JP2020043153A - Electronic component transfer device and electronic component transfer method - Google Patents

Electronic component transfer device and electronic component transfer method Download PDF

Info

Publication number
JP2020043153A
JP2020043153A JP2018167416A JP2018167416A JP2020043153A JP 2020043153 A JP2020043153 A JP 2020043153A JP 2018167416 A JP2018167416 A JP 2018167416A JP 2018167416 A JP2018167416 A JP 2018167416A JP 2020043153 A JP2020043153 A JP 2020043153A
Authority
JP
Japan
Prior art keywords
nozzle
electronic component
distance
camera
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018167416A
Other languages
Japanese (ja)
Other versions
JP7164365B2 (en
Inventor
敬宏 古賀
Takahiro Koga
敬宏 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2018167416A priority Critical patent/JP7164365B2/en
Publication of JP2020043153A publication Critical patent/JP2020043153A/en
Application granted granted Critical
Publication of JP7164365B2 publication Critical patent/JP7164365B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

To suck an electronic component by moving a nozzle by an appropriate amount of movement following the variation in the thickness of the electronic components and the wear of the nozzle, and measure an appropriate nozzle-to-component distance of the nozzle to the electronic component in a short time to achieve high production capacity.SOLUTION: Nozzles 1 and 2 and an electronic component 4 illuminated by an illuminating device 10 are photographed by a camera 6 from the side and a nozzle-component distance L from the tip of the nozzle 2 to a suction portion of the electronic component 4 is measured on the basis of the obtained image, and the amount of movement of the nozzle 2 is controlled on the basis of the distance L. It is preferable that the measurement of the distance L is performed for each single transfer or for each multiple transfer, and the image is measured as a binarized image. At the time of start-up or the like, the area of the electronic component 4 in the image is measured, and the position of the nozzle 1, 2 or the camera 6 is adjusted such that the area is minimized.SELECTED DRAWING: Figure 1

Description

本発明は電子部品搬送装置及び電子部品搬送方法、特に半導体チップ等の電子部品をノズルに吸着して搬送する搬送装置及び搬送方法に関する。   The present invention relates to an electronic component transport apparatus and an electronic component transport method, and more particularly to a transport apparatus and a transport method for attracting and transporting electronic components such as semiconductor chips by nozzles.

従来の電子部品等の製造では、半導体チップ等の電子部品をノズルに吸着して搬送することが行われる。   2. Description of the Related Art In the manufacture of conventional electronic components and the like, electronic components such as semiconductor chips are suctioned to nozzles and transported.

図5に、例えばエンボステーピング装置での電子部品の搬送が示されており、図5のピックアップノズル1と搬送ノズル2は、バキュームポンプ(吸引装置)に接続される。図5(A)のように、ピックアップノズル1は、ダイシング済のウェハー3から個片化された電子部品(例えば半導体チップ)4を先端に吸着してピックアップすると、図5(B)のように、下向きから上向きに反転した後、電子部品4は上方から下降した搬送ノズル2に受け渡される。
そして、図5(C)のように、搬送ノズル2に吸着保持された電子部品4は、エンボスキャリアテープのポケット5まで搬送され、その中に挿入される。
FIG. 5 shows, for example, the transport of electronic components by an emboss taping device. The pickup nozzle 1 and the transport nozzle 2 in FIG. 5 are connected to a vacuum pump (suction device). As shown in FIG. 5A, the pickup nozzle 1 picks up an electronic component (for example, a semiconductor chip) 4 that has been singulated from the diced wafer 3 by picking it up at the tip, as shown in FIG. 5B. After the electronic component 4 is inverted from the downward direction to the upward direction, the electronic component 4 is delivered to the transport nozzle 2 descending from above.
Then, as shown in FIG. 5C, the electronic component 4 sucked and held by the transfer nozzle 2 is transferred to the pocket 5 of the embossed carrier tape and inserted therein.

特許6261163号公報Japanese Patent No. 6261163 特開平11−102936号公報JP-A-11-102936 特開2017−157766号公報JP 2017-157766 A

ところで、従来の電子部品搬送において、図5(B)のように、ピックアップノズル1に保持した電子部品4を搬送ノズル2に受け渡しする際に、搬送ノズル2が下降する移動量(下降の高さ)が適切に設定される必要がある。   By the way, in the conventional electronic component transport, as shown in FIG. 5B, when the electronic component 4 held by the pickup nozzle 1 is transferred to the transport nozzle 2, the moving amount of the transport nozzle 2 descending (the descending height). ) Needs to be set appropriately.

例えば、図6(A)に示されるように、搬送ノズル2の下降の移動量が適切な量より大きい場合は電子部品4が破損したり、電子部品4にダメージを与えたりし、図6(B)に示されるように、搬送ノズル2の下降の移動量が小さい場合は電子部品4が落下したりして受け渡しミスが発生するという問題があった。   For example, as shown in FIG. 6A, when the moving amount of the downward movement of the transport nozzle 2 is larger than an appropriate amount, the electronic component 4 is damaged or the electronic component 4 is damaged, and As shown in (B), when the moving amount of the downward movement of the transport nozzle 2 is small, there is a problem that the electronic component 4 falls or a delivery error occurs.

