JP2020089121A - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JP2020089121A
JP2020089121A JP2018222142A JP2018222142A JP2020089121A JP 2020089121 A JP2020089121 A JP 2020089121A JP 2018222142 A JP2018222142 A JP 2018222142A JP 2018222142 A JP2018222142 A JP 2018222142A JP 2020089121 A JP2020089121 A JP 2020089121A
Authority
JP
Japan
Prior art keywords
capacitor
terminal
circuit
main
conversion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018222142A
Other languages
English (en)
Other versions
JP6957120B2 (ja
Inventor
航平 柏木
Kohei Kashiwagi
航平 柏木
飛鳥 大竹
Asuka Otake
飛鳥 大竹
将樹 佐藤
Masaki Sato
将樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2018222142A priority Critical patent/JP6957120B2/ja
Publication of JP2020089121A publication Critical patent/JP2020089121A/ja
Application granted granted Critical
Publication of JP6957120B2 publication Critical patent/JP6957120B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rectifiers (AREA)

Abstract

【課題】部分放電試験時に試験端子間のインピーダンスを高く設定することができる電力変換装置を提供する。【解決手段】実施形態に係る電力変換装置は、直流電圧を印加するコンデンサを含む主回路を備える。前記コンデンサは、第1コンデンサと、前記第1コンデンサの一方の電極が接続された第1主端子と、前記第1コンデンサの他方の電極が接続された第2主端子と、前記第1コンデンサよりも小さい静電容量値を有する第2コンデンサと、前記第2コンデンサの一方の電極が接続された第1補助端子と、前記第2コンデンサの他方の電極が接続された第2補助端子と、前記第1主端子および前記第1補助端子間を電気的に接続し、着脱可能に設けられた第1短絡バーと、前記第2主端子および前記第2補助端子間を電気的に接続し、着脱可能に設けられた第2短絡バーと、を含む。【選択図】図1

