JP2020054943A - Excavation method for contaminated soil layer - Google Patents

Excavation method for contaminated soil layer Download PDF

Info

Publication number
JP2020054943A
JP2020054943A JP2018186626A JP2018186626A JP2020054943A JP 2020054943 A JP2020054943 A JP 2020054943A JP 2018186626 A JP2018186626 A JP 2018186626A JP 2018186626 A JP2018186626 A JP 2018186626A JP 2020054943 A JP2020054943 A JP 2020054943A
Authority
JP
Japan
Prior art keywords
excavation
laying
contaminated soil
soil layer
pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018186626A
Other languages
Japanese (ja)
Other versions
JP6439072B1 (en
Inventor
手塚 隆
Takashi Tezuka
隆 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryuuki Co Ltd
Original Assignee
Ryuuki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryuuki Co Ltd filed Critical Ryuuki Co Ltd
Priority to JP2018186626A priority Critical patent/JP6439072B1/en
Application granted granted Critical
Publication of JP6439072B1 publication Critical patent/JP6439072B1/en
Priority to JP2019511798A priority patent/JP6615410B1/en
Priority to PCT/JP2019/006959 priority patent/WO2019198354A1/en
Publication of JP2020054943A publication Critical patent/JP2020054943A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C9/00Special pavings; Pavings for special parts of roads or airfields
    • E01C9/08Temporary pavings
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/90Component parts, e.g. arrangement or adaptation of pumps
    • E02F3/92Digging elements, e.g. suction heads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • General Engineering & Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • Architecture (AREA)
  • Environmental & Geological Engineering (AREA)
  • Soil Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Processing Of Solid Wastes (AREA)
  • Road Paving Structures (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
  • Fertilizers (AREA)

Abstract

To provide an excavation method for a contaminated soil layer, in particular during decontamination work of a soil layer in a rainwater regulating reservoir or the like in which the soil or the like has a high concentration of contamination due to rainwater effluent containing radioactive material, that does not stir the soil even when performing excavation work on soft, muddy soil using a tracked vehicle with a continuous track, and that does not cause problems that prevent the regulating reservoir or the like from performing the original function due to breaking of the reservoir bottom caused by removal of installed support pilings.SOLUTION: A method comprises: a support piling installation step of installing support pilings; a plank placing step of placing planks; an excavation step; a plank removal step; an excavation step after plank removal; and a piling top cutting step. In the plank placing step, a transport path for a tracked vehicle is constructed by repeating: a series of steps for continuous construction by the tracked vehicle transporting subsequent planks on the placed planks; and the support piling installation step. In the excavation step, excavation is performed while removing the planks. In the piling top cutting step, a means for cutting the piling tops to match the excavation face that has undergone excavation is used.SELECTED DRAWING: Figure 1

Description

本発明は、汚染土壌の除去工法に関し、詳しくは、調整池等の軟土における除染作業において、装軌車両の無限軌道による土壌の拡販を防止し、効果的な除染作業を行う除染方法の技術分野に関する。   The present invention relates to a method for removing contaminated soil, and more specifically, in decontamination work on soft soil such as a regulating pond, decontamination that prevents the spread of soil by endless tracks of tracked vehicles and performs effective decontamination work. The technical field of the method.

平成23年3月11日に発生した東北地方太平洋沖地震により、東京電力福島第一原子力発電所が被災し、大量の放射性物質が環境中に放出され、福島県のみならず東日本の各地において、放射性物質による環境の汚染と、これに伴う人の健康又は生活環境への影響が危惧されており、これら影響を速やかに低減することが喫緊の課題となっている。調整池、溜め池は、集中豪雨などの局地的な出水により、河川に流れ込む雨水を一時的に溜め、下流の河川や下水道雨水管への負担を軽減し、又は農業水利施設であって、一般の人たちの立ち入りが出来ないようにフェンス等で囲われるなどの管理がされ、調整池や溜め池内の放射線量が直接市民生活に影響を与えるものでないと、それ以前は考えられていた。   TEPCO's Fukushima Daiichi Nuclear Power Station was damaged by the Tohoku-Pacific Ocean Earthquake on March 11, 2011, and a large amount of radioactive materials was released into the environment. Contamination of the environment by radioactive substances and the resulting effects on human health or living environment are feared, and reducing these effects promptly is an urgent issue. Regulating ponds and storage ponds temporarily store rainwater flowing into rivers due to localized flooding such as concentrated torrential rain, reduce the burden on downstream rivers and sewer storm sewers, or are agricultural irrigation facilities. Before, it was thought that the radiation dose in the regulating pond and the reservoir was not directly affecting the life of citizens.

しかしながら、雨水排水が集まる雨水調整池では、土壌・落葉等が集積するため、そこに放射性物質が濃集(蓄積)し、高い濃度の放射性物質が観測されている。多くの地方自治体が公表しているとおり、雨水調整池や溜め池、或いは下水道管理調整池等の放射線量測定結果が各自治体の規定する放射線量を大幅に超えているところがあり、特別措置法が制定された現在では、調整池等も局所的汚染箇所として認定されるケースが少なくない。
係る調整池等は、泥濘んだ軟らかい土壌であり、また、水分を多く含んでいることからバックホー等の装軌車両を持ち込んで土壌を掘削すると、無限軌道により土壌を混ぜ込んでしまうという事態が生じる。また、鉄板等の敷板を敷設するに先立ち、多数の杭を打設することとなるが、除染後に係る杭を撤去しようとして引き抜くと、池の底を抜いてしまい、調整池等の機能を発揮しなくなるという問題がある。
However, in a rainwater regulating pond where rainwater drainage collects, since soil and leaf fall accumulate, radioactive substances are concentrated (accumulated) there, and high concentrations of radioactive substances are observed. As many local governments have announced, the results of radiation dose measurements from rainwater regulating ponds, storage ponds, and sewer management regulating ponds have greatly exceeded the radiation doses prescribed by each local government. At present, there are many cases where regulating ponds are recognized as locally contaminated sites.
Such regulating ponds are muddy, soft soils, and because they contain a lot of water, when excavating the soil by bringing a tracked vehicle such as a backhoe, the soil may be mixed by an endless track. Occurs. In addition, prior to laying a floor plate such as an iron plate, a large number of piles will be driven, but if the piles are removed after decontamination, the bottom of the pond will be pulled out, and functions such as regulating ponds will be performed. There is a problem that it does not work.