一方、従来の電子部品搬送での搬送ノズル2の下降の高さは、予め計測により決定されており、例えばバキュームポンプ側に吸引量を検知するバキュームセンサーを設け、受け渡し時にこのバキュームセンサーで所定の吸引力(吸着に必要な力)が検知される位置に設定される。   On the other hand, the height of the lowering of the transfer nozzle 2 in the conventional electronic component transfer is determined in advance by measurement, and for example, a vacuum sensor for detecting the suction amount is provided on the vacuum pump side, and a predetermined amount is provided by the vacuum sensor at the time of delivery. It is set at a position where a suction force (a force required for suction) is detected.

図7には、ノズル下降の高さの自動調整方法の様子が示されており、この自動調整方法は、搬送ノズル2を1パルスずつ下降させて、バキュームセンサーが所定の吸引力を検知(ON)したときに、下降の高さを自動的に確定するようになっている。   FIG. 7 shows a state of an automatic adjusting method of the nozzle descent height. In this automatic adjusting method, the conveying nozzle 2 is lowered one pulse at a time, and the vacuum sensor detects a predetermined suction force (ON). ), The height of the descent is automatically determined.

また、その他には、ノズル下降の高さを拡大鏡等を用いて目視の確認で決めたり、受け渡し時に電子部品に掛かる荷重をノズルにより検知して決めたりすることが行われる。   In addition, the height of the nozzle descent is determined by visual confirmation using a magnifying glass or the like, or the load applied to the electronic component at the time of delivery is detected and determined by the nozzle.

しかしながら、上記の下降の高さの決定方法では、搬送する電子部品4の厚みのバラツキやノズル1,2の摩耗に追従することができず、下降の高さの調整を頻繁にする必要が生じる。しかも、この調整には時間がかかるという問題がある。   However, the above-described method of determining the descending height cannot follow variations in the thickness of the electronic component 4 to be conveyed and wear of the nozzles 1 and 2, and it is necessary to adjust the descending height frequently. . In addition, there is a problem that this adjustment takes time.

また、図7で説明したような、ノズル2を1パルスずつ下降させる自動調整を電子部品2の搬送毎に行うことも可能であるが、この自動調整には、1電子部品の搬送につき数秒〜数十秒かかるため、装置の能力、生産能力が低下することになる。   Further, the automatic adjustment for lowering the nozzle 2 one pulse at a time as described with reference to FIG. 7 can also be performed every time the electronic component 2 is transported. Since it takes several tens of seconds, the capacity of the apparatus and the production capacity are reduced.

本発明は上記問題点に鑑みてなされたものであり、その目的は、電子部品の厚みのバラツキやノズルの摩耗に追従した適切な移動量でノズルを移動させて電子部品を吸着することができ、また電子部品に対するノズルの適切なノズル−部品間距離を短時間に測定して高い生産能力を実現する電子部品搬送装置及び電子部品搬送方法を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to make it possible to adsorb an electronic component by moving a nozzle by an appropriate movement amount that follows variations in the thickness of the electronic component and wear of the nozzle. It is another object of the present invention to provide an electronic component transport apparatus and an electronic component transport method which realize a high production capacity by measuring an appropriate nozzle-component distance of a nozzle with respect to an electronic component in a short time.

