaxation structure 140 for relaxing thermal stress on the first joint member 30 between the first joint portion 110 and the chip 10.
The thermal stress relaxation structure 140 has a structure in which the first joint 110 and the first bent portion 132 are thinner than the flat plate portion 131, a structure in which a deformed strip is bent, and a first fold for the first joint. And a structure configured such that the inclination angle of the part is within a range of 90° to 120°.

第1〜第4接合部材30,40,50,60は、はんだ、銀ナノペーストを焼結したもの等適宜の接合部材を用いることができる。実施形態1においては、接合する際の流動性が高いはんだを用いる。 As the first to fourth joining members 30, 40, 50 and 60, suitable joining members such as solder and one obtained by sintering silver nano paste can be used. In the first embodiment, a solder having high fluidity at the time of joining is used.

第1接合部材30は、第1接合部110、第1折り曲げ部132及び肩部134とチップ10の他方の面の表面電極14との間に配置されている。すなわち、第1折り曲げ部132のチップ側(下側)の面全体が第1接合部材30と接しており、第1接合部材30とクリップリード100との接触面の端部が肩部134の下側になっている。
また、第1接合部110においては、第1接合部110の厚みのうちの少なくとも半分の厚みまで第1接合部材30に埋められている(図1(a)及び(b)参照。)。
なお、第1接合部材30は、チップ10とクリップリード100との熱膨張係数の違いによる第1接合部材30の応力を緩和するために第3接合部材50よりも厚い。
The first bonding member 30 is arranged between the first bonding portion 110, the first bent portion 132, the shoulder portion 134 and the surface electrode 14 on the other surface of the chip 10. That is, the entire chip side (lower side) surface of the first bent portion 132 is in contact with the first joining member 30, and the end portion of the contact surface between the first joining member 30 and the clip lead 100 is below the shoulder portion 134. It's on the side.
In addition, in the first joint portion 110, at least half the thickness of the first joint portion 110 is embedded in the first joint member 30 (see FIGS. 1A and 1B).
The first joining member 30 is thicker than the third joining member 50 in order to relieve the stress of the first joining member 30 due to the difference in thermal expansion coefficient between the chip 10 and the clip lead 100.

第2接合部材40は、第2接合部120、第2折り曲げ部133及び肩部135と第2電極部22との間に配置されている。すなわち、第2折り曲げ部133の第2電極部22側全体が第2接合部材40と接しており、第2接合部材40とクリップリード100との接触面の端部が肩部135の下側になっている。
第2接合部120においては、第2接合部120の厚みのうちの少なくとも半分の厚みまで第2接合部材40に埋められている(図1(a)及び(c)参照。)。
第2接合部材40は、第2電極部22が形成されている基板Sとクリップリード100との熱膨張係数の違いによる第2接合部材40の応力を緩和するために第3接合部材50よりも厚い。
The second joint member 40 is arranged between the second joint portion 120, the second bent portion 133, the shoulder portion 135, and the second electrode portion 22. That is, the entire second bent portion 133 on the second electrode portion 22 side is in contact with the second joining member 40, and the end portion of the contact surface between the second joining member 40 and the clip lead 100 is below the shoulder portion 135. Is becoming
In the second joint portion 120, at least half the thickness of the second joint portion 120 is filled with the second joint member 40 (see FIGS. 1A and 1C).
The second joining member 40 is more than the third joining member 50 in order to relax the stress of the second joining member 40 due to the difference in thermal expansion coefficient between the substrate S on which the second electrode portion 22 is formed and the clip lead 100. thick.

端子70は、第2電極部22と第4接合部材60を介して接続されており、外側に向かって延在している。樹脂80は、適宜の樹脂を用いることができ、樹脂80によって、チップ10、基板S(第1電極部20及び第2電極部22を含む)、クリップリード100、第1〜第4接合部材30〜60及び端子70の一部が樹脂封止されている。 The terminal 70 is connected to the second electrode portion 22 via the fourth joining member 60 and extends outward. An appropriate resin can be used as the resin 80, and depending on the resin 80, the chip 10, the substrate S (including the first electrode portion 20 and the second electrode portion 22), the clip lead 100, and the first to fourth bonding members 30. ˜60 and a part of the terminal 70 are resin-sealed.

2.実施形態1に係る半導体装置の製造方法
図4及び図5は、実施形態1に係る半導体装置の製造方法を説明するために示す図である。図4(a)〜図4(c)及び図5(a)〜図5(c)は各工程図である。
2. Method of Manufacturing Semiconductor Device According to First Embodiment FIGS. 4 and 5 are diagrams for explaining the method of manufacturing a semiconductor device according to the first embodiment. FIG. 4A to FIG. 4C and FIG. 5A to FIG. 5C are process drawings.

実施形態1に係る半導体装置の製造方法は、基板準備工程と、チップ配置工程と、接合部材配置工程と、クリップリード配置工程と、接合工程と、後処理工程とをこの順序で含む。 The method for manufacturing a semiconductor device according to the first embodiment includes a substrate preparation step, a chip placement step, a joining member placement step, a clip lead placement step, a joining step, and a post-treatment step in this order.

(1)基板準備工程
まず、一方の面側に第1電極部20及び第2電極部22が配置された基板Sを準備する(図4(a)参照。)。なお、符号Fは放熱用のフィンを示す。
(1) Substrate Preparation Step First, the substrate S having the first electrode portion 20 and the second electrode portion 22 arranged on one surface side is prepared (see FIG. 4A). The symbol F indicates a fin for heat dissipation.

(2)チップ配置工程
次に、適宜の方法(例えば、はんだ印刷)によって基板Sの第1電極部20上にはんだペースト50’を配置し、はんだペースト50’上に一方の面の表面電極12がはんだペースト50’と接するようにチップ10を配置する(図4(b)参照。)。なお、はんだペースト50’は印刷で供給してもよいし、ディスペンサで供給してもよい。
(2) Chip Arranging Step Next, the solder paste 50′ is arranged on the first electrode portion 20 of the substrate S by an appropriate method (for example, solder printing), and the surface electrode 12 on one surface is arranged on the solder paste 50′. The chip 10 is arranged so that the solder contacts the solder paste 50' (see FIG. 4B). The solder paste 50′ may be supplied by printing or a dispenser.

(3)接合部材配置工程
次に、所定の冶具(例えば、ディスペンサ)を用いてチップ10の他方の面の表面電極14上にはんだペースト30’を配置する(図4(c)参照。)。また、適宜の方法(例えば、はんだ印刷)によって基板S上の第2電極部22上にはんだペースト40’,60’を配置する。なお、はんだペースト30’,40’は、熱応力を緩和するために比較的厚く形成されており、少なくともはんだペースト50’よりも厚くなるように構成されている。なお、はんだペースト40’,60’をディスペンサで供給してもよい。
(3) Bonding Member Placement Step Next, the solder paste 30′ is placed on the surface electrode 14 on the other surface of the chip 10 using a predetermined jig (for example, a dispenser) (see FIG. 4C). Further, the solder pastes 40′ and 60′ are arranged on the second electrode portion 22 on the substrate S by an appropriate method (for example, solder printing). The solder pastes 30 ′ and 40 ′ are formed relatively thick in order to reduce thermal stress, and are configured to be at least thicker than the solder paste 50 ′. The solder pastes 40' and 60' may be supplied by a dispenser.

(4)クリップリード配置工程
次に、はんだペースト30’上に第1接合部110を配置するとともに、はんだペースト40’上に第2接合部120を配置することにより、クリップリード100をチップ10及び第2電極部22上に配置して組立体1’を形成する(図5(a)参照。)。また、はんだペースト60’上に端子70を配置する。
(4) Clip Lead Arranging Step Next, the first joint portion 110 is arranged on the solder paste 30′ and the second joint portion 120 is arranged on the solder paste 40′. The assembly 1'is formed by disposing the assembly 1'on the second electrode portion 22 (see FIG. 5A). Further, the terminals 70 are arranged on the solder paste 60′.

(5)接合工程
次に、所定の装置内(例えばソルダー装置の加熱炉内)に組立体1’を配置して加熱することにより各はんだペーストを溶融し、基板Sとチップ10、チップ10とクリップリード100、第2電極部22とクリップリード100、及び、第2電極部22と端子70を第1〜第4接合部材(はんだ)30,40,50,60で接合する(図5(b)参照。)。
(5) Bonding Step Next, the solder paste is melted by arranging the assembly 1′ in a predetermined device (for example, in a heating furnace of a solder device) and heating the substrate 1 and the chip 10 and the chip 10. The clip lead 100, the second electrode portion 22 and the clip lead 100, and the second electrode portion 22 and the terminal 70 are joined by the first to fourth joining members (solders) 30, 40, 50, 60 (FIG. 5B. )reference.).