そこで、従来より、係る問題を解決しようと、種々の技術が提案されている。具体的には、例えば、発明の名称を「汚染土壌の除染装置及び除染方法」とする技術が開示され公知技術となっている(特許文献1参照)。「簡易な構成で容易に設置・撤去でき、除染 作業を無人化し、さらに汚染土壌の除染対象範囲を土壌深層部に拡大することを課題とし、具体的には、除染装置は、土壌表面に敷設する電極シートと、電極シートを貫通して除染対象領域の土壌に差し込む複数の電極杭3と、汚染土壌中に浸透する浸透液と、汚染土壌中の浸透液の拡散を止める止水剤とを具備する。電極シートには、導電材及び汚染 物質吸着剤又は汚染物質分解剤を含む。電極杭は、注入口と吐出口が連通し、先端の電極部に上端のボルト端子が電気的に導通し、先端部を除く側面に絶縁被覆部を備える。絶縁被覆部の上端部にゴムブッシュを介して電極シートを押え込む押え片が突出させ、ボルト端子を設ける。電極シートと電極杭の間に直流電圧を印加し、浸透液が拡散した汚染土壌中の汚染物質を動電現象により電極シートに誘引する。」というものである。しかしながら、特許文献1に記載の発明は、に係る文献には、汚染土壌の除染方法が記載され、シート状の電極部材を撤去することで、放射性物質が回収できるということから、本発明と同様に、重機の無限軌道等による撹拌・混ぜ込みがないという利点で共通している。しかしながら、セシウムはイオン化傾向が大きいことから環境中でセシウム単体として存在する可能性は低く、化合物として土壌や樹木、様々な構造物等に付着して存在しているものと考えられ、電極部材に吸着させるための電極シートに吸着できる土量の絶対量は少なく、また、電極杭を撤去することにより、池の底抜きを起こす原因となるおそれもあり、本発明が対象とする空池の汚染土壌の除染には向かないものと考えられる。   Therefore, various techniques have been conventionally proposed to solve such a problem. More specifically, for example, a technique for setting the title of the invention to "a decontamination apparatus and decontamination method for contaminated soil" has been disclosed and has become a known technique (see Patent Document 1). `` The task is to easily install and remove the equipment with a simple configuration, to make the decontamination work unmanned, and to expand the scope of decontamination of contaminated soil to the deeper part of the soil. An electrode sheet laid on the surface, a plurality of electrode piles 3 penetrating the electrode sheet into the soil of the decontamination target area, a permeate penetrating into the contaminated soil, and a stopper for stopping diffusion of the permeate in the contaminated soil. The electrode sheet contains a conductive material and a contaminant adsorbent or a contaminant decomposer.The electrode stake communicates with the inlet and outlet, and the top electrode has a bolt terminal at the top. An electrically conductive portion is provided with an insulating coating on a side surface excluding a tip portion, and a pressing piece for pressing an electrode sheet through a rubber bush protrudes from an upper end portion of the insulating coating portion to provide a bolt terminal. DC voltage is applied between the piles and the permeate diffuses And the contaminant contaminated soil to attract the electrokinetic phenomenon electrode sheet. "Is that. However, the invention described in Patent Literature 1 discloses a method for decontaminating contaminated soil in which the radioactive material can be recovered by removing the sheet-like electrode member. Similarly, they share the advantage that there is no agitation or mixing due to the endless tracks of heavy equipment. However, since cesium has a high ionization tendency, it is unlikely to exist as cesium alone in the environment.It is considered that cesium is present as a compound attached to soil, trees, various structures, etc. The absolute amount of soil that can be adsorbed on the electrode sheet to be adsorbed is small, and removing the electrode pile may cause the pond to be drained. It is considered unsuitable for soil decontamination.

また、発明の名称を「表土移植工法及び表土剥き取り機構」とする技術が開示され公知技術となっている(特許文献2参照)。「各種土木工事に当り、表土の自然環境及び生態 系を破壊することなくそのままそっくり移転し得る表土 移植工法及び表土移植具並びに表土剥き取り機構の提 供することを課題とし、具体的には、予め、移植領域の剥き取り開始周辺部域に亙り所要深さを掘り取って表土段差を形成して置き、適宜手段を用いて表土段差に先端を臨ませた表土移植具により移植領域の所要深さまでの表土層を破壊することなく自然の状態を保持して差し込み剥き取、次いで、当該表土層を満載したまま当該表土移植具を運搬具として用いて適宜運搬手段に積載し移植目的地まで運搬し、その後、当該運搬手段から表土移植具を吊り上げて移植場所の真上まで持来し、引き続き、移植場所に降ろして行き、移植地面上に表土層をそつくり敷き詰めて移植を完了してなる特徴的構成手法の採用。」というものである。しかしながら、特許文献2に記載の発明は、堆積している土砂を浚渫するに際し、装軌車両の無限軌道で撹拌してしまうおそれがあると考えられる。   In addition, a technique in which the title of the invention is “topsoil transplantation method and topsoil stripping mechanism” is disclosed and is a known technique (see Patent Document 2). `` In the various civil engineering works, it is an object of the present invention to provide a topsoil transplantation method, a topsoil transplantation tool, and a topsoil stripping mechanism that can be completely relocated without destroying the natural environment and ecosystem of the topsoil. The required depth is dug over the peripheral area of the transplanting area at the start of stripping to form a topsoil step, and the topsoil is brought to the required depth of the transplanting area using a topsoil transplanting tool with the tip facing the topsoil step using appropriate means. Inserting and peeling off while maintaining the natural state of the topsoil layer without destroying it, and then, while fully loading the topsoil layer, use the topsoil transplant tool as a carrier and load it appropriately on the transportation means and transport it to the transplant destination Then, lift the topsoil transplant tool from the vehicle and bring it up to just above the transplant site, then drop it down to the transplant site, lay the topsoil layer on the transplant ground and complete the transplant Adoption of the characteristic configuration method to be Te. "Is that. However, it is considered that the invention described in Patent Literature 2 may agitate the endless track of the tracked vehicle when dredging the deposited earth and sand.

また、発明の名称を「放射性セシウム含有土壌の処理方法」とする技術が開示され公知技術となっている(特許文献3参照)。「除染効率を向上させるとともに、廃棄物発生量を低減することのできる放射性セシウム含有土壌の処理方法を提供することを課題とし具体的には、放射性セシウムを含有する土壌Sを重液Lによって異なる比重の複数種の土壌Sに分離する比重分離工程S1と、前記比重分離された土壌Sに含まれるセシウムを除去するセシウム除去工程S2とを備える放射性セシウム含有土壌の処理方法を手段とする。」というものである。しかしながら、特許文献3に記載の発明は、重液を用いて比重を異ならせ、セシウム濃度の高い層と低い層に分離し、分離された土壌に含まれたセシウムを除去する方法について記載があるが、分離された土壌の除却手段については記載は無く、重機の移動のために鉄板等の敷板を敷設する工法に関する技術は皆無である。   In addition, a technique for setting the title of the invention as "method for treating radioactive cesium-containing soil" has been disclosed and is a known technique (see Patent Document 3). "It is an object of the present invention to provide a method for treating radioactive cesium-containing soil, which can improve the decontamination efficiency and reduce the amount of waste generated. A method for treating radioactive cesium-containing soil, comprising: a specific gravity separation step S1 for separating into a plurality of types of soils S having different specific gravities; and a cesium removal step S2 for removing cesium contained in the soil S separated from the specific gravity. " However, the invention described in Patent Literature 3 describes a method in which the specific gravity is changed using a heavy liquid, the cesium is separated into a layer having a high cesium concentration and a layer having a low cesium concentration, and cesium contained in the separated soil is removed. However, there is no description about the means for removing the separated soil, and there is no technology relating to a method of laying a floor plate such as an iron plate for moving heavy machinery.

