JP2020074464A - Semiconductor light-emitting element and manufacturing method of the same - Google Patents

Semiconductor light-emitting element and manufacturing method of the same Download PDF

Info

Publication number
JP2020074464A
JP2020074464A JP2020013504A JP2020013504A JP2020074464A JP 2020074464 A JP2020074464 A JP 2020074464A JP 2020013504 A JP2020013504 A JP 2020013504A JP 2020013504 A JP2020013504 A JP 2020013504A JP 2020074464 A JP2020074464 A JP 2020074464A
Authority
JP
Japan
Prior art keywords
layer
type
algan
type cladding
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020013504A
Other languages
Japanese (ja)
Other versions
JP6945666B2 (en
Inventor
優太 古澤
Yuta Furusawa
優太 古澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017059404A external-priority patent/JP6654596B2/en
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP2020013504A priority Critical patent/JP6945666B2/en
Publication of JP2020074464A publication Critical patent/JP2020074464A/en
Application granted granted Critical
Publication of JP6945666B2 publication Critical patent/JP6945666B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

To improve a light output of a semiconductor light-emitting element.SOLUTION: A semiconductor light-emitting element 10 comprises: an n-type clad layer 24 of an n-type aluminum gallium nitride (AlGaN) system semiconductor material; an interlayer 25 that is provided on the n-type clad layer 24, and has higher concentration of oxygen (O) than that of the n-type clad layer 24; an active layer 26 of the AlGaN system semiconductor material provided on the interlayer 25; and a p-type semiconductor layer provided on the active layer 26. The interlayer 25 may included at least oxygen (O) and aluminum (Al).SELECTED DRAWING: Figure 1

Description

本発明は、半導体発光素子および半導体発光素子の製造方法に関する。   The present invention relates to a semiconductor light emitting device and a method for manufacturing a semiconductor light emitting device.

近年、深紫外光を出力する半導体発光素子の開発が進められている。深紫外光用の発光素子は、基板上に順に積層される窒化アルミニウムガリウム(AlGaN)系のn型クラッド層、活性層、p型クラッド層を有する。光出力向上のため、活性層とp型半導体層の間に窒化アルミニウム(AlN)の電子ブロック層を形成することが提案されている(例えば、特許文献1参照)。   In recent years, development of a semiconductor light emitting device that outputs deep ultraviolet light has been advanced. A light emitting device for deep ultraviolet light has an aluminum gallium nitride (AlGaN) -based n-type cladding layer, an active layer, and a p-type cladding layer, which are sequentially stacked on a substrate. It has been proposed to form an electron blocking layer of aluminum nitride (AlN) between the active layer and the p-type semiconductor layer in order to improve the light output (see, for example, Patent Document 1).

特開2010−205767号公報JP, 2010-205767, A

深紫外光用の半導体発光素子では、さらなる光出力の向上が求められている。   In semiconductor light emitting devices for deep ultraviolet light, further improvement in light output is required.

本発明はこうした課題に鑑みてなされたものであり、その例示的な目的のひとつは、半導体発光素子の光出力を向上させる技術を提供することにある。   The present invention has been made in view of these problems, and one of the exemplary objects thereof is to provide a technique for improving the light output of a semiconductor light emitting device.

本発明のある態様の半導体発光素子は、n型窒化アルミニウムガリウム(AlGaN)系半導体材料のn型クラッド層と、n型クラッド層上に設けられ、n型クラッド層より酸素(O)濃度が高い中間層と、中間層上に設けられるAlGaN系半導体材料の活性層と、活性層上に設けられるp型半導体層と、を備える。   A semiconductor light emitting device according to an aspect of the present invention is provided on an n-type clad layer of an n-type aluminum gallium nitride (AlGaN) -based semiconductor material and the n-type clad layer, and has a higher oxygen (O) concentration than the n-type clad layer. An intermediate layer, an active layer of an AlGaN-based semiconductor material provided on the intermediate layer, and a p-type semiconductor layer provided on the active layer.

この態様によると、n型クラッド層と活性層との間に高酸素濃度の中間層を挿入することで、n型クラッド層の結晶構造の不均一性や揺らぎが活性層に伝播して活性層の結晶品質が低下するのを抑制できる。その結果、活性層の結晶構造を安定化させて発光素子の光出力を高めることができる。   According to this aspect, by inserting the intermediate layer having a high oxygen concentration between the n-type cladding layer and the active layer, the non-uniformity and fluctuation of the crystal structure of the n-type cladding layer are propagated to the active layer, It is possible to suppress deterioration of the crystal quality of. As a result, the crystal structure of the active layer can be stabilized and the light output of the light emitting device can be increased.

中間層は、少なくとも酸素(O)およびアルミニウム(Al)を含んでもよい。   The intermediate layer may include at least oxygen (O) and aluminum (Al).

中間層のピークの酸素濃度は、2×1017/cm以上であってもよい。 The oxygen concentration at the peak of the intermediate layer may be 2 × 10 17 / cm 3 or more.

中間層のピークの酸素濃度は、1×1019/cm以下であってもよい。 The oxygen concentration at the peak of the intermediate layer may be 1 × 10 19 / cm 3 or less.

中間層の厚さは、10nm以下であってもよい。   The thickness of the intermediate layer may be 10 nm or less.