このとき、チップ10とクリップリード100の間に配置されたはんだペースト30’が溶融され、第1折り曲げ部132の下側を通って肩部134の下側まで這い上がる。また、第2電極部22とクリップリード100の間に配置されたはんだペースト40’が溶融され、第2折り曲げ部133の下側を通って肩部135の下側まで這い上がる。 At this time, the solder paste 30 ′ disposed between the chip 10 and the clip lead 100 is melted and passes under the first bent portion 132 and crawls up to the lower side of the shoulder portion 134. Further, the solder paste 40 ′ disposed between the second electrode portion 22 and the clip lead 100 is melted, passes through the lower side of the second bent portion 133, and climbs up to the lower side of the shoulder portion 135.

(6)後処理工程
次に、接合工程において各はんだペーストから基板Sやチップ10に広がることがある有機物を洗い落とす。次に、必要に応じて基板Sやチップ10上の所定の箇所をワイヤボンディングする。次に、組立体1’を金型内に入れて樹脂80で樹脂封止する(図5(c)参照。)。
このようにして実施形態1に係る半導体装置1を製造することができる。
(6) Post-Processing Step Next, organic substances that may spread on the substrate S and the chip 10 are washed off from each solder paste in the joining step. Next, if necessary, predetermined portions on the substrate S or the chip 10 are wire-bonded. Next, the assembly 1'is put in a mold and resin-sealed with a resin 80 (see FIG. 5C).
In this way, the semiconductor device 1 according to the first embodiment can be manufactured.

3.実施形態1に係る半導体装置1、クリップリード100及び半導体装置の製造方法の効果
実施形態1に係る半導体装置1及びクリップリード100によれば、架橋部130は、所定の厚みを有する平板部131を有するため、クリップリード100は、クリップリードの断面積(電流の導通路に対する断面積)が大きく、比較的大きな電流を導通可能なクリップリードとなる。従って、チップサイズが小さく、かつ、定格電流が比較的大きいチップに対応したクリップリードとなり、比較的大きな電流を導通可能で、かつ、小型化された電子機器を実現することができる半導体装置となる。
3. Effect of Semiconductor Device 1, Clip Lead 100, and Method of Manufacturing Semiconductor Device According to First Embodiment According to the semiconductor device 1 and the clip lead 100 according to the first embodiment, the bridging portion 130 includes the flat plate portion 131 having a predetermined thickness. Because of this, the clip lead 100 has a large cross-sectional area (cross-sectional area with respect to the current conducting path) of the clip lead and is a clip lead capable of conducting a relatively large current. Therefore, the semiconductor device becomes a clip lead corresponding to a chip having a small chip size and a relatively large rated current, capable of conducting a relatively large current, and realizing a downsized electronic device. ..

また、実施形態1に係る半導体装置1及びクリップリード100によれば、第1接合部110及び第1折り曲げ部132は、チップ10と第1接合部110との間の第1接合部材30に対する熱応力を緩和するための熱応力緩和構造140を構成するため、比較的大きな電流を導通した場合でも、第1接合部材30に加わる熱応力を比較的小さくすることができ、その結果、熱サイクルストレスに対する耐性を比較的高くすることができる。 In addition, according to the semiconductor device 1 and the clip lead 100 according to the first embodiment, the first joint portion 110 and the first bent portion 132 heat the first joint member 30 between the chip 10 and the first joint portion 110. Since the thermal stress relaxation structure 140 for relaxing the stress is configured, the thermal stress applied to the first joining member 30 can be made relatively small even when a relatively large current is conducted, and as a result, the thermal cycle stress can be obtained. The resistance to can be relatively high.

また、実施形態1に係る半導体装置1及びクリップリード100によれば、熱応力緩和構造140は、少なくとも第1接合部110及び第1折り曲げ部132が平板部131よりも薄くなるように構成された構造を含むため、第1接合部110の剛性を比較的小さくすることができ、チップ10と第1接合部110との熱膨張係数の違いに起因する第1接合部材30の応力が比較的小さくなる。その結果、熱サイクルストレスに対する耐性を比較的高くすることができる。 Further, according to the semiconductor device 1 and the clip lead 100 according to the first embodiment, the thermal stress relaxation structure 140 is configured such that at least the first joint portion 110 and the first bent portion 132 are thinner than the flat plate portion 131. Since the structure includes the first joint 110, the rigidity of the first joint 110 can be made relatively small, and the stress of the first joint member 30 due to the difference in thermal expansion coefficient between the chip 10 and the first joint 110 is relatively small. Become. As a result, the resistance to thermal cycle stress can be made relatively high.

また、実施形態1に係る半導体装置1及びクリップリード100によれば、熱応力緩和構造140は、少なくとも第1接合部110及び第1折り曲げ部132が平板部131よりも薄くなるように構成された構造を含むため、折り曲げ加工がしやすく、クリップリード100を形成し易くなる。 Further, according to the semiconductor device 1 and the clip lead 100 according to the first embodiment, the thermal stress relaxation structure 140 is configured such that at least the first joint portion 110 and the first bent portion 132 are thinner than the flat plate portion 131. Since the structure is included, the bending process is easy and the clip lead 100 is easy to form.

また、実施形態1に係る半導体装置1及びクリップリード100によれば、熱応力緩和構造140は、第1接合部110及び第1折り曲げ部132(を含むクリップリード)が異形条材100’を折り曲げることによって形成された構造を含むため、プレス加工されたものを折り曲げることによって形成されたクリップリードよりも加工による変質を抑え、残留応力を小さくすることができる。従って、このことによっても熱サイクルストレスに対する耐性を高くすることができる。 Further, according to the semiconductor device 1 and the clip lead 100 according to the first embodiment, in the thermal stress relaxation structure 140, the first bonding portion 110 and the first bent portion 132 (including the clip lead) bend the deformed strip 100′. Since the structure formed by the above is included, it is possible to suppress the deterioration due to the processing and reduce the residual stress as compared with the clip lead formed by bending the pressed one. Therefore, this also makes it possible to increase the resistance to thermal cycle stress.

また、実施形態1に係る半導体装置1及びクリップリード100によれば、熱応力緩和構造140は、第1接合部110に対する第1折り曲げ部132の傾斜角度が90°〜120°の範囲内になるように構成された構造を含むため、接合工程において、第1接合部材30(はんだ)が第1折り曲げ部132の下側を這い上がり易くなる。従って、製造された半導体装置を使用したときに、第1折り曲げ部132及び第1接合部材30(はんだ)の両方を通って第2電極部22へ熱を放出し、第2電極部22から外部へ熱を放出することができるため、チップ10から発生する熱を効率よく外部に放出することができる。このことから、チップ10及び第1接合部110の温度上昇を抑えることができるため、高温時のチップ10及び第1接合部110の膨張を抑制することができる。その結果、このことによっても第1接合部材30に加わる熱応力を小さくすることができ、熱サイクルストレスに対する耐性を高くすることができる。 Further, according to the semiconductor device 1 and the clip lead 100 according to the first embodiment, in the thermal stress relaxation structure 140, the inclination angle of the first bent portion 132 with respect to the first joint 110 is within the range of 90° to 120°. Since it includes the structure configured as described above, in the joining step, the first joining member 30 (solder) can easily crawl below the first bent portion 132. Therefore, when the manufactured semiconductor device is used, heat is radiated to the second electrode portion 22 through both the first bent portion 132 and the first joining member 30 (solder), and the second electrode portion 22 is exposed to the outside. Since the heat can be released to the outside, the heat generated from the chip 10 can be efficiently released to the outside. From this, since the temperature rise of the chip 10 and the first joint 110 can be suppressed, the expansion of the chip 10 and the first joint 110 at high temperature can be suppressed. As a result, also by this, the thermal stress applied to the first joining member 30 can be reduced, and the resistance to the thermal cycle stress can be increased.

