JP2020035877A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2020035877A
JP2020035877A JP2018160764A JP2018160764A JP2020035877A JP 2020035877 A JP2020035877 A JP 2020035877A JP 2018160764 A JP2018160764 A JP 2018160764A JP 2018160764 A JP2018160764 A JP 2018160764A JP 2020035877 A JP2020035877 A JP 2020035877A
Authority
JP
Japan
Prior art keywords
region
element isolation
trench
semiconductor device
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018160764A
Other languages
English (en)
Other versions
JP7216502B2 (ja
Inventor
実 十河
Minoru Sogawa
実 十河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2018160764A priority Critical patent/JP7216502B2/ja
Priority to US16/527,581 priority patent/US11075211B2/en
Publication of JP2020035877A publication Critical patent/JP2020035877A/ja
Application granted granted Critical
Publication of JP7216502B2 publication Critical patent/JP7216502B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/40Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
    • H10B41/42Simultaneous manufacture of periphery and memory cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823814Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/82385Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different shapes, lengths or dimensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823857Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate insulating layers, e.g. different gate insulating layer thicknesses, particular gate insulator materials or particular gate insulator implants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/50Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the boundary region between the core region and the peripheral circuit region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/10Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the top-view layout

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)
  • Element Separation (AREA)

Abstract

【課題】複数のメモリセル間での閾値電圧のばらつきを低減することができる半導体装置を提供する。【解決手段】半導体チップ2は、不揮発性メモリセル17用の第1領域13と、バイトセレクトトランジスタ18が配置された第2領域14とを含む半導体基板11と、第1領域13と第2領域14とを電気的に分離する複数の第1素子分離部12と、第1領域13に形成された第2素子分離部19と、複数の第1素子分離部12のうち第1領域13に最も近い第1素子分離部12である第1部分15に隣接して配置されたダミー領域23とを含み、第1素子分離部12の第1部分15は、第2素子分離部19と均等な幅を有している。【選択図】図5