上記目的を達成するために、請求項1の発明は、電子部品をノズルに吸着して搬送する電子部品搬送装置において、上記ノズル及び電子部品を側面方向から撮影するカメラと、このカメラで得られた画像に基づき上記ノズルの先端から上記電子部品の吸着部までのノズル−部品間距離を測定する計測部と、この計測部で測定されたノズル−部品間距離に基づいて上記ノズルの移動量を制御する制御部と、を設けたことを特徴とする。
請求項2の発明に係る電子部品搬送装置は、上記計測部では、上記電子部品の1搬送毎又は複数搬送毎に上記ノズル−部品間距離を測定し、上記制御部では1搬送毎又は複数搬送毎に得られたノズル−部品間距離にて上記ノズルの移動量を調整することを特徴とする。
請求項3の発明に係る電子部品搬送装置は、上記計測部では、上記カメラで得られた画像の上記電子部品の面積を測定し、上記制御部では上記電子部品の面積が最小となるように上記電子部品又はカメラの位置を調整することを特徴とする。
請求項4の発明に係る電子部品搬送装置は、上記カメラによる撮影時に上記ノズル及び電子部品を照らす照明装置を設け、上記計測部では、撮影された画像の上記ノズル若しくは電子部品のエッジ強度又は上記ノズル若しくは電子部品と背景のコントラストを測定し、上記コントラスト又はエッジ強度が所定の状態になるように上記照明装置の照度を調整することを特徴とする。
請求項5の発明に係る電子部品搬送装置は、上記カメラで撮影した二値化した画像により、上記計測部でノズル−部品間距離の測定を行うことを特徴とする。
In order to achieve the above object, the invention of claim 1 provides an electronic component transporting apparatus that transports an electronic component by suctioning the nozzle to a nozzle, and a camera for photographing the nozzle and the electronic component from a side direction, and a camera obtained by the camera. A measuring unit that measures the distance between the nozzle and the component from the tip of the nozzle to the suction part of the electronic component based on the image obtained by the nozzle, and the movement amount of the nozzle based on the distance between the nozzle and the component measured by the measuring unit. And a control unit for controlling.
In the electronic component transport device according to the invention of claim 2, the measuring unit measures the distance between the nozzle and the component for each one or a plurality of transports of the electronic component, and the control unit transports the nozzle for each or a plurality of transports. The amount of movement of the nozzle is adjusted based on the nozzle-to-part distance obtained for each.
In the electronic component transport device according to the third aspect of the present invention, the measuring unit measures an area of the electronic component in an image obtained by the camera, and the control unit minimizes an area of the electronic component. The position of the electronic component or the camera is adjusted.
The electronic component transporting device according to a fourth aspect of the present invention is provided with an illuminating device that illuminates the nozzle and the electronic component when the image is captured by the camera. The contrast of the nozzle or the electronic component and the background is measured, and the illuminance of the illuminating device is adjusted so that the contrast or the edge strength is in a predetermined state.
According to a fifth aspect of the present invention, there is provided the electronic component transport device, wherein the measurement unit measures the distance between the nozzle and the component based on the binarized image captured by the camera.

請求項6の発明は、電子部品をノズルに吸着して搬送する電子部品搬送方法において、カメラで上記ノズル及び電子部品を側面方向から撮影し、撮影された画像に基づき上記ノズルの先端から上記電子部品の吸着部までのノズル−部品間距離を上記電子部品の1搬送毎又は複数搬送毎に測定し、測定されたノズル−部品間距離に基づいて上記ノズルの移動量を制御することを特徴とする。
請求項7の発明に係る電子部品搬送方法は、上記カメラで得られた画像の上記電子部品の面積を測定し、この面積が最小となるように上記電子部品又はカメラの位置を調整した後、上記ノズル−部品間距離を測定することを特徴とする。
According to a sixth aspect of the present invention, in the electronic component transporting method for transporting an electronic component by attracting the nozzle to the nozzle, the camera captures the nozzle and the electronic component from a lateral direction, and the electronic component is moved from the tip of the nozzle based on the captured image. The distance between the nozzle and the component to the suction part of the component is measured for each one or a plurality of conveyances of the electronic component, and the amount of movement of the nozzle is controlled based on the measured distance between the nozzle and the component. I do.
The electronic component transport method according to claim 7 measures the area of the electronic component in the image obtained by the camera, and after adjusting the position of the electronic component or the camera so that the area is minimized, The nozzle-to-part distance is measured.

上記の構成によれば、カメラ画像に基づきノズルの先端から電子部品の吸着部までのノズル−部品間距離が測定され、このノズル−部品間距離に基づいてノズルの移動量が制御されるので、ノズルによる電子部品の吸着・保持が短時間かつ簡単に行われる。
しかも、このノズル−部品間距離の測定を立上げ時だけでなく、電子部品の1搬送毎又は複数搬送毎に行うことで、より正確なノズル動作が可能となる。
According to the above configuration, the distance between the nozzle and the component from the tip of the nozzle to the suction part of the electronic component is measured based on the camera image, and the amount of movement of the nozzle is controlled based on the distance between the nozzle and the component. Suction and holding of the electronic component by the nozzle can be performed easily in a short time.
In addition, by performing the measurement of the distance between the nozzle and the component not only at the time of startup, but also for each one or a plurality of conveyances of the electronic component, a more accurate nozzle operation can be performed.

また、立ち上げ時又は調整時に、カメラ画像の電子部品の面積を測定し、この面積が最小となるように電子部品又はカメラの位置を調整すれば、電子部品の吸着面の位置を側面方向から正確に撮影することができ、ノズル−部品間距離の測定精度の低下がなくなる。
また、照明装置にてノズル及び電子部品を照らすようにすれば、明暗のある画像を撮影でき、更には撮影した画像を二値化することによって、ノズル及び電子部品の陰影やエッジが明確となる。この照明においては、ノズル又は電子部品のエッジ強度やノズル又は電子部品と背景のコントラスト(明るさの差)によって、照度を調節することにより、ノズル−部品間距離の測定精度を向上させることができる。
Also, at the time of start-up or adjustment, if the area of the electronic component in the camera image is measured and the position of the electronic component or the camera is adjusted so that this area is minimized, the position of the suction surface of the electronic component can be changed from the side. Accurate photographing can be performed, and the measurement accuracy of the distance between the nozzle and the component does not decrease.
Further, if the nozzle and the electronic component are illuminated by the lighting device, a bright and dark image can be photographed, and furthermore, the binarized image can make the shadows and edges of the nozzle and the electronic component clear. . In this illumination, the measurement accuracy of the distance between the nozzle and the component can be improved by adjusting the illuminance according to the edge strength of the nozzle or the electronic component or the contrast (brightness difference) between the nozzle or the electronic component and the background. .