特開2017−136515号JP-A-2017-136515 特開2002−186314号JP-A-2002-186314 特開2016−200437号JP 2016-200437 A

本発明は、特に、放射性物質を含む雨水排水によって土壌等が高濃度に汚染された雨水調整池、溜め池等の土壌層の除染作業において、水分を多く含み泥濘んだ軟らかい土壌を、無限軌道による装軌車両を用いて掘削作業を行っても、土壌を撹拌することなく、また、打設した支持杭の撤去によって池の底を抜いてしまい、調整池等の本来の機能を発揮しなくなるという問題を生じさせない汚染土壌層の掘削工法の提供。   The present invention is particularly effective in decontaminating soil layers such as rainwater control ponds and storage ponds in which soil and the like are highly contaminated by rainwater drainage containing radioactive substances. Even when excavating using a tracked vehicle, the bottom of the pond is pulled out without agitation of the soil and by removing the cast support pile, and the original function of the regulating pond etc. is exhibited. Provision of a method for excavating contaminated soil layers that does not cause the problem of disappearance.

本発明は、装軌車両の無限軌道によって土壌を攪拌せずに、除染作業を行う方法であって支持杭を打設する支持杭打設工程と、敷板を敷設する敷板敷設工程と、掘削工程と、敷板(の撤去工程と、敷板撤去後の掘削工程と、杭頭切断工程と、から構成され、前記敷板敷設工程は、敷設された前記敷板の上を前記装軌車両が次の敷板を搬送して連設施工するという一連の工程と前記支持杭打設工程を繰り返すことで前記装軌車両の搬送路を施工するものであり、前記掘削工程は、前記敷板を撤去しながら掘削するものであり、前記杭頭切断工程は、掘削し終わった場所の支持杭は掘削面に合わせて杭頭を切断処理するものである。   The present invention is a method of performing decontamination work without stirring the soil by the endless track of a tracked vehicle, a support pile setting step of setting a support pile, a laying board laying step of laying a mounting board, and excavation And a step of removing a floor plate, a digging step after removal of the floor plate, and a pile head cutting step. The floor plate laying step is performed by the tracked vehicle moving over the mounted floor plate with the next floor plate. Is carried out, and a series of steps of continuously constructing and carrying out the supporting pile setting step are to construct the conveying path of the tracked vehicle, and the excavating step excavates while removing the floor plate. In the pile head cutting step, the support pile at the place where the excavation has been completed cuts the pile head in accordance with the excavation surface.

また、本発明は、前記支持杭打設工程及び前記敷板敷設工程の後であって、前記掘削工程の前に、掘削パス及び施工前掘削深さの確認工程と、粗除根工程を有し、前記敷板の撤去工程と、前記敷板撤去後の掘削工程の後であって前記杭頭切断工程の前に、施工後の掘削深さの確認工程と、掘削後の底泥の簡易セシウム濃度測定工程を有して構成される手段を採用してもよい。   Further, the present invention includes a step of confirming a digging path and a digging depth before the digging, after the support pile placing step and the laying board laying step, and before the digging step, and has a rough root removing step. The step of removing the base plate, the step of excavating after the base plate is removed, and before the pile head cutting step, the step of confirming the excavation depth after construction, and the step of measuring the simple cesium concentration of the bottom mud after excavation May be employed.

また、本発明は、前記撤去工程において、前記搬送路を、敷設方向と略平行に置換え敷設して移設する構成手段を採用してもよい。   Further, in the present invention, in the removing step, a configuration may be adopted in which the transport path is replaced and laid and moved substantially in parallel with a laying direction.

また、本発明は、前記支持杭に松材を用い、前記杭頭切断工程において、掘削後の地面より露出した前記杭頭を切断し、その余の支持杭を土壌内に残存させたままにして、調整池、溜め池の底抜きを防止する構成手段を採用してもよい。   Further, the present invention uses a pine material for the support pile, and in the pile head cutting step, cuts the pile head exposed from the ground after excavation, and leaves the remaining support pile in the soil. In addition, it is possible to adopt a configuration means for preventing the bottom of the regulating pond and the storage pond.

また、本発明は、前記敷板が金属製、または樹脂製である構成を採用してもよい。   Further, the present invention may adopt a configuration in which the soleplate is made of metal or resin.

また、本発明は、前記掘削工程及び前記敷板撤去後の掘削工程において行う掘削を、バックホー又はバキュームで行う構成を採用してもよい。   Further, the present invention may adopt a configuration in which the excavation performed in the excavation step and the excavation step after the removal of the slab is performed by a backhoe or a vacuum.

本発明に係る汚染土壌層の掘削工法によれば、搬送路となる敷設された敷板上を重機が移動するため、装軌車両の無限軌道によって汚染された土壌を攪拌せずに、掘削による除染作業を効果的に行うことが可能となる優れた効果を発揮する。   According to the method for excavating a contaminated soil layer according to the present invention, since heavy equipment moves on a laid slab laid as a transport path, the soil contaminated by the endless track of the tracked vehicle is not agitated and removed by excavation. An excellent effect that enables effective dyeing work is exhibited.

本発明に係る汚染土壌層の掘削工法によれば、敷板の置換え移設により使用する全敷板枚数を減らすことができるという優れた効果を発揮する。   ADVANTAGE OF THE INVENTION According to the excavation method of the contaminated soil layer which concerns on this invention, the outstanding effect that the total number of sheets used can be reduced by replacing and relocating a sheet is exhibited.

また、本発明に係る汚染土壌層の掘削工法において、支持杭に松材を使用する構成を採用する構成では、支持杭を残したままとすることで、池の底を抜くことがないという効果を発揮する。   Further, in the method for excavating the contaminated soil layer according to the present invention, in the configuration in which the pine is used for the support pile, by leaving the support pile, it is possible to prevent the bottom of the pond from being pulled out. Demonstrate.

また、本発明に係る汚染土壌層の掘削工法における前記撤去工程(F)において、前記搬送路(40)を敷設方向と略平行に移設して置換え敷設する構成手段を採用した場合には、敷板の敷設作業を効率よく行うことができるという優れた効果を発揮する。   Further, in the removal step (F) in the method for excavating a contaminated soil layer according to the present invention, in the case where a construction means for transferring and replacing the transport path (40) substantially in parallel with the installation direction is adopted, It has an excellent effect that the laying work can be performed efficiently.

本発明に係る汚染土壌層の掘削工法の基本的な流れを示すフローチャート図である。It is a flowchart figure which shows the basic flow of the excavation method of the contaminated soil layer which concerns on this invention. 本発明に係る汚染土壌層の掘削工法における支持杭打設工程及び敷板敷設工程を説明する工程説明図である。It is a process explanatory view explaining a support pile setting process and a slab laying process in a method of excavating a contaminated soil layer according to the present invention. 本発明に係る汚染土壌層の掘削工法における掘削工程及び撤去工程を説明する工程説明図である。It is a process explanatory view explaining the excavation process and the removal process in the excavation method of the contaminated soil layer concerning the present invention. 本発明に係る汚染土壌層の掘削工法における敷板撤去後の掘削工程及び杭頭切断工程を説明する工程説明図である。It is process explanatory drawing explaining the excavation process after pile board removal and the pile head cutting process in the excavation method of the contaminated soil layer which concerns on this invention. 本発明に係る汚染土壌層の掘削工法における敷板の敷設方向及び敷板の配置を説明する施工手順説明図である。It is a construction procedure explanatory view explaining the laying direction of the slab and the arrangement of the slab in the excavation method of the contaminated soil layer according to the present invention. 本発明に係る汚染土壌層の掘削工法における敷板及び支持杭の配置関係を説明する配置構成説明図である。It is an arrangement explanatory view explaining an arrangement relation of a soleplate and a support pile in a method of excavating a contaminated soil layer according to the present invention.