なお、第1接合部110に対する第1折り曲げ部132の傾斜角度を90°以上としたのは、第1接合部110に対する第1折り曲げ部132の傾斜角度を90°未満とした場合には、第1接合部110に対して鋭角に第1折り曲げ部132が形成されていることとなり、第1接合部材30(はんだ)が第1折り曲げ部132のチップ側の面を這い上がり難くなるからであり、第1接合部110に対する第1折り曲げ部132の傾斜角度を120°以下としたのは、第1接合部110に対する第1折り曲げ部132の傾斜角度を120°を超える角度とした場合には、溶融したはんだがチップ側面に流れる場合があり、チップ10の一方の面(基板側)の表面電極12とチップ10の他方の面(基板とは反対側)の表面電極14が短絡するおそれがあるからである。 The inclination angle of the first bent portion 132 with respect to the first joint portion 110 is set to 90° or more because the inclination angle of the first bent portion 132 with respect to the first joint portion 110 is less than 90°. This is because the first bending portion 132 is formed at an acute angle with respect to the first joining portion 110, and it becomes difficult for the first joining member 30 (solder) to crawl on the chip-side surface of the first bending portion 132. The inclination angle of the first bent portion 132 with respect to the first joint portion 110 is set to 120° or less when the inclination angle of the first bent portion 132 with respect to the first joint portion 110 is set to an angle exceeding 120°. Since the solder may flow to the side surface of the chip, the surface electrode 12 on one surface (substrate side) of the chip 10 and the surface electrode 14 on the other surface (opposite the substrate) of the chip 10 may be short-circuited. Is.

また、実施形態1に係る半導体装置1によれば、クリップリード100においては、第1折り曲げ部132のチップ側(下側)の面全体が第1接合部材30と接しているため、チップ10から第2電極部22へ流れる電流を、第1折り曲げ部132及び第1接合部材30の両方を介して流すことができる(第1接合部材30をいわば電流路のバイパスとして活用することができる。)。従って、チップサイズが小さく、かつ、定格電流が比較的大きいチップに対応した比較的大きな電流を流すことができる。 Further, according to the semiconductor device 1 of the first embodiment, in the clip lead 100, the entire surface of the first bent portion 132 on the chip side (lower side) is in contact with the first joining member 30, and therefore, from the chip 10 The current flowing to the second electrode portion 22 can be made to flow through both the first bent portion 132 and the first joining member 30 (the first joining member 30 can be used as a so-called current path bypass). .. Therefore, a relatively large current corresponding to a chip having a small chip size and a relatively large rated current can be passed.

また、実施形態1に係る半導体装置1によれば、クリップリード100においては、第1折り曲げ部132のチップ側の面全体が第1接合部材30と接しているため、第1折り曲げ部132及び第1接合部材30(はんだ)の両方を通って第2電極部22へ熱を放出し、第2電極部22から外部へ熱を放出することができる。従って、チップ10から発生する熱を効率よく外部に放出することができ、チップ10及び第1接合部110の温度上昇を抑えることができるため、高温時のチップ10及び第1接合部110の膨張を抑制することができる。従って、このことによっても第1接合部材30に加わる熱応力を小さくすることができ、熱サイクルストレスに対する耐性を高くすることができる。 Further, according to the semiconductor device 1 of the first embodiment, in the clip lead 100, the entire surface of the first bent portion 132 on the chip side is in contact with the first joining member 30, so that the first bent portion 132 and the first bent portion 132 It is possible to radiate heat to the second electrode portion 22 through both of the one joining member 30 (solder) and radiate heat to the outside from the second electrode portion 22. Therefore, the heat generated from the chip 10 can be efficiently radiated to the outside, and the temperature rise of the chip 10 and the first bonding portion 110 can be suppressed, so that the expansion of the chip 10 and the first bonding portion 110 at high temperature. Can be suppressed. Therefore, also by this, the thermal stress applied to the first joining member 30 can be reduced, and the resistance to the thermal cycle stress can be increased.

また、実施形態1に係る半導体装置1によれば、第1接合部110においては、第1接合部110の厚みのうちの少なくとも半分の厚みまで第1接合部材30に埋められているため、クリップリード100が固定されやすいだけでなく、チップ10の他方の面の表面電極14から第1接合部110への電流経路が増加し、比較的大きな電流を流すことができる。 Further, according to the semiconductor device 1 according to the first embodiment, in the first bonding portion 110, the first bonding member 30 is filled up to at least half the thickness of the thickness of the first bonding portion 110. Not only is the lead 100 easily fixed, but the current path from the surface electrode 14 on the other surface of the chip 10 to the first junction 110 is increased, and a relatively large current can be passed.

また、実施形態1に係る半導体装置1及びクリップリード100によれば、第2接合部120及び第2折り曲げ部133はいずれも、平板部131よりも薄いため、第2接合部120の剛性を小さくすることができ、第2接合部120と基板Sとの熱膨張係数の違いに起因する第2接合部材40に対する熱応力が小さくなる。その結果、第2接合部材40における熱サイクルストレスに対する耐性を高くすることができる。 Further, according to the semiconductor device 1 and the clip lead 100 according to the first embodiment, since the second joint portion 120 and the second bent portion 133 are both thinner than the flat plate portion 131, the rigidity of the second joint portion 120 is small. Therefore, the thermal stress on the second bonding member 40 due to the difference in thermal expansion coefficient between the second bonding portion 120 and the substrate S is reduced. As a result, the resistance of the second joining member 40 to thermal cycle stress can be increased.

また、実施形態1に係る半導体装置1及びクリップリード100によれば、第1接合部110、第1折り曲げ部132、第2接合部120及び第2折り曲げ部133はいずれも同じ厚さであるため、重心バランスがとりやすく、クリップリード100の位置決めがしやすくなる。 In addition, according to the semiconductor device 1 and the clip lead 100 according to the first embodiment, the first joint portion 110, the first bent portion 132, the second joint portion 120, and the second bent portion 133 all have the same thickness. The center of gravity is easily balanced, and the clip lead 100 is easily positioned.

また、実施形態1に係る半導体装置1及びクリップリード100によれば、架橋部130は、平板部131と第1折り曲げ部132との間に平板部131よりも薄い肩部134を有するため、平板部131から直に下側に向かって折り曲げられたクリップリードよりも折り曲げ部分が弱くなりにくい。 Further, according to the semiconductor device 1 and the clip lead 100 according to the first embodiment, the bridging portion 130 has the shoulder portion 134 that is thinner than the flat plate portion 131 between the flat plate portion 131 and the first bent portion 132. The bent portion is less likely to be weaker than the clip lead bent directly downward from the portion 131.

実施形態1に係る半導体装置の製造方法においては、クリップリード配置工程において、所定の厚みを有する平板部131を有する架橋部130を有するクリップリード100をチップ10及び第2電極部22上に配置する。このような構成とすることにより、クリップリード100の断面積(電流の導通路に対する断面積)が大きく、比較的大きな電流を導通可能なクリップリード、すなわち、チップサイズが小さく、かつ、定格電流が比較的大きいチップに対応したクリップリードをチップ10及び第2電極部22上に配置することとなり、その結果、比較的大きな電流を導通可能で、かつ、小型化された電子機器を実現することができる半導体装置を製造することができる。 In the method of manufacturing a semiconductor device according to the first embodiment, in the clip lead arranging step, the clip lead 100 having the bridging portion 130 having the flat plate portion 131 having a predetermined thickness is arranged on the chip 10 and the second electrode portion 22. .. With such a configuration, the clip lead 100 has a large cross-sectional area (a cross-sectional area with respect to a current conducting path), and a clip lead capable of conducting a relatively large current, that is, a small chip size and a rated current. The clip lead corresponding to a relatively large chip is arranged on the chip 10 and the second electrode portion 22, and as a result, a relatively large current can be conducted and a downsized electronic device can be realized. A semiconductor device that can be manufactured can be manufactured.

また、実施形態1に係る半導体装置の製造方法によれば、第1接合部110及び第1折り曲げ部132がチップ10と第1接合部110との間の第1接合部材30に対する熱応力を緩和するための熱応力緩和構造140を構成するクリップリード100をチップ10及び第2電極部22上に配置するため、比較的大きな電流を導通した場合でも、第1接合部材30に加わる熱応力を比較的小さくすることができ、その結果、熱サイクルストレスに対する耐性の高い半導体装置を製造することができる。 In addition, according to the method for manufacturing a semiconductor device of the first embodiment, the first joint portion 110 and the first bent portion 132 alleviate thermal stress on the first joint member 30 between the chip 10 and the first joint portion 110. Since the clip lead 100 that constitutes the thermal stress relaxation structure 140 is disposed on the chip 10 and the second electrode portion 22, the thermal stress applied to the first bonding member 30 is compared even when a relatively large current is conducted. As a result, a semiconductor device having high resistance to thermal cycle stress can be manufactured.