本発明によれば、電子部品の厚さのバラツキやノズルの摩耗に追従した適切な移動量でノズルを移動させ、電子部品を確実に吸着することができるので、電子部品にダメージを与えることがなく、電子部品の受け渡しミスの発生も防止することが可能となる。
また、電子部品に対するノズルの適切なノズル−部品間距離を短時間に測定することができ、装置の能力を高め、かつ高い生産能力を実現することが可能となる。
ADVANTAGE OF THE INVENTION According to this invention, since a nozzle can be moved by an appropriate movement amount following the thickness variation of an electronic component and the abrasion of a nozzle, and an electronic component can be reliably adsorbed, it can damage an electronic component. In addition, it is possible to prevent the occurrence of an electronic component delivery error.
In addition, it is possible to measure an appropriate nozzle-to-part distance of the nozzle with respect to the electronic part in a short time, and it is possible to increase the capacity of the apparatus and realize a high production capacity.

本発明の実施例に係る電子部品搬送装置の構成を示す図である。FIG. 1 is a diagram illustrating a configuration of an electronic component transport device according to an embodiment of the present invention. 実施例の電子部品及びノズルとカメラの配置[図(A)]、電子部品の受け渡し時の様子[図(B)]を示す図である。It is a figure which shows the arrangement | positioning of the electronic component of Example, a nozzle, and a camera (FIG. (A)), and the state at the time of delivery of an electronic component (FIG. (B)). 実施例の電子部品搬送装置で得られる二値化画像を示す図である。FIG. 5 is a diagram illustrating a binarized image obtained by the electronic component transport device according to the embodiment. 実施例の電子部品搬送装置の動作を示す説明図である。FIG. 5 is an explanatory diagram illustrating an operation of the electronic component transport device according to the embodiment. 従来の搬送装置での電子部品の搬送の様子を示す説明図である。It is an explanatory view showing a state of conveyance of an electronic component in a conventional conveyance device. 従来の搬送装置での電子部品の受渡し時の様子を示す説明図である。It is an explanatory view showing a situation at the time of delivery of electronic parts in a conventional conveyance device. 従来の搬送装置での搬送ノズルの下降の高さを決めるときの動作を示す説明図である。It is an explanatory view showing an operation when determining the height of descent of a transport nozzle in a conventional transport device.

図1に、実施例の電子部品搬送装置の構成が示されており、図の符号の1は第1ノズル(ピックアップノズル)、2は第2ノズル(搬送ノズル)、4は電子部品で、この図1では、図5で説明したように、第1ノズル1が吸着した電子部品4を反転させ、第2ノズル2にて電子部品4を受け渡すときの状態を示している。   FIG. 1 shows the configuration of an electronic component transport apparatus according to an embodiment. In the figure, reference numeral 1 denotes a first nozzle (pickup nozzle), 2 denotes a second nozzle (transport nozzle), and 4 denotes an electronic component. FIG. 1 shows a state in which the electronic component 4 sucked by the first nozzle 1 is turned over and the electronic component 4 is delivered by the second nozzle 2 as described with reference to FIG.

図1において、符号の6は第1及び第2ノズル1,2及び電子部品4を側面(第2ノズル2が下降する軌道に垂直な方向)から撮影するカメラ、7は計測部であり、上記カメラ6は、電子的な画像データを得る撮像素子(イメージセンサ)等を用いて構成される。上記計測部7は、カメラ6で撮像された画像に基づき、詳細は後述するが、ノズル−部品間距離、電子部品4の面積、第1及び第2ノズル1,2や電子部品4のエッジ強度、ノズル1,2や電子部品4と背景のコントラスト等を画像処理により測定する。   In FIG. 1, reference numeral 6 denotes a camera for photographing the first and second nozzles 1 and 2 and the electronic component 4 from the side (in a direction perpendicular to the trajectory where the second nozzle 2 descends), and 7 denotes a measuring unit. The camera 6 is configured using an image sensor (image sensor) for obtaining electronic image data. The measuring unit 7 is based on an image captured by the camera 6, and will be described in detail later. However, the distance between the nozzle and the component, the area of the electronic component 4, the edge strength of the first and second nozzles 1 and 2 and the electronic component 4 , The contrast between the nozzles 1 and 2 and the electronic component 4 and the background are measured by image processing.