Description

本発明は、不揮発性メモリセルを有する半導体装置に関する。
特許文献1は、p型ウェル領域を有する半導体基板と、p型ウェル領域に形成された拡散領域と、p型ウェル領域のチャネル上に形成された第1のゲート絶縁膜と、第1のゲート絶縁膜の上に形成された、フローティングゲート、第2のゲート絶縁膜およびコントロールゲートの積層構造とを含む、半導体装置を開示している。
特開2015−32741号公報
本発明の目的は、複数のメモリセル間での閾値電圧のばらつきを低減することができる半導体装置を提供することである。
本発明の一実施形態に係る半導体装置は、不揮発性メモリセル用の第1領域と、前記第1領域の外側に形成され、前記不揮発性メモリセルとは異なる半導体素子が配置された第2領域とを含む半導体基板と、前記第1領域と前記第2領域とを電気的に分離する複数の第1素子分離部と、前記第1領域に形成され、前記第1領域を複数のアクティブ領域に区画する第2素子分離部と、前記複数の第1素子分離部のうち前記第1領域に最も近い第1素子分離部である第1部分に隣接して配置されたダミー領域とを含み、前記第1素子分離部の前記第1部分は、前記第2素子分離部と均等な幅を有している。
この構成によれば、半導体基板の第1領域と第2領域とが、複数の第1素子分離部によって電気的に分離されている。複数の第1素子分離部のうち第1領域に最も近い第1素子分離部(第1部分)に対して第2領域側には、ダミー領域が形成されている。ダミー領域が設けられていることによって、第1素子分離部の第1部分は、第2素子分離部と均等な幅を有している。これにより、第2領域に近い側の不揮発性メモリセルの閾値電圧の低下を抑制することができるので、複数のメモリセル間での閾値電圧のばらつきを低減することができる。
本発明の一実施形態に係る半導体装置では、前記複数の第1素子分離部は、前記第1部分に対して前記第2領域に近い側に配置され、前記第2素子分離部よりも広い幅を有する第2部分をさらに含んでいてもよい。
本発明の一実施形態に係る半導体装置では、前記ダミー領域は、前記第1素子分離部の前記第1部分と前記第2部分とに挟まれた領域で形成されていてもよい。
本発明の一実施形態に係る半導体装置では、前記第1素子分離部の前記第2部分は、前記第1素子分離部の前記第1部分よりも深く形成されていてもよい。
本発明の一実施形態に係る半導体装置では、前記第1素子分離部の前記第1部分の幅は、前記第2素子分離部の幅の±20%以内であってもよい。
本発明の一実施形態に係る半導体装置では、前記第2素子分離部の幅が、0.32μm〜0.52μmであり、前記第1素子分離部の前記第1部分の幅が、0.32μm〜0.52μmであってもよい。
本発明の一実施形態に係る半導体装置では、前記不揮発性メモリセルは、第1導電型の前記半導体基板の前記アクティブ領域に間隔を空けて形成された第2導電型のソース領域および第2導電型のドレイン領域と、前記半導体基板上に形成されたゲート絶縁膜と、前記ソース領域と前記ドレイン領域との間において前記ゲート絶縁膜上に選択的に形成されたフローティングゲートと、前記フローティングゲート上に形成されたコントロールゲートと、前記ソース領域と前記ドレイン領域との間において前記ゲート絶縁膜上に選択的に形成されたセレクトゲートと、前記半導体基板において前記フローティングゲートに対向するように形成された第2導電型の不純物領域と、前記ゲート絶縁膜において前記フローティングゲートと前記不純物領域との間の部分に形成され、その周囲の前記ゲート絶縁膜よりも薄く形成されたトンネルウィンドウとを含んでいてもよい。
本発明の一実施形態に係る半導体装置では、前記ダミー領域は、前記半導体基板の表面部に第1導電型の部分を有していてもよい。
本発明の一実施形態に係る半導体装置では、前記半導体素子は、前記コントロールゲートに供給する電圧を制御するトランジスタを含んでいてもよい。
本発明の一実施形態に係る半導体装置では、前記第2素子分離部は、前記半導体基板に形成されたトレンチと、前記トレンチに埋め込まれた絶縁体とを含み、前記トレンチの側面は、前記半導体基板の表面に連続し、前記半導体基板の表面に対して角度θで傾斜する第1部分と、前記トレンチの第1部分から前記トレンチの底部に向かって延び、前記半導体基板の表面に対して前記角度θよりも大きな角度θで傾斜する第2部分とを含んでいてもよい。
本発明の一実施形態に係る半導体装置では、前記トレンチの側面は、前記トレンチの底面に連続し、前記半導体基板の表面に対して前記角度θよりも小さな角度θで傾斜する第3部分を含んでいてもよい。
本発明の一実施形態に係る半導体装置では、前記第2素子分離部は、STI(Shallow Trench Isolation)構造を含んでいてもよい。
本発明の一実施形態に係る半導体装置では、前記コントロールゲートは、前記第2素子分離部を覆うように前記複数のアクティブ領域に跨って形成されており、前記コントロールゲートの一部が、前記トレンチ内の前記絶縁体の表面部に選択的に埋め込まれていてもよい。
本発明の一実施形態に係る半導体装置では、前記複数のアクティブ領域で構成されている1ユニットのアクティブ領域と、当該1ユニットのアクティブ領域に隣り合う1ユニットの複数のアクティブ領域との間に形成され、前記第2素子分離部と均等な幅を有する第4素子分離部をさらに含んでいてもよい。
本発明の一実施形態に係る半導体パッケージは、前記半導体装置と、前記半導体装置を封止するモールド樹脂とを含む。
図1は、半導体パッケージの一例を示す斜視図である。 図2は、図1の半導体パッケージの模式的な断面図である。 図3は、図2の半導体チップの模式的な平面図である。 図4は、不揮発性メモリセルアレイの一例を示す模式的な平面図である。 図5は、図4のV−V線に沿う断面図である。 図6は、図4のVI−VI線に沿う断面図である。 図7は、図4のVII−VII線に沿う断面図である。 図8は、図4のVIII−VIII線に沿う断面図である。 図9は、前記不揮発性メモリセルアレイの回路図である。 図10Aおよび図10Bは、不揮発性メモリセルの書込みの動作原理を説明するための図である。 図11Aおよび図11Bは、不揮発性メモリセルの消去の動作原理を説明するための図である。 図12Aおよび図12Bは、不揮発性メモリセルの読み出しの動作原理を説明するための図である。 図13は、複数の不揮発性メモリセル間での閾値電圧のばらつきの有無を示す図である。 図14は、前記半導体チップの回路の一例を示す図である。 図15Aは、図14の回路図において第1の書き込み方法(書き込み時間:5ms)を施したときの主なノードの信号波形図である。 図15Bは、図14の回路図において第2の書き込み方法(書き込み時間:3.5ms)を施したときの主なノードの信号波形図である。 前記第1の書き込み方法と前記第2の書き込み方法を施すフローを示す図である。
以下では、本発明の実施の形態を、添付図面を参照して詳細に説明する。
図1は、半導体パッケージ1の一例を示す斜視図である。図2は、図1の半導体パッケージ1の模式的な断面図である。
図1および図2では、半導体パッケージ1として、SOP(Small Outline Package)タイプが適用されている。
半導体パッケージ1は、半導体チップ2が載置されるダイパッド3と、ダイパッド3の周囲に配置された複数のリード4と、これらを封止するモールド樹脂5とを含む。半導体チップ2は、たとえば金属または絶縁体を含むペースト6を介してダイパッド3上に接合されている。
リード4は、モールド樹脂5に封止されたインナーリード部4aと、インナーリード部4aと一体的に形成され、モールド樹脂5外に引き出されたアウターリード部4bとを含む。インナーリード部4aは、モールド樹脂5内において、ボンディングワイヤ等の配線部材7を介して対応する半導体チップ2の電極パッド8に電気的に接続されている。アウターリード部4bは、モールド樹脂5の下面に向けて延び、実装基板等に接続される実装端子を形成している。
図3は、図2の半導体チップ2の模式的な平面図である。
半導体チップ2は、平面視四角形状に形成されており、前述のダイパッド3に向き合う面とは反対側の面9に複数の電極パッド8を備えている。複数の電極パッド8は、平面視において、半導体チップ2の互いに向き合う一対の辺に沿って配列されている。この実施形態では、4つの電極パッド8が、一対の辺のそれぞれに沿って互いに間隔を空けて設けられている。
半導体チップ2は、たとえば、EEPROM(Electrically Erasable and Programmable ROM)チップであり、複数の電極パッド8に対してチップの内方領域にメモリ領域10を備えている。メモリ領域10には、後述する不揮発性メモリセル17、バイトセレクトトランジスタ18等が設けられている。また、メモリ領域10の周囲には、チャージポンプ、ツェナーダイオード、MISトランジスタ等の各種素子が形成された周辺回路領域が設けられていてもよい。
図4は、不揮発性メモリセルアレイの一例を示す模式的な平面図である。図5は、図4のV−V線に沿う断面図である。図6は、図4のVI−VI線に沿う断面図である。図7は、図4のVII−VII線に沿う断面図である。図8は、図4のVIII−VIII線に沿う断面図である。
まず、主として図4および図5を参照して、半導体チップ2は、たとえばシリコンからなるp型の半導体基板11を含む。半導体基板11は、たとえば、1×1014cm−3〜1×1015cm−3の不純物濃度を有していてもよい。
半導体基板11は、複数の第1素子分離部12によって、第1領域13と、第1領域13の外側の第2領域14とに区画されている。
複数の第1素子分離部12は、互いに平行なストライプ状に形成されている。この実施形態では、複数の第1素子分離部12は、第1領域13に近い第1部分15と、第2領域14に近い第2部分16とを含む2本の素子分離部で定義されていてもよい。むろん、複数の第1素子分離部12は、2本を超えるストライプ状の素子分離部によって定義されていてもよく、たとえば、最も第2領域14に近い素子分離部が後述する第2部分16のトレンチ構造を有し、それ以外の素子分離部が、後述する第1部分15のトレンチ構造を有していてもよい。
第1素子分離部12によって区画された第1領域13は、不揮発性メモリセル17が配置される領域であり、メモリセル領域と称してもよい。一方、第2領域14は、不揮発性メモリセル17とは異なる半導体素子が配置される領域であり、たとえば、後述する不揮発性メモリセル17のアレイの行を選択するためのバイトセレクトトランジスタ18等が配置される行選択トランジスタ領域22を含んでいてもよい。
第1領域13は、さらに、複数の第2素子分離部19によって、複数のアクティブ領域20に区画されている。複数の第2素子分離部19は、第1素子分離部12と平行なストライプ状に形成されている。これにより、半導体基板11には、ストライプ状に配列された複数のアクティブ領域20が形成されている。この実施形態では、ストライプ状の複数のアクティブ領域20は、8つを1ユニット21(8ビット分)として第1領域13に配列されている。
また、第2領域14の一例としての行選択トランジスタ領域22は、第1領域13のアクティブ領域20と平行に延びるように形成されていてもよい。この実施形態では、行選択トランジスタ領域22は、図4に示すように、第1領域13の各アクティブ領域20よりも広い幅を有していてもよい。
第1領域13と第2領域14との間には、複数の第1素子分離部12によって挟まれたダミー領域23が形成されている。ダミー領域23は、アクティブ領域20を模した形状で形成された半導体領域である。この実施形態では、ダミー領域23は、第1素子分離部12の第1部分15と第2部分16とに挟まれており、第1領域13のアクティブ領域20と平行に延びるように形成されている。
また、ダミー領域23は、各アクティブ領域20と均等な幅を有していてもよい。なお、複数の第1素子分離部12が複数の第1部分15を備えている場合、ダミー領域23は、隣り合う第1部分15に挟まれた領域を含んでいてもよい。つまり、複数の第1素子分離部12が複数の第1部分15を備えている場合、ダミー領域23は、複数本ストライプ状に配列されていてもよい。このダミー領域23の数は、たとえば、第1領域13と第2領域14との間隔および第2素子分離部19の幅に応じて定めてもよい。
以下では、アクティブ領域20、ダミー領域23および行選択トランジスタ領域22のストライプ方向(つまり、第1素子分離部12および第2素子分離部19が延びる方向)を「BL(Bit Line)方向」と称し、BL方向に直交する方向を「WL方向」と称することがある。
各第2素子分離部19は、BL方向に延びる第1トレンチ24と、第1トレンチ24に埋め込まれた第1絶縁体25とを含む。
第1トレンチ24は、半導体基板11の表面から第1トレンチ24の底部へ向かって幅が狭まる略テーパ状に形成されている。この実施形態では、第1トレンチ24の側面は、半導体基板11の表面に対して傾斜した複数の部分を含み、傾斜角度の違いに基づいて、第1部分26、第2部分27および第3部分28を含んでいてもよい。第1トレンチ24の側面の第1部分26、第2部分27および第3部分28は、半導体基板11の表面から第1トレンチ24の底部に向かってこの順に、互いに連続して繋がるように配置されていてもよい。
第1トレンチ24の側面の第1部分26は、半導体基板11の表面に連続し、半導体基板11の表面に対して角度θで傾斜している。角度θの大きさは、たとえば、55°〜65°であってもよい。
第1トレンチ24の側面の第2部分27は、第1トレンチ24の側面の第1部分26から第1トレンチ24の底部へ向かって延び、半導体基板11の表面に対して角度θで傾斜している。角度θの大きさは、角度θよりも大きく、たとえば、80°〜84°であってもよい。
第1トレンチ24の側面の第3部分28は、第1トレンチ24の側面の第2部分27から第1トレンチ24の底部へ向かって延び、第1トレンチ24の底面に連続している。第1トレンチ24の側面の第3部分28は、半導体基板11の表面に対して角度θで傾斜している。角度θの大きさは、角度θおよび角度θよりも小さく、たとえば、45°〜55°であってもよい。
また、第1トレンチ24の幅W(半導体基板11の表面における幅)は、たとえば、0.32μm〜0.52μmであり、好ましくは、0.37μm〜0.47μmであってもよい。また、第1トレンチ24の深さD(半導体基板11の表面から第1トレンチ24の底面までの距離)は、たとえば、0.5μm〜0.7μmであり、好ましくは、0.55μm〜0.65μmであってもよい。
第1絶縁体25は、第1トレンチ24の底面から第1トレンチ24の開口端付近まで第1トレンチ24に埋め込まれている。この実施形態では、第1絶縁体25は、第1トレンチ24の上部にある第1部分26の高さ位置に上面を有するように、第1トレンチ24に埋め込まれていてもよい。また、第1絶縁体25は、たとえば、酸化シリコン(SiO)等の絶縁材料からなっていてもよい。
また、第1絶縁体25の上面は、この実施形態では、第1トレンチ24の幅方向中央部から第1トレンチ24の側面に向かうに従って徐々に低くなるように形成されることによって、中央部がやや凸になる形状を有している。