Description

本発明の実施形態は、電力変換装置に関する。
電力変換装置には、高い安全性が求められる。電力変換装置の安全性を確保するために、部分放電試験が行われる場合がある。部分放電試験は、たとえば、装置の種類等に応じて、電気学会電気規格調査会標準規格(JEC)や国際電気標準会議(IEC)規格等が制定されている。
装置や部品等の部分放電(コロナ放電)を測定する測定装置では、測定時に被測定物のインピーダンスよりも十分小さなインピーダンスを有するカップリングコンデンサを設ける必要がある。一方で、電力変換装置の出力容量等によっては、主回路に用いられているコンデンサの静電容量は、大きな値に設定されている場合がある。そのため、測定端子間のインピーダンスが、カップリングコンデンサのインピーダンスよりも低くなることがあり、正確に部分放電試験を行えない場合が生じ得る。
特開平7−260869号公報
実施形態は、部分放電試験時に試験端子間のインピーダンスを高く設定することができる電力変換装置を提供する。
実施形態に係る電力変換装置は、出力しまたは入力する直流電圧を電力変換する。この電力変換装置は、前記直流電圧を印加するコンデンサを含む主回路を備える。前記コンデンサは、第1静電容量値を有する第1コンデンサと、前記第1コンデンサの一方の電極が接続された第1主端子と、前記第1コンデンサの他方の電極が接続された第2主端子と、前記第1静電容量値よりも小さい第2静電容量値を有する第2コンデンサと、前記第2コンデンサの一方の電極が接続された第1補助端子と、前記第2コンデンサの他方の電極が接続された第2補助端子と、前記第1主端子および前記第1補助端子間を電気的に接続し、着脱可能に設けられた第1短絡バーと、前記第2主端子および前記第2補助端子間を電気的に接続し、着脱可能に設けられた第2短絡バーと、を含む。
本実施形態では、部分放電試験時に試験端子間のインピーダンスを高く設定することができる電力変換装置が実現される。
第1の実施形態に係る電力変換装置を例示するブロック図である。 図2(a)は、電力変換装置に用いられるコンデンサの外観を例示する模式的な斜視図である。図2(b)は、図2(a)のコンデンサの等価回路の例である。 図3(a)および図3(b)は、実施形態の電力変換装置の一部を例示する簡略化された回路図である。 図4(a)は、部分放電試験の方法を模式的に例示するブロック図である。図4(b)は、図2(b)のコンデンサの部分放電試験時の等価回路の例である。 図5(a)は、第2の実施形態の電力変換装置に用いられるコンデンサの外観の例を示す斜視図およびその等価回路である。図5(b)は、図5(a)のコンデンサの部分放電試験時の外観を示す斜視図およびその等価回路である。
以下、図面を参照しつつ、本発明の実施形態について説明する。
なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して詳細な説明を適宜省略する。
(第1の実施形態)
図1は、本実施形態に係る電力変換装置を例示するブロック図である。
図1に示すように、本実施形態の電力変換装置10は、交流回路1と直流回路2との間に接続される。電力変換装置10は、端子(図示せず)を介して交流回路1に接続される。電力変換装置10は、端子(図示せず)を介して直流回路2に接続される。交流回路1は、たとえば交流電源である。交流回路1は、交流電源を含む電力系統等であってもよい。交流回路1は、電動機等の交流負荷であってもよい。直流回路2は、たとえば直流電源である。直流回路2は、直流電源を含む直流系統等であってもよい。
電力変換装置10は、交流回路1の交流電圧を直流電圧に変換して直流回路2に供給し、直流回路2の直流電圧を交流電圧に変換して交流回路1に供給する。電力変換装置10は、交流−直流間で双方向にあるいは単一方向に電力変換する。
なお、本明細書では、上述のように交流−直流間の電力変換を行う電力変換装置について説明するが、直流−直流間の変換や交流−交流間の電力変換をする変換回路を有する電力変換装置にも同様に適用することができる。
電力変換装置10は、主回路20を備える。主回路20は、スイッチング素子22とコンデンサ30とを含む。スイッチング素子22は、供給された交流電圧または直流電圧を所望の時比率でスイッチングする。スイッチング素子22は、たとえばIGBTやMOSFET等の自己消弧型の半導体素子である。スイッチング素子22は、図示しない制御回路や駆動回路等によって駆動され、電力変換装置10が供給する直流電圧や交流電圧等を制御する。
コンデンサ30は、スイッチング素子22によってスイッチングされた電圧を平滑し、あるいはスイッチング素子22によってスイッチングする直流電圧を保持する。コンデンサ30は、フィルムコンデンサやアルミ電解コンデンサ等である。コンデンサ30の静電容量値は、電力変換装置10の出力容量に応じて、設定されている。
図2(a)は、電力変換装置に用いられるコンデンサの外観を例示する模式的な斜視図である。図2(b)は、図2(a)のコンデンサの等価回路の例である。
図2(a)に示すように、コンデンサ30は、ケース31と、主コンデンサ端子(第1主端子、第2主端子)32a,32bと、試験用端子(第1補助端子、第2補助端子)33a,33bと、短絡バー34,35と、を含む。
ケース31は、この例では、直方体状の形状を有する。ケースの形状は、直方体に限らず、円筒形状等任意の形状とすることができるが、以下では直方体形状のケース31であるものとする。なお、ケース31の材質には、特に限定はなく、導電性の材料でもよいし、樹脂等の絶縁性の材料でもよい。
ケース31の1つの面に主コンデンサ端子32a,32bおよび試験用端子33a,33bが設けられている。主コンデンサ端子32a,32bは、たとえばコンデンサ30の耐圧に応じて設定された沿面距離を確保できる距離だけ離れて設けられている。この例では、主コンデンサ端子32a,32bは、ケース31の方形の面を構成する1つの辺に近接し、その辺に沿って設けられている。