活性層は、AlGaN系半導体材料の障壁層と、AlGaN系半導体材料の井戸層とが交互に積層された多重量子井戸構造を有してもよい。   The active layer may have a multiple quantum well structure in which a barrier layer made of an AlGaN semiconductor material and a well layer made of an AlGaN semiconductor material are alternately laminated.

本発明の別の態様は、半導体発光素子の製造方法である。この方法は、基板上にn型窒化アルミニウムガリウム(AlGaN)系半導体材料のn型クラッド層を形成する工程と、n型クラッド層の表面にn型クラッド層より酸素(O)濃度が高い中間層を形成する工程と、中間層上にAlGaN系半導体材料の活性層を形成する工程と、活性層上にp型半導体層を形成する工程と、を備える。   Another aspect of the present invention is a method for manufacturing a semiconductor light emitting device. This method includes a step of forming an n-type cladding layer of an n-type aluminum gallium nitride (AlGaN) -based semiconductor material on a substrate, and an intermediate layer having a higher oxygen (O) concentration than the n-type cladding layer on the surface of the n-type cladding layer. And a step of forming an active layer of an AlGaN-based semiconductor material on the intermediate layer, and a step of forming a p-type semiconductor layer on the active layer.

この態様によると、n型クラッド層と活性層との間に高酸素濃度の中間層を設けることで、n型クラッド層の結晶構造の不均一性や揺らぎが活性層に伝播して活性層の結晶品質が低下するのを抑制できる。その結果、活性層の結晶構造を安定化させて発光素子の光出力を高めることができる。   According to this aspect, by providing the intermediate layer having a high oxygen concentration between the n-type clad layer and the active layer, the non-uniformity or fluctuation of the crystal structure of the n-type clad layer propagates to the active layer and the active layer It is possible to suppress deterioration of crystal quality. As a result, the crystal structure of the active layer can be stabilized and the light output of the light emitting device can be increased.

中間層は、n型クラッド層の表面を酸化させることにより形成されてもよい。   The intermediate layer may be formed by oxidizing the surface of the n-type cladding layer.

中間層は、酸素ガス(O)を含む雰囲気ガス下において0℃以上900℃未満の温度で形成されてもよい。 The intermediate layer may be formed at a temperature of 0 ° C. or higher and lower than 900 ° C. in an atmosphere gas containing oxygen gas (O 2 ).

本発明によれば、半導体発光素子の光出力を向上させることができる。   According to the present invention, the light output of the semiconductor light emitting device can be improved.

実施の形態に係る半導体発光素子の構成を概略的に示す断面図である。It is sectional drawing which shows the structure of the semiconductor light emitting element which concerns on embodiment roughly. 半導体発光素子の酸素濃度分布を模式的に示すグラフである。It is a graph which shows typically the oxygen concentration distribution of a semiconductor light emitting element. 半導体発光素子の製造方法を示すフローチャートである。6 is a flowchart showing a method for manufacturing a semiconductor light emitting device.

以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。また、説明の理解を助けるため、各図面における各構成要素の寸法比は、必ずしも実際の発光素子の寸法比と一致しない。   Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the description, the same elements will be denoted by the same reference symbols and redundant description will be omitted as appropriate. Further, in order to facilitate understanding of the description, the dimensional ratio of each constituent element in each drawing does not necessarily match the dimensional ratio of the actual light emitting element.

図1は、実施の形態に係る半導体発光素子10の構成を概略的に示す断面図である。半導体発光素子10は、中心波長λが約360nm以下となる「深紫外光」を発するように構成されるLED(Light Emitting Diode)チップである。このような波長の深紫外光を出力するため、半導体発光素子10は、バンドギャップが約3.4eV以上となる窒化アルミニウムガリウム(AlGaN)系半導体材料で構成される。本実施の形態では、特に、中心波長λが約240nm〜350nmの深紫外光を発する場合について示す。   FIG. 1 is a sectional view schematically showing a configuration of a semiconductor light emitting device 10 according to an embodiment. The semiconductor light emitting element 10 is an LED (Light Emitting Diode) chip configured to emit “deep ultraviolet light” having a center wavelength λ of about 360 nm or less. In order to output deep ultraviolet light having such a wavelength, the semiconductor light emitting device 10 is made of an aluminum gallium nitride (AlGaN) based semiconductor material having a bandgap of about 3.4 eV or more. In the present embodiment, particularly, a case where deep ultraviolet light having a center wavelength λ of about 240 nm to 350 nm is emitted will be described.

本明細書において、「AlGaN系半導体材料」とは、主に窒化アルミニウム(AlN)と窒化ガリウム(GaN)を含む半導体材料のことをいい、窒化インジウム(InN)などの他の材料を含有する半導体材料を含むものとする。したがって、本明細書にいう「AlGaN系半導体材料」は、例えば、In1−x−yAlGaN(0≦x+y≦1、0≦x≦1、0≦y≦1)の組成で表すことができ、AlN、GaN、AlGaN、窒化インジウムアルミニウム(InAlN)、窒化インジウムガリウム(InGaN)、窒化インジウムアルミニウムガリウム(InAlGaN)を含むものとする。 In the present specification, the “AlGaN-based semiconductor material” refers to a semiconductor material mainly containing aluminum nitride (AlN) and gallium nitride (GaN), and a semiconductor containing another material such as indium nitride (InN). Including materials. Thus, it referred to herein as "AlGaN-based semiconductor material", for example, the composition of In 1-x-y Al x Ga y N (0 ≦ x + y ≦ 1,0 ≦ x ≦ 1,0 ≦ y ≦ 1) It can be represented and includes AlN, GaN, AlGaN, indium aluminum nitride (InAlN), indium gallium nitride (InGaN), and indium aluminum gallium nitride (InAlGaN).