また、実施形態1に係る半導体装置の製造方法によれば、クリップリード配置工程においては、第1接合部110及び第1折り曲げ部132がチップ10と第1接合部110との間の第1接合部材30に対する熱応力を緩和するための熱応力緩和構造140を構成し、熱応力緩和構造140は、少なくとも第1接合部110及び第1折り曲げ部132が平板部131よりも薄くなるように構成された構造を含むクリップリード100をチップ10及び第2電極部22上に配置するため、製造された半導体装置1は、第1接合部110の剛性を小さくすることができ、チップ10と第1接合部110との熱膨張係数の違いに起因する第1接合部材30の応力が小さくなる。その結果、熱サイクルストレスに対する耐性の高い半導体装置を製造することができる。 Further, according to the method for manufacturing a semiconductor device in accordance with the first embodiment, in the clip lead disposing step, the first joint portion 110 and the first bent portion 132 form the first joint between the chip 10 and the first joint portion 110. A thermal stress relaxation structure 140 for relaxing thermal stress on the member 30 is configured, and the thermal stress relaxation structure 140 is configured such that at least the first joint portion 110 and the first bent portion 132 are thinner than the flat plate portion 131. Since the clip lead 100 including the above structure is arranged on the chip 10 and the second electrode portion 22, the manufactured semiconductor device 1 can reduce the rigidity of the first bonding portion 110 and the chip 10 and the first bonding portion. The stress of the first joining member 30 due to the difference in thermal expansion coefficient from the portion 110 is reduced. As a result, a semiconductor device having high resistance to thermal cycle stress can be manufactured.

[実施形態2]
図6は、実施形態2に係る半導体装置2の断面図である。
実施形態2に係る半導体装置2及びクリップリード100aは、基本的には実施形態1に係る半導体装置1及びクリップリード100と同様の構成を有するが、クリップリードの形状が実施形態1に係る半導体装置1及びクリップリード100の場合とは異なる。すなわち、実施形態2に係るクリップリード100aにおいては、肩部134aの下側の面と平板部131aの下側の面との間には段差部136が形成されている(図6参照。)。
[Embodiment 2]
FIG. 6 is a sectional view of the semiconductor device 2 according to the second embodiment.
The semiconductor device 2 and the clip lead 100a according to the second embodiment have basically the same configurations as the semiconductor device 1 and the clip lead 100 according to the first embodiment, but the shape of the clip lead is the semiconductor device according to the first embodiment. 1 and the clip lead 100. That is, in the clip lead 100a according to the second embodiment, the step portion 136 is formed between the lower surface of the shoulder portion 134a and the lower surface of the flat plate portion 131a (see FIG. 6).

実施形態2においては、肩部134aの下側の面から見て平板部131aがチップ側(下側)に向かって突出する凸部が形成されており、平板部131aの下側の面から見て肩部134a及び第1折り曲げ部132で構成される凹部が形成されている。なお、当該段差が垂直な段差である場合(段差の傾斜面が平板部131aの側面である場合)には、平板部131a、肩部134a及び第1折り曲げ部132で凹部が形成される。 In the second embodiment, the flat plate portion 131a is formed with a convex portion that projects toward the chip side (lower side) when viewed from the lower surface of the shoulder portion 134a, and is viewed from the lower surface of the flat plate portion 131a. A recessed portion formed by the shoulder portion 134a and the first bent portion 132 is formed. When the step is a vertical step (when the inclined surface of the step is the side surface of the flat plate portion 131a), the flat plate portion 131a, the shoulder portion 134a, and the first bent portion 132 form a recess.

実施形態2においては、第1折り曲げ部132の下側の面全体が第1接合部材30と接しており、第1接合部材30とクリップリード100との接触面の端部が段差部136にある。言い換えると、肩部134a及び第1折り曲げ部132で形成される凹部内に第1接合部材30とクリップリード100との接触面の端部がある。 In the second embodiment, the entire lower surface of the first bent portion 132 is in contact with the first joining member 30, and the end portion of the contact surface between the first joining member 30 and the clip lead 100 is at the step portion 136. .. In other words, the end of the contact surface between the first joining member 30 and the clip lead 100 is inside the recess formed by the shoulder portion 134a and the first bent portion 132.

また、クリップリード100aにおいては、肩部135aの下側の面と平板部131aの下側の面との間には段差部137が形成されている。また、実施形態2においては、平板部131aの下側の面から見て肩部135a及び第2折り曲げ部133で構成される凹部が形成されている。 Further, in the clip lead 100a, a step portion 137 is formed between the lower surface of the shoulder portion 135a and the lower surface of the flat plate portion 131a. Further, in the second embodiment, a concave portion formed by the shoulder portion 135a and the second bent portion 133 is formed when viewed from the lower surface of the flat plate portion 131a.

実施形態2においては、第2折り曲げ部133の下側の面全体が第2接合部材40と接しており、第2接合部材40とクリップリード100との接触面の端部が段差部137にある。言い換えると、肩部135a及び第2折り曲げ部133で構成される凹部内に第2接合部材40とクリップリード100との接触面の端部がある。 In the second embodiment, the entire lower surface of the second bent portion 133 is in contact with the second joining member 40, and the end portion of the contact surface between the second joining member 40 and the clip lead 100 is at the step portion 137. .. In other words, the end portion of the contact surface between the second joining member 40 and the clip lead 100 is inside the recessed portion formed by the shoulder portion 135a and the second bent portion 133.

このように、実施形態2に係る半導体装置2及びクリップリード100aは、クリップリードの形状が実施形態1に係る半導体装置1及びクリップリード100の場合とは異なるが、実施形態1に係る半導体装置1及びクリップリード100の場合と同様に、架橋部130aは、所定の厚みを有する平板部131aを有し、第1接合部110及び第1折り曲げ部132は、チップ10と第1接合部110との間の第1接合部材30に対する熱応力を緩和するための熱応力緩和構造140を構成するため、比較的大きな電流を導通可能でありながら熱サイクルストレスに対する耐性が高い半導体装置及びクリップリードとなる。 As described above, the semiconductor device 2 and the clip lead 100a according to the second embodiment differ from the semiconductor device 1 and the clip lead 100 according to the first embodiment in the shape of the clip lead, but the semiconductor device 1 according to the first embodiment is different. Similarly to the case of the clip lead 100, the bridging portion 130a has a flat plate portion 131a having a predetermined thickness, and the first joint portion 110 and the first bent portion 132 connect the chip 10 and the first joint portion 110. Since the thermal stress relaxation structure 140 for relaxing the thermal stress on the first joining member 30 between is configured, a semiconductor device and a clip lead that can conduct a relatively large current but have high resistance to thermal cycle stress.

また、実施形態2に係る半導体装置2及びクリップリード100aによれば、肩部134aの下側の面と平板部131aの下側の面との間には段差部136が形成されているため、第1折り曲げ部132の下側を這い上がった第1接合部材30が必要以上に第2折り曲げ部133側に流れなくなる。従って、第1接合部材30が意図しない形状(例えば、チップ側面に向かって垂れ下がるような形状)となってチップ10の一方の面(基板側)の表面電極12とチップ10の他方の面(基板とは反対側)の表面電極14が短絡することを防ぐことができる。 Further, according to the semiconductor device 2 and the clip lead 100a according to the second embodiment, since the step portion 136 is formed between the lower surface of the shoulder portion 134a and the lower surface of the flat plate portion 131a, The first joining member 30 crawling up below the first bent portion 132 does not flow to the second bent portion 133 side more than necessary. Therefore, the first bonding member 30 has an unintended shape (for example, a shape that hangs down toward the side surface of the chip) and the surface electrode 12 on one surface (substrate side) of the chip 10 and the other surface (substrate) of the chip 10. It is possible to prevent the front surface electrode 14 (on the opposite side to) from being short-circuited.

また、実施形態2に係る半導体装置2及びクリップリード100aによれば、第1接合部材30とクリップリード100aとの接触面の端部が段差部136にあるため、第1折り曲げ部132の下側を這い上がった第1接合部材30が第2折り曲げ部133側に流れることを防ぐことができる。 Further, according to the semiconductor device 2 and the clip lead 100a according to the second embodiment, since the end portion of the contact surface between the first joining member 30 and the clip lead 100a is at the step portion 136, the lower side of the first bent portion 132 is formed. It is possible to prevent the first joining member 30 that has crawled up from flowing to the second bent portion 133 side.