また、第1トレンチ24の底部には、半導体基板11のよりも不純物濃度が高い第1p型不純物領域29(たとえば、濃度は1×1015cm−3〜1×1018cm−3)が形成されている。第1p型不純物領域29は、第1トレンチ24の側面の第3部分28および底面を覆うように、第1トレンチ24の底部全体に形成されている。
第1素子分離部12の第1部分15は、BL方向に延びる第2トレンチ30と、第2トレンチ30に埋め込まれた第2絶縁体31とを含む。
第2トレンチ30は、半導体基板11の表面から第2トレンチ30の底部へ向かって幅が狭まる略テーパ状に形成されている。この実施形態では、第2トレンチ30の側面は、半導体基板11の表面に対して傾斜した複数の部分を含み、傾斜角度の違いに基づいて、第1部分32、第2部分33および第3部分34を含んでいてもよい。第2トレンチ30の側面の第1部分32、第2部分33および第3部分34は、半導体基板11の表面から第2トレンチ30の底部に向かってこの順に、互いに連続して繋がるように配置されていてもよい。
第2トレンチ30の側面の第1部分32は、半導体基板11の表面に連続し、半導体基板11の表面に対して角度θで傾斜している。角度θの大きさは、角度θと同じまたは略同じ程度の大きさであり、たとえば、55°〜65°であってもよい。
第2トレンチ30の側面の第2部分33は、第2トレンチ30の側面の第1部分32から第2トレンチ30の底部へ向かって延び、半導体基板11の表面に対して角度θで傾斜している。角度θの大きさは、角度θと同じまたは略同じ程度の大きさであり、たとえば、80°〜84°であってもよい。
第2トレンチ30の側面の第3部分34は、第2トレンチ30の側面の第2部分33から第2トレンチ30の底部へ向かって延び、第2トレンチ30の底面に連続している。第2トレンチ30の側面の第3部分34は、半導体基板11の表面に対して角度θで傾斜している。角度θの大きさは、角度θと同じまたは略同じ程度の大きさであり、たとえば、45°〜55°であってもよい。
また、第2トレンチ30の幅W(半導体基板11の表面における幅)は、第1トレンチ24の幅Wと均等である。なお、本明細書における「均等な幅」とは、「不揮発性メモリセル17の閾値電圧の低下を抑制するという効果を発現できる程度に、第1トレンチ24の幅Wおよび第2トレンチ30の幅Wが同じ」という意味であり、2つの幅W,Wが完全に一致していなくてもよい。この実施形態では、第2トレンチ30の幅Wは、たとえば、第1トレンチ24の幅Wの±20%以内、具体的には、0.32μm〜0.52μmであり、好ましくは、0.37μm〜0.47μmであってもよい。
また、第2トレンチ30の深さD(半導体基板11の表面から第2トレンチ30の底面までの距離)は、第1トレンチ24の深さDと同じまたは略同じであり、たとえば、0.5μm〜0.7μmであり、好ましくは、0.55μm〜0.65μmであってもよい。
第2絶縁体31は、第2トレンチ30の底面から第2トレンチ30の開口端付近まで第2トレンチ30に埋め込まれている。この実施形態では、第2絶縁体31は、第2トレンチ30の上部にある第1部分32の高さ位置に上面を有するように、第2トレンチ30に埋め込まれていてもよい。また、第2絶縁体31は、たとえば、酸化シリコン(SiO)等の絶縁材料からなっていてもよい。
また、第2絶縁体31の上面は、この実施形態では、第2トレンチ30の幅方向中央部から第2トレンチ30の側面に向かうに従って徐々に低くなるように形成されることによって、中央部がやや凸になる形状を有している。
また、第2トレンチ30の底部には、半導体基板11のよりも不純物濃度が高い第2p型不純物領域35(たとえば、濃度は1×1015cm−3〜1×1018cm−3)が形成されている。第2p型不純物領域35は、第2トレンチ30の側面の第3部分34および底面を覆うように、第2トレンチ30の底部全体に形成されている。
第1素子分離部12の第2部分16は、BL方向に延びる第3トレンチ36と、第3トレンチ36に埋め込まれた第3絶縁体37とを含む。
第3トレンチ36は、半導体基板11の表面から第3トレンチ36の底部へ向かって幅が狭まる略テーパ状に形成されている。この実施形態では、第3トレンチ36の側面は、半導体基板11の表面に対して傾斜した複数の部分を含み、傾斜角度の違いに基づいて、第1部分38、第2部分39および第3部分40を含んでいてもよい。第3トレンチ36の側面の第1部分38、第2部分39および第3部分40は、半導体基板11の表面から第3トレンチ36の底部に向かってこの順に、互いに連続して繋がるように配置されていてもよい。
第3トレンチ36の側面の第1部分38は、半導体基板11の表面に連続し、半導体基板11の表面に対して角度θで傾斜している。角度θの大きさは、角度θおよび角度θと同じまたは略同じ程度の大きさであり、たとえば、55°〜65°であってもよい。
第3トレンチ36の側面の第2部分39は、第3トレンチ36の側面の第1部分38から第3トレンチ36の底部へ向かって延び、半導体基板11の表面に対して角度θで傾斜している。角度θの大きさは、角度θおよび角度θよりも小さく、たとえば、78°〜82°であってもよい。すなわち、第3トレンチ36は、第1トレンチ24および第2トレンチ30よりも、半導体基板11の表面に向かっての広がり幅が大きい開口端部を有している。角度θと、角度θおよび角度θとの差は、後述する第3トレンチ36の幅W>第1トレンチ24の幅Wおよび第2トレンチ30の幅Wにより、第3トレンチ36のエッチングレートが相対的に大きいことに起因する。
第3トレンチ36の側面の第3部分40は、第3トレンチ36の側面の第2部分39から第3トレンチ36の底部へ向かって延び、第3トレンチ36の底面に連続している。第3トレンチ36の側面の第3部分40は、半導体基板11の表面に対して角度θで傾斜している。角度θの大きさは、角度θおよび角度θよりも大きく、たとえば、55°〜75°であってもよい。
また、第3トレンチ36の幅W(半導体基板11の表面における幅)は、第1トレンチ24の幅Wおよび第2トレンチ30の幅Wよりも大きく、たとえば、0.4μm〜0.6μmであり、好ましくは、0.45μm〜0.55μmであってもよい。
また、第3トレンチ36の深さD(半導体基板11の表面から第3トレンチ36の底面までの距離)は、第1トレンチ24の深さDおよび第2トレンチ30の深さDよりも深く、たとえば、0.55μm〜0.75μmであり、好ましくは、0.6μm〜0.7μmであってもよい。
第3絶縁体37は、第3トレンチ36の底面から第3トレンチ36の開口端付近まで第3トレンチ36に埋め込まれている。この実施形態では、第3絶縁体37は、第3トレンチ36の上部にある第1部分38の高さ位置に上面を有するように、第3トレンチ36に埋め込まれていてもよい。また、第3絶縁体37は、たとえば、酸化シリコン(SiO)等の絶縁材料からなっていてもよい。
また、第3絶縁体37の上面は、この実施形態では、第3トレンチ36の幅方向中央部から第2トレンチ30の側面に向かうに従って選択的に徐々に低くなるように形成されることによって、中央部から行選択トランジスタ領域22側の部分がやや高くなる形状を有している。
また、第3トレンチ36の底部には、半導体基板11のよりも不純物濃度が高い第3p型不純物領域41(たとえば、濃度は1×1015cm−3〜1×1018cm−3)が形成されている。第3p型不純物領域41は、第3トレンチ36の側面の第3部分40および底面を覆うように、第3トレンチ36の底部全体に形成されている。
このように、第1素子分離部12および第2素子分離部19は、共に、絶縁体25,31,37が埋め込まれたトレンチ構造を有しており、たとえば、STI(Shallow Trench Isolation)構造からなる第1素子分離部12および第2素子分離部19と称してもよい。
また、行選択トランジスタ領域22に対して第1素子分離部12の反対側には、たとえば、第4トレンチ42および第4トレンチ42に埋め込まれた第4絶縁体43からなる第3素子分離部44が設けられていてもよい。行選択トランジスタ領域22は、第1素子分離部12(第2部分16)と第3素子分離部44とに挟まれた領域で定義されている。
なお、図4に示すように、複数のアクティブ領域20で構成されている1ユニット21のアクティブ領域20と、隣り合う1ユニット21のアクティブ領域20との間の幅が、第2素子分離部19の幅よりも大きい場合、これらの間に前述のダミー領域23と同じ構造のダミー領域23を設けてもよい。これにより、隣り合うユニット21間が、ダミー領域23を挟む、第2素子分離部19の第1トレンチ24の幅Wと均等な幅Wを有する第4素子分離部45で電気的に分離されていてもよい。
次に、主として図4〜図6を参照して、第2素子分離部19によって区画された複数のアクティブ領域20には、不揮発性メモリセル17がアレイ状(行列状)に配列されている。たとえば、BL方向において、図4に示すように、ストライプ状の各アクティブ領域20に複数の不揮発性メモリセル17が配置されていてもよい。また、WL方向において、図4および図5に示すように、複数の不揮発性メモリセル17が、第2素子分離部19を隔てて互いに隣り合うように配置されていてもよい。
各不揮発性メモリセル17は、メモリセルトランジスタ46と、ビットセレクトトランジスタ47とを含む。
メモリセルトランジスタ46は、図6に示すように、n型ソース領域48と、n型トンネル拡散領域49と、半導体基板11のp型部分の一部からなるチャネル領域50に対向するように配置されたフローティングゲート51と、フローティングゲート51に積層されたコントロールゲート52とを含む。
フローティングゲート51の厚さは、たとえば、1200Å〜1800Åであり、コントロールゲート52の厚さは、たとえば、900Å〜1300Åであってもよい。
フローティングゲート51は、各メモリセルトランジスタ46に1つずつ設けられている。また、各フローティングゲート51は、図5に示すように、WL方向において、第2素子分離部19の第1絶縁体25の縁部を覆うように形成されている。つまり、各アクティブ領域20を挟むように配置されたWL方向両側の第1絶縁体25(行選択トランジスタ領域22に最も近いアクティブ領域20は、第1絶縁体25と第2絶縁体31とで挟まれている)は、その上面の第1トレンチ24の側面の第1部分26(第2トレンチ30の側面の第1部分32)近傍の部分がフローティングゲート51によって覆われている。
コントロールゲート52は、図4および図5に示すように、WL方向に延びるライン状に形成され、複数のアクティブ領域20に跨っており、複数のフローティングゲート51の上面および側面を一括して覆っている。つまり、コントロールゲート52は、複数の不揮発性メモリセル17の共通の電極となっている。コントロールゲート52は、図5に示すように、WL方向において隣り合うフローティングゲート51の間において、第1絶縁体25および第2絶縁体31の表面部に埋め込まれていてもよい。
また、図6に示すように、BL方向におけるフローティングゲート51およびコントロールゲート52の両側面は、互いに面一に形成されている。これにより、フローティングゲート51およびコントロールゲート52の積層構造は、段差のない平面状の側面を有していて、コントロールゲート52がフローティングゲート51からはみ出していない。すなわち、これら2つのゲート51,52が半導体基板11の同じスペース上の領域に収まっているので、省スペース化を達成することができる。その結果、メモリセルトランジスタ46の微細化を図ることができる。また、これらのゲート51,52の両側面が互いに面一であって、フローティングゲート51とコントロールゲート52との間にずれがないので、フローティングゲート51の閾値電圧のばらつきを抑えることができる。
この積層構造の側面および上面(コントロールゲート52の上面)には、酸化シリコン等の絶縁物からなる絶縁膜53が形成されている。また、フローティングゲート51およびコントロールゲート52の両側面は、酸化シリコン等の絶縁物からなるサイドウォール54で一括して覆われている。
n型ソース領域48は、サイドウォール54の直下から広がるn型ソース低濃度領域55内にそれぞれ形成されており、こうして、LDD(Lightly Doped Drain)構造が形成されている。
n型ソース低濃度領域55は、n型ソース領域48よりも低濃度に形成され、かつ、n型ソース領域48よりも深く不純物イオンを注入して形成した領域であってもよい。その深さは、たとえば、0.1μm〜0.3μmであってもよい。また、たとえば、n型ソース領域48の濃度は1×1017cm−3〜1×1020cm−3であり、n型ソース低濃度領域55の濃度は1×1017cm−3〜2×1018cm−3であってもよい。
また、n型ソース低濃度領域55は、フローティングゲート51およびコントロールゲート52に対して自己整合的に形成されていてもよい。一方、n型ソース領域48は、サイドウォール54に対して自己整合的に形成されていてもよい。n型ソース低濃度領域55は、n型ソース領域48の近傍における電界を緩和して、ホットエレクトロン効果を抑制する。
n型トンネル拡散領域49は、半導体基板11においてフローティングゲート51の一部に対向する領域に形成されており、また、メモリセルトランジスタ46のドレイン領域として機能する。具体的には、n型トンネル拡散領域49は、BL方向において互いに間隔を空けて配置された複数の領域を含んでいてもよい。
たとえば、複数のn型トンネル拡散領域49は、フローティングゲート51のビットセレクトトランジスタ47に近い側の端部に対向する第1領域56と、フローティングゲート51のビットセレクトトランジスタ47に遠い側の端部に対向する第2領域57とを含んでいてもよい。第1領域56はn型トンネル低濃度領域64(後述)に重なるように形成され、第2領域57はn型ソース領域48およびn型ソース低濃度領域55に重なるように形成されていてもよい。
ビットセレクトトランジスタ47は、n型トンネル拡散領域49(第1領域56)をそのソース領域とし、これに対して間隔を隔てて半導体基板11に形成されたn型ドレイン領域58と、n型トンネル拡散領域49とn型ドレイン領域58との間の半導体基板11のp型部分の一部からなるチャネル領域59に対向するよう配置された第1セレクトゲート60と、第1セレクトゲート60に積層された第2セレクトゲート61とを含む。
第1セレクトゲート60の厚さは、フローティングゲート51と同じ厚さ(たとえば、1200Å〜1800Å)であり、第2セレクトゲート61の厚さは、コントロールゲート52と同じ厚さ(たとえば、900Å〜1300Å)であってもよい。
第1セレクトゲート60は、各ビットセレクトトランジスタ47に1つずつ設けられている。一方、第2セレクトゲート61は、図4に示すように、WL方向に延びるライン状に形成され、複数のアクティブ領域20に跨っており、複数の第1セレクトゲート60を一括して覆っている。つまり、第2セレクトゲート61は、複数の不揮発性メモリセル17の共通の電極となっている。
また、図6に示すように、BL方向における第1セレクトゲート60および第2セレクトゲート61の両側面は、互いに面一に形成されている。これにより、第1セレクトゲート60および第2セレクトゲート61の積層構造は、段差のない平面状の側面を有していて、第2セレクトゲート61が第1セレクトゲート60からはみ出していない。すなわち、これら2つのゲート60,61が半導体基板11の同じスペース上の領域に収まっているので、省スペース化を達成することができる。その結果、ビットセレクトトランジスタ47の微細化を図ることができる。