また「AlGaN系半導体材料」のうち、AlNを実質的に含まない材料を区別するために「GaN系半導体材料」ということがある。「GaN系半導体材料」には、主にGaNやInGaNが含まれ、これらに微量のAlNを含有する材料も含まれる。同様に、「AlGaN系半導体材料」のうち、GaNを実質的に含まない材料を区別するために「AlN系半導体材料」ということがある。「AlN系半導体材料」には、主にAlNやInAlNが含まれ、これらに微量のGaNが含有される材料も含まれる。   In addition, of the “AlGaN-based semiconductor material”, it may be referred to as “GaN-based semiconductor material” to distinguish a material that does not substantially contain AlN. The “GaN-based semiconductor material” mainly includes GaN and InGaN, and also includes a material containing a trace amount of AlN. Similarly, of the “AlGaN-based semiconductor materials”, the term “AlN-based semiconductor materials” may be used to distinguish materials that do not substantially contain GaN. The “AlN-based semiconductor material” mainly includes AlN and InAlN, and also includes a material containing a trace amount of GaN.

半導体発光素子10は、基板20と、バッファ層22と、n型クラッド層24と、中間層25と、活性層26と、電子ブロック層28と、p型クラッド層30と、n側電極32と、p側電極34とを備える。   The semiconductor light emitting device 10 includes a substrate 20, a buffer layer 22, an n-type cladding layer 24, an intermediate layer 25, an active layer 26, an electron block layer 28, a p-type cladding layer 30, and an n-side electrode 32. , P-side electrode 34.

基板20は、半導体発光素子10が発する深紫外光に対して透光性を有する基板であり、例えば、サファイア(Al)基板である。基板20は、第1主面20aと、第1主面20aの反対側の第2主面20bを有する。第1主面20aは、バッファ層22より上の各層を成長させるための結晶成長面となる一主面である。第2主面20bは、活性層26が発する深紫外光を外部に取り出すための光取出面となる一主面である。変形例において、基板20は、窒化アルミニウム(AlN)基板であってもよいし、窒化アルミニウムガリウム(AlGaN)基板であってもよい。 The substrate 20 is a substrate having a property of transmitting deep ultraviolet light emitted from the semiconductor light emitting element 10, and is, for example, a sapphire (Al 2 O 3 ) substrate. The substrate 20 has a first main surface 20a and a second main surface 20b opposite to the first main surface 20a. The first major surface 20a is one major surface serving as a crystal growth surface for growing each layer above the buffer layer 22. The second main surface 20b is one main surface that is a light extraction surface for extracting the deep ultraviolet light emitted from the active layer 26 to the outside. In a modification, the substrate 20 may be an aluminum nitride (AlN) substrate or an aluminum gallium nitride (AlGaN) substrate.

バッファ層22は、基板20の第1主面20aの上に形成される。バッファ層22は、n型クラッド層24より上の各層を形成するための下地層(テンプレート層)である。バッファ層22は、例えば、アンドープのAlN層であり、具体的には高温成長させたAlN(HT−AlN;High Temparature AlN)層である。バッファ層22は、AlN層上に形成されるアンドープのAlGaN層を含んでもよい。変形例において、基板20がAlN基板またはAlGaN基板である場合、バッファ層22は、アンドープのAlGaN層のみで構成されてもよい。   The buffer layer 22 is formed on the first major surface 20a of the substrate 20. The buffer layer 22 is a base layer (template layer) for forming each layer above the n-type cladding layer 24. The buffer layer 22 is, for example, an undoped AlN layer, specifically, an AlN (HT-AlN; High Temparature AlN) layer grown at high temperature. The buffer layer 22 may include an undoped AlGaN layer formed on the AlN layer. In a modification, when the substrate 20 is an AlN substrate or an AlGaN substrate, the buffer layer 22 may be composed of only an undoped AlGaN layer.

n型クラッド層24は、バッファ層22の上に形成される。n型クラッド層24は、n型のAlGaN系半導体材料層であり、例えば、n型の不純物としてシリコン(Si)がドープされるAlGaN層である。n型クラッド層24は、活性層26が発する深紫外光を透過するように組成比が選択され、例えば、AlNのモル分率が20%以上、好ましくは、40%以上または50%以上となるように形成される。n型クラッド層24は、活性層26が発する深紫外光の波長よりも大きいバンドギャップを有し、例えば、バンドギャップが4.3eV以上となるように形成される。n型クラッド層24は、AlNのモル分率が80%以下、つまり、バンドギャップが5.5eV以下となるように形成されることが好ましく、AlNのモル分率が70%以下(つまり、バンドギャップが5.2eV以下)となるように形成されることがより望ましい。n型クラッド層24は、1μm〜3μm程度の厚さを有し、例えば、2μm程度の厚さを有する。   The n-type cladding layer 24 is formed on the buffer layer 22. The n-type cladding layer 24 is an n-type AlGaN-based semiconductor material layer, for example, an AlGaN layer doped with silicon (Si) as an n-type impurity. The composition ratio of the n-type cladding layer 24 is selected so as to transmit the deep ultraviolet light emitted by the active layer 26, and for example, the mole fraction of AlN is 20% or more, preferably 40% or more or 50% or more. Is formed as. The n-type cladding layer 24 has a bandgap larger than the wavelength of the deep ultraviolet light emitted by the active layer 26, and is formed to have a bandgap of 4.3 eV or more, for example. The n-type cladding layer 24 is preferably formed so that the AlN mole fraction is 80% or less, that is, the band gap is 5.5 eV or less, and the AlN mole fraction is 70% or less (that is, It is more desirable that the gap be 5.2 eV or less). The n-type cladding layer 24 has a thickness of about 1 μm to 3 μm, for example, about 2 μm.

