JP2020033584A - steel sheet - Google Patents

steel sheet Download PDF

Info

Publication number
JP2020033584A
JP2020033584A JP2018159276A JP2018159276A JP2020033584A JP 2020033584 A JP2020033584 A JP 2020033584A JP 2018159276 A JP2018159276 A JP 2018159276A JP 2018159276 A JP2018159276 A JP 2018159276A JP 2020033584 A JP2020033584 A JP 2020033584A
Authority
JP
Japan
Prior art keywords
less
haz
steel sheet
steel
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018159276A
Other languages
Japanese (ja)
Other versions
JP7206700B2 (en
Inventor
竜一 本間
Ryuichi Honma
竜一 本間
篠原 康浩
Yasuhiro Shinohara
康浩 篠原
智樹 浦川
Tomoki Urakawa
智樹 浦川
石橋 清司
Seiji Ishibashi
清司 石橋
渡部 義之
Yoshiyuki Watabe
義之 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018159276A priority Critical patent/JP7206700B2/en
Publication of JP2020033584A publication Critical patent/JP2020033584A/en
Application granted granted Critical
Publication of JP7206700B2 publication Critical patent/JP7206700B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a steel sheet excellent in toughness of an ultrahigh heat input weld zone.SOLUTION: There is provided a steel sheet having Ceq (W) of 0.34 to 0.42%, Pcm of 0.185 to 0.230, f-N of 10.0 or more, eB of 4.0 or less; B/N of 0.20 to 0.50, in which particles with circle equivalent diameter of 0.5 to 5.0 μm exists with number density of 1.00×10to 1.00×10/mmand percentage of particles containing 10 atom% or more of Ca or Mg in the particles is 30% or more. Ceq(W)=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14 (1). Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5×B (2). f-N=10000×(N-eTi/3.4) (3). eB=10000×[B-0.77×{N-0.29×(Ti-2×OTi)}] (4).SELECTED DRAWING: None

Description

本発明は、鋼板に関するものである。本発明の鋼板は、超大入熱溶接部の靭性に優れた鋼板として、超高層建築物等の溶接構造物に好適に使用することができる。   The present invention relates to a steel plate. INDUSTRIAL APPLICABILITY The steel sheet of the present invention can be suitably used as a steel sheet having excellent toughness in a super large heat input welded portion, such as a superstructure building or the like.

近年、日本国内超高層建築物は、無柱大空間化及び用途複合化が求められており、設計応力の増大に伴い、高強度厚手材の需要が増えている。溶接鋼構造物には、大型化、破壊に対する高い安全性、高能率溶接化、素材(鋼材)の経済性等が求められてきている。このような動向を受け、溶接鋼構造物に使用される鋼板に対し、(1)厚手高強度化、(2)大入熱溶接下での熱影響部高靭性化、(3)低コスト化等のニーズが高まりつつある。   2. Description of the Related Art In recent years, high-rise buildings in Japan have been required to have a large space with no pillars and to be used in a complex manner, and demand for high-strength thick materials has been increasing with an increase in design stress. For a welded steel structure, large size, high safety against fracture, high efficiency welding, economy of raw material (steel material), and the like are required. In response to these trends, steel sheets used in welded steel structures have (1) increased thickness and strength, (2) increased toughness in the heat affected zone under large heat input welding, and (3) lower cost. And other needs are increasing.

具体的には、(超)高層ビルに用いられる板厚40〜100mmの厚手鋼板(以下、厚手材と称することがある)に対し、(1)降伏強度325〜650MPa、かつ引張強度490〜720MPaの確保、(2)溶接入熱量20kJ/mm以上の溶接部のシャルピー衝撃吸収エネルギー:vE(0℃)≧70Jの確保、(3)高価合金元素の低減(Ni量≦1.0質量%等)を同時に満たすことが要求される。   Specifically, for a thick steel plate having a plate thickness of 40 to 100 mm (hereinafter, sometimes referred to as a thick material) used for a (super) high-rise building, (1) a yield strength of 325 to 650 MPa and a tensile strength of 490 to 720 MPa. (2) Charpy impact absorption energy of a welded part with a welding heat input of 20 kJ / mm or more: vE (0 ° C.) ≧ 70 J, (3) Reduction of expensive alloy elements (Ni content ≦ 1.0 mass%, etc.) ) Must be satisfied at the same time.