符号の8,9は、第1ノズル1、第2ノズル2を駆動する駆動部であり、駆動部8により第1ノズル1は、例えば先端に電子部品4を吸着して180度反転し、カメラ6を設置した受け渡しを行う位置に移動する。一方、駆動部9により、第2ノズル2は第1ノズル1から電子部品4を受け取り、エンボステープまで移動する。また、これら駆動部8,9にはバキュームポンプ等からなる吸引装置が含まれ、これによって第1ノズル1、第2ノズル2の先端部にて電子部品4を吸着し保持できるようになっている。   Reference numerals 8 and 9 denote driving units for driving the first nozzle 1 and the second nozzle 2, and the driving unit 8 inverts the first nozzle 1 by, for example, adsorbing the electronic component 4 at the tip and inverting it 180 degrees. 6 is moved to the position where delivery is performed. On the other hand, the second nozzle 2 receives the electronic component 4 from the first nozzle 1 by the driving unit 9 and moves to the embossed tape. In addition, these driving units 8 and 9 include a suction device such as a vacuum pump or the like, so that the electronic components 4 can be sucked and held by the distal ends of the first nozzle 1 and the second nozzle 2. .

図1の符号の10は、第1ノズル1、第2ノズル2及び電子部品4を側面から照らす照明装置で、面発光となるエッジライト型照明、ダイレクト型に拡散板を組み合わせた照明、有機EL照明等が使用される。そして、制御部12は、第1ノズル1、第2ノズル2の駆動制御、照明装置10の制御、計測部7で得られた測定データに基づく各種の制御を実行する。或いはさらに、カメラ6の位置を制御するように構成してもよい。   Reference numeral 10 in FIG. 1 denotes an illumination device that illuminates the first nozzle 1, the second nozzle 2, and the electronic component 4 from the side surface, and includes an edge light type illumination that emits surface light, a direct type illumination combined with a diffusion plate, and an organic EL. Lighting or the like is used. Then, the control unit 12 performs drive control of the first nozzle 1 and the second nozzle 2, control of the illumination device 10, and various controls based on the measurement data obtained by the measurement unit 7. Alternatively, the position of the camera 6 may be controlled.

実施例は以上の構成からなり、以下にその動作を説明する。
図2(A)に、第1ノズル1で電子部品4を反転させたときの状態が示されており、このときの状態はその側面からカメラ6にて撮影される。
このときの第1ノズル1、第2ノズル2及び電子部品4は、カメラ6の反対側に配置した照明装置10で照らされており、これによって各部材の輪郭(エッジ)を明確に写し出せるようになっている。
The embodiment has the above configuration, and its operation will be described below.
FIG. 2A shows a state when the electronic component 4 is inverted by the first nozzle 1, and the state at this time is photographed by the camera 6 from the side.
At this time, the first nozzle 1, the second nozzle 2, and the electronic component 4 are illuminated by the illumination device 10 arranged on the opposite side of the camera 6, so that the outline (edge) of each member can be clearly displayed. It has become.

図3には、カメラ6で得られる白黒の2値化画像を示しており、第1及び第2ノズル1,2及び電子部品4の陰影やエッジを明瞭にした上で、各種の測定を行うことができる。
上述のように、カメラ6で撮影された画像(データ)を入力した計測部7は、電子部品4の上面(吸着面)と第2ノズル2の先端との距離(ノズル−部品間距離)Lを測定し、この距離Lのデータを制御部12へ供給することにより、制御部12では下降すべき移動量(距離、下降の高さ)にて、図2(B)のように第2ノズル2を下降させ、電子部品4を吸着する。
FIG. 3 shows a black-and-white binary image obtained by the camera 6, and performs various measurements after clarifying the shadows and edges of the first and second nozzles 1 and 2 and the electronic component 4. be able to.
As described above, the measuring unit 7 to which the image (data) photographed by the camera 6 is input, sets the distance (nozzle-component distance) L between the upper surface (adsorption surface) of the electronic component 4 and the tip of the second nozzle 2. Is measured, and the data of the distance L is supplied to the control unit 12, so that the control unit 12 determines the amount of movement (distance, height of descent) to be lowered by the second nozzle as shown in FIG. Then, the electronic component 4 is sucked.

実施例では、このようなノズル−部品間距離Lの測定を1つの電子部品の1搬送毎に行っており、1搬送毎に得られた距離データに基づいて第2ノズル2の下降距離(下降の高さ)を制御・駆動することで、電子部品4の受け渡しミス等をなくすことができる。
カメラ6にイメージセンサを用いた場合、1電子部品の搬送につき、数十msecの時間で測定が可能であり、1搬送毎の計測でも装置の能力を低下させることはない。なお、このノズル−部品間距離Lの計測は、電子部品4の所定数の搬送毎に実行するようにしてもよい。
In the embodiment, such a measurement of the nozzle-component distance L is performed for each transport of one electronic component, and the descending distance (the descending distance) of the second nozzle 2 is determined based on the distance data obtained for each transport. By controlling and driving the height of the electronic component 4, it is possible to eliminate a mistake in delivery of the electronic component 4.
When an image sensor is used for the camera 6, measurement can be performed in several tens of msec for transporting one electronic component, and measurement of each transport does not reduce the performance of the apparatus. The measurement of the nozzle-component distance L may be performed every time a predetermined number of electronic components 4 are conveyed.