試験用端子33a,33bは、この例では、主コンデンサ端子32a,32bが配置されている辺に対向する辺に近接し、その辺に沿って設けられている。また、試験用端子33a,33bは、主コンデンサ端子32a,32bの離間距離とほぼ同じ距離だけ離れて設けられている。
短絡バー34,35は、長方形状の導電性(たとえば銅を含む合金)の板材である。短絡バー34,35は、ほぼ同一の形状を有する。
短絡バー34は、主コンデンサ端子32aと試験用端子33aとを電気的に短絡するように設けられている。短絡バー35は、主コンデンサ端子32bと試験用端子33bとを電気的に短絡するように設けられている。短絡バー34,35は、主コンデンサ端子32a,32bおよび試験用端子33a,33bにたとえばねじ止め等により着脱可能とされている。
後に詳述するように、短絡バー34,35は、電力変換装置10が通常運転時には、主コンデンサ端子32aと試験用端子33aとを短絡し、主コンデンサ端子32bと試験用端子33bとを短絡して用いられる。また、部分放電試験時には、短絡バー34,35の少なくとも一方は、主コンデンサ端子32a(32b)または試験用端子33a(33b)のうちの少なくとも一方から取り外される。
図2(b)に示すように、コンデンサ30は、複数の単位コンデンサ40を含む。この例では、コンデンサ30は、N個の単位コンデンサ40を含んでいる。単位コンデンサ40は、同一の静電容量値を有する。(N−1)個の単位コンデンサ40は、ケース31の内部で並列に接続されており、一方の電極が主コンデンサ端子32aに電気的に接続され、他方の電極が主コンデンサ端子32bに電気的に接続されている。
残りの1個の単位コンデンサ40は、ケース31の内部では、他の(N−1)個の単位コンデンサ40に電気的に接続されておらず、一方の電極が試験用端子33aに電気的に接続され、他方の電極が試験用端子33bに電気的に接続されている。つまり、並列に接続された(N−1)個の単位コンデンサ40と残りの1個の単位コンデンサ40とは、ケース31の外部で、短絡バー34,35によって電気的に接続される。したがって、コンデンサ30の静電容量値は、単位コンデンサ40の静電容量値×Nとなる。
上述では、すべての単位コンデンサ40の静電容量値が等しいものとしたが、これに限るものではない。試験用端子間の静電容量値が主コンデンサ端子間の静電容量値に比べて十分小さければ、単位コンデンサの静電容量値は、一部または全部が異なる値であってもよい。また、試験用端子間に接続される単位コンデンサは1つに限らず、2つまたはそれ以上であってもよい。
図3(a)および図3(b)は、実施形態の電力変換装置の一部を例示する簡略化された回路図である。
図3(a)および図3(b)は、電力変換装置10の主回路20a,20b(20)の例である。
図3(a)に示すように、主回路20aは、ハーフブリッジ形式の電力変換回路である。主回路20aでは、2つのスイッチング素子22が直列に接続され、コンデンサ30がスイッチング素子22の直列回路に並列に接続されている。端子21p,21nは、低電位側に接続されたスイッチング素子22の両端にそれぞれ接続されている。主回路20aは、交流の相ごとに設けられて変換回路を構成する。あるいは主回路20aは、複数設けられ、端子21p,21nによってカスケード接続されてもよい。
図3(b)に示すように、主回路20bは、フルブリッジ形式の電力変換回路である。主回路20bは、2つのスイッチング素子22の直列回路が並列に接続され、コンデンサ30がさらに並列に接続されている。端子21P,21Nは、直列回路の接続ノードにそれぞれ接続されている。主回路20bは、端子21P,21Nを介して、単相交流の入出力を行ってもよいし、交流の相ごとに主回路20bを設けてもよい。また、端子21P,21Nによって、主回路20bをカスケード接続してもよい。
主回路は、上述の回路形式に限らず、直流端にコンデンサ30が接続される回路形式であれば、他の形式であってもよい。たとえば、主回路は、中性点クランプ回路等であってもよい。
電力変換装置10の出力容量によっては、コンデンサ30の静電容量は、大きな値を有する。そのような主回路を有する電力変換装置10で部分放電試験を行う場合には、部分放電試験を行う端子間のインピーダンスがコンデンサ30の静電容量値によって低下してしまい、正確な測定ができないおそれがある。
そこで、実施形態の電力変換装置10では、主回路20のコンデンサ30の静電容量値を、通常の運転用と部分放電試験用との間で切り換える。
図4(a)は、部分放電試験の方法を模式的に例示するブロック図である。図4(b)は、図2(b)のコンデンサの部分放電試験時の等価回路の例である。
図4(a)に示すように、部分放電試験システム100は、試験用電源101とコロナ測定器102と、カップリングコンデンサ103と、を含む。試験用電源101は、被試験対象装置105の部分放電試験用の端子に電気的に接続される。コロナ測定器102は、カップリングコンデンサ103を介して被試験対象装置105の部分放電試験用の端子に電気的に接続される。
被試験測定対象装置105は、この場合には、電力変換装置10である。接続する端子は、要求試験項目に応じて任意に設定される。たとえば、交流回路1が接続される端子、直流回路2が接続される端子のすべての組合せについて部分放電試験が行われる。試験用電源101、コロナ測定器102およびカップリングコンデンサ103は、部分放電試験の要求仕様等に応じて適切な機器や装置等が選定される。たとえば、試験用電源101は、任意の周波数の交流電源であったり、直流電源であったり、交流電源と直流電源とを組み合わせたり、部分放電試験の要求仕様に応じて選定される。
部分放電試験を行う場合には、試験用電源101によって試験電圧を印加し、コロナ測定器102によって、コロナ放電が発生した際にカップリングコンデンサ103に流れる電流を検出する。コロナ測定器102は、検出された電流値によって、コロナ放電量を測定し、要求仕様に適合するか否かが判定される。
ここで、被試験対象装置105の測定端子間のインピーダンスが、カップリングコンデンサ103の静電容量値によるインピーダンスよりも小さい場合には、電流値が大きく検出されてしまい、正確なコロナ放電量を測定することができない。