この積層構造の側面および上面(第2セレクトゲート61の上面)には、酸化シリコン等の絶縁物からなる絶縁膜62が形成されている。また、第1セレクトゲート60および第2セレクトゲート61の両側面は、酸化シリコン等の絶縁物からなるサイドウォール63で一括して覆われている。
図6に示すように、第1セレクトゲート60および第2セレクトゲート61の積層構造の側面を覆うサイドウォール63のうち、メモリセルトランジスタ46のゲート51,52の積層構造に対向する部分は、メモリセルトランジスタ46のゲート51,52の積層構造のサイドウォール54と一体化されていてもよい。これにより、メモリセルトランジスタ46とビットセレクトトランジスタ47との間には、サイドウォール54,63からなる、上面に選択的に凹部を有する絶縁体が設けられていてもよい。
半導体基板11においてメモリセルトランジスタ46とビットセレクトトランジスタ47との間には、サイドウォール54,63の一体物の直下に広がるn型トンネル低濃度領域64が形成されている。
n型トンネル低濃度領域64は、n型トンネル拡散領域49よりも低濃度に形成され、かつ、n型トンネル拡散領域49よりも深く不純物イオンを注入して形成した領域であってもよい。その深さは、n型ソース低濃度領域55と同じ(たとえば、0.1μm〜0.3μm)であってもよい。このn型トンネル低濃度領域64とn型トンネル拡散領域49(第1領域56)によって、LDD構造が形成されている。このLDD構造において、n型トンネル低濃度領域64は、フローティングゲート51および第1セレクトゲート60の両方に対して自己整合的に形成されている。また、たとえば、n型トンネル拡散領域49の濃度は1×1017cm−3〜1×1019cm−3であり、n型トンネル低濃度領域64の濃度は1×1017cm−3〜2×1018cm−3であってもよい。
n型ドレイン領域58は、サイドウォール63の直下から広がるn型ドレイン低濃度領域65内にそれぞれ形成されており、こうして、LDD(Lightly Doped Drain)構造が形成されている。n型ドレイン低濃度領域65は、n型ドレイン領域58よりも低濃度に形成され、かつ、n型ドレイン領域58よりも深く不純物イオンを注入して形成した領域であってもよい。その深さは、n型ソース低濃度領域55と同じ(たとえば、0.1μm〜0.3μm)であってもよい。また、たとえば、n型ドレイン領域58の濃度は1×1017cm−3〜1×1020cm−3であり、n型ドレイン低濃度領域65の濃度は1×1017cm−3〜2×1018cm−3であってもよい。
また、n型ドレイン領域58は、サイドウォール63に対して自己整合的に形成されている。n型ドレイン低濃度領域65は、n型ドレイン領域58の近傍における電界を緩和して、ホットエレクトロン効果を抑制する。
半導体基板11とフローティングゲート51および第1セレクトゲート60との間には、たとえば酸化シリコンからなるゲート絶縁膜66が介在されている。
ゲート絶縁膜66において、n型トンネル拡散領域49(第1領域56)とフローティングゲート51との間の部分には、その周囲のゲート絶縁膜66よりも薄く形成された薄膜部が形成されていてもよい。
この薄膜部は、n型トンネル拡散領域49とフローティングゲート51との間で、FN(ファウラー・ノルドハイム)トンネリングによって電子を通過させるためのトンネルウィンドウ67である。トンネルウィンドウ67の厚さは、トンネルウィンドウ67の周囲のゲート絶縁膜66(フローティングゲート51で覆われた部分68)の厚さが260Å〜390Åであるのに対して、たとえば、65Å〜95Åであってもよい。
また、トンネルウィンドウ67と部分68との境界部は、たとえば、図6に示すように、段差になっていてもよいし、n型ソース領域48に近づくに従って徐々に厚くなっていてもよい。つまり、トンネルウィンドウ67と部分68との間は、段差等で明確に分離されておらず、厚さが連続的に厚くなる傾斜部で接続されていてもよい。
また、フローティングゲート51とコントロールゲート52との間、ならびに第1セレクトゲート60と第2セレクトゲート61との間は、絶縁膜71,72によって絶縁されている。絶縁膜71,72は、たとえば、窒化シリコン膜を一対の酸化シリコン膜で挟み込んだONO(酸化膜-窒化膜-酸化膜)構造の膜からなっていてもよい。絶縁膜71,72の厚さは、たとえば、160Å〜240Åであってもよい。
次に、主として図4、図5および図7を参照して、ダミー領域23には、ダミーセル73が設けられている。ダミーセル73は、ダミー領域23において複数設けられていてもよいし、1つだけ設けられていてもよい。
ダミーセル73は、第1ダミー構造74と、第2ダミー構造75とを含んでいてもよい。
第1ダミー構造74は、図7に示すように、第1ダミー電極76と、第1ダミー電極76に積層された第2ダミー電極77とを含む。
第1ダミー電極76の厚さは、フローティングゲート51と同じ厚さ(たとえば、1200Å〜1800Å)であり、第2ダミー電極77の厚さは、コントロールゲート52と同じ厚さ(たとえば、900Å〜1300Å)であってもよい。
第1ダミー電極76は、フローティングゲート51と同様に、図5に示すように、WL方向において、第2絶縁体31の縁部および第3絶縁体37の縁部を覆うように形成されている。つまり、ダミー領域23を挟むように配置されたWL方向両側の第2絶縁体31および第3絶縁体37は、それぞれの上面の第2トレンチ30の側面の第1部分32および第3トレンチ36の側面の第1部分38の近傍の部分が第1ダミー電極76によって覆われている。
第2ダミー電極77は、図4および図5に示すように、WL方向に延びるライン状のコントロールゲート52の延長部で構成されている。つまり、第2ダミー電極77は、コントロールゲート52と一体的に形成された電極であってもよい。
また、図7に示すように、BL方向における第1ダミー電極76および第2ダミー電極77の両側面は、互いに面一に形成されている。これにより、第1ダミー電極76および第2ダミー電極77の積層構造は、段差のない平面状の側面を有していて、第2ダミー電極77が第1ダミー電極76からはみ出していない。すなわち、これら2つの電極76,77が半導体基板11の同じスペース上の領域に収まっているので、省スペース化を達成することができる。その結果、第1ダミー構造74の微細化を図ることができる。
この積層構造の側面および上面(第2ダミー電極77の上面)には、酸化シリコン等の絶縁物からなる絶縁膜78が形成されている。また、第1ダミー電極76および第2ダミー電極77の両側面は、酸化シリコン等の絶縁物からなるサイドウォール79で一括して覆われている。
第2ダミー構造75は、図7に示すように、第3ダミー電極80と、第3ダミー電極80に積層された第4ダミー電極81とを含む。
第3ダミー電極80の厚さは、フローティングゲート51と同じ厚さ(たとえば、1200Å〜1800Å)であり、第4ダミー電極81の厚さは、コントロールゲート52と同じ厚さ(たとえば、900Å〜1300Å)であってもよい。
第4ダミー電極81は、図4に示すように、WL方向に延びるライン状の第2セレクトゲート61の延長部で構成されている。つまり、第4ダミー電極81は、第2セレクトゲート61と一体的に形成された電極であってもよい。
また、図7に示すように、BL方向における第3ダミー電極80および第4ダミー電極81の両側面は、互いに面一に形成されている。これにより、第3ダミー電極80および第4ダミー電極81の積層構造は、段差のない平面状の側面を有していて、第4ダミー電極81が第3ダミー電極80からはみ出していない。すなわち、これら2つの電極80,81が半導体基板11の同じスペース上の領域に収まっているので、省スペース化を達成することができる。その結果、第2ダミー構造75の微細化を図ることができる。
この積層構造の側面および上面(第4ダミー電極81の上面)には、酸化シリコン等の絶縁物からなる絶縁膜82が形成されている。また、第3ダミー電極80および第4ダミー電極81の両側面は、酸化シリコン等の絶縁物からなるサイドウォール83で一括して覆われている。
図7に示すように、第3ダミー電極80および第4ダミー電極81の積層構造の側面を覆うサイドウォール83のうち、第1ダミー構造74の電極76,77の積層構造に対向する部分は、第1ダミー構造74の電極76,77の積層構造のサイドウォール79と一体化されていてもよい。これにより、第1ダミー構造74と第2ダミー構造75との間には、サイドウォール79,83からなる、上面に選択的に凹部を有する絶縁体が設けられていてもよい。
半導体基板11と第1ダミー電極76および第3ダミー電極80との間には、ゲート絶縁膜66が介在されている。
ゲート絶縁膜66には、第1ダミー電極76の直下において、その周囲のゲート絶縁膜66よりも薄く形成された薄膜部84が形成されていてもよい。
薄膜部84の厚さは、薄膜部84の周囲のゲート絶縁膜66(第1ダミー電極76で覆われた部分85)の厚さが260Å〜390Åであるのに対して、たとえば、65Å〜95Åであってもよい。
また、薄膜部84と部分85との境界部は、たとえば、図7に示すように、段差になっていてもよいし、第2ダミー構造75から離れるに従って徐々に厚くなっていてもよい。つまり、薄膜部84と部分85との間は、段差等で明確に分離されておらず、厚さが連続的に厚くなる傾斜部で接続されていてもよい。
また、第1ダミー電極76と第2ダミー電極77との間、ならびに第3ダミー電極80と第4ダミー電極81との間は、絶縁膜88,89によって絶縁されている。絶縁膜88,89は、たとえば、窒化シリコン膜を一対の酸化シリコン膜で挟み込んだONO(酸化膜-窒化膜-酸化膜)構造の膜からなっていてもよい。絶縁膜88,89の厚さは、たとえば、160Å〜240Åであってもよい。この絶縁膜88,89は、前述の絶縁膜71,72と同一工程で形成されてもよい。
また、第1ダミー構造74および第2ダミー構造75において半導体基板11は、半導体基板11のベースとなるp型部分が、その表面全体にわたって露出していてもよい。
なお、ダミーセル73は、前述のように、半導体素子としての機能を有さない第1ダミー構造74および第2ダミー構造75のみが配置されたセルであってもよいが、たとえば、不揮発性メモリセル17のアレイを構成しないが、半導体素子としての機能を有するトランジスタ等が配置されていてもよい。
次に、主として図4および図8を参照して、行選択トランジスタ領域22には、バイトセレクトトランジスタ18が配置されていてもよい。
バイトセレクトトランジスタ18は、n型ソース領域90と、n型ドレイン領域91と、n型ソース領域90とn型ドレイン領域91との間の半導体基板11のp型部分の一部からなるチャネル領域92に対向するように配置された第1バイトセレクトトランジスタゲート93と、第1バイトセレクトトランジスタゲート93に積層された第2バイトセレクトトランジスタゲート94とを含む。
n型ソース領域90およびn型ドレイン領域91は、BL方向において互いに間隔を空けて半導体基板11に形成されている。n型ソース領域90およびn型ドレイン領域91の深さは、たとえば、0.1μm〜0.3μmであってもよい。また、n型ソース領域90およびn型ドレイン領域91の不純物濃度は、たとえば、1×1017cm−3〜2×1018cm−3であってもよい。
n型ソース領域90の表面部には、n型ソースコンタクト領域95が形成されている。n型ソースコンタクト領域95は、n型ソース領域90よりも高濃度に形成されており、たとえば、1×1017cm−3〜1×1020cm−3の不純物濃度を有していてもよい。
n型ドレイン領域91の表面部には、n型ドレインコンタクト領域96が形成されている。n型ドレインコンタクト領域96は、n型ドレイン領域91よりも高濃度に形成されており、たとえば、1×1017cm−3〜1×1020cm−3の不純物濃度を有していてもよい。
第1バイトセレクトトランジスタゲート93は、チャネル領域92に対向すると共に、n型ソース領域90およびn型ドレイン領域91の周縁部に対向するように配置されている。一方、第2バイトセレクトトランジスタゲート94は、図4に示すように、WL方向に延びるライン状の第2セレクトゲート61の延長部で構成されている。つまり、バイトセレクトトランジスタ18の第2バイトセレクトトランジスタゲート94は、第2セレクトゲート61と一体的に形成された電極であってもよい。
また、半導体基板11と第1バイトセレクトトランジスタゲート93との間には、ゲート絶縁膜66が介在されている。
また、図8に示すように、第1バイトセレクトトランジスタゲート93および第2バイトセレクトトランジスタゲート94の両側面は、互いに面一に形成されている。これにより、第1バイトセレクトトランジスタゲート93および第2バイトセレクトトランジスタゲート94の積層構造は、段差のない平面状の側面を有していて、第2バイトセレクトトランジスタゲート94が第1バイトセレクトトランジスタゲート93からはみ出していない。すなわち、これら2つのゲート93,94が半導体基板11の同じスペース上の領域に収まっているので、省スペース化を達成することができる。その結果、バイトセレクトトランジスタ18の微細化を図ることができる。
この積層構造の側面および上面(第2バイトセレクトトランジスタゲート94の上面)には、酸化シリコン等の絶縁物からなる絶縁膜97が形成されている。また、第1バイトセレクトトランジスタゲート93および第2バイトセレクトトランジスタゲート94の両側面は、酸化シリコン等の絶縁物からなるサイドウォール98で一括して覆われている。
また、第1バイトセレクトトランジスタゲート93と第2バイトセレクトトランジスタゲート94との間は、絶縁膜99によって絶縁されている。絶縁膜99は、たとえば、窒化シリコン膜を一対の酸化シリコン膜で挟み込んだONO(酸化膜-窒化膜-酸化膜)構造の膜からなっていてもよい。絶縁膜99の厚さは、たとえば、160Å〜240Åであってもよい。この絶縁膜99は、前述の絶縁膜71,72と同一工程で形成されてもよい。
半導体基板11上には、酸化シリコン等の絶縁物からなる層間絶縁膜101が積層されている。層間絶縁膜101によって、不揮発性メモリセル17、ダミーセル73およびバイトセレクトトランジスタ18が一括して被覆されている。層間絶縁膜101の厚さは、たとえば、4400Å〜6600Åであってもよい。
層間絶縁膜101上には、アルミニウム等の導電材からなる電極パターンが形成されている。電極パターンは、不揮発性メモリセル17用のソース電極102およびドレイン電極103、ならびにバイトセレクトトランジスタ18用のソース電極104およびドレイン電極105を含んでいてもよい。この電極パターンを被覆するように、窒化シリコン等の絶縁物からなる表面保護膜106が形成されている。
層間絶縁膜101には、不揮発性メモリセル17用のソース電極102およびドレイン電極103と、n型ソース領域48およびn型ドレイン領域58とをそれぞれ接続するためのソースコンタクト107およびドレインコンタクト108が埋め込まれていてもよい。なお、ドレインコンタクト108(n型ドレイン領域)は、図4に示すように、BL方向において隣り合う不揮発性メモリセル17で共有されていてもよい。