次に、計測の精度を向上・維持させるために、装置の立上げ時又は調整時に行う動作を図4に基づいて説明する。
図4(A)は、カメラ6で得られた画像から電子部品4の面積を測定し、この電子部品4の面積が最小となるように第1ノズル1を上下移動させ、電子部品4の位置を調整するものである。図4(A)の左側のように電子部品4が傾いて表示される場合は、カメラ6が電子部品4の斜め上方から撮影している状態となっている。そこで、第1ノズル1を上方へ移動させ、図4(A)の右側のように表示されるように調整する。なお、第1ノズル1の移動の代わりに、カメラ6を上下移動可能に構成してカメラ6側を移動させるようにしてもよい。
Next, an operation performed when starting up or adjusting the apparatus in order to improve and maintain the accuracy of measurement will be described with reference to FIG.
FIG. 4A shows an example in which the area of the electronic component 4 is measured from the image obtained by the camera 6 and the first nozzle 1 is moved up and down so that the area of the electronic component 4 is minimized. Is to adjust. When the electronic component 4 is displayed in an inclined manner as shown on the left side of FIG. 4A, the camera 6 is capturing an image from obliquely above the electronic component 4. Therefore, the first nozzle 1 is moved upward and adjusted so as to be displayed as shown on the right side of FIG. Note that, instead of moving the first nozzle 1, the camera 6 may be configured to be able to move up and down so as to move the camera 6 side.

図4(B)は、カメラ6で得られた画像の第1ノズル1、電子部品4等のエッジ強度を測定し、このエッジ強度が所定の状態になるように照明装置10の照度を調整するものである。図4(B)の左側のように、第1ノズル1、電子部品4のエッジが不鮮明の場合には、図4(B)の右側のようにエッジが鮮明となる。
図4(C)は、カメラ6で得られた画像の第1ノズル1、電子部品4等と背景のコントラストを測定し、コントラスト(明るさの差)が良好となる所定の値となるように照明装置10の照度を調整するものである。図4(B)の左側のように、第1ノズル1、電子部品4のコントラストが低い場合でも、図4(B)の右側のようにコントラストが高くなる。
FIG. 4B measures the edge intensity of the first nozzle 1, the electronic component 4, and the like of the image obtained by the camera 6, and adjusts the illuminance of the illumination device 10 so that the edge intensity is in a predetermined state. Things. When the edge of the first nozzle 1 and the electronic component 4 is unclear as shown on the left side of FIG. 4B, the edge becomes sharp as shown on the right side of FIG. 4B.
FIG. 4 (C) measures the contrast between the first nozzle 1, the electronic component 4, etc. of the image obtained by the camera 6 and the background, and adjusts the contrast (brightness difference) to a predetermined value at which the contrast is good. The illuminance of the illumination device 10 is adjusted. Even when the contrast of the first nozzle 1 and the electronic component 4 is low as shown on the left side of FIG. 4B, the contrast becomes high as shown on the right side of FIG. 4B.

図4(D)は、治具を使って画像の寸法の確からしさを検証する状態を示している。図4(D)のように、第2ノズル2等に校正寸法を有する治具14を装着し、得られた画像の治具14の寸法Rを測定し、実際の治具寸法との相関を確認することができる。これにより、計測されるノズル−部品間距離Lの確からしさを検証し、校正・調整することが可能となる。   FIG. 4D shows a state in which the accuracy of the dimensions of the image is verified using a jig. As shown in FIG. 4D, a jig 14 having a calibrated dimension is attached to the second nozzle 2 or the like, the dimension R of the jig 14 in the obtained image is measured, and the correlation with the actual jig dimension is determined. You can check. This makes it possible to verify the accuracy of the measured distance L between the nozzle and the component, and perform calibration and adjustment.

図4(E)は、第2ノズル2等を移動させて画像の寸法の確からしさを検証する状態が示されており、図4(E)のように、第2ノズル2を予め決められた距離だけ移動させ、得られた画像から測定された距離Lと実際の距離との相関を確認する。これによっても、計測されるノズル−部品間距離Lの確からしさを検証し、校正・調整することが可能となる。 FIG. 4E shows a state in which the second nozzle 2 and the like are moved to verify the certainty of the image size. As shown in FIG. 4E, the second nozzle 2 is determined in advance. distance moved, to check the correlation between the actual distance and the distance L 0 measured from the obtained image. This also makes it possible to verify, calibrate, and adjust the likelihood of the measured nozzle-part distance L.

図3では、画像を2値化画像として計測を行うことを説明したが、通常の画像でノズル−部品間距離等の測定を行ってもよい。   In FIG. 3, the measurement is performed using the image as a binarized image. However, the measurement of the distance between the nozzle and the component may be performed using a normal image.