図4(b)に示すように、電力変換装置10(被試験対象装置105)のコンデンサ30は、部分放電試験を行う場合には、短絡バー34,35のうち少なくとも一方、好ましくは両方について、主コンデンサ端子32a,32b、試験用端子33a,33bから取り外される。
ケース31の内部で(N−1)個並列接続された単位コンデンサ40は、残りの1個の単位コンデンサ40と電気的に分離され、残り1個の単位コンデンサ40が、試験用端子33a,33bを介して、主回路20(図1、図3)に接続される。したがって、コンデンサ30の静電容量値は、短絡バー34,35除去前の1/Nとなる。このときに被試験対象装置105の部分放電試験端子間のインピーダンスが、カップリングコンデンサ103の静電容量によるインピーダンスよりも十分大きい場合には、コロナ測定器102によって正確にコロナ放電量を測定することができ、適切な部分放電試験を行うことができる。
コロナ放電に対する耐量は電圧が印加される対象物の形状に左右されることが知られている。部分放電試験の規格によっては、同じ形状で異なる静電容量値を有するコンデンサを用意して、代替のコンデンサを部分放電試験用に使用することが認められている場合がある。
本実施形態の電力変換装置10では、上述のようなコンデンサ30を用いることによって、コンデンサ30の外形や端子配置等を変えることなく、小さな静電容量値に切り換えることができる。そのため、部分放電試験用の端子間のインピーダンスをカップリングコンデンサ103の静電容量値によるインピーダンスよりも十分大きくすることができる。
本実施形態の電力変換装置10では、部分放電試験のために、同一形状で静電容量値の小さい部分放電試験用のコンデンサをあらかじめ準備したり、あらためて手配したりすることなく、短絡バー34,35の接続を変更するだけで部分放電試験を行うことができる。また、電力変換装置10では、通常運転をする場合には、短絡バー34,35の接続を元に戻すことによって、十分な静電容量値を有するコンデンサ30を備えた主回路20とすることができる。
(第2の実施形態)
電力変換装置に用いるコンデンサは、上述のような単一のケースに収納された複数の単位コンデンサをケース外部の短絡バーの接続と非接続との選択によって切り替える場合に限らず、複数のコンデンサを用いてもよい。
図5(a)は、本実施形態の電力変換装置に用いられるコンデンサの外観の例を示す斜視図およびその等価回路である。図5(b)は、図5(a)のコンデンサの部分放電試験時の外観を示す斜視図およびその等価回路である。
図5(a)に示すように、本実施形態の電力変換装置の主回路には、コンデンサ330が設けられ、コンデンサ330は、2つのコンデンサ130,230を含んでいる。2つのコンデンサ130,230は、並列に接続されている。
2つのコンデンサ130,230のケース131,231は、好ましくは同一寸法の直方体形状で、同一材料により形成されている。コンデンサ130,230は、向きをそろえて、それぞれの1つの面が対向するように並べられている。
コンデンサ130は、ケース131の対向面とは異なる面に端子132,133が設けられている。コンデンサ230は、ケース231の対向面とは異なる面であって、コンデンサ130の端子132,133が設けられている面に対応する面に、端子232,233が設けられている。
短絡バー334は、端子132,232を電気的に短絡するように設けられている。短絡バー335は、端子133,233を電気的に短絡するように設けられている。短絡バー334,335は、端子132,133,232,233と着脱可能に接続されている。
コンデンサ130の静電容量値は、コンデンサ230の静電容量値に比べて十分大きい。コンデンサ230の静電容量値は、部分放電試験時の部分放電試験用の端子間のインピーダンスが、部分放電試験システム100(図4)のカップリングコンデンサ103によるインピーダンスに比べて十分大きくなるように設定されている。
電力変換装置が通常の運転をする場合には、コンデンサ130,230は、図5(a)のように、2つの短絡バー334,335で並列に接続されて用いられる。コンデンサ130,230は、並列に接続されているので、静電容量値は、これらの和となる。
図5(b)に示すように、部分放電試験を行う場合には、短絡バー334,335のうち、少なくとも一方の短絡バー(この例では、短絡バー335)の接続がいずれかの端子から取り外されている。そのため、主回路20からコンデンサ130の接続が切断される。そして、主回路20に接続されるのは、コンデンサ230となる。したがって、主回路20に接続されたコンデンサの静電容量値は、一方のコンデンサ130の静電容量値よりも十分小さく、カップリングコンデンサ103によるインピーダンスに比べて十分大きくなる。
コンデンサ130,230は、十分密着して配置されているので、一体のコンデンサ330とすることができ、別途部分放電試験用のコンデンサに交換して試験を実施し、試験終了後、主回路用のコンデンサに再度交換することなく、通常使用と部分放電試験用とを適宜切り替えて使用することができる。
以上説明した実施形態によれば、確実に過電流保護が可能な電力変換装置を実現することができる。
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他のさまざまな形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明およびその等価物の範囲に含まれる。また、前述の各実施形態は、相互に組み合わせて実施することができる。
1 交流回路、2 直流回路、10 電力変換装置、20,20a,20b 主回路、22 スイッチング素子、30 コンデンサ、31 ケース、32a,32b 主コンデンサ端子、32b,33b 試験用端子、34,35 短絡バー、40 単位コンデンサ、100 部分放電試験システム、101 試験用電源、102 コロナ測定器、103 カップリングコンデンサ、105 被試験対象装置、130,230,330 コンデンサ、132,133,232,233 端子、334,335 短絡バー