本発明に係る汚染土壌層の掘削工法1は、調整池等の局所的汚染箇所における汚染された土壌の掘削作業において、装軌車両の搬送路を敷板で敷設し、施工された搬送路上でのみ装軌車両を移動させる構成を採用したことを最大の特徴とするものであるがある。以下、図面に基づいて説明する。   In the excavation method 1 of the contaminated soil layer according to the present invention, in the excavation work of the contaminated soil at a locally contaminated site such as a regulating pond, the transport path of the tracked vehicle is laid with a floor plate, and only on the constructed transport path. The greatest feature is that a configuration for moving a tracked vehicle is adopted. Hereinafter, description will be given based on the drawings.

図1は、本発明に係る汚染土壌層の掘削工法1の作業工程を示すフローチャート図である。図1(a)は、本発明に係る汚染土壌層の掘削工法1の基本フローを示し、図1(b)は、実施の除染作業に際して必要となる可能性のある工程を付加した作業工程を示すフローである。先ず、本発明に係る汚染土壌層の掘削工法1で使用する道具、装置、又は設備等について説明する。   FIG. 1 is a flowchart showing the working steps of a method 1 for excavating a contaminated soil layer according to the present invention. FIG. 1 (a) shows a basic flow of a method 1 of excavating a contaminated soil layer according to the present invention, and FIG. 1 (b) shows a work process to which a process that may be required for actual decontamination work is added. FIG. First, tools, devices, facilities, and the like used in the method 1 for excavating a contaminated soil layer according to the present invention will be described.

装軌車両10は、無限軌道11を有する重機等をいい、本発明に係る汚染土壌層の掘削工法1に使用されるのは、掘削にはバックホー、水切りフレコンQ等に詰めた土壌Tの移動にはキャリアダンプ、該キャリアダンプの荷役ステージ43から水処理機械ヤード44まではクローラクレーン等を用いることとなる。特に掘削に使うものは、油圧ショベルと総称される建設機械の内、ショベル(バケット)を、オペレーター側に取り付けたバックホーであって、泥濘に強い無限軌道11を備え、上部の車体全体を旋回させる機能を有するものであることが必要であり、ショベルが前向きのものは適さない。理由は、敷板上でのみ装軌車両10の移動を可能とすることで無限軌道11による土壌Tの攪拌を防止するためである。   The tracked vehicle 10 refers to a heavy machine having an endless track 11 and the like, and is used in the method 1 for excavating a contaminated soil layer according to the present invention. In this example, a carrier dump is used, and a crawler crane or the like is used from the cargo dumping stage 43 to the water treatment machine yard 44. In particular, what is used for excavation is a backhoe in which a shovel (bucket) is attached to an operator side of a construction machine generally called a hydraulic shovel, provided with an endless track 11 resistant to mud, and turns the entire upper body. It is necessary that the shovel has a function, and a shovel that is directed forward is not suitable. The reason is to prevent the stirring of the soil T by the endless track 11 by allowing the tracked vehicle 10 to move only on the floor plate.

無限軌道11は、起動輪、転輪、遊動輪を囲むように一体に接続された履板、シューの環であり、起動輪で該環を動かすことによって不整地での装軌車両10の移動を可能にするものである。   The endless track 11 is a ring of shoes and shoes integrally connected so as to surround the starting wheel, the rolling wheel, and the idler wheel. The movement of the tracked vehicle 10 on uneven terrain by moving the ring with the starting wheel. Is what makes it possible.

支持杭20は、敷板30を敷設する予定の場所に打設する杭であり、素材や寸法について特に限定されるものではないく、木杭以外の綱杭やコンクリート杭、或いは樹脂杭でも良いが、図5、図6に示した実施例に基づき、具体的な例示をすると、直径200ミリ×2.0メートルの松材を用いて1.5×3.0メートルの敷板30の一枚当たりに8本程度用いることが望ましい。松は他の針葉樹と比較して密度が大きく硬いという施工上の利点があるとともに、水中でも耐腐食性が高いからである。特に本発明では、杭頭21を切り取った残りの支持杭20は地中に残すため、有機材を使用することが環境保全に資することになる。   The support pile 20 is a pile that is cast at a place where the floor plate 30 is to be laid, and is not particularly limited in terms of material and dimensions, but may be a rope other than a wooden pile, a concrete pile, or a resin pile. Based on the embodiment shown in FIG. 5 and FIG. 6, a specific example is as follows. It is desirable to use about eight. Pine has a constructional advantage that it has a higher density and is harder than other conifers, and has high corrosion resistance even in water. In particular, in the present invention, since the remaining support pile 20 from which the pile head 21 has been cut off is left underground, the use of an organic material contributes to environmental conservation.

杭頭21は、敷板30を除去しながら掘削し、掘削泥を水切りフレコン9に入れて搬出する際に、掘削し終わったパスの支持杭20の池底面に合わせて切断処理する部分である。係る掘削後の杭頭を切断することによって池底の凹凸をなくす。   The pile head 21 is a portion that is excavated while removing the floor plate 30 and, when excavating mud is put into the drainage flexible container 9 and carried out, cutting processing is performed according to the pond bottom surface of the support pile 20 of the excavated path. By cutting the pile head after such excavation, unevenness on the pond bottom is eliminated.

敷板30は、鉄板、若しくは樹脂製の硬質な板状部材であり、例えば鉄製の1.5メートル×3メートル等のサイズで、縦横比が2:1であることが望ましい。その理由は、図5及び図6に示すように、横向きに2枚の敷板を敷いた後、その上に縦に2枚敷設して交互に繰り返すなどすることで、面方向の撓みに対する強度を高めることが可能となるからである。   The base plate 30 is an iron plate or a hard plate-shaped member made of resin, and is desirably, for example, a size of 1.5 m × 3 m made of iron and the aspect ratio is 2: 1. The reason is that, as shown in FIGS. 5 and 6, two sheets are laid horizontally, and then two sheets are laid vertically on the two sheets to alternately repeat the steps, thereby increasing the strength against the surface deflection. It is because it becomes possible to increase.

搬送路40は、敷設開始位置41から、敷設方向50に向かって装軌車両10の移動するルートに敷板を敷いて作りだす道である。また、敷設方向50は、基本的には撤去方向60と逆向きとなり、置き換えによる敷設方向50も略平行に移動しながら行われ、広範囲な掘削を行えるように施工する。   The transport path 40 is a path formed by laying a slab on a route along which the tracked vehicle 10 moves from the laying start position 41 toward the laying direction 50. In addition, the laying direction 50 is basically opposite to the removing direction 60, and the laying direction 50 due to the replacement is performed while moving substantially in parallel, and construction is performed so that a wide range of excavation can be performed.