1…第1ノズル(又はピックアップノズル)、
2…第2ノズル(又は搬送ノズル)、
4…電子部品、 6…カメラ、
7…計測部、 8,9…駆動部、
10…照明装置、 12…制御部、
14…治具。
1. 1st nozzle (or pickup nozzle),
2nd nozzle (or transport nozzle)
4 ... Electronic components 6 ... Cameras
7… Measurement unit, 8, 9… Drive unit,
10 lighting device 12 control unit
14 ... Jig.

Claims (7)

電子部品をノズルに吸着して搬送する電子部品搬送装置において、
上記ノズル及び電子部品を側面方向から撮影するカメラと、
このカメラで得られた画像に基づき上記ノズルの先端から上記電子部品の吸着部までのノズル−部品間距離を測定する計測部と、
この計測部で測定されたノズル−部品間距離に基づいて上記ノズルの移動量を制御する制御部と、を設けたことを特徴とする電子部品搬送装置。
In an electronic component transport device that sucks and transports electronic components to a nozzle,
A camera for photographing the nozzle and the electronic component from a side direction,
A measuring unit for measuring a distance between the nozzle and the component from the tip of the nozzle to the suction unit of the electronic component based on an image obtained by the camera,
An electronic component transport device, comprising: a control unit that controls the amount of movement of the nozzle based on the distance between the nozzle and the component measured by the measurement unit.
上記計測部は、上記電子部品の1搬送毎又は複数搬送毎に上記ノズル−部品間距離を測定し、上記制御部では1搬送毎又は複数搬送毎に得られたノズル−部品間距離にて上記ノズルの移動量を調整することを特徴とする請求項1記載の電子部品搬送装置。   The measuring unit measures the distance between the nozzle and the component for each one or a plurality of conveyances of the electronic component, and the control unit calculates the distance between the nozzle and the component obtained for each one or a plurality of conveyances. 2. The electronic component conveying device according to claim 1, wherein the moving amount of the nozzle is adjusted. 上記計測部は、上記カメラで得られた画像の上記電子部品の面積を測定し、上記制御部では上記電子部品の面積が最小となるように上記電子部品又はカメラの位置を調整することを特徴とする請求項1記載の電子部品搬送装置。   The measuring unit measures an area of the electronic component in an image obtained by the camera, and the control unit adjusts a position of the electronic component or the camera such that an area of the electronic component is minimized. The electronic component conveying device according to claim 1, wherein 上記カメラによる撮影時に上記ノズル及び電子部品を照らす照明装置を設け、
上記計測部では、撮影された画像の上記ノズル若しくは電子部品のエッジ強度又は上記ノズル若しくは電子部品と背景のコントラストを測定し、上記コントラスト又はエッジ強度が所定の状態になるように上記照明装置の照度を調整することを特徴とする請求項1記載の電子部品搬送装置。
Providing an illuminating device that illuminates the nozzle and electronic components when photographing with the camera,
The measuring unit measures the edge intensity of the nozzle or the electronic component or the contrast between the nozzle or the electronic component and the background of the captured image, and adjusts the illuminance of the illumination device so that the contrast or the edge intensity is in a predetermined state. 2. The electronic component conveying device according to claim 1, wherein the electronic component conveying device is adjusted.
上記カメラで撮影した二値化した画像により、上記計測部でノズル−部品間距離の測定を行うことを特徴とする請求項1乃至4のいずれかに記載の電子部品搬送装置。   The electronic component transport device according to claim 1, wherein the measurement unit measures the distance between the nozzle and the component based on the binarized image captured by the camera. 電子部品をノズルに吸着して搬送する電子部品搬送方法において、
カメラで上記ノズル及び電子部品を側面方向から撮影し、
撮影された画像に基づき上記ノズルの先端から上記電子部品の吸着部までのノズル−部品間距離を上記電子部品の1搬送毎又は複数搬送毎に測定し、
測定されたノズル−部品間距離に基づいて上記ノズルの移動量を制御することを特徴とする電子部品搬送方法。
In an electronic component transport method of sucking and transporting an electronic component to a nozzle,
Use a camera to shoot the nozzle and electronic components from the side,
The distance between the nozzle and the component from the tip of the nozzle to the suction part of the electronic component based on the captured image is measured for each transport or for each transport of the electronic component,
An electronic component conveying method, comprising: controlling a movement amount of the nozzle based on the measured nozzle-component distance.
上記カメラで得られた画像の上記電子部品の面積を測定し、この面積が最小となるように上記電子部品又はカメラの位置を調整した後、上記ノズル−部品間距離を測定することを特徴とする請求項6記載の電子部品搬送方法。   Measuring the area of the electronic component of the image obtained by the camera, adjusting the position of the electronic component or the camera so that this area is minimized, and then measuring the nozzle-component distance. 7. The electronic component conveying method according to claim 6, wherein:
JP2018167416A 2018-09-07 2018-09-07 Electronic component conveying device and electronic component conveying method Active JP7164365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018167416A JP7164365B2 (en) 2018-09-07 2018-09-07 Electronic component conveying device and electronic component conveying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018167416A JP7164365B2 (en) 2018-09-07 2018-09-07 Electronic component conveying device and electronic component conveying method