また、実施形態2に係る半導体装置2及びクリップリード100aによれば、第2接合部材40とクリップリード100aとの接触面の端部が段差部137にあるため、第2折り曲げ部133の下側を這い上がった第2接合部材40が第1折り曲げ部132側に流れることを防ぐことができる。 Further, according to the semiconductor device 2 and the clip lead 100a according to the second embodiment, since the end portion of the contact surface between the second joining member 40 and the clip lead 100a is at the step portion 137, the lower side of the second bent portion 133 is formed. It is possible to prevent the second joining member 40 that has crawled up from flowing to the first bent portion 132 side.

さらにまた、実施形態2に係る半導体装置2及びクリップリード100aによれば、肩部134aの下側の面から見て平板部131aがチップ側(下側)に向かって突出する凸部が形成されているため、放熱に寄与する体積が大きくなり、チップ10から発生する熱をより効率よく外部に放出することができる。従って、チップ10及び第1接合部110の温度上昇を抑えることができることから、高温時のチップ10及び第1接合部110の膨張を抑制することができる。その結果、第1接合部材30に加わる熱応力をより一層小さくすることができ、熱サイクルストレスに対する耐性をより一層高くすることができる。 Further, according to the semiconductor device 2 and the clip lead 100a according to the second embodiment, the flat plate portion 131a is formed with the convex portion protruding toward the chip side (lower side) when viewed from the lower surface of the shoulder portion 134a. Therefore, the volume that contributes to heat dissipation is increased, and the heat generated from the chip 10 can be more efficiently radiated to the outside. Therefore, since the temperature rise of the chip 10 and the first joint 110 can be suppressed, the expansion of the chip 10 and the first joint 110 at high temperature can be suppressed. As a result, the thermal stress applied to the first joining member 30 can be further reduced, and the resistance to thermal cycle stress can be further enhanced.

なお、実施形態2に係る半導体装置2及びクリップリード100aは、クリップリードの形状以外の点においては実施形態1に係る半導体装置1及びクリップリード100と同様の構成を有するため、実施形態1に係る半導体装置1及びクリップリード100が有する効果のうち該当する効果を有する。 The semiconductor device 2 and the clip lead 100a according to the second embodiment have the same configurations as the semiconductor device 1 and the clip lead 100 according to the first embodiment except for the shape of the clip lead, and thus the semiconductor device 2 and the clip lead 100a according to the first embodiment. This has the corresponding effect among the effects of the semiconductor device 1 and the clip lead 100.

[実施形態3]
図7は、実施形態3に係る半導体装置3の断面図である。
実施形態3に係る半導体装置3及びクリップリード100bは、基本的には実施形態1に係る半導体装置1及びクリップリード100と同様の構成を有するが、クリップリードの形状が実施形態1に係る半導体装置1及びクリップリード100の場合とは異なる。すなわち、実施形態3に係る半導体装置3及びクリップリード100bにおいて、肩部は、側面から見て階段状の肩部134b,135bである(図7参照。)。
[Third Embodiment]
FIG. 7 is a sectional view of the semiconductor device 3 according to the third embodiment.
The semiconductor device 3 and the clip lead 100b according to the third embodiment have basically the same configuration as the semiconductor device 1 and the clip lead 100 according to the first embodiment, but the shape of the clip lead is the semiconductor device according to the first embodiment. 1 and the clip lead 100. That is, in the semiconductor device 3 and the clip lead 100b according to the third embodiment, the shoulders are stepped shoulders 134b and 135b when viewed from the side (see FIG. 7).

このように、実施形態3に係る半導体装置3及びクリップリード100bは、クリップリードの形状が実施形態1に係る半導体装置1及びクリップリード100の場合とは異なるが、実施形態1に係る半導体装置1及びクリップリード100の場合と同様に、架橋部130bは、所定の厚みを有する平板部131bを有し、第1接合部110及び第1折り曲げ部132は、チップ10と第1接合部110との間の第1接合部材30に対する熱応力を緩和するための熱応力緩和構造140を構成するため、比較的大きな電流を導通可能でありながら熱サイクルストレスに対する耐性が高い半導体装置及びクリップリードとなる。 As described above, the semiconductor device 3 and the clip lead 100b according to the third embodiment differ from the semiconductor device 1 and the clip lead 100 according to the first embodiment in the shape of the clip lead, but the semiconductor device 1 according to the first embodiment is different. Similarly to the case of the clip lead 100, the bridging portion 130b has a flat plate portion 131b having a predetermined thickness, and the first joint portion 110 and the first bent portion 132 connect the chip 10 and the first joint portion 110. Since the thermal stress relaxation structure 140 for relaxing the thermal stress on the first joining member 30 between is configured, a semiconductor device and a clip lead that can conduct a relatively large current but have high resistance to thermal cycle stress.

また、実施形態3に係る半導体装置3及びクリップリード100bによれば、肩部は、側面から見て階段状の肩部134b,135bであるため、樹脂との接触面積が大きくなる。従って、樹脂との密着性が高くなり、高温時でもクリップリード100bが膨張し難くなる。従って、第1接合部材30に加わる熱応力をより一層小さくすることができ、熱サイクルストレスに対する耐性をより一層高くすることができる。 Further, according to the semiconductor device 3 and the clip lead 100b according to the third embodiment, the shoulder portions are stepped shoulder portions 134b and 135b as viewed from the side surface, and thus the contact area with the resin is large. Therefore, the adhesiveness with the resin becomes high, and the clip lead 100b becomes difficult to expand even at high temperature. Therefore, the thermal stress applied to the first joining member 30 can be further reduced, and the resistance to thermal cycle stress can be further enhanced.

なお、実施形態3に係る半導体装置3及びクリップリード100bは、クリップリードの形状以外の点においては実施形態1に係る半導体装置1及びクリップリード100と同様の構成を有するため、実施形態1に係る半導体装置1及びクリップリード100が有する効果のうち該当する効果を有する。 The semiconductor device 3 and the clip lead 100b according to the third embodiment have the same configurations as the semiconductor device 1 and the clip lead 100 according to the first embodiment except for the shape of the clip lead, and thus the semiconductor device 3 and the clip lead 100b according to the first embodiment. This has the corresponding effect among the effects of the semiconductor device 1 and the clip lead 100.

[実施形態4]
図8は、実施形態4に係る半導体装置4の断面図である。
実施形態4に係る半導体装置4及びクリップリード100cは、基本的には実施形態1に係る半導体装置1及びクリップリード100と同様の構成を有するが、クリップリードの形状が実施形態1に係る半導体装置1及びクリップリード100の場合とは異なる。すなわち、実施形態4における第2接合部120c及び第2折り曲げ部133cはいずれも平板部131と同じ厚さである(図8参照。)。
[Embodiment 4]
FIG. 8 is a sectional view of the semiconductor device 4 according to the fourth embodiment.
The semiconductor device 4 and the clip lead 100c according to the fourth embodiment have basically the same configurations as the semiconductor device 1 and the clip lead 100 according to the first embodiment, but the shape of the clip lead is the semiconductor device according to the first embodiment. 1 and the clip lead 100. That is, both the second joint portion 120c and the second bent portion 133c in the fourth embodiment have the same thickness as the flat plate portion 131 (see FIG. 8).

このように、実施形態4に係る半導体装置4及びクリップリード100cは、クリップリードの形状が実施形態1に係る半導体装置1及びクリップリード100の場合とは異なるが、実施形態1に係る半導体装置1及びクリップリード100の場合と同様に、架橋部130cは、所定の厚みを有する平板部131cを有し、第1接合部110及び第1折り曲げ部132は、チップ10と第1接合部110との間の第1接合部材30に対する熱応力を緩和するための熱応力緩和構造140を構成するため、比較的大きな電流を導通可能でありながら熱サイクルストレスに対する耐性が高い半導体装置及びクリップリードとなる。 As described above, the semiconductor device 4 and the clip lead 100c according to the fourth embodiment differ from the semiconductor device 1 and the clip lead 100 according to the first embodiment in the shape of the clip lead, but the semiconductor device 1 according to the first embodiment is different. Similarly to the case of the clip lead 100, the bridging portion 130c has a flat plate portion 131c having a predetermined thickness, and the first joint portion 110 and the first bent portion 132 connect the chip 10 and the first joint portion 110. Since the thermal stress relaxation structure 140 for relaxing the thermal stress on the first joining member 30 between is configured, a semiconductor device and a clip lead that can conduct a relatively large current but have high resistance to thermal cycle stress.