土壌Tは、除染作業による掘削の対象物であり、雨水排水が集まる雨水調整池、溜め池等において、そこに放射性物質を含む土壌・落葉等の集積により、高い濃度の放射性物質が濃集(蓄積)された可能性の高い土をいう。   The soil T is an object to be excavated by the decontamination work, and in a rainwater regulating pond, a storage pond, etc. where rainwater drainage collects, a high concentration of radioactive material is concentrated due to accumulation of soil and leaf fall containing radioactive material therein. The soil that has a high possibility of being accumulated.

調整池、溜め池Pは、集中豪雨などの局地的な出水により、河川に流れ込む雨水を一時的に溜め、下流の河川や下水道雨水管への負担を軽減し、又農業水利施設であって、一般の人たちの立ち入りが出来ないようにフェンス等で囲われるなどの管理がされている溜め池である。   The regulating pond and the storage pond P temporarily store rainwater flowing into rivers due to localized flooding such as torrential rain, reduce the burden on downstream rivers and sewer rainwater pipes, and are agricultural irrigation facilities. It is a reservoir that is managed by fences and the like so that ordinary people cannot enter.

次に、図1(a)に基づいて、本発明の基本構成を成す各工程について説明する。
本発明に係る汚染土壌層の掘削工法1は、装軌車両10の無限軌道11によって土壌Tを攪拌せずに、除染作業を行う方法であって、支持杭打設工程Aと、敷板敷設工程Bと、掘削工程Eと、敷板30の撤去工程Fと、敷板撤去後の掘削工程Gと、杭頭切断工程Jと、から構成される、汚染土壌層を掘削する工法である。
Next, based on FIG. 1 (a), each step constituting the basic configuration of the present invention will be described.
The method 1 for excavating a contaminated soil layer according to the present invention is a method for performing decontamination work without stirring the soil T by the endless track 11 of the tracked vehicle 10, and includes a support pile setting step A, This is a method of excavating a contaminated soil layer, which comprises a process B, an excavation process E, a removal process F of the floor plate 30, a drilling process G after the removal of the floor plate, and a pile head cutting process J.

図2は、本発明に係る汚染土壌層の掘削工法における支持杭打設工程及び敷板敷設工程を説明する工程説明図であり、図2(a)が支持杭打設工程Aを示し、図2(b)が敷板敷設工程Bを示している。   FIG. 2 is a process explanatory view for explaining a support pile setting step and a laying board laying step in the method of excavating the contaminated soil layer according to the present invention, and FIG. (B) has shown the laying board laying process B.

支持杭打設工程Aは、支持杭20を土壌Tへ打ち込む工程であるが、敷板30を敷設する予定の場所に支持杭20を打設するポイントをメジャー等で図り、バックホー等の重機を用いて打設する工程である。なお、係る支持杭20の打設以前に、土壌Tに草木等の植物が育成している場合は、これを刈り取る工程、及び土嚢等に詰めて搬出し、有機物用扱いとして一時保管場所に保管する工程が存在することはいうまでもない。   The support pile setting step A is a step of driving the support pile 20 into the soil T. The point at which the support pile 20 is set at a place where the support plate 30 is to be laid is measured with a measure or the like, and a heavy machine such as a backhoe is used. This is the step of casting. If plants such as plants are growing on the soil T before the support pile 20 is cast, the plant is cut off, and the soil is packed in sandbags and transported out. Needless to say, there is a step of performing

敷板敷設工程Bは、鉄板等の敷板30を池の地表面に敷設する工程であり、具体的には打設した支持杭20にバランスよく配置することが必要である。具体的には、例えば図6(a)に示すように、敷板30に合わせて打ち込まれた支持杭20に対して横向きに2枚敷き、その上に直行するように縦向きに2枚敷くことによって、曲げや撓みに対する強度を高めた重機等の搬送路を施工する工程である。なお、敷設方向50が変化する部分や、荷役ステージ43等では、3枚以上の敷板30を重畳的に配置することで、上敷板と下敷板との繋ぎ部を補強することが望ましい。   The laying board laying step B is a step of laying a laying board 30 such as an iron plate on the ground surface of a pond. Specifically, for example, as shown in FIG. 6A, two sheets are laid horizontally on the support pile 20 that has been driven in accordance with the floor plate 30, and two sheets are laid vertically on the support pile 20. This is a step of constructing a transport path of a heavy machine or the like with increased strength against bending and bending. In a portion where the laying direction 50 changes, in the cargo handling stage 43, or the like, it is desirable that three or more laying plates 30 be superimposed to reinforce the joint between the upper laying plate and the lower laying plate.

図3は、本発明に係る汚染土壌層の掘削工法における掘削工程E及び敷板30の撤去工程Fを説明する工程説明図であり、図3(a)が掘削工程Eを示し、図3(b)が敷板の撤去工程Fを示している。   FIG. 3 is a process explanatory view illustrating a digging process E and a removing process F of the floor plate 30 in the digging method of the contaminated soil layer according to the present invention. FIG. 3 (a) shows the digging process E, and FIG. ) Shows a step F for removing the floor plate.

掘削工程Eは、バックホー等でパス内の掘削を行い、掘削した土は水切りフレコンQに詰め、キャリアダンプに積んで荷役ステージ43まで運び、クレーンで水処理機械ヤード44まで吊り上げる工程である。その後は一般的な脱水工程へ進んで処理される。なお、土壌Tの水分が多い場合はバキュームにより、吸入して汚染土壌を除去することも有効である。   The excavation step E is a step of excavating the inside of the path using a backhoe or the like, packing the excavated soil into drainage flexible containers Q, loading the excavated soil on a carrier dump, transporting it to the cargo handling stage 43, and lifting it up to the water treatment machine yard 44 with a crane. Thereafter, the process proceeds to a general dehydration process. In addition, when the moisture content of the soil T is high, it is also effective to remove the contaminated soil by inhalation by vacuum.

敷板の撤去工程Fは、パス内の敷板部分以外の掘削が終わったら、敷板を撤去すると同時に、これから施工する施工範囲の敷板30の敷設を行う工程である。   In the removing step F of the slab, after excavation of the part other than the slab in the path is completed, the slab is removed and, at the same time, the slab 30 in the construction range to be constructed is laid.

図4は、本発明に係る汚染土壌層の掘削工法1における敷板撤去後の掘削工程G及び杭頭切断工程Jを説明する工程説明図であり、図4(a)が敷板撤去後の掘削工程Gを示し、図4(b)が杭頭切断工程Jを示している。   FIG. 4 is a process explanatory diagram illustrating a digging process G and a pile head cutting process J after removing the slab in the digging method 1 for the contaminated soil layer according to the present invention, and FIG. G is shown, and FIG. 4B shows a pile head cutting step J.