中間層25は、n型クラッド層24の上に形成される。中間層25は、n型クラッド層24よりも酸素(O)濃度の高い層であり、例えば、2×1017/cm以上1×1019/cm以下の酸素濃度を有する。中間層25は、少なくとも酸素(O)とアルミニウム(Al)を含み、例えば、酸化アルミニウム(Al)、酸窒化アルミニウム(AlON)、酸窒化アルミニウムガリウム(AlGaON)などで構成される。中間層25は、シリコン(Si)を含んでもよい。中間層25は、活性層26へのキャリア注入を阻害しないように薄く形成されることが好ましく、10nm以下の厚さを有し、例えば、5nm、3nm、2mm、1nmまたは1nm未満の厚さを有する。中間層25は、原子1層〜10層程度の厚さを有してもよい。 The intermediate layer 25 is formed on the n-type cladding layer 24. The intermediate layer 25 is a layer having a higher oxygen (O) concentration than the n-type cladding layer 24, and has, for example, an oxygen concentration of 2 × 10 17 / cm 3 or more and 1 × 10 19 / cm 3 or less. The intermediate layer 25 contains at least oxygen (O) and aluminum (Al), and is made of, for example, aluminum oxide (Al 2 O 3 ), aluminum oxynitride (AlON), aluminum gallium oxynitride (AlGaON), or the like. The intermediate layer 25 may include silicon (Si). The intermediate layer 25 is preferably formed thin so as not to hinder the carrier injection into the active layer 26, and has a thickness of 10 nm or less, for example, 5 nm, 3 nm, 2 mm, 1 nm or less than 1 nm. Have. The intermediate layer 25 may have a thickness of approximately 1 to 10 atomic layers.

活性層26は、AlGaN系半導体材料で構成され、n型クラッド層24と電子ブロック層28の間に挟まれてダブルへテロ接合構造を形成する。活性層26は、単層または多層の量子井戸構造を有し、例えば、アンドープのAlGaN系半導体材料で形成される障壁層と、アンドープのAlGaN系半導体材料で形成される井戸層の積層体で構成される。活性層26は、波長355nm以下の深紫外光を出力するためにバンドギャップが3.4eV以上となるように構成され、例えば、波長310nm以下の深紫外光を発するようにAlN組成比が選択される。   The active layer 26 is made of an AlGaN-based semiconductor material and is sandwiched between the n-type cladding layer 24 and the electron block layer 28 to form a double heterojunction structure. The active layer 26 has a single-layer or multi-layer quantum well structure, and is composed of, for example, a laminated body of a barrier layer formed of an undoped AlGaN semiconductor material and a well layer formed of an undoped AlGaN semiconductor material. To be done. The active layer 26 is configured to have a bandgap of 3.4 eV or more in order to output deep ultraviolet light having a wavelength of 355 nm or less. For example, the AlN composition ratio is selected so as to emit deep ultraviolet light having a wavelength of 310 nm or less. It

電子ブロック層28は、活性層26の上に形成される。電子ブロック層28は、p型のAlGaN系半導体材料層であり、例えば、AlNのモル分率が40%以上、好ましくは、50%以上となるように形成される。電子ブロック層28は、AlNのモル分率が80%以上となるように形成されてもよく、実質的にGaNを含まないAlN系半導体材料で形成されてもよい。電子ブロック層は、1nm〜10nm程度の厚さを有し、例えば、2nm〜5nm程度の厚さを有する。電子ブロック層28は、p型ではなく、アンドープの半導体層であってもよい。   The electron block layer 28 is formed on the active layer 26. The electron block layer 28 is a p-type AlGaN-based semiconductor material layer, and is formed, for example, such that the mole fraction of AlN is 40% or more, preferably 50% or more. The electron block layer 28 may be formed such that the AlN mole fraction is 80% or more, and may be formed of an AlN-based semiconductor material that does not substantially contain GaN. The electron block layer has a thickness of about 1 nm to 10 nm, for example, about 2 nm to 5 nm. The electron block layer 28 may be an undoped semiconductor layer instead of the p-type.