また、実施形態4に係る半導体装置4及びクリップリード100cによれば、第2接合部120c及び第2折り曲げ部133cはいずれも平板部131cと同じ厚さであるため、放熱に寄与する体積が大きくなり、チップ10から発生する熱をより効率よく外部に放出することができる。従って、チップ10及び第1接合部110の温度上昇を抑えることができることから、高温時のチップ10及び第1接合部110の膨張を抑制することができる。その結果、第1接合部材30に加わる熱応力をより一層小さくすることができ、熱サイクルストレスに対する耐性をより一層高くすることができる。 Further, according to the semiconductor device 4 and the clip lead 100c according to the fourth embodiment, since the second joint portion 120c and the second bent portion 133c have the same thickness as the flat plate portion 131c, the volume contributing to heat dissipation is large. Therefore, the heat generated from the chip 10 can be released to the outside more efficiently. Therefore, since the temperature rise of the chip 10 and the first joint 110 can be suppressed, the expansion of the chip 10 and the first joint 110 at high temperature can be suppressed. As a result, the thermal stress applied to the first joining member 30 can be further reduced, and the resistance to thermal cycle stress can be further enhanced.

なお、実施形態4に係る半導体装置4及びクリップリード100cは、クリップリードの形状以外の点においては実施形態1に係る半導体装置1及びクリップリード100と同様の構成を有するため、実施形態1に係る半導体装置1及びクリップリード100が有する効果のうち該当する効果を有する。 The semiconductor device 4 and the clip lead 100c according to the fourth embodiment have the same configurations as the semiconductor device 1 and the clip lead 100 according to the first embodiment except for the shape of the clip lead, and thus the semiconductor device 4 and the clip lead 100c according to the first embodiment. This has the corresponding effect among the effects of the semiconductor device 1 and the clip lead 100.

[実施形態5]
図9は、実施形態5に係る半導体装置5の断面図である。
実施形態5に係る半導体装置5及びクリップリード100dは、基本的には実施形態1に係る半導体装置1及びクリップリード100と同様の構成を有するが、クリップリードの形状が実施形態1に係る半導体装置1及びクリップリード100の場合とは異なる。すなわち、実施形態5における第1接合部110dにおいては、チップ10と接合する面とは反対側の面に溝138が形成されている(図9参照。)。
[Fifth Embodiment]
FIG. 9 is a sectional view of the semiconductor device 5 according to the fifth embodiment.
The semiconductor device 5 and the clip lead 100d according to the fifth embodiment have basically the same configuration as the semiconductor device 1 and the clip lead 100 according to the first embodiment, but the shape of the clip lead is the semiconductor device according to the first embodiment. 1 and the clip lead 100. That is, in the first bonding portion 110d in the fifth embodiment, the groove 138 is formed on the surface opposite to the surface to be bonded to the chip 10 (see FIG. 9).

第2接合部120dにおいては、第2電極部22と接合する面とは反対側の面に溝139が形成されている。 In the second bonding portion 120d, the groove 139 is formed on the surface opposite to the surface that is bonded to the second electrode portion 22.

このように、実施形態5に係る半導体装置5及びクリップリード100dは、クリップリードの形状が実施形態1に係る半導体装置1及びクリップリード100の場合とは異なるが、実施形態1に係る半導体装置1及びクリップリード100の場合と同様に、架橋部130dは、所定の厚みを有する平板部131dを有し、第1接合部110d及び第1折り曲げ部132は、チップ10と第1接合部110dとの間の第1接合部材30に対する熱応力を緩和するための熱応力緩和構造140を構成するため、比較的大きな電流を導通可能でありながら熱サイクルストレスに対する耐性が高い半導体装置及びクリップリードとなる。 As described above, the semiconductor device 5 and the clip lead 100d according to the fifth embodiment are different from the semiconductor device 1 and the clip lead 100 according to the first embodiment in the shape of the clip lead, but the semiconductor device 1 according to the first embodiment is different. Similarly to the case of the clip lead 100, the bridging portion 130d has a flat plate portion 131d having a predetermined thickness, and the first joining portion 110d and the first bending portion 132 connect the chip 10 and the first joining portion 110d. Since the thermal stress relaxation structure 140 for relaxing the thermal stress on the first joining member 30 between is configured, a semiconductor device and a clip lead that can conduct a relatively large current but have high resistance to thermal cycle stress.

また、実施形態5に係る半導体装置5及びクリップリード100dによれば、第1接合部110dにおいては、チップ10と接合する面とは反対側の面に溝138が形成されているため 、樹脂とクリップリード100dとの密着性が高くなる。従って、熱によるクリップリード100dの膨張・収縮が樹脂によって制限されるため、第1接合部材30に対する熱応力を小さくすることができる。その結果、熱サイクルストレスに対する耐性をより一層高くすることができる。 Further, according to the semiconductor device 5 and the clip lead 100d according to the fifth embodiment, the groove 138 is formed on the surface on the side opposite to the surface to be bonded to the chip 10 in the first bonding portion 110d. The adhesiveness with the clip lead 100d becomes high. Therefore, the expansion/contraction of the clip lead 100d due to heat is limited by the resin, so that the thermal stress on the first joining member 30 can be reduced. As a result, resistance to thermal cycle stress can be further increased.

なお、実施形態5に係る半導体装置5及びクリップリード100dは、クリップリードの形状以外の点においては実施形態1に係る半導体装置1及びクリップリード100と同様の構成を有するため、実施形態1に係る半導体装置1及びクリップリード100が有する効果のうち該当する効果を有する。 The semiconductor device 5 and the clip lead 100d according to the fifth embodiment have the same configurations as the semiconductor device 1 and the clip lead 100 according to the first embodiment except for the shape of the clip lead, and thus the semiconductor device 5 and the clip lead 100d according to the first embodiment. This has the corresponding effect among the effects of the semiconductor device 1 and the clip lead 100.

以上、本発明を上記の実施形態に基づいて説明したが、本発明は上記の実施形態に限定されるものではない。その趣旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば、次のような変形も可能である。 Although the present invention has been described based on the above embodiment, the present invention is not limited to the above embodiment. The present invention can be implemented in various modes without departing from the spirit of the invention, and the following modifications are possible, for example.

(1)上記各実施形態において記載した構成要素の数、形状、位置、大きさ等は例示であり、本発明の効果を損なわない範囲において変更することが可能である。 (1) The numbers, shapes, positions, sizes, etc. of the constituent elements described in each of the above-described embodiments are mere examples, and can be changed within a range that does not impair the effects of the present invention.

(2)上記実施形態2〜5においては、実施形態1を基に各実施形態を説明しているが、本発明はこれに限定されるものではない。実施形態1の特徴に加えて実施形態2〜5の特徴のうち複数の特徴を含む半導体装置及びクリップリードも本発明に含まれるものとする。 (2) In Embodiments 2 to 5 above, each embodiment is described based on Embodiment 1, but the present invention is not limited to this. It is assumed that the present invention also includes a semiconductor device and a clip lead including a plurality of features of the features of the second to fifth embodiments in addition to the features of the first embodiment.

(3)上記各実施形態において、基板の裏側(チップとは反対側の面)に放熱用のフィンFが配置されているが、放熱フィンが配置されていなくてもよい。 (3) In each of the above embodiments, the fins F for heat dissipation are arranged on the back side of the substrate (the surface opposite to the chip), but the heat dissipation fins may not be arranged.

(4)上記各実施形態においては、第1折り曲げ部132及び第2折り曲げ部133の下側の表面にめっきが塗られていてもよい。このような構成とすることにより、接合工程においてはんだが第1折り曲げ部の下側や第2折り曲げ部の下側を這い上がりやすくなる、という効果を得ることができる。 (4) In each of the above embodiments, plating may be applied to the lower surface of the first bent portion 132 and the second bent portion 133. With such a configuration, it is possible to obtain the effect that the solder is likely to crawl below the first bent portion and below the second bent portion in the joining process.