敷板撤去後の掘削工程Gは、敷板撤去後のエリア内を掘削する。掘削した土は水切りフレコンQに詰め、キャリアダンプに積んで荷役ステージ43まで運び、クレーンで水処理機械ヤード44まで吊り上げる工程である。なお、その後は一般的な脱水工程へ進んで処理される。   In the excavation step G after the removal of the floor, the excavation is performed in the area after the removal of the floor. The excavated soil is packed in drainage flexible container Q, loaded on a carrier dump, transported to the cargo handling stage 43, and lifted up to the water treatment machine yard 44 by a crane. After that, the process proceeds to a general dehydration process.

杭頭切断工程Jは、パス内の施工効果が確認できたら掘削後の池底より露出した杭頭21をチェーンソー等で切断する工程である。   The pile head cutting step J is a step of cutting the pile head 21 exposed from the bottom of the pond after excavation with a chain saw or the like when the construction effect in the path is confirmed.

次に、図1(b)に基づいて、本発明の基本構成となる工程の他に、土壌Tの掘削による除染作業において一般的に必要となる各工程について説明する。   Next, based on FIG. 1 (b), each step generally required in the decontamination work by excavation of the soil T will be described in addition to the step as the basic configuration of the present invention.

掘削パスの確認及び施工前掘削深さの確認工程Cは、敷板撤去後の掘削工程Gの後に行う工程であって、トータルステーションを用いて座標管理により掘削パスの四隅に目印の杭を打設する工程と、レーザレベルを設置し、検出側ロープを装着した伸縮式竿を施工前の池底等に下し、レーザーが示す検出側ロープの数値を確認する工程である。   The step C for confirming the excavation path and confirming the excavation depth before construction is a step to be performed after the excavation step G after the removal of the base plate, and places the mark piles at the four corners of the excavation path by coordinate management using a total station. This is a step of setting a laser level, lowering a telescopic rod with a detection-side rope attached to a pond bottom or the like before construction, and confirming a numerical value of the detection-side rope indicated by the laser.

粗除根工程Dは、掘削工程Eの前に行う工程であって、バックホーに除根用の特殊バケットを装着してエリア内を粗除根する工程である。なお、粗除根された根は耐候性土嚢に詰めてキャリアダンプに積み、荷役ステージ43まで運び、クレーンで堤体上まで吊り上げ、有機物用扱いとして一時保管場所に保管する。   The rough root removal step D is a step performed before the excavation step E, and is a step of mounting a special bucket for root removal on the backhoe to coarsely root the inside of the area. The coarsely rooted roots are packed in a weather-resistant sandbag, stacked on a carrier dump, transported to the cargo handling stage 43, lifted up to the levee by a crane, and stored in a temporary storage place as organic matter.

施工後の掘削深さの確認工程Hは、敷板撤去後の掘削工程Gの後に行う工程であって、レーザーレベルを設置し、検側ロープを装着した伸縮式竿を施工後の池底に下ろし、レーザーが示す検測ロープの数値を確認する工程である。   The step H for confirming the excavation depth after the construction is a step to be performed after the excavation step G after the removal of the slab. The laser level is set, and the telescopic rod with the inspection rope attached is lowered to the pond bottom after the construction. This is a step of checking the numerical value of the inspection rope indicated by the laser.

掘削後の底泥の簡易セシウム濃度測定工程Iは、施工後の掘削深さの確認工程Hの後に行う工程であって、長い柄のスコップ等を用いて、パスの中心点付近の土を採泥し、容器に詰め、土の詰まった容器はポリメーターに入れ、既定の方法で簡易セシウム濃度測定をする工程である。   The simple cesium concentration measurement step I of the excavated sediment is a step performed after the excavation depth confirmation step H after the construction, and the soil near the center point of the path is collected using a long-scoop or the like. It is a process of muddy, filling in a container, putting the container filled with soil into a polymeter, and measuring simple cesium concentration by a predetermined method.

図5は、本発明に係る汚染土壌層の掘削工法1における敷板30の敷設方向及び敷板30の配置を説明する施工手順説明図である。なお、係る図1に示した調整池、溜池Pは、係る配置や手順を説明するための一例であり、係る実施例に限定されるものではない。配置や施工手順は、本発明の技術的思想として同一性を失わない範囲内において変更することが可能である。   FIG. 5 is an explanatory diagram of a construction procedure for explaining the laying direction of the slab 30 and the arrangement of the slab 30 in the excavation method 1 for the contaminated soil layer according to the present invention. The regulating pond and the reservoir P shown in FIG. 1 are examples for explaining the arrangement and the procedure, and are not limited to the embodiment. The arrangement and the construction procedure can be changed within a range that does not lose the sameness as the technical idea of the present invention.

図5に示した溜池の除染では、図の左下の荷役ステージ43を敷設開始位置41として、上方へ向かう敷設方向50から右へ向かう敷設方向50へと敷板30を敷設し(一次敷設敷板)、撤去開始位置42から、掘削パス内の掘削を行い、該掘削後、撤去方向60へと敷板を撤去し、敷板撤去後の掘削を行い、これを繰り返しながら撤去した敷板を、一次敷設した撤去方向60と逆方向であって並行する置換え敷設方向70なるように敷設する。係る並行移設を繰り返し最後の搬送路を撤去方向90に向かって撤去する。なお、係る実施例では、一次敷設枚数が217枚、置換え枚数が474枚であり、全使用枚数474枚で、支持杭本数は1,834本であった   In the decontamination of the reservoir shown in FIG. 5, the laying plate 30 is laid from the upward laying direction 50 to the right laying direction 50 with the cargo handling stage 43 at the lower left of the figure as the laying start position 41 (primary laying plate). From the removal start position 42, the excavation in the excavation path is performed, and after the excavation, the slab is removed in the removal direction 60. The replacement laying direction 70 is opposite to and parallel to the direction 60. Such parallel relocation is repeated to remove the last transport path in the removal direction 90. In this example, the number of primary laying was 217, the number of replacement was 474, the total number of used was 474, and the number of supporting piles was 1,834.

図6は、本発明に係る汚染土壌層の掘削工法1における敷板30及び支持杭20の配置関係を説明する配置構成説明図であり、図6(a)は敷板30の配置関係を示し、図6(b)は敷板30及び支持杭20の配置関係を示している。   FIG. 6 is an explanatory diagram showing an arrangement relationship between the base plate 30 and the support pile 20 in the excavation method 1 of the contaminated soil layer according to the present invention, and FIG. FIG. 6B shows an arrangement relationship between the base plate 30 and the support pile 20.