Publications (2)

Publication Number Publication Date
JP2020043153A true JP2020043153A (en) 2020-03-19
JP7164365B2 JP7164365B2 (en) 2022-11-01

Family

ID=69798677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018167416A Active JP7164365B2 (en) 2018-09-07 2018-09-07 Electronic component conveying device and electronic component conveying method

Country Status (1)

Country Link
JP (1) JP7164365B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6775791B1 (en) * 2020-05-27 2020-10-28 上野精機株式会社 Parts delivery device
JP2020197395A (en) * 2019-05-31 2020-12-10 ヤマハ発動機株式会社 Measurement tool, component mounting device, and measurement method using measurement tool

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2982000B1 (en) * 1998-07-03 1999-11-22 株式会社新川 Bonding method and apparatus
JP2000005679A (en) * 1998-06-24 2000-01-11 Shibaura Mechatronics Corp Coating apparatus and mounting device for electronic parts
WO2015087420A1 (en) * 2013-12-11 2015-06-18 ヤマハ発動機株式会社 Component-mounting device
JP2017098287A (en) * 2015-11-18 2017-06-01 富士機械製造株式会社 Component mounter and wafer component suction height adjustment method of component mounter
JP2018049963A (en) * 2016-09-23 2018-03-29 富士機械製造株式会社 Component mounting machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000005679A (en) * 1998-06-24 2000-01-11 Shibaura Mechatronics Corp Coating apparatus and mounting device for electronic parts
JP2982000B1 (en) * 1998-07-03 1999-11-22 株式会社新川 Bonding method and apparatus
WO2015087420A1 (en) * 2013-12-11 2015-06-18 ヤマハ発動機株式会社 Component-mounting device
JP2017098287A (en) * 2015-11-18 2017-06-01 富士機械製造株式会社 Component mounter and wafer component suction height adjustment method of component mounter
JP2018049963A (en) * 2016-09-23 2018-03-29 富士機械製造株式会社 Component mounting machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020197395A (en) * 2019-05-31 2020-12-10 ヤマハ発動機株式会社 Measurement tool, component mounting device, and measurement method using measurement tool
JP7181838B2 (en) 2019-05-31 2022-12-01 ヤマハ発動機株式会社 Measuring jig, component mounting device, and measuring method using measuring jig
JP6775791B1 (en) * 2020-05-27 2020-10-28 上野精機株式会社 Parts delivery device
JP2021190506A (en) * 2020-05-27 2021-12-13 上野精機株式会社 Component transfer device
TWI774395B (en) * 2020-05-27 2022-08-11 日商上野精機股份有限公司 Component transfer device

Also Published As

Publication number Publication date
JP7164365B2 (en) 2022-11-01

Similar Documents

Publication Publication Date Title
CN106920762B (en) Semiconductor manufacturing apparatus, semiconductor device manufacturing method, and chip mounter
KR102022951B1 (en) Component mounting device, and component mounting method
JP7325965B2 (en) Element mounting apparatus, adjustment method for element mounting apparatus, and element mounting method
TWI702682B (en) Conveying mechanism, electronic component manufacturing device and electronic component manufacturing method
JP2020043153A (en) Electronic component transfer device and electronic component transfer method
KR101440310B1 (en) Apparatus for Auto Testing Trace of Pannel
JP2010135574A (en) Transfer apparatus
KR20090053127A (en) Aligning and transferring apparatus of semiconductor device for saw and sorting system and aligning and transferring method using the same
JP2012248728A (en) Die bonder and bonding method
JP4999502B2 (en) Component transfer device and surface mounter
JP2014011287A (en) Feeding device for semiconductor chips
JP7128415B2 (en) Semiconductor device inspection equipment
JP6940207B2 (en) Electronic component mounting device
JP6470469B2 (en) Component mounter and nozzle imaging method thereof
JP5297913B2 (en) Mounting machine
JP2011014583A (en) Electronic component transfer device
JP5511143B2 (en) Mounting machine
JP6602269B2 (en) Component mounting equipment
JP6232272B2 (en) Positioning device, thin film forming device
WO2022185875A1 (en) Collet detection device, collet position correction device, bonding device, collet detection method, and collet position correction method
KR20180055186A (en) Collet system and pickup method for semiconductor die
TWI565568B (en) Automatically manufacturing apparatus and deviation eliminating method thereof
JPH07221497A (en) Parts mounting method and its device
CN118044348A (en) Component mounting machine and component mounting position deviation determination method
JP2003081213A (en) Apparatus and method of housing electron device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221020

R150 Certificate of patent or registration of utility model

Ref document number: 7164365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150