また、層間絶縁膜101には、バイトセレクトトランジスタ18用のソース電極104およびドレイン電極105と、n型ソース領域90(n型ソースコンタクト領域95)およびn型ドレイン領域91(n型ドレインコンタクト領域96)とをそれぞれ接続するためのソースコンタクト109およびドレインコンタクト110が埋め込まれていてもよい。なお、ソースコンタクト109(n型ソース領域90)は、図4に示すように、BL方向において隣り合うバイトセレクトトランジスタ18で共有されていてもよい。また、ドレインコンタクト110(n型ドレイン領域91)は、図4に示すように、配線111を介して、メモリセルトランジスタ46のコントロールゲート52に電気的に接続されていてもよい。
次に、前述の不揮発性メモリセル17のアレイの回路図を図9に示す。
図9に示すように、半導体チップ2は、マトリクス状に配列された不揮発性メモリセル17を有し、ワードラインWLとビットラインBLとによって不揮発性メモリセル17ごとに書き込みおよび読み出しがなされる。各不揮発性メモリセル17では、メモリセルトランジスタ46とビットセレクトトランジスタ47とが直列に接続され、図9の横方向に並ぶ不揮発性メモリセル17のセレクトトランジスタ47のゲ一トを連結してワードラインWL(第2セレクトゲート61)とし、図9の縦方向に並ぶ不揮発性メモリセル17のドレイン(ドレイン電極103)を連結してビットラインBLとし、メモリセルトランジスタ46のソース(ソース電極102)を束ねてASG(Array Source Ground)とされている。
メモリセルトランジスタ46は、図9で横方向に並ぶ複数のメモリセルトランジスタ46のコントロールゲート52(図4〜図6参照)が互いに接続され、バイトセレクトトランジスタ18(ドレイン)を介してセンスラインSLに接続されている。セレクトトランジスタ47は、図9で横方向に並ぶ複数のセレクトトランジスタ47の第2セレクトゲート61(図4〜図6参照)が互いに接続され、バイトセレクトトランジスタ18(ゲート)共にワードラインWLに接続されている。
次に、図10A,10B〜図12A,12Bを参照して、不揮発性メモリセル17の動作原理について説明する。図10Aおよび図10Bは、不揮発性メモリセル17の書込みの動作原理を説明するための図である。図11Aおよび図11Bは、不揮発性メモリセル17の消去の動作原理を説明するための図である。図12Aおよび図12Bは、不揮発性メモリセル17の読み出しの動作原理を説明するための図である。なお、図10A,10B〜図12A,12Bでは、図4〜図6で示した構成のうち、不揮発性メモリセル17の動作原理の説明に必要な構成の符号のみを示し、その他の符号は省略している。
図10Aおよび図10Bを参照して、不揮発性メモリセル17の書込みを行うには、たとえば、ソース(n型ソース領域48)をオープンとするとともに、第2セレクトゲート61に書込み電圧Vpp(Programming Pulse Voltage)を印加してビットセレクトトランジスタ47をオン状態として行われる。この状態で、コントロールゲート52をグランド電位(0V)とし、ドレイン(n型ドレイン領域58)に書込み電圧Vppを印加すると、フローティングゲート51からトンネルウィンドウ67を介するFNトンネリングによって、n型トンネル拡散領域49へと電子が引き抜かれる。こうして、不揮発性メモリセル17の書込みが行われる。このとき、図10Bに示すように、フローティングゲート51から引き抜かれた電子の電荷分だけ、メモリセルトランジスタ46の閾値電圧が低くなる。
一方、図11Aおよび図11Bを参照して、不揮発性メモリセル17の消去を行うには、たとえば、ソース(n型ソース領域48)をグランド電位(0V)とするとともに、第2セレクトゲート61に書込み電圧Vppを印加してビットセレクトトランジスタ47をオン状態として行われる。この状態で、コントロールゲート52に書込み電圧Vppを印加し、ドレイン(n型ドレイン領域58)をグランド電位(0V)とすると、n型トンネル拡散領域49からトンネルウィンドウ67を介するFNトンネリングによって、フローティングゲート51に電子が注入される。こうして、不揮発性メモリセル17の消去が行われる。このとき、図11Bに示すように、フローティングゲート51に注入された電子の電荷分だけ、メモリセルトランジスタ46の閾値電圧が高くなる。
フローティングゲート51に電子が注入されると、このフローティングゲート51が帯電している状態では、メモリセルトランジスタ46を導通させるためにコントロールゲート52に印加すべき閾値電圧が高くなる。そこで、コントロールゲート52に与えるべき読出電圧Vsenseを、フローティングゲート51が非帯電状態(電子が引き抜かれた状態)のときにn型ソース領域48−n型トンネル拡散領域49間を導通させることができ、かつ、フローティングゲート51が帯電状態(電子が注入された状態)のときにn型ソース領域48−n型トンネル拡散領域49間が遮断状態に保持される値に設定しておく。
そして、図12Aおよび図12Bを参照して、ビットセレクトトランジスタ47の第2セレクトゲート61をハイレベルとし、ドレイン(n型ドレイン領域58)をハイレベルとし、コントロールゲート52に前記読出電圧Vsenseを印加する。このとき、ソース側に電流が流れるか否かを調べることによって、フローティングゲート51に電子が注入されているかどうかを区別できる。オンしてソース側に電流が流れ、回路で設定した電流値(Isense)に達すれば、データ“0”と認識される。
こうして、不揮発性メモリセル17に対する情報の書き込み、消去および読み出しの各動作を行うことができる。
そして、この半導体チップ2では、半導体基板11の第1領域13と第2領域14とが、複数の第1素子分離部12によって電気的に分離されている。複数の第1素子分離部12のうち第1領域13に最も近い第1素子分離部12(第1部分15)に対して第2領域14側には、ダミー領域23が形成されている。ダミー領域23が設けられていることによって、第1素子分離部12の第1部分15は、第2素子分離部19と均等な幅を有している。これにより、第2領域14に近い側の不揮発性メモリセル17の閾値電圧の低下を抑制することができるので、複数の不揮発性メモリセル17間での閾値電圧のばらつきを低減することができる。
より具体的には、図13を参照して、当該閾値電圧のばらつき低減効果を説明できる。
図13において、実施例は、前述のようにダミー領域23が設けられた不揮発性メモリセル17である。一方、参考例は、ダミー領域23を設けず、図5の第1素子分離部12の第1部分15および第2部分16を一体化させた幅広の1つの素子分離部によって第1領域13と第2領域14とが素子分離された形態である。また、実施例および参考例において、bitアドレス1および38は、それぞれ、前述のバイトセレクトトランジスタ18に隣接するセルである。また、図13において、“Erase時Vth”は、不揮発性メモリセル17の消去動作を行った後、読み出しする際に、n型ソース領域48−n型トンネル拡散領域49間に反転層ができるときの閾値電圧を示している。
そして、図13を参照すると、ダミー領域23が設けられることによって、第2素子分離部19と均等な幅を有する第1素子分離部12の第1部分15を備えている実施例では、バイトセレクトトランジスタ18に隣接するセルにおける閾値電圧の低下が少なく、ばらつきが抑えられている。一方、ダミー領域23を備えない参考例では、バイトセレクトトランジスタ18に隣接するセルにおける閾値電圧の低下が、実施例に比べて顕著であった。
次に、半導体チップ2全体の回路構成の一例を示す。
図14は、半導体チップ2(半導体メモリ回路装置)の回路の一例を示す図である。
半導体メモリ回路装置100は、大きくはメモリ回路部MEMORY、論理回路LOGIC、オシレータ回路OSC、バッファ回路BUFF、チャージポンプ回路CPを備えている。
メモリ回路部MEMORYは、メモリセルアレイMCA、トリミングパラメータ領域TPA、列デコーダCD、行デコーダRD、およびセンスアンプSAを備えている。メモリセルアレイMCAは、前述の不揮発性メモリセル17がアレイ状に配列されたものである。
論理回路LOGICは、カウンタ回路COUNTERおよびイネーブル信号生成回路OENを備えている。論理回路LOGICから列デコーダCD、行デコーダRDにそれぞれ書き込み情報が印加されるが説明の便宜上これらの情報伝達経路は割愛している。
オシレータ回路OSCは、トランジスタQ1〜Q9、抵抗R1、ダイオードD1,D2、定電流源CC、増幅手段AMP、キャパシタC1〜C3、およびインバータINV11を備えている。
オシレータ回路OSCは、トランジスタQ1,Q2、抵抗R1、ダイオードD1,D2で構成されているバンドギャップ型基準電圧回路を備えている。こうしたトランジスタ、抵抗、ダイオード、および増幅手段は温度依存性を補償できるバンドギャップ型基準電圧回路として当業者には良く知られている。増幅手段AMPによって、トランジスタQ1,Q2のゲートが所定の電圧に保持される。増幅手段AMPには入力インピーダンスが極めて大きく、かつ増幅度の極めて大きなオペアンプを採用する。
トランジスタQ3と定電流源CCで定電流回路が構成されている。トランジスタQ3のゲートは増幅手段AMPの出力およびトランジスタQ1,Q2のゲートに接続され、そのドレインには定電流源CCが接続されている。
トランジスタQ4,Q5は1段目のインバータを構成している。1段目のインバータは後段のインバータと共にリングオシレータの一部を構成している。トランジスタQ5の負荷がトランジスタQ4であり、トランジスタQ4は定電流源CCで生成された定電流をトランジスタQ5に供給する。
1段目のインバータの出力すなわちトランジスタQ5のドレインと接地電位GNDとの間には、キャパシタC1が接続されている。キャパシタC1によって1段目のインバータの遅延時間が調整され、遅延時間の設定によってリングオシレータ全体の発振周波数が設定されている。
トランジスタQ6,Q7は、2段目のインバータを構成している。2段目のインバータも前段および後段のインバータと共にリングオシレータの一部を構成している。トランジスタQ7の負荷がトランジスタQ6であり、トランジスタQ6は定電流源CCで生成された定電流をトランジスタQ7に供給する。
トランジスタQ7のゲートは、1段目のインバータの出力であるトランジスタQ5のドレインに接続されている。トランジスタQ7のドレインと接地電位GNDとの間には、キャパシタC2が接続されている。キャパシタC2によって2段目のインバータの遅延時間が調整され、1段目のインバータの遅延時間と共にリングオシレータの発振周波数が設定されている。
トランジスタQ8,Q9は3段目のインバータを構成している。3段目のインバータは前段の2段目、1段目と共にリングオシレータの一部を構成している。トランジスタQ9の負荷がトランジスタQ8であり、トランジスタQ8は定電流源CCで生成された定電流をトランジスタQ9に供給する。
トランジスタQ9のゲートは、2段目のインバータの出力であるトランジスタQ7のドレインに接続されている。トランジスタQ9のドレインと接地電位GNDとの間には、キャパシタC3が接続されている。キャパシタC3によって3段目のインバータの遅延時間が調整され、前段の2段目および1段目のインバータの遅延時間と共にリングオシレータの発振周波数が設定されている。
トランジスタQ9の出力すなわちドレインは、トランジスタQ5の入力すなわちゲートに結合されている。すなわち、3段目のインバータの出力が1段目のインバータの入力に接続され、インバータ全体に正帰還がかかるように回路構成が施されている。
良く知られたことではあるが、インバータでリングオシレータを構成するには、奇数段のインバータを用意し、最終段のインバータの出力を初段のインバータの入力側に帰還することで得られる。この実施形態では、リングオシレータを3段のインバータで構成したが、5段、7段等で構成してもよい。なお、遅延時間を調整するために用意したキャパシタC1,C2およびC3は所定の発振周波数に調整するために用意したものであるので不可欠な回路要素ではない。なお、1段目〜3段目のインバータの負荷として定電流源を採用したが、これに限定されない。たとえば、良く知られたCMOSインバータやMOSトランジスタを用いた能動負荷や抵抗を用いた受動負荷としてもよい。
オシレータ回路OSCは、バンドギャップ型基準電圧回路、定電流回路、および定電流回路で駆動されるインバータで構成したリングオシレータを備えているので発振周波数の変動を小さく抑えることができる。
オシレータ回路OSCから出力されるクロック信号CLKは、インバータINV11を介して2つの回路部に印加される。1つはカウンタ回路COUNTERであり、もう1つはバッファ回路BUFFである。
カウンタ回路COUNTERは、メモリ回路部MEMORYへの書き込み時間を決めるいわゆるタイマー回路機能としての役割を有する。図14に示すカウンタ回路COUNTERは模式的に示したものであって、当業者にはこうした回路構成とは異なる種々のカウンタ回路を用意すること、さらにそれらの回路の接続に変形を加えることも可能であろう。
タイマー回路機能は、たとえばフリップフロップFF1,FF2,FF3・・・FFnで構成されている。各フリップフロップは、たとえばD型フリップフロップで構成されている。フリップフロップFF1の入力端子には、クロック信号CLKが入力される。フリップフロップFF1のQ出力は、インバータINV1を介してD入力端子に印加される。
また、フリップフロップFF1のQ出力は、後段のフリップフロップFF2の入力端子に印加される。フリップフロップFF2のQ出力は、インバータINV2を介してフリップフロップFF2のD入力端子に印加される。またフリップフロップFF2のQ出力は、後段のフリップフロップFF3の入力端子に印加される。フリップフロップFF3のQ出力は、インバータINV3を介してフリップフロップFF3のD入力端子に印加される。
フリップフロップFF3の後段には、図示しないフリップフロップが結合され、それらフリップフロップのQ出力(不図示)はフリップフロップFFnの入力端子に印加されている。フリップフロップFFnのQ出力は、インバータINVnを介してフリップフロップFFnD入力端子に印加される。
フリップフロップFF3のQ出力は、第1カウンタ出力COU1として取り出されセレクタSEの一方の入力端子に印加される。フリップフロップFFnのQ出力は、第2カウンタ出力COU2として取り出されセレクタSEの他方の入力端子に印加される。第1カウンタ出力COU1の時間は、たとえば3.5msに、第2カウンタ出力COU2の時間は、たとえば5.0msにそれぞれ設定されている。これらのカウント時間はメモリ回路部MEMORYへの情報書き込み時間として利用される。
メモリ回路部MEMORYへの情報書き込み時間の設定、およびセレクタSEで選択対象とする時間の数は、フリップフロップの段数および各フリップフロップの出力とセレクタSEとの回路接続によって逐次設定することができる。