p型クラッド層30は、電子ブロック層28の上に形成されるp型半導体層である。p型クラッド層30は、p型のAlGaN系半導体材料層であり、例えば、p型の不純物としてマグネシウム(Mg)がドープされるAlGaN層である。p型クラッド層30は、300nm〜700nm程度の厚さを有し、例えば、400nm〜600nm程度の厚さを有する。p型クラッド層30は、実質的にAlNを含まないp型GaN系半導体材料で形成されてもよい。   The p-type clad layer 30 is a p-type semiconductor layer formed on the electron block layer 28. The p-type cladding layer 30 is a p-type AlGaN-based semiconductor material layer, for example, an AlGaN layer doped with magnesium (Mg) as a p-type impurity. The p-type cladding layer 30 has a thickness of about 300 nm to 700 nm, for example, a thickness of about 400 nm to 600 nm. The p-type clad layer 30 may be formed of a p-type GaN-based semiconductor material that does not substantially contain AlN.

n側電極32は、n型クラッド層24の一部領域上に形成される。n側電極32は、n型クラッド層24の上にチタン(Ti)/アルミニウム(Al)/Ti/金(Au)が順に積層された多層膜で形成される。p側電極34は、p型クラッド層30の上に形成される。p側電極34は、p型クラッド層30の上に順に積層されるニッケル(Ni)/金(Au)の多層膜で形成される。   The n-side electrode 32 is formed on a partial region of the n-type cladding layer 24. The n-side electrode 32 is formed of a multilayer film in which titanium (Ti) / aluminum (Al) / Ti / gold (Au) is sequentially stacked on the n-type cladding layer 24. The p-side electrode 34 is formed on the p-type cladding layer 30. The p-side electrode 34 is formed of a nickel (Ni) / gold (Au) multilayer film sequentially stacked on the p-type cladding layer 30.

図2は、半導体発光素子10の酸素濃度分布を模式的に示すグラフである。図示されるように、中間層25は、隣接するn型クラッド層24や活性層26と比べて高い酸素濃度を有し、2×1017/cm以上1×1019/cm以下のピーク濃度を有する。n型クラッド層24の酸素濃度が1×1017/cm未満であることから、中間層25の酸素濃度はn型クラッド層24よりも高い。活性層26は、1×1017/cm前後の酸素濃度を有し、n型クラッド層24よりも酸素濃度が高く、中間層25よりも酸素濃度が低い。なお、変形例において、n型クラッド層24の酸素濃度が活性層26の酸素濃度より高くてもよい。 FIG. 2 is a graph schematically showing the oxygen concentration distribution of the semiconductor light emitting device 10. As illustrated, the intermediate layer 25 has a higher oxygen concentration than the adjacent n-type cladding layer 24 and the active layer 26, and has a peak of 2 × 10 17 / cm 3 or more and 1 × 10 19 / cm 3 or less. Have a concentration. Since the oxygen concentration of the n-type cladding layer 24 is less than 1 × 10 17 / cm 3 , the oxygen concentration of the intermediate layer 25 is higher than that of the n-type cladding layer 24. The active layer 26 has an oxygen concentration of around 1 × 10 17 / cm 3 , has a higher oxygen concentration than the n-type cladding layer 24, and a lower oxygen concentration than the intermediate layer 25. In the modification, the oxygen concentration of the n-type cladding layer 24 may be higher than that of the active layer 26.

つづいて、半導体発光素子10の製造方法について説明する。図3は、半導体発光素子10の製造方法を示すフローチャートである。まず、基板20を用意し、基板20の第1主面20aの上にバッファ層22およびn型クラッド層24を順に形成する(S10)。   Next, a method of manufacturing the semiconductor light emitting device 10 will be described. FIG. 3 is a flowchart showing a method for manufacturing the semiconductor light emitting device 10. First, the substrate 20 is prepared, and the buffer layer 22 and the n-type cladding layer 24 are sequentially formed on the first major surface 20a of the substrate 20 (S10).

基板20は、サファイア(Al)基板であり、AlGaN系半導体材料を形成するための成長基板である。例えば、サファイア基板の(0001)面上にバッファ層22が形成される。バッファ層22は、例えば、高温成長させたAlN(HT−AlN)層と、アンドープのAlGaN(u−AlGaN)層とを含む。n型クラッド層24は、n型のAlGaN系半導体材料で形成される層であり、有機金属化学気相成長(MOVPE)法や、分子線エピタキシ(MBE)法などの周知のエピタキシャル成長法を用いて形成できる。 The substrate 20 is a sapphire (Al 2 O 3 ) substrate, which is a growth substrate for forming an AlGaN-based semiconductor material. For example, the buffer layer 22 is formed on the (0001) plane of the sapphire substrate. The buffer layer 22 includes, for example, an AlN (HT-AlN) layer grown at high temperature and an undoped AlGaN (u-AlGaN) layer. The n-type clad layer 24 is a layer formed of an n-type AlGaN-based semiconductor material, and is formed using a well-known epitaxial growth method such as metal organic chemical vapor deposition (MOVPE) method or molecular beam epitaxy (MBE) method. Can be formed.

つづいて、n型クラッド層24の上に高酸素濃度の中間層25を形成する(S12)。中間層25は、n型クラッド層24の表面を酸化させることにより形成できる。例えば、n型クラッド層24の表面が露出した状態で、空気などの酸素ガス(O)を含む雰囲気ガス下に置くことで、n型クラッド層24の表面を酸化させることができる。 Subsequently, the intermediate layer 25 having a high oxygen concentration is formed on the n-type cladding layer 24 (S12). The intermediate layer 25 can be formed by oxidizing the surface of the n-type cladding layer 24. For example, the surface of the n-type clad layer 24 can be oxidized by placing the surface of the n-type clad layer 24 under an atmosphere gas containing oxygen gas (O 2 ) such as air.