Claims (5)

  1. 出力しまたは入力する直流電圧を電力変換する電力変換装置であって、
    前記直流電圧を印加するコンデンサを含む主回路を備え、
    前記コンデンサは、
    第1静電容量値を有する第1コンデンサと、
    前記第1コンデンサの一方の電極が接続された第1主端子と、
    前記第1コンデンサの他方の電極が接続された第2主端子と、
    前記第1静電容量値よりも小さい第2静電容量値を有する第2コンデンサと、
    前記第2コンデンサの一方の電極が接続された第1補助端子と、
    前記第2コンデンサの他方の電極が接続された第2補助端子と、
    前記第1主端子および前記第1補助端子間を電気的に接続し、着脱可能に設けられた第1短絡バーと、
    前記第2主端子および前記第2補助端子間を電気的に接続し、着脱可能に設けられた第2短絡バーと、
    を含む電力変換装置。
  2. 前記第1コンデンサ、前記第1主端子、前記第2主端子、前記第2コンデンサ、前記第1補助端子、および前記第2補助端子を含むケースをさらに備え、
    前記第1コンデンサは、並列接続された複数の単位コンデンサを含み、
    前記第1静電容量値は、前記複数の単位コンデンサの静電容量値の合成値である請求項1記載の電力変換装置。
  3. 前記複数の単位コンデンサのそれぞれの静電容量値は、前記第2静電容量値である請求項2記載の電力変換装置。
  4. 前記第1コンデンサ、前記第1主端子、および前記第2主端子を含む第1ケースと、
    前記第2コンデンサ、前記第1補助端子、および前記第2補助端子を含む第2ケースと、
    をさらに備えた請求項1記載の電力変換装置。
  5. 前記第1ケースは、
    少なくとも1つの第1平面を含む直方体形状をなし、
    前記第2ケースは、前記第1平面に対向して配置された第2平面を含む直方体形状をなす請求項4記載の電力変換装置。
JP2018222142A 2018-11-28 2018-11-28 電力変換装置 Active JP6957120B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018222142A JP6957120B2 (ja) 2018-11-28 2018-11-28 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018222142A JP6957120B2 (ja) 2018-11-28 2018-11-28 電力変換装置