イネーブル信号生成回路OENは、イネーブル信号ENOを元にしてオシレータイネーブル信号ENO1およびバッファ回路イネーブル信号ENO2を生成する。イネーブル信号ENO、オシレータイネーブル信号ENO1、およびバッファ回路イネーブル信号ENO2は、第1カウンタ出力COU1および第2カウンタ出力COU2に同期している。オシレータイネーブル信号ENO1は、たとえばpチャネル型MOSトランジスタQ1,Q2,Q3,Q4,Q6およびQ8の共通ゲートをプルアップまたはプルダウン、すなわち、これらトランジスタ共通ゲートをローレベルおよびハイレベル(電源Vcc)のいずれか一方に固定するように用いる。
共通ゲートの電位がプルダウンされると、オシレータ回路OSCはイネーブル状態になり、プルアップされるとディスエーブル状態となる。
セレクタSEのセレクタ出力SEOは、3.5msまたは5.0msのいずれか一方に選択されたものとなるが、どちらが選択されるかはセレクタSEに印加される選択信号SESによって決定される。選択信号SESはラッチ回路LATCHの出力に基づき決定される。
ラッチ回路LATCHは、簡便なD型フリップフロップで構成されている。ラッチ回路LATCHのD入力には、センスアンプ出力SAOが印加されている。ラッチ回路LATCHの入力には、たとえばイネーブル信号ENOやオシレータイネーブル信号ENO1を印加する。
バッファ回路BUFFは、論理積回路AND、インバータINV12、インバータINV13で構成されている。論理積回路ANDは、セレクタSEで選択された第1カウンタ出力COU1または第2カウンタ出力COU2に合った期間にクロック信号CLKをチャージポンプ回路CPに供給する第1の役割とチャージポンプCPを適切に動かす信号を生成するための第2の役割を有している。論理積回路ANDは第1の役割を、インバータINV12,13は第2の役割をそれぞれ有している。
チャージポンプ回路CPは、良く知られた昇圧回路の1つである。チャージポンプ回路CPは、メモリ回路部MEMORYを駆動するためにピーク値がたとえば16Vのパルス電圧を生成する。
比較的高い電圧を生成させるためにチャージポンプ回路CPは、トランジスタQ10,Q11,Q12およびQ13等が縦続接続されており、これらの縦続接続点とパルス信号線CPL1,CPL2との間にキャパシタC4,C5,C6およびC7等が結合されている。キャパシタC4〜C7の大きさはそれぞれ数pF程度である。
トランジスタQ10〜Q13は、たとえばnチャネル型MOSトランジスタで構成され、各トランジスタはゲートとソースが共通接続されたいわゆるダイオード構成を成している。パルス信号線CPL1とパルス信号線CPL2には互いに極性が反転されたパルス信号が印加される。チャージポンプ回路CPの出力CPOは、メモリ回路部MEMORYの行デコーダRD、列デコーダCDおよびメモリセルアレイMCAに印加される。
メモリ回路部MEMORYは、前述のように、たとえば電気的に書き込み、消去が可能な不揮発性メモリである。たとえばEEPROMで構成され、メモリセルアレイMCA、トリミングパラメータ領域TPA、行デコーダRD、列デコーダCDおよびセンスアンプSAで構成されている。
トリミングパラメータ領域TPAには、セレクタSEで第1カウンタ出力COU1および第2カウンタ出力COU2のいずれか一方を選択するためのトリミング情報が格納されている。トリミング情報は、たとえば「データ0」および「データ1」であり、それぞれ第1カウンタ出力COU1および第2カウンタ出力COU2を選択する。トリミングパラメータ領域TPAへのアクセスは、論理回路LOGICからトリミングパラメータ領域TPA用の行デコーダRDおよび列デコーダCDを介して実行される。
トリミング情報用の「データ0」および「データ1」は、トリミングパラメータ領域TPA用のビットラインBLを介してセンスアンプSAに取り込まれ、センスアンプSAからセンスアンプ出力SAOとしてラッチ回路LATCHに印加される。
図15Aは、メモリ回路部MEMORYへの情報の書き込みを第1書込時間TW1(5ms)に設定したときの図14の主なノードの信号波形を示す。以下、図14を参照して図15Aを説明する。
図15A(a)は、オシレータイネーブル信号ENO1を模式的に示す。オシレータイネーブル信号ENO1がハイレベルHの区間に、オシレータ回路OSCがイネーブル状態すなわちオン状態に置かれる。オシレータイネーブル信号ENO1がハイレベルHの区間にメモリ回路部MEMORYへの書き込みが実行される。オシレータイネーブル信号ENO1のハイレベルHの時間は、図14に示したフリップフロップFFnのQ出力から取り出される第1カウンタ出力COU1の時間とほぼ同じである。
図15A(b)は、オシレータ回路OSCの出力段であるインバータINV11から出力されるクロック信号CLKを示す。クロック信号CLKは、オシレータ回路OSCがイネーブル状態すなわち図15A(a)に示した第1書込時間TW1においてのみ発生するようにしている。こうした回路構成によって、オシレータ回路OSCおよび半導体メモリ回路装置100全体の省電力化を図っている。クロック信号CLKの周波数はたとえば数百KHzから数MHzの間で設定されている。
図15A(c)は、バッファ回路イネーブル信号ENO2を示す。バッファ回路イネーブル信号ENO2は、イネーブル信号生成回路OENで生成される。バッファ回路イネーブル信号ENO2は、バッファ回路BUFFをイネーブルおよびディスエーブル状態に設定するために用意されている。バッファ回路BUFは、後段のチャージポンプ回路CPを適切にかつ省電力で駆動するために用意されている。
図15A(d)は、チャージポンプ回路CPの出力を示す。チャージポンプ出力CPOは、メモリ回路部MEMORYを駆動するために行デコーダRD、列デコーダCD、およびメモリセルアレイMCAに供給される。チャージポンプ出力CPOがハイレベルHの区間においてメモリ回路部MEMORYに対してイレース(消去)およびライト(書込み)の動作が実行される。
図15Bは、メモリ回路部MEMORYへの情報の書き込みを第2書込時間TW2(3.5ms)に設定したときの図14の主なノードの信号波形を示す。以下、図14を参照して図15Bを説明する。
図15B(a)は、オシレータイネーブル信号ENO1を模式的に示す。オシレータイネーブル信号ENO1がハイレベルHの区間にオシレータ回路OSCがイネーブル状態すなわちオン状態に置かれる。オシレータイネーブル信号ENO1がハイレベルHの区間にメモリ回路部MEMORYへの書き込みが実行される。オシレータイネーブル信号ENO1の時間は、図14に示したフリップフロップFF3のQ出力から取り出される第2カウンタ出力COU2の時間とほぼ同じである。
図15B(b)は、オシレータ回路OSCの出力段であるインバータINV11から出力されるクロック信号CLKを示す。クロック信号CLKは、オシレータ回路OSCがイネーブル状態すなわち図15B(a)に示した第2書込時間TW2においてのみ発生するようにしている。こうした回路構成によって、オシレータ回路OSCおよび半導体メモリ回路装置100全体の省電力化を図っている。クロック信号CLKの周波数はたとえば数百KHzから数MHzの間で設定されている。
図15B(c)は、バッファ回路イネーブル信号ENO2を示す。バッファ回路イネーブル信号ENO2はイネーブル信号生成回路OENで生成される。バッファ回路イネーブル信号ENO2はバッファ回路BUFFをイネーブルおよびディスエーブル状態に設定するために用意されている。バッファ回路BUFは、後段のチャージポンプCPを適切にかつ省電力で駆動するために用意されている。
図15B(d)は、チャージポンプ回路CPの出力を示す。チャージポンプ出力CPOはメモリ回路部MEMORYを駆動するために行デコーダRD、列デコーダCD、およびメモリセルアレイMCAに供給される。チャージポンプ出力CPOがハイレベルHの区間においてメモリ回路部MEMORYに対してイレース(消去)およびライト(書込み)の動作が実行される。
ここで、図15Aでの第1書込時間TW1と、図15Bでの第2書込時間TW2との関係について説明する。第1書込時間TW1および第2書込時間TW2の大きさは半導体メモリ回路装置を製造、提供する側で随時設定されうるものである。
しかしながら、書き込み時間が5msを超えるとユーザー側に書き込み時の時間が長いという印象を与えてしまい半導体メモリ回路装置の製造、販売の競争力に影響を与えることが分かった。本来、書き込み時間が長いほどメモリセルの情報「0」と「1」での閾値電圧幅を大きくとれ、両者間での閾値電圧のマージンが広がるので好ましい。しかしながら、前に述べたように高書換回数と高速書換えの間にはトレードオフの関係があり、高書換回数を優先させるために書き込み(書き換え)時間を5msを超えて設定すると、高速書き換えが実現できなくなるので書き込み時間の最大値は5msであることが経験則で分かった。
また、この実施形態では、第2書込時間TW2を3.5msに設定してみた。本来、半導体メモリ回路装置の高速動作を実現するためには第2書込時間TW2は3.5msよりもさらに短い時間が好ましいといえる。しかしながら、書き込み時間を3.5msよりもさらに短くすると、メモリセルの情報「0」と「1」での閾値電圧幅が小さくなり、両者間での閾値電圧のマージンが狭まるので好ましくないことを知見した。
そして、本発明者が実験を重ねた結果、書き込み時間が許容できる最も長いのは5msであり、書き込み時間が短いのは5msの0.6〜0.7の範囲である、3msから5msであり好ましくは3.5msであることを知見した。
図16は、図14に示した半導体メモリ回路装置100に、図15A、図15Bにそれぞれ示した第1書込時間TW1および第2書込時間TW2で情報の書き込みを実行する際の1つの処理、駆動フローを示す。以下、図14、図15A、および図15Bを参照して図16について説明する。
図16には、第1書込方式Y1および第2書込方式Y2の2つの書き込み方式を示している。第1書込方式Y1は、図15Aに示した第1書込時間TW1=5msで書き込みを実行する。第1書込方式Y1(TW1)は、書き込み回数に重点をおいた、いわゆる高書換回数を優先させる書き込み方式である。
第2書込方式Y2(TW2)は、図15Bに示した第2書込時間TW2=3.5msで書き込みを実行する。第2書込方式Y2(TW2)は、書き込み時間を優先させる、いわゆる高速書換えを実現させる書き込み方式である。
ステップS100は、スタートコンディションである。スタートコンディションでは通信の開始を示すいわゆるスタートビットが論理回路LOGICに入力される。ステップS100ではたとえばスタートビット「1」が入力される。
ステップS200は、オペコード入力を実行する。オペコード入力ではたとえば、2ビットのたとえば「01」が入力される。
ステップS300は、アドレス入力を実行する。アドレス入力ではたとえば6ビットのアドレスが入力される。
ステップS400は、データ出力である、データ出力では、ステップS300で指定されたアドレスからデータを出力する。
ステップS500は、ストップコンディションである。ストップコンディションは、ステップS100〜S400までの一連のインストラクションが終わったことを告げるとともに、次のスタートビットが判別されるステップである。
ステップS600は、書き込み開始を示す。書き込み開始を受け、論理回路LOGICCからメモリセルアレイMCAへの書き込みが行デコーダRD、列デコーダCDを介して実行される。ステップS600での各部の信号波形が図15Aおよび図15Bに示されている。
第1書込方式Y1では、ステップS600の「書き込み開始」に至るまでの間ステップS100、ステップS200、ステップS300、ステップS400、およびステップ500がこの順で実行される。
また、第1書込方式Y1では、ステップS500の「ストップコンディション」からステップS600の「ストップコンディション」に至るまでの間、ステップS520、ステップ540の2つの処理が実行される。なお、この2つのステップは、ステップS500のストップコンディションの後に実行せずに、たとえばステップS200の「オペコード入力」の直後に実行してもよい。
図16において、第2書込方式Y2(TW2)は、この実施形態では、第2書込時間TW2(3.5ms)で実行されるとして示している。ここで第2書込方式Y2(TW2)の駆動、処理フローを説明するが、第1書込方式Y1と異なる箇所について説明する。
ステップ220は、「トリミングデータ読み出し」を実行する。「トリミングデータ読み出し」とはトリミングパラメータ領域TPAに格納されたトリミング情報を読み出し、その情報をセンスアンプSAに取り込むことである。トリミング情報は第2書込時間TW2を指定するための情報である。
ステップS240は、トリミング情報をラッチ回路LATCHに記憶する。ラッチ回路LATCHに記憶された情報はセレクタSEに印加される。ラッチ回路LATCHに記憶される情報は「1」または「0」である。
ステップ560は、ラッチ回路LATCHに記憶された情報に基づきセレクタSEが第1カウンタ出力COU1を第2カウンタ出力COU2に切り換えて出力する。
図16に示した駆動、処理フローは、第1書込方式Y1(TW1)をデフォルトとして設定し、第2書込方式Y2(TW)を選択する際には、トリミングパラメータ領域TPAからトリミング情報を読み出して切り換える方式を示したものである。すなわち通常は、高書換回数を優先させ、高速書換えを選択する際にはトリミングパラメータ領域TPAにアクセスするようにしたが、この逆であってもよい。すなわち、通常は書き込み時間が3.5ms(TW2)に設定され、オプションとして書き込み時間を5msに選ぶようにしてもよい。いずれにしても本発明は、書き込み時間が調整でき、かつ複数の書き込み時間の1つを容易にできるものとなる。
以上、本発明の一実施形態について説明したが、本発明は、他の形態で実施することもできる。
たとえば、半導体チップ2の各半導体部分の導電型を反転した構成が採用されてもよい。たとえば、半導体チップ2において、p型の部分がn型であり、n型の部分がp型であってもよい。
その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
1 半導体パッケージ
2 半導体チップ
5 モールド樹脂
11 半導体基板
12 第1素子分離部
13 第1領域
14 第2領域
15 第1部分
16 第2部分
17 不揮発性メモリセル
18 バイトセレクトトランジスタ
19 第2素子分離部
20 アクティブ領域
21 ユニット
22 行選択トランジスタ領域
23 ダミー領域
24 第1トレンチ
25 第1絶縁体
26 第1部分
27 第2部分
28 第3部分
30 第2トレンチ
31 第2絶縁体
32 第1部分
33 第2部分
34 第3部分
36 第3トレンチ
37 第3絶縁体
38 第1部分
39 第2部分
40 第3部分
45 第4素子分離部
46 メモリセルトランジスタ
47 ビットセレクトトランジスタ
48 n型ソース領域
49 n型トンネル拡散領域
50 チャネル領域
51 フローティングゲート
52 コントロールゲート
58 n型ドレイン領域
59 チャネル領域
60 第1セレクトゲート
61 第2セレクトゲート
66 ゲート絶縁膜
67 トンネルウィンドウ
100 半導体メモリ回路装置