中間層25の厚さを10nm以下にするため、n型クラッド層24などのAlGaN系半導体材料層の形成時よりも低い温度でn型クラッド層24の酸化処理を行うことが望ましい。n型クラッド層24の酸化処理は、900℃未満とすることが好ましく、例えば100℃以下の温度や、0℃〜30℃程度の室温下であってもよい。中間層25を100℃以下の低温で酸化させる場合、空気などの酸素を含む雰囲気中で1時間以上、例えば、2時間、4時間、8時間、12時間または24時間程度、酸化処理を進めればよい。   In order to set the thickness of the intermediate layer 25 to 10 nm or less, it is desirable to oxidize the n-type cladding layer 24 at a temperature lower than that when forming the AlGaN-based semiconductor material layer such as the n-type cladding layer 24. The oxidation treatment of the n-type cladding layer 24 is preferably performed at less than 900 ° C., and may be performed at a temperature of 100 ° C. or lower, or at room temperature of about 0 ° C. to 30 ° C., for example. When the intermediate layer 25 is oxidized at a low temperature of 100 ° C. or lower, the oxidation treatment may be performed in an atmosphere containing oxygen such as air for 1 hour or more, for example, 2 hours, 4 hours, 8 hours, 12 hours or 24 hours. Good.

中間層25は、n型クラッド層24とは別の層として形成されてもよく、n型クラッド層24の上に少なくとも酸素(O)およびアルミニウム(Al)を含む層を成長させて形成してもよい。中間層25は、例えば、酸素(O)、アルミニウム(Al)、ガリウム(Ga)、窒素(N)などを供給するための原料ガスを用いて形成されてもよい。この場合、MOVPE法やMBE法などの周知のエピタキシャル成長法を用いて形成できる。   The intermediate layer 25 may be formed as a layer different from the n-type cladding layer 24, and is formed by growing a layer containing at least oxygen (O) and aluminum (Al) on the n-type cladding layer 24. Good. The intermediate layer 25 may be formed using a source gas for supplying oxygen (O), aluminum (Al), gallium (Ga), nitrogen (N), or the like, for example. In this case, it can be formed using a well-known epitaxial growth method such as MOVPE method and MBE method.

次に、中間層25の上に活性層26を形成する(S14)。例えば、中間層25の上に障壁層と井戸層とを交互に積層させることにより、量子井戸構造を有する活性層26が形成される。活性層26は、AlGaN系半導体材料で形成され、MOVPE法やMBE法などの周知のエピタキシャル成長法を用いて形成できる。   Next, the active layer 26 is formed on the intermediate layer 25 (S14). For example, an active layer 26 having a quantum well structure is formed by alternately stacking barrier layers and well layers on the intermediate layer 25. The active layer 26 is formed of an AlGaN-based semiconductor material and can be formed by using a well-known epitaxial growth method such as MOVPE method and MBE method.

次に、活性層26の上にp型半導体層を形成する(S16)。例えば、活性層26の上に電子ブロック層28を形成し、つづいて、p型クラッド層30を形成する。電子ブロック層28およびp型クラッド層30は、AlN系半導体材料またはAlGaN系半導体材料で形成される層であり、MOVPE法やMBE法などの周知のエピタキシャル成長法を用いて形成できる。   Next, a p-type semiconductor layer is formed on the active layer 26 (S16). For example, the electron block layer 28 is formed on the active layer 26, and then the p-type clad layer 30 is formed. The electron block layer 28 and the p-type cladding layer 30 are layers formed of an AlN-based semiconductor material or an AlGaN-based semiconductor material, and can be formed by using a well-known epitaxial growth method such as MOVPE method or MBE method.

つづいて、n側電極32およびp側電極34を形成する(S18)。まず、p型クラッド層30の上にマスクを形成し、マスクが形成されていない露出領域の活性層26、電子ブロック層28およびp型クラッド層30を除去する。活性層26、電子ブロック層28およびp型クラッド層30の除去は、プラズマエッチングにより行うことができる。n型クラッド層24の露出面上にn側電極32を形成し、マスクを除去したp型クラッド層30の上にp側電極34を形成する。n側電極32およびp側電極34は、例えば、電子ビーム蒸着法やスパッタリング法などの周知の方法により形成することができる。これにより、図1に示す半導体発光素子10ができあがる。   Subsequently, the n-side electrode 32 and the p-side electrode 34 are formed (S18). First, a mask is formed on the p-type clad layer 30, and the active layer 26, the electron block layer 28, and the p-type clad layer 30 in the exposed region where the mask is not formed are removed. The active layer 26, the electron block layer 28, and the p-type cladding layer 30 can be removed by plasma etching. An n-side electrode 32 is formed on the exposed surface of the n-type cladding layer 24, and a p-side electrode 34 is formed on the p-type cladding layer 30 from which the mask has been removed. The n-side electrode 32 and the p-side electrode 34 can be formed by a known method such as an electron beam evaporation method or a sputtering method. As a result, the semiconductor light emitting device 10 shown in FIG. 1 is completed.