(5)図10は、変形例に係る半導体装置6を説明するために示す図である。図10(a)は半導体装置6の平面図であり、図10(b)は半導体装置6の断面図である。
上記各実施形態においては、第1電極部及び第2電極部を基板S上に形成されたパターン配線としたが、本発明はこれに限定されるものではない。例えば、第1電極部(リードフレームLF1のダイパッド)及び第2電極部(リードフレームLF2の端子)を、離間した複数のリードフレームLF1,LF2上にそれぞれ形成された所定の領域であるとしてもよい。このような半導体装置としては、例えばダイパッド及びドレイン電極端子を有するリードフレームLF1とソース電極端子を有するLF2とをクリップリードを用いて接続する半導体装置が考えられる(図10参照。なお、図10においてはMOSFETであるが、IGBT等そのほか適宜の半導体装置でもよい。)。その他、第1電極部及び第2電極部が離間した位置に設けられ、第1電極部上にチップが配置され、チップと第2電極部がクリップリードで電気的に接続される構成であれば、適宜の構成を有する半導体装置であってもよい。
(5) FIG. 10 is a diagram for explaining the semiconductor device 6 according to the modification. 10A is a plan view of the semiconductor device 6, and FIG. 10B is a cross-sectional view of the semiconductor device 6.
In each of the above embodiments, the first electrode portion and the second electrode portion are the pattern wiring formed on the substrate S, but the present invention is not limited to this. For example, the first electrode portion (die pad of the lead frame LF1) and the second electrode portion (terminal of the lead frame LF2) may be predetermined regions formed on the plurality of spaced lead frames LF1 and LF2, respectively. .. As such a semiconductor device, for example, a semiconductor device in which a lead frame LF1 having a die pad and a drain electrode terminal and an LF2 having a source electrode terminal are connected using a clip lead is conceivable (see FIG. 10; in FIG. 10). Is a MOSFET, but it may be an appropriate semiconductor device such as an IGBT). In addition, if the first electrode portion and the second electrode portion are provided at positions separated from each other, the chip is arranged on the first electrode portion, and the chip and the second electrode portion are electrically connected by a clip lead Alternatively, it may be a semiconductor device having an appropriate configuration.

1,2,3,4,5,6,800…半導体装置、1’…組立体、10、810…チップ、12,812…チップの一方の面の表面電極、14,814…チップの他方の面の表面電極、20,820…第1電極部、22,822…第2電極部、30,830…第1接合部材、40,840…第2接合部材、50,850…第3接合部材、60…第4接合部材、70…端子、80…樹脂、100,100a,100b,100c,100d,100e,900…クリップリード、100’…異形条材、100’’…銅平条材、110,110d,110e,910…第1接合部、120,120d,120e,920…第2接合部、130,130a,130b,130c,130d,130e,930…架橋部、131,131a,131b,131c,131d,131e,931…平板部、131’…板厚部、132,132e,932…第1折り曲げ部、132’,133’…板薄部、133,133c,133e,933…第2折り曲げ部、134,134a,134b,134e,135,135a,135b,135e…肩部、136,137…段差部、138,139…溝、140…熱応力緩和部、F…フィン、S…基板、W…ワイヤ、LF1,LF2,LF3…リードフレーム 1, 2, 3, 4, 5, 6, 800... Semiconductor device, 1'... Assembly, 10, 810... Chip, 12, 812... Surface electrode on one side of chip, 14, 814... On the other side of chip Surface electrode, 20, 820... first electrode part, 22, 822... second electrode part, 30,830... first joining member, 40, 840... second joining member, 50, 850... third joining member, 60... 4th joining member, 70... Terminal, 80... Resin, 100, 100a, 100b, 100c, 100d, 100e, 900... Clip lead, 100'... Deformed strip, 100''... Copper flat strip, 110, 110d, 110e, 910... 1st joining part, 120, 120d, 120e, 920... 2nd joining part, 130, 130a, 130b, 130c, 130d, 130e, 930... Bridge part, 131, 131a, 131b, 131c, 131d , 131e, 931... Flat plate portion, 131'... Plate thickness portion, 132, 132e, 932... First bent portion, 132', 133'... Sheet thin portion, 133, 133c, 133e, 933... Second bent portion, 134 , 134a, 134b, 134e, 135, 135a, 135b, 135e... Shoulder portion, 136, 137... Step portion, 138, 139... Groove, 140... Thermal stress relaxation portion, F... Fin, S... Substrate, W... Wire, LF1, LF2, LF3... Lead frame

Claims (15)