Claims (15)

  1. 不揮発性メモリセル用の第1領域と、前記第1領域の外側に形成され、前記不揮発性メモリセルとは異なる半導体素子が配置された第2領域とを含む半導体基板と、
    前記第1領域と前記第2領域とを電気的に分離する複数の第1素子分離部と、
    前記第1領域に形成され、前記第1領域を複数のアクティブ領域に区画する第2素子分離部と、
    前記複数の第1素子分離部のうち前記第1領域に最も近い第1素子分離部である第1部分に隣接して配置されたダミー領域とを含み、
    前記第1素子分離部の前記第1部分は、前記第2素子分離部と均等な幅を有している、半導体装置。
  2. 前記複数の第1素子分離部は、前記第1部分に対して前記第2領域に近い側に配置され、前記第2素子分離部よりも広い幅を有する第2部分をさらに含む、請求項1に記載の半導体装置。
  3. 前記ダミー領域は、前記第1素子分離部の前記第1部分と前記第2部分とに挟まれた領域で形成されている、請求項2に記載の半導体装置。
  4. 前記第1素子分離部の前記第2部分は、前記第1素子分離部の前記第1部分よりも深く形成されている、請求項2または3に記載の半導体装置。
  5. 前記第1素子分離部の前記第1部分の幅は、前記第2素子分離部の幅の±20%以内である、請求項1〜4のいずれか一項に記載の半導体装置。
  6. 前記第2素子分離部の幅が、0.32μm〜0.52μmであり、
    前記第1素子分離部の前記第1部分の幅が、0.32μm〜0.52μmである、請求項5に記載の半導体装置。
  7. 前記不揮発性メモリセルは、
    第1導電型の前記半導体基板の前記アクティブ領域に間隔を空けて形成された第2導電型のソース領域および第2導電型のドレイン領域と、
    前記半導体基板上に形成されたゲート絶縁膜と、
    前記ソース領域と前記ドレイン領域との間において前記ゲート絶縁膜上に選択的に形成されたフローティングゲートと、
    前記フローティングゲート上に形成されたコントロールゲートと、
    前記ソース領域と前記ドレイン領域との間において前記ゲート絶縁膜上に選択的に形成されたセレクトゲートと、
    前記半導体基板において前記フローティングゲートに対向するように形成された第2導電型の不純物領域と、
    前記ゲート絶縁膜において前記フローティングゲートと前記不純物領域との間の部分に形成され、その周囲の前記ゲート絶縁膜よりも薄く形成されたトンネルウィンドウとを含む、請求項1〜6のいずれか一項に記載の半導体装置。
  8. 前記ダミー領域は、前記半導体基板の表面部に第1導電型の部分を有している、請求項7に記載の半導体装置。
  9. 前記半導体素子は、前記コントロールゲートに供給する電圧を制御するトランジスタを含む、請求項7または8に記載の半導体装置。
  10. 前記第2素子分離部は、前記半導体基板に形成されたトレンチと、前記トレンチに埋め込まれた絶縁体とを含み、
    前記トレンチの側面は、前記半導体基板の表面に連続し、前記半導体基板の表面に対して角度θで傾斜する第1部分と、前記トレンチの第1部分から前記トレンチの底部に向かって延び、前記半導体基板の表面に対して前記角度θよりも大きな角度θで傾斜する第2部分とを含む、請求項7〜9のいずれか一項に記載の半導体装置。
  11. 前記トレンチの側面は、前記トレンチの底面に連続し、前記半導体基板の表面に対して前記角度θよりも小さな角度θで傾斜する第3部分を含む、請求項10に記載の半導体装置。
  12. 前記第2素子分離部は、STI(Shallow Trench Isolation)構造を含む、請求項10または11に記載の半導体装置。
  13. 前記コントロールゲートは、前記第2素子分離部を覆うように前記複数のアクティブ領域に跨って形成されており、
    前記コントロールゲートの一部が、前記トレンチ内の前記絶縁体の表面部に選択的に埋め込まれている、請求項10〜12のいずれか一項に記載の半導体装置。
  14. 前記複数のアクティブ領域で構成されている1ユニットのアクティブ領域と、当該1ユニットのアクティブ領域に隣り合う1ユニットの複数のアクティブ領域との間に形成され、前記第2素子分離部と均等な幅を有する第4素子分離部をさらに含む、請求項1〜13のいずれか一項に記載の半導体装置。
  15. 請求項1〜14のいずれか一項に記載の半導体装置と、
    前記半導体装置を封止するモールド樹脂とを含む、半導体パッケージ。
JP2018160764A 2018-08-29 2018-08-29 半導体装置 Active JP7216502B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018160764A JP7216502B2 (ja) 2018-08-29 2018-08-29 半導体装置
US16/527,581 US11075211B2 (en) 2018-08-29 2019-07-31 Semiconductor device with nonvolatile memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018160764A JP7216502B2 (ja) 2018-08-29 2018-08-29 半導体装置