本実施の形態によれば、n型クラッド層24と活性層26の間に高酸素濃度の中間層25を設けることで、活性層26の結晶品質を高めて半導体発光素子10の光出力を高めることができる。例えば、出力波長270nmの発光素子の場合、中間層25を設けた実施例では、中間層25を設けていない比較例に対して、1.5倍〜2.5倍程度の光出力を得ることができる。本実施の形態に係る一実施例によれば、100mAの通電時において、260nm〜270nmの出力波長、3.4mW〜3.7mWの発光出力が得られた。また、900℃未満での酸化処理をして中間層25の厚さを10nm以下にすることにより、900℃以上での酸化処理をして比較的厚い高酸素濃度領域を設ける場合と比べて1.2倍〜2.8倍程度の光出力を得ることができた。   According to the present embodiment, by providing the intermediate layer 25 having a high oxygen concentration between the n-type cladding layer 24 and the active layer 26, the crystal quality of the active layer 26 is improved and the light output of the semiconductor light emitting device 10 is increased. be able to. For example, in the case of a light emitting element having an output wavelength of 270 nm, the embodiment provided with the intermediate layer 25 can obtain a light output of about 1.5 to 2.5 times that of the comparative example not provided with the intermediate layer 25. You can According to the example of the present embodiment, an output wavelength of 260 nm to 270 nm and a light emission output of 3.4 mW to 3.7 mW were obtained when a current of 100 mA was applied. Further, compared with the case where the oxidation treatment is performed at 900 ° C. or more and the relatively thick high oxygen concentration region is provided by performing the oxidation treatment at 900 ° C. or less to reduce the thickness of the intermediate layer 25 to 10 nm or less. It was possible to obtain a light output of about 2 to 2.8 times.

本実施の形態によれば、n型クラッド層24の結晶構造の不均一性やゆらぎを中間層25にて遮断し、活性層26における結晶構造の不均一性やゆらぎの発生を抑制することができる。その結果、活性層26のAlN組成や厚さを均一化することができ、半導体発光素子10の発光特性を安定化させることができる。特に、活性層26が多重量子井戸構造で構成される場合、複数の井戸層のそれぞれのAlN組成や厚さのばらつきを抑制し、半導体発光素子10の全体としての発光特性を改善させることができる。   According to the present embodiment, the non-uniformity or fluctuation of the crystal structure of n-type cladding layer 24 is blocked by intermediate layer 25, and the non-uniformity of crystal structure or fluctuation of active layer 26 can be suppressed. it can. As a result, the AlN composition and thickness of the active layer 26 can be made uniform, and the light emitting characteristics of the semiconductor light emitting device 10 can be stabilized. In particular, when the active layer 26 has a multi-quantum well structure, it is possible to suppress variations in AlN composition and thickness of each of the plurality of well layers and improve the light emission characteristics of the semiconductor light emitting device 10 as a whole. ..

以上、本発明を実施の形態にもとづいて説明した。本発明は上記実施の形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。   The present invention has been described above based on the embodiments. It is understood by those skilled in the art that the present invention is not limited to the above-described embodiment, various design modifications are possible, various modifications are possible, and such modifications are also within the scope of the present invention. This is where

10…半導体発光素子、22…バッファ層、24…n型クラッド層、25…中間層、26…活性層。   10 ... Semiconductor light emitting element, 22 ... Buffer layer, 24 ... N-type clad layer, 25 ... Intermediate layer, 26 ... Active layer.

Claims (4)

n型窒化アルミニウムガリウム(AlGaN)系半導体材料のn型クラッド層と、
前記n型クラッド層上に設けられ、前記n型クラッド層より酸素(O)濃度が高く、インジウム(In)を含まない中間層と、
前記中間層上に設けられるAlGaN系半導体材料の活性層と、
前記活性層上に設けられるp型半導体層と、を備えることを特徴とする半導体発光素子。
an n-type clad layer of n-type aluminum gallium nitride (AlGaN) -based semiconductor material;
An intermediate layer that is provided on the n-type cladding layer and has a higher oxygen (O) concentration than the n-type cladding layer and does not contain indium (In);
An AlGaN-based semiconductor material active layer provided on the intermediate layer;
And a p-type semiconductor layer provided on the active layer.
前記中間層は、酸窒化アルミニウム(AlON)、または、酸窒化アルミニウムガリウム(AlGaON)から構成されることを特徴とする請求項1に記載の半導体発光素子。   The semiconductor light emitting device according to claim 1, wherein the intermediate layer is made of aluminum oxynitride (AlON) or aluminum gallium oxynitride (AlGaON). 前記中間層は、シリコン(Si)を含むことを特徴とする請求項1または2に記載の半導体発光素子。   The semiconductor light emitting device according to claim 1, wherein the intermediate layer contains silicon (Si). 基板上にn型窒化アルミニウムガリウム(AlGaN)系半導体材料のn型クラッド層を形成する工程と、
前記n型クラッド層の表面に前記n型クラッド層より酸素(O)濃度が高く、インジウム(In)を含まない中間層を形成する工程と、
前記中間層上にAlGaN系半導体材料の活性層を形成する工程と、
前記活性層上にp型半導体層を形成する工程と、を備えることを特徴とする半導体発光素子の製造方法。
Forming an n-type cladding layer of an n-type aluminum gallium nitride (AlGaN) -based semiconductor material on the substrate;
Forming an intermediate layer having a higher oxygen (O) concentration than the n-type clad layer and containing no indium (In) on the surface of the n-type clad layer;
Forming an active layer of AlGaN-based semiconductor material on the intermediate layer;
A step of forming a p-type semiconductor layer on the active layer, and a method of manufacturing a semiconductor light emitting device.
JP2020013504A 2017-03-24 2020-01-30 Semiconductor light emitting element and manufacturing method of semiconductor light emitting element Active JP6945666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020013504A JP6945666B2 (en) 2017-03-24 2020-01-30 Semiconductor light emitting element and manufacturing method of semiconductor light emitting element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017059404A JP6654596B2 (en) 2017-03-24 2017-03-24 Semiconductor light emitting device and method of manufacturing semiconductor light emitting device
JP2020013504A JP6945666B2 (en) 2017-03-24 2020-01-30 Semiconductor light emitting element and manufacturing method of semiconductor light emitting element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017059404A Division JP6654596B2 (en) 2017-03-24 2017-03-24 Semiconductor light emitting device and method of manufacturing semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2020074464A true JP2020074464A (en) 2020-05-14
JP6945666B2 JP6945666B2 (en) 2021-10-06