一方の面及び他方の面にそれぞれ表面電極を有するチップと、
前記チップの前記一方の面の前記表面電極と電気的に接続されている第1電極部と、
前記第1電極部と間隔をあけて配置された第2電極部と、
前記チップの前記他方の面の前記表面電極と第1接合部材を介して接合された第1接合部、前記第1接合部と間隔をあけて配置され、前記第2電極部と第2接合部材を介して接合された第2接合部、及び、前記第1接合部と前記第2接合部とを架橋する架橋部を有し、前記チップと前記第2電極部とを電気的に接続するクリップリードとを備え、
前記架橋部は、
所定の厚みを有する平板部と、
前記平板部から下側に折り曲げられ、前記第1接合部と接続されている第1折り曲げ部と、
前記平板部から前記下側に折り曲げられ、前記第2接合部と接続されている第2折り曲げ部とを有し、
前記第1接合部及び前記第1折り曲げ部は、前記チップと前記第1接合部との間の前記第1接合部材に対する熱応力を緩和するための熱応力緩和構造を構成し、
前記熱応力緩和構造は、少なくとも前記第1接合部及び前記第1折り曲げ部が前記平板部よりも薄くなるように構成された構造を含むことを特徴とする半導体装置。
A chip having surface electrodes on one surface and the other surface,
A first electrode portion electrically connected to the surface electrode on the one surface of the chip;
A second electrode portion spaced apart from the first electrode portion;
A first joining portion joined to the surface electrode on the other surface of the chip via a first joining member, the first joining portion is arranged with a gap, and the second electrode portion and the second joining member are arranged. A clip that has a second joint portion joined via a bridge and a bridge portion that bridges the first joint portion and the second joint portion, and electrically connects the chip and the second electrode portion. With leads,
The bridge portion,
A flat plate portion having a predetermined thickness,
A first bent portion that is bent downward from the flat plate portion and is connected to the first joint portion;
A second bent portion that is bent from the flat plate portion to the lower side and is connected to the second joint portion,
The first joint portion and the first bent portion constitute a thermal stress relaxation structure for relaxing thermal stress on the first joint member between the chip and the first joint portion,
The semiconductor device, wherein the thermal stress relaxation structure includes a structure in which at least the first bonding portion and the first bent portion are thinner than the flat plate portion.
前記熱応力緩和構造は、少なくとも前記第1接合部及び前記第1折り曲げ部が異形条材を折り曲げることによって形成された構造を含むことを特徴とする請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the thermal stress relaxation structure includes a structure in which at least the first joint portion and the first bent portion are formed by bending a profiled strip. 前記熱応力緩和構造は、前記第1接合部に対する前記第1折り曲げ部の傾斜角度が90°〜120°の範囲内になるように構成された構造を含むことを特徴とする請求項1又は2に記載の半導体装置。 The said thermal stress relaxation structure contains the structure comprised so that the inclination angle of the said 1st bending part with respect to the said 1st junction may be in the range of 90 degrees-120 degrees. The semiconductor device according to 1. 前記クリップリードにおいては、前記第1折り曲げ部の前記チップ側の面全体が前記第1接合部材と接していることを特徴とする請求項1〜3のいずれかに記載の半導体装置。 The semiconductor device according to claim 1, wherein in the clip lead, the entire surface of the first bent portion on the chip side is in contact with the first joining member. 前記第1接合部においては、前記第1接合部の厚みのうちの少なくとも半分の厚みまで前記第1接合部材に埋められていることを特徴とする請求項1〜4のいずれかに記載の半導体装置。 The semiconductor according to any one of claims 1 to 4, wherein in the first bonding portion, at least half of the thickness of the first bonding portion is filled with the first bonding member. apparatus. 前記第2接合部及び前記第2折り曲げ部は、いずれも前記平板部よりも薄いことを特徴とする請求項1〜5のいずれかに記載の半導体装置。 The semiconductor device according to claim 1, wherein each of the second joint portion and the second bent portion is thinner than the flat plate portion. 前記第1接合部、前記第2接合部、前記第1折り曲げ部及び前記第2折り曲げ部はいずれも同じ厚さであることを特徴とする請求項6に記載の半導体装置。 The semiconductor device according to claim 6, wherein the first joint portion, the second joint portion, the first bent portion, and the second bent portion all have the same thickness. 前記第2接合部及び前記第2折り曲げ部は、いずれも前記平板部と同じ厚さであることを特徴とする請求項1〜5のいずれかに記載の半導体装置。 The semiconductor device according to claim 1, wherein the second joint portion and the second bent portion both have the same thickness as the flat plate portion. 前記架橋部は、前記平板部と前記第1折り曲げ部との間に前記平板部よりも薄い肩部をさらに有することを特徴とする請求項1〜8のいずれかに記載の半導体装置。 9. The semiconductor device according to claim 1, wherein the bridge portion further has a shoulder portion thinner than the flat plate portion between the flat plate portion and the first bent portion. 前記肩部の下側の面と前記平板部の下側の面との間には段差部が形成されていることを特徴とする請求項9に記載の半導体装置。 10. The semiconductor device according to claim 9, wherein a step portion is formed between the lower surface of the shoulder portion and the lower surface of the flat plate portion. 前記第1接合部材と前記クリップリードとの接触面の端部が前記段差部にあることを特徴とする請求項10に記載の半導体装置。 11. The semiconductor device according to claim 10, wherein an end portion of a contact surface between the first joining member and the clip lead is at the step portion. 前記肩部は、側面から見て階段状の肩部であることを特徴とする請求項9〜11のいずれかに記載の半導体装置。 The semiconductor device according to claim 9, wherein the shoulder portion is a stepped shoulder portion when viewed from a side surface. 前記第1接合部においては、前記チップと接合する面とは反対側の面に溝が形成されていることを特徴とする請求項1〜12のいずれかに記載の半導体装置。 13. The semiconductor device according to claim 1, wherein a groove is formed in a surface of the first bonding portion opposite to a surface of the first bonding portion, the surface being bonded to the chip. 請求項1〜13のいずれかに記載の半導体装置を製造するための半導体装置の製造方法であって、
第1接合部、前記第1接合部と間隔をあけて配置された第2接合部、及び、前記第1接合部と前記第2接合部とを架橋する架橋部を有し、前記架橋部は、所定の厚みを有する平板部と、前記平板部から一方側に折り曲げられ、前記第1接合部と接続されている第1折り曲げ部と、前記平板部から前記一方側に折り曲げられ、前記第2接合部と接続されている第2折り曲げ部とを有するクリップリードをチップ及び電極部上に接合部材を介して配置するクリップリード配置工程と、
前記チップと前記第1接合部との間、及び、前記電極部と前記第2接合部との間をそれぞれ前記接合部材で接合する接合工程とを含み、
前記クリップリード配置工程においては、前記クリップリードとして、前記第1接合部及び前記第1折り曲げ部が前記第1接合部と前記チップとの間の前記接合部材に対する熱応力を緩和するための熱応力緩和構造を構成し、前記熱応力緩和構造は、少なくとも前記第1接合部及び前記第1折り曲げ部が前記平板部よりも薄くなるように構成された構造を含むクリップリードを前記チップ及び前記電極部上に配置することを特徴とする半導体装置の製造方法。
A semiconductor device manufacturing method for manufacturing the semiconductor device according to claim 1.
A first joint portion, a second joint portion spaced apart from the first joint portion, and a bridge portion bridging the first joint portion and the second joint portion, wherein the bridge portion is A flat plate portion having a predetermined thickness, a first bent portion bent from the flat plate portion to one side and connected to the first joining portion, and a first bent portion bent from the flat plate portion to the one side, A clip lead arranging step of arranging a clip lead having a second bent portion connected to the joint portion on the chip and the electrode portion via the joint member;
A bonding step of bonding the tip and the first bonding portion, and bonding the electrode portion and the second bonding portion with the bonding member,
In the clip lead arranging step, as the clip lead, the first joint portion and the first bent portion are thermal stresses for alleviating thermal stress on the joint member between the first joint portion and the chip. The chip and the electrode portion include a clip lead that constitutes a relaxation structure, and the thermal stress relaxation structure includes a structure in which at least the first joint portion and the first bent portion are thinner than the flat plate portion. A method for manufacturing a semiconductor device, which is characterized in that the semiconductor device is arranged above.
請求項1〜13のいずれかに記載の半導体装置に用いることを特徴とするクリップリード。 A clip lead used for the semiconductor device according to claim 1.
JP2018229906A 2018-12-07 2018-12-07 Semiconductor device, method for manufacturing semiconductor device, and clip lead Active JP7329919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018229906A JP7329919B2 (en) 2018-12-07 2018-12-07 Semiconductor device, method for manufacturing semiconductor device, and clip lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018229906A JP7329919B2 (en) 2018-12-07 2018-12-07 Semiconductor device, method for manufacturing semiconductor device, and clip lead

Publications (2)

Publication Number Publication Date
JP2020092229A true JP2020092229A (en) 2020-06-11
JP7329919B2 JP7329919B2 (en) 2023-08-21

Family

ID=71013924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018229906A Active JP7329919B2 (en) 2018-12-07 2018-12-07 Semiconductor device, method for manufacturing semiconductor device, and clip lead

Country Status (1)

Country Link
JP (1) JP7329919B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4145495A1 (en) * 2021-09-01 2023-03-08 Infineon Technologies AG Method of manufacturing an electrical interconnect for a semiconductor device as well as the corresponding device having the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151554A (en) * 2000-08-31 2002-05-24 Nec Corp Semiconductor device
JP2009129952A (en) * 2007-11-20 2009-06-11 Denso Corp Semiconductor device
WO2014068936A1 (en) * 2012-11-05 2014-05-08 日本精工株式会社 Semiconductor module
WO2015059882A1 (en) * 2013-10-21 2015-04-30 日本精工株式会社 Semiconductor module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151554A (en) * 2000-08-31 2002-05-24 Nec Corp Semiconductor device
JP2009129952A (en) * 2007-11-20 2009-06-11 Denso Corp Semiconductor device
WO2014068936A1 (en) * 2012-11-05 2014-05-08 日本精工株式会社 Semiconductor module
WO2015059882A1 (en) * 2013-10-21 2015-04-30 日本精工株式会社 Semiconductor module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4145495A1 (en) * 2021-09-01 2023-03-08 Infineon Technologies AG Method of manufacturing an electrical interconnect for a semiconductor device as well as the corresponding device having the same
US11756923B2 (en) 2021-09-01 2023-09-12 Infineon Technologies Ag High density and durable semiconductor device interconnect

Also Published As

Publication number Publication date
JP7329919B2 (en) 2023-08-21

Similar Documents

Publication Publication Date Title
TWI378543B (en) Semiconductor package having dimpled plate interconnections
US7176570B2 (en) Method for forming bump, semiconductor element having bumps and method of manufacturing the same, semiconductor device and method of manufacturing the same, circuit board, and electronic equipment
JP7441287B2 (en) semiconductor equipment
US7064425B2 (en) Semiconductor device circuit board, and electronic equipment
US11183444B2 (en) Packaging of a semiconductor device with a plurality of leads
US6921016B2 (en) Semiconductor device and method of manufacturing the same, circuit board, and electronic equipment
KR20080083533A (en) Power module with stacked flip-chip and method of fabricating the same power module
CN104485321A (en) Semiconductor die package and method for making the same
KR20170086828A (en) Clip -bonded semiconductor chip package using metal bump and the manufacturing method thereof
JP7326314B2 (en) Semiconductor device and method for manufacturing semiconductor device
US6841865B2 (en) Semiconductor device having clips for connecting to external elements
US8076771B2 (en) Semiconductor device having metal cap divided by slit
JP5819052B2 (en) Semiconductor device and manufacturing method of semiconductor device
TWI325617B (en) Chip package and method of manufacturing the same
US20140374926A1 (en) Semiconductor device
JP7329919B2 (en) Semiconductor device, method for manufacturing semiconductor device, and clip lead
TWI669804B (en) Electronic module and method of manufacturing electronic module
JP7322054B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP5147295B2 (en) Semiconductor device
JP2022143167A (en) Semiconductor device
JP6274986B2 (en) Power semiconductor module and manufacturing method thereof
WO2022196123A1 (en) Semiconductor device
JP7312814B2 (en) ELECTRONIC DEVICE AND METHOD OF MANUFACTURING ELECTRONIC DEVICE
JP4175339B2 (en) Manufacturing method of semiconductor device
TWI693644B (en) Structure for packaging and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230808

R150 Certificate of patent or registration of utility model

Ref document number: 7329919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150