Publications (2)

Publication Number Publication Date
JP2020035877A true JP2020035877A (ja) 2020-03-05
JP7216502B2 JP7216502B2 (ja) 2023-02-01

Family

ID=69641684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018160764A Active JP7216502B2 (ja) 2018-08-29 2018-08-29 半導体装置

Country Status (2)

Country Link
US (1) US11075211B2 (ja)
JP (1) JP7216502B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200116577A (ko) * 2019-04-01 2020-10-13 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
US11659709B2 (en) * 2020-08-21 2023-05-23 Globalfoundries Singapore Pte. Ltd. Single well one transistor and one capacitor nonvolatile memory device and integration schemes
CN112986796A (zh) * 2021-02-07 2021-06-18 昂宝电子(上海)有限公司 用于芯片的参数修调装置和方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1174339A (ja) * 1997-08-28 1999-03-16 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP2004356580A (ja) * 2003-05-30 2004-12-16 Toshiba Corp 不揮発性半導体記憶装置
JP2009016615A (ja) * 2007-07-05 2009-01-22 Toshiba Corp 半導体記憶装置
JP2010040754A (ja) * 2008-08-05 2010-02-18 Toshiba Corp 半導体装置およびその製造方法
JP2011171475A (ja) * 2010-02-18 2011-09-01 Toshiba Corp 不揮発性半導体記憶装置
JP2011233677A (ja) * 2010-04-27 2011-11-17 Toshiba Corp 不揮発性半導体記憶装置
JP2013062415A (ja) * 2011-09-14 2013-04-04 Toshiba Corp 半導体記憶装置およびその製造方法
JP2013168576A (ja) * 2012-02-16 2013-08-29 Rohm Co Ltd 半導体装置および半導体装置の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101274202B1 (ko) * 2007-12-17 2013-06-14 삼성전자주식회사 웰 전위 제어용 콘택을 가지는 nand 플래시 메모리소자
JP5758729B2 (ja) * 2011-07-27 2015-08-05 ローム株式会社 半導体装置
JP6198292B2 (ja) 2012-08-17 2017-09-20 ローム株式会社 半導体装置および半導体装置の製造方法
JP6194684B2 (ja) 2013-08-05 2017-09-13 富士通セミコンダクター株式会社 半導体装置の製造方法
JP6813995B2 (ja) 2016-08-31 2021-01-13 ローム株式会社 半導体メモリ回路装置及びその駆動方法
JP6929171B2 (ja) 2017-09-05 2021-09-01 ローム株式会社 不揮発性半導体記憶装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1174339A (ja) * 1997-08-28 1999-03-16 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP2004356580A (ja) * 2003-05-30 2004-12-16 Toshiba Corp 不揮発性半導体記憶装置
JP2009016615A (ja) * 2007-07-05 2009-01-22 Toshiba Corp 半導体記憶装置
JP2010040754A (ja) * 2008-08-05 2010-02-18 Toshiba Corp 半導体装置およびその製造方法
JP2011171475A (ja) * 2010-02-18 2011-09-01 Toshiba Corp 不揮発性半導体記憶装置
JP2011233677A (ja) * 2010-04-27 2011-11-17 Toshiba Corp 不揮発性半導体記憶装置
JP2013062415A (ja) * 2011-09-14 2013-04-04 Toshiba Corp 半導体記憶装置およびその製造方法
JP2013168576A (ja) * 2012-02-16 2013-08-29 Rohm Co Ltd 半導体装置および半導体装置の製造方法

Also Published As

Publication number Publication date
US20200075612A1 (en) 2020-03-05
US11075211B2 (en) 2021-07-27
JP7216502B2 (ja) 2023-02-01

Similar Documents

Publication Publication Date Title
JP4034672B2 (ja) 単層多結晶シリコンによってなる電気的に消去可能なプログラマブル読み出し専用メモリ
US6169307B1 (en) Nonvolatile semiconductor memory device comprising a memory transistor, a select transistor, and an intermediate diffusion layer
US7623384B2 (en) Nonvolatile semiconductor memory
KR100744139B1 (ko) 단일 게이트 구조를 가지는 eeprom 및 그 동작 방법
TWI655635B (zh) 單層多晶矽非揮發記憶胞的操作方法
JP4427534B2 (ja) Mosキャパシタ、チャージポンプ回路、及び半導体記憶回路
US6943402B2 (en) Nonvolatile semiconductor memory device including MOS transistors each having a floating gate and control gate
JP2007173821A (ja) プログラミング速度を改善したeeprom、その製造方法及びその駆動方法
JP7216502B2 (ja) 半導体装置
US20080068895A1 (en) Integrated Circuit Having a Drive Circuit
US6052305A (en) Erasing circuit for a flash memory device having a triple well structure
JP4795660B2 (ja) 半導体装置
JP5000293B2 (ja) 不揮発性半導体メモリ装置
KR100731076B1 (ko) 수직형 스플리트 게이트 구조의 플래시 메모리 소자 및 그제조 방법
JP4093359B2 (ja) 電気的に消去可能なプログラマブルロジックデバイス
CN107658301B (zh) 闪存单元、闪存阵列及其操作方法
KR19980055708A (ko) 플래쉬 메모리 셀
US20230200062A1 (en) Semiconductor device
US8390052B2 (en) Nonvolatile semiconductor memory device
KR100462385B1 (ko) 플래시 메모리 쌍 및 그 배열방법
JP4609533B2 (ja) 半導体集積回路
TW202236268A (zh) 靜態隨機存取記憶體及其操作方法
JP2002043446A (ja) 不揮発性半導体記憶装置
CN112151549A (zh) NOR Flash的制造方法
JP2005260253A (ja) 半導体集積回路装置およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230120

R150 Certificate of patent or registration of utility model

Ref document number: 7216502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150