Publications (2)

Publication Number Publication Date
JP2020089121A true JP2020089121A (ja) 2020-06-04
JP6957120B2 JP6957120B2 (ja) 2021-11-02

Family

ID=70910199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018222142A Active JP6957120B2 (ja) 2018-11-28 2018-11-28 電力変換装置

Country Status (1)

Country Link
JP (1) JP6957120B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157120A1 (ja) 2022-02-16 2023-08-24 東芝三菱電機産業システム株式会社 電力変換装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003319665A (ja) * 2002-04-19 2003-11-07 Toyota Motor Corp 電力変換装置
JP2017004593A (ja) * 2015-06-04 2017-01-05 高周波熱錬株式会社 誘導加熱用電源装置
JP2017022835A (ja) * 2015-07-09 2017-01-26 株式会社日立製作所 電力変換装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003319665A (ja) * 2002-04-19 2003-11-07 Toyota Motor Corp 電力変換装置
JP2017004593A (ja) * 2015-06-04 2017-01-05 高周波熱錬株式会社 誘導加熱用電源装置
JP2017022835A (ja) * 2015-07-09 2017-01-26 株式会社日立製作所 電力変換装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157120A1 (ja) 2022-02-16 2023-08-24 東芝三菱電機産業システム株式会社 電力変換装置

Also Published As

Publication number Publication date
JP6957120B2 (ja) 2021-11-02

Similar Documents

Publication Publication Date Title
JP6805252B2 (ja) 系統遮断点および絶縁抵抗測定を有するインバータ、ならびに絶縁抵抗を測定するための方法
CN209105026U (zh) 用于开关电源的输入保护电路的电路装置及开关电源
US9906160B2 (en) Method for discharging an intermediate circuit capacitor of an intermediate voltage circuit converter
CN107887890B (zh) 开关
US10707029B2 (en) Low-voltage circuit breaker device
HU226003B1 (en) Polarized electric charge storage ("pecs") apparatus for operation in an ac network and method for using pecs devices in an ac network
US11588321B2 (en) Low-voltage protection switch unit
US11373816B2 (en) Circuit breaker
US10091885B2 (en) Electrical power conversion system
Matsubara et al. Current balancing for parallel connection of silicon carbide MOSFETs using bus bar integrated magnetic material
JP6957120B2 (ja) 電力変換装置
Nagasaki et al. Characterization of power capacitors under practical current condition using capacitor loss analyzer
Augustin et al. Advanced test circuit for DC circuit breakers
CN109245508B (zh) 电子设备
WO2017145380A1 (ja) 直流高圧電源装置
US10097096B2 (en) Packaging of a power conversion circuit
JP6527952B2 (ja) センタータップ付きの変圧器を有する回路装置及び出力電圧の測定
JP2016015848A (ja) 5レベル電力変換装置
KR101841409B1 (ko) 고주파 전원 장치, 및 듀얼 캐소드용 전원
Huang et al. Characteristics of capacitor measurement set up by using BH analyzer in power converters
CN109417849B (zh) 电流分离装置
JP6807855B2 (ja) センタータップ付きの変圧器を有する共振形コンバータ
RU2798771C1 (ru) Сильноточный источник для тестовой системы для тестирования электрического силового устройства и тестовая система
TWI504123B (zh) Flow Transformer Transformer and Its Transforming Method
US20230341476A1 (en) High current source for a test system for testing an electrical power devce, and test system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211005

R150 Certificate of patent or registration of utility model

Ref document number: 6957120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150