図6(a)に示す通り、例えば、縦横が1524mm(3尺)×3048mm(10尺)の定尺寸法のように、縦横比が2:1の敷板30とすることにより、横向きに2枚の敷板30を敷いた後、その上に縦に2枚敷板30を敷設して交互に繰り返すなどすることで、面方向の撓みに対する強度を高めつつ搬送路40を施工することが可能となる。また、図6(b)に示す通り、下側に敷設した敷板一枚につき直径200mm、長さ2.0mの支持杭を8本打設することが望ましい。なお、係る敷板30の寸法と敷設30の枚数や、支持杭20の寸法と打設数はあくまでも例示であって、これらに限定されるものではなく、地耐力や支持杭強度等に影響されるが、これに具現された発明と同一性を失わない範囲内において変更することが可能である。   As shown in FIG. 6 (a), for example, by using a floor plate 30 having an aspect ratio of 2: 1 such as a fixed size of 1524 mm (3 measures) × 3048 mm (10 measures), two sheets can be arranged horizontally. After laying the laying plate 30, the two laying plates 30 are vertically laid on the laying plate 30 and alternately repeated, thereby making it possible to construct the transport path 40 while increasing the strength against bending in the surface direction. As shown in FIG. 6 (b), it is desirable to drive eight supporting piles each having a diameter of 200 mm and a length of 2.0 m per one laying plate laid on the lower side. In addition, the dimension of the said board | plate 30 and the number of the laying 30, and the dimension of the support pile 20 and the number of installation are only illustration to the last, are not limited to these, and are affected by ground strength, support pile strength, etc. However, it is possible to make changes within a range that does not lose the sameness as the invention embodied therein.

本発明は、雨水排水が集まる雨水調整池、溜め池P等のような、土砂・落葉等が集積することにより放射性物質が濃集(蓄積)し、高い濃度の放射性物質が観測される調整池、溜め池等の除染作業において、装軌車両10の無限軌道11による土壌Tの攪拌を防止するとともに、効果的な除染作業を行うことを可能にするものであり、除染作業に伴う土木の分野において、産業上の利用可能性は高いものと思慮される。   The present invention relates to a regulating pond in which radioactive materials are concentrated (accumulated) due to accumulation of sediment and fallen leaves, such as a rainwater regulating pond and a reservoir P where rainwater drainage is collected, and a high concentration of radioactive materials is observed. In the decontamination work of the reservoir, etc., it is possible to prevent the stirring of the soil T by the endless track 11 of the tracked vehicle 10 and to perform the effective decontamination work, which is accompanied by the decontamination work. In the field of civil engineering, industrial applicability is considered high.

1 汚染土壌層の掘削工法
10 装軌車両
11 無限軌道
20 支持杭
21 杭頭
30 敷板
40 搬送路
41 敷設開始位置
42 撤去開始位置
43 荷役ステージ
44 水処理機械ヤード
50 敷設方向
60 撤去方向
70 置換え敷設方向
80 置換え撤去方向
90 撤去方向
A 支持杭打設工程
B 敷板敷設工程
C 掘削パスの確認及び施工前掘削深さの確認工程
D 粗除根工程
E 掘削工程
F 撤去工程
G 敷板撤去後の掘削工程
H 施工後の掘削深さの確認工程
I 簡易セシウム濃度測定工程
J 杭頭切断工程
T 土壌
P 調整池、溜め池
DESCRIPTION OF REFERENCE NUMERALS 1 Excavation method of contaminated soil layer 10 Tracked vehicle 11 Endless track 20 Support pile 21 Pile head 30 Laying plate 40 Transport path 41 Laying start position 42 Removal starting position 43 Loading stage 44 Water treatment machine yard 50 Laying direction 60 Removal direction 70 Replacement laying Direction 80 Replacement removal direction 90 Removal direction A Support pile placing process B Laying plate laying process C Confirmation of excavation path and confirmation of excavation depth before construction D Coarse root removal process E Excavation process F Removal process G Excavation process H after removal of flooring Confirmation process of excavation depth after construction I Simple cesium concentration measurement process J Pile head cutting process T Soil P Conditioning pond, reservoir pond

Claims (6)

装軌車両(10)の無限軌道(11)によって土壌(T)を攪拌せずに、除染作業を行う方法であって
支持杭(20)を打設する支持杭打設工程(A)と、
敷板(30)を敷設する敷板敷設工程(B)と、
掘削工程(E)と、
敷板(30)の撤去工程(F)と、
敷板撤去後の掘削工程(G)と、
杭頭切断工程(J)と、
から構成され、
前記敷板敷設工程(B)は、敷設された前記敷板(30)の上を前記装軌車両(10)が次の敷板(30)を搬送して連設施工するという一連の工程と前記支持杭打設工程(A)を繰り返すことで前記装軌車両(10)の搬送路(40)を施工するものであり、
前記掘削工程(E)は、前記敷板(30)を撤去しながら掘削するものであり、
前記杭頭切断工程(J)は、掘削し終わった場所の支持杭(20)は掘削面に合わせて杭頭(21)を切断処理するものであることを特徴とする汚染土壌層の掘削工法(1)。
A method of performing a decontamination operation without stirring the soil (T) by means of an endless track (11) of a tracked vehicle (10), wherein a support pile setting step (A) for setting a support pile (20); ,
A laying board laying step (B) for laying the laying board (30);
Excavation process (E),
A step (F) of removing the base plate (30);
Excavation process (G) after removing the base plate;
Pile head cutting process (J),
Composed of
The laying board laying step (B) includes a series of steps in which the tracked vehicle (10) transports the next laying board (30) on the laid laying board (30) and continuously constructs the same, and the support pile. By repeating the casting step (A), the transport path (40) of the tracked vehicle (10) is constructed.
In the excavation step (E), excavation is performed while removing the floor plate (30).
The method for excavating a contaminated soil layer, wherein the pile head cutting step (J) is a step of cutting a pile head (21) in accordance with an excavation surface at a support pile (20) at an excavated place. (1).
前記支持杭打設工程(A)及び前記敷板敷設工程(B)の後であって、前記掘削工程(E)の前に、
掘削パスの確認及び施工前掘削深さの確認工程(C)と、
粗除根工程(D)を有し、
前記敷板(30)の撤去工程(F)と、
前記敷板撤去後の掘削工程(G)の後であって前記杭頭切断工程(J)の前に、
施工後の掘削深さの確認工程(H)と、
掘削後の底泥の簡易セシウム濃度測定工程(I)を有して構成されることを特徴とする請求項1に記載の汚染土壌層の掘削工法(1)。
After the supporting pile placing step (A) and the slab laying step (B), and before the excavating step (E),
Confirmation of excavation path and confirmation of excavation depth before construction (C)
Having a rough root removal step (D),
Removing step (F) of the sole plate (30);
After the excavation step (G) after removing the base plate and before the pile head cutting step (J),
Confirmation process (H) of excavation depth after construction,
The method (1) for excavating a contaminated soil layer according to claim 1, wherein the method comprises a simple cesium concentration measuring step (I) of excavated bottom mud.
前記撤去工程(F)において、前記搬送路(40)を敷設方向と略平行に置換え敷設して移設することを特徴とする請求項1又は請求項2に記載の汚染土壌層の掘削工法(1)。 The excavation method (1) for a contaminated soil layer according to claim 1 or 2, wherein in the removing step (F), the transport path (40) is replaced and laid in a direction substantially parallel to a laying direction. ). 前記支持杭(20)に松材を用い、前記杭頭切断工程(J)において、掘削後の地面より露出した前記杭頭(21)を切断し、その余の支持杭(20)を土壌(T)内に残存させたままにして、調整池(P)の底抜きを防止することを特徴とする請求項1又は請求項3に記載の汚染土壌層の掘削工法(1)。 Using pine wood for the support pile (20), in the pile head cutting step (J), the pile head (21) exposed from the ground after excavation is cut, and the remaining support pile (20) is soiled ( 4. The method (1) for excavating a contaminated soil layer according to claim 1 or 3, wherein the bottom of the regulating pond (P) is prevented while being left in T). 前記敷板(30)が金属製、または樹脂製であることを特徴とする請求項1から請求項4の何れかに記載の汚染土壌層の掘削工法(1)。 The method (1) for excavating a contaminated soil layer according to any one of claims 1 to 4, wherein the floor plate (30) is made of metal or resin. 前記掘削工程(E)及び前記敷板撤去後の掘削工程(G)において行う掘削を、バックホー又はバキュームで行うことを特徴とする請求項1から請求項5の何れかに記載の汚染土壌層の掘削工法(1)。 The excavation of the contaminated soil layer according to any one of claims 1 to 5, wherein excavation performed in the excavation step (E) and the excavation step (G) after the removal of the slab is performed by a backhoe or a vacuum. Construction method (1).
JP2018186626A 2018-04-12 2018-10-01 Excavation method for contaminated soil layer Active JP6439072B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018186626A JP6439072B1 (en) 2018-10-01 2018-10-01 Excavation method for contaminated soil layer
JP2019511798A JP6615410B1 (en) 2018-10-01 2019-02-25 Reservoir pond decontamination method including environmental measures
PCT/JP2019/006959 WO2019198354A1 (en) 2018-04-12 2019-02-25 Comprehensive reservoir decontamination method including environmental measures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018186626A JP6439072B1 (en) 2018-10-01 2018-10-01 Excavation method for contaminated soil layer