Family

ID=70610266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020013504A Active JP6945666B2 (en) 2017-03-24 2020-01-30 Semiconductor light emitting element and manufacturing method of semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JP6945666B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022003660A (en) * 2020-06-23 2022-01-11 日機装株式会社 Nitride semiconductor light-emitting element and manufacturing method for nitride semiconductor light-emitting element
CN116705927A (en) * 2023-08-09 2023-09-05 江西兆驰半导体有限公司 LED epitaxial wafer, preparation method thereof and LED

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212493A (en) * 2009-03-11 2010-09-24 Sumitomo Electric Ind Ltd Group iii nitride semiconductor element, epitaxial substrate, and method for producing group iii nitride semiconductor element
JP2012018963A (en) * 2010-07-06 2012-01-26 Sony Corp Semiconductor laser
JP2015188048A (en) * 2014-03-10 2015-10-29 株式会社東芝 Nitride semiconductor laminate and semiconductor light-emitting element
JP2018163941A (en) * 2017-03-24 2018-10-18 日機装株式会社 Semiconductor light-emitting element and manufacturing method of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212493A (en) * 2009-03-11 2010-09-24 Sumitomo Electric Ind Ltd Group iii nitride semiconductor element, epitaxial substrate, and method for producing group iii nitride semiconductor element
JP2012018963A (en) * 2010-07-06 2012-01-26 Sony Corp Semiconductor laser
JP2015188048A (en) * 2014-03-10 2015-10-29 株式会社東芝 Nitride semiconductor laminate and semiconductor light-emitting element
JP2018163941A (en) * 2017-03-24 2018-10-18 日機装株式会社 Semiconductor light-emitting element and manufacturing method of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022003660A (en) * 2020-06-23 2022-01-11 日機装株式会社 Nitride semiconductor light-emitting element and manufacturing method for nitride semiconductor light-emitting element
JP7041715B2 (en) 2020-06-23 2022-03-24 日機装株式会社 Nitride semiconductor light emitting device and method for manufacturing a nitride semiconductor light emitting device
CN116705927A (en) * 2023-08-09 2023-09-05 江西兆驰半导体有限公司 LED epitaxial wafer, preparation method thereof and LED
CN116705927B (en) * 2023-08-09 2023-11-07 江西兆驰半导体有限公司 LED epitaxial wafer, preparation method thereof and LED

Also Published As

Publication number Publication date
JP6945666B2 (en) 2021-10-06

Similar Documents

Publication Publication Date Title
JP6589987B2 (en) Nitride semiconductor light emitting device
JP4954536B2 (en) Nitride semiconductor light emitting device
US10944026B2 (en) Semiconductor light emitting device and method of manufacturing semiconductor light emitting device
JP6730082B2 (en) Method for manufacturing deep ultraviolet light emitting device
US11575068B2 (en) Method of manufacturing semiconductor light emitting element
JP6978206B2 (en) Manufacturing method of semiconductor light emitting device and semiconductor light emitting device
JP6867180B2 (en) Manufacturing method of semiconductor light emitting device
TWI666790B (en) Method for manufacturing III-nitride semiconductor light-emitting element and III-nitride semiconductor light-emitting element
US10453990B2 (en) Semiconductor light emitting element and method for manufacturing semiconductor light emitting element
JP6945666B2 (en) Semiconductor light emitting element and manufacturing method of semiconductor light emitting element
US11824137B2 (en) Semiconductor light-emitting element and method for manufacturing semiconductor light-emitting element
EP2693499B1 (en) Semiconductor light emitting device and method for manufacturing the same
JP6829235B2 (en) Semiconductor light emitting element and manufacturing method of semiconductor light emitting element
JP6323782B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
US11322656B2 (en) Semiconductor light emitting element and method of manufacturing semiconductor light emitting element
JP6383826B1 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP2018085456A (en) Method for manufacturing semiconductor light-emitting element
JPWO2008117788A1 (en) Light emitting element
JP2018085455A (en) Method for manufacturing semiconductor light-emitting element
JP2007142336A (en) Nitride semiconductor element
JP2007234808A (en) Optical semiconductor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210914

R150 Certificate of patent or registration of utility model

Ref document number: 6945666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150