Publications (2)

Publication Number Publication Date
JP6439072B1 JP6439072B1 (en) 2018-12-19
JP2020054943A true JP2020054943A (en) 2020-04-09

Family

ID=64668548

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018186626A Active JP6439072B1 (en) 2018-04-12 2018-10-01 Excavation method for contaminated soil layer
JP2019511798A Expired - Fee Related JP6615410B1 (en) 2018-10-01 2019-02-25 Reservoir pond decontamination method including environmental measures

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019511798A Expired - Fee Related JP6615410B1 (en) 2018-10-01 2019-02-25 Reservoir pond decontamination method including environmental measures

Country Status (2)

Country Link
JP (2) JP6439072B1 (en)
WO (1) WO2019198354A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152204A (en) * 1979-05-14 1980-11-27 Atsushi Matsui Mat for toppshaped pile
JPH0710035U (en) * 1993-07-14 1995-02-10 株式会社小松製作所 Breaker type pile head processing machine
JP2002186314A (en) * 2000-12-18 2002-07-02 Kakuta Kogyo Kk Method of transplanting top soil, and top soil stripping- off mechanism
JP2010159579A (en) * 2009-01-08 2010-07-22 Nippon Sharyo Seizo Kaisha Ltd Working machine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60197299A (en) * 1984-03-16 1985-10-05 Sanyo Chem Ind Ltd Dehydration assistant and method
JP2872503B2 (en) * 1992-11-02 1999-03-17 宇部興産株式会社 Dredging equipment
JPH06280283A (en) * 1993-03-30 1994-10-04 Eniwa Kensetsu Kk Dredging bucket
JPH09184163A (en) * 1995-12-28 1997-07-15 Hayamizugumi:Kk Dredging device
JP3748000B2 (en) * 1998-12-07 2006-02-22 同和鉱業株式会社 Remediation method for oil-contaminated soil
JP2004298828A (en) * 2003-04-01 2004-10-28 Meidensha Corp Recycling resource material and its manufacturing method
NO323455B1 (en) * 2005-10-31 2007-05-14 Agronova As Process for the production of hygienic organic sludge
RU2458027C1 (en) * 2011-01-24 2012-08-10 Закрытое Акционерное Общество "Твин Трейдинг Компани" Method of producing granular organo-mineral fertiliser from organic wastes and apparatus for realising said method
JP6549372B2 (en) * 2014-12-16 2019-07-24 吉田 英夫 Method and system for decontaminating soil and contaminated water with tritium water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152204A (en) * 1979-05-14 1980-11-27 Atsushi Matsui Mat for toppshaped pile
JPH0710035U (en) * 1993-07-14 1995-02-10 株式会社小松製作所 Breaker type pile head processing machine
JP2002186314A (en) * 2000-12-18 2002-07-02 Kakuta Kogyo Kk Method of transplanting top soil, and top soil stripping- off mechanism
JP2010159579A (en) * 2009-01-08 2010-07-22 Nippon Sharyo Seizo Kaisha Ltd Working machine

Also Published As

Publication number Publication date
WO2019198354A1 (en) 2019-10-17
JP6439072B1 (en) 2018-12-19
JP6615410B1 (en) 2019-12-04
JPWO2019198354A1 (en) 2020-04-30

Similar Documents

Publication Publication Date Title
WO2017159692A1 (en) Vacuum consolidation and dredging method, tower-like airtight preloading caisson, and dedicated work ship
AU2007311193B2 (en) Cuttings impoundment
US8926221B2 (en) Concurrent disposal and consolidation of dredged sediment using horizontal drains and vacuum loading
US20150117954A1 (en) In-Situ Capping with No Loss of Water Depth
KR100693809B1 (en) The system and method about neutralization of water and stabilization of soil using alkalinity liner when making a pile the muck which has the pyrite
JP6439072B1 (en) Excavation method for contaminated soil layer
RU2558834C1 (en) Method for constructing sludge storage pit for well cuttings at oil and gas deposits (versions)
RU2611075C1 (en) Method of tailing dump in mountain trenches recultivation
Thiers et al. Tailings stabilization experience at the Canonsburg UMTRA site
JP5030999B2 (en) Contaminated soil purification method
CN110924399A (en) Deep foundation pit earthwork excavation method
Marlin Evaluation of sediment removal options and beneficial use of dredged material for Illinois river restoration: Preliminary report
CN113684815B (en) Solid-liquid separation method for high-water-content soft material
Praeger et al. Remediation of PCB-containing sediments using surface water diversion “dry excavation”: A case study
JP3557957B2 (en) Repair method of existing waste disposal site
Allen et al. Document controls
CN117587742A (en) Method for quickly dredging large lake with thicker silt covering layer
Roy Site Development
RU2158070C1 (en) Method of recultivating disturbed land upon terminating construction of well
Thompson et al. Wonderwall
KR100579701B1 (en) Reclaimed land formed in the soft ground of the seashore using dredged soil and sand so as to reinforce bearing power, and forming method thereof
CN118292426A (en) Construction method for forming groove protective cylinder on vertical partition wall side and forming groove on vertical partition wall
JP5094789B2 (en) Contaminated soil purification method
Carscadden Cascade Pole Sediments Remediation Project Part 2-Design and Construction
JP2014031646A (en) Dredging method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181001

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181002

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181119

R150 Certificate of patent or registration of utility model

Ref document number: 6439072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350