耐溶接冷間割れ性などの工作上の溶接性はもとより、使用性能上の溶接性、特に熱影響部(Heat Affected Zone:以下、HAZと称することがある)靭性を考慮した前記強度クラスの鋼板においては、加工熱処理:TMCP(Thermo−Mechanical Control Process)によって製造されることが多い。なかでも、板厚40〜100mmの厚手鋼板では、加速冷却によっても十分な冷速が得られないことに起因して強度確保が困難なゆえに、ボロン(B)添加による高強度化を図るケースがある。Bは、圧延後のオーステナイト(γ)粒界に固溶状態で偏析し、γ粒界からのフェライト変態を抑制、すなわち焼入性を高める効果を有する。このため、B添加は、圧延後の加速冷却によっても十分な冷速が得られにくい厚手鋼板においても高強度化が図れる。   A steel sheet of the above-mentioned strength class that takes into account not only weldability in work such as resistance to cold cracking in welding but also weldability in use performance, in particular, toughness of a heat-affected zone (Heat Affected Zone: hereinafter sometimes referred to as HAZ). , Is often manufactured by TMCP (Thermo-Mechanical Control Process). Above all, in the case of a thick steel plate having a thickness of 40 to 100 mm, it is difficult to secure sufficient strength due to insufficient cooling speed even by accelerated cooling. is there. B segregates in a solid solution state at the austenite (γ) grain boundary after rolling, and has an effect of suppressing ferrite transformation from the γ grain boundary, that is, enhancing hardenability. For this reason, the addition of B can increase the strength of a thick steel sheet in which it is difficult to obtain a sufficient cooling speed even by accelerated cooling after rolling.

特許文献1では、NbとBを複合添加することによって高強度化を図っている。特許文献1の実施例に示されているように、この場合の圧延終了温度は930〜1000℃と高いことが特徴であり、再結晶γから加速冷却することを必須条件として、NbとBの複合効果を発揮させて高い焼入性を引き出すことにより、強度を高めている。圧延終了温度を930℃よりも低い未再結晶域として低温圧延を行った場合、靭性は満足するものの強度特性は満足できず、Nb−B複合効果による高強度化が難しいことも示されている。   In Patent Document 1, high strength is achieved by adding Nb and B in combination. As shown in the example of Patent Document 1, the rolling end temperature in this case is characterized as high as 930 to 1000 ° C., and it is essential that accelerated cooling from recrystallization γ is performed. The strength is enhanced by exerting a combined effect to bring out high hardenability. When low-temperature rolling is performed at an unrecrystallized region where the rolling end temperature is lower than 930 ° C., the toughness is satisfied but the strength characteristics cannot be satisfied, and it is also shown that it is difficult to increase the strength by the Nb-B composite effect. .

また、特許文献1では、大入熱溶接HAZにおけるB利用技術を開示しており、0.30〜0.38%のCeqの下で、γ中固溶Bによる粒界フェライト抑制効果(焼入性向上効果)を享受しつつ、γ中BNによる粒内フェライト促進効果(焼入性低減効果)を併用することの有効性を示している。   Patent Document 1 discloses a technique for utilizing B in a large heat input welding HAZ, and suppresses grain boundary ferrite by solid solution B in γ under a Ceq of 0.30 to 0.38% (quenching). It shows the effectiveness of using the intragranular ferrite accelerating effect (the effect of reducing hardenability) by BN in γ while enjoying the (hardenability improving effect).

すなわち、特許文献1におけるB利用技術を要約すると、γ中固溶Bによる焼入性向上効果を母材と大入熱溶接HAZで利用すると同時に、γ中析出B(ここではBN)による焼入性低減効果を大入熱溶接HAZで利用している。   That is, the B utilization technology in Patent Document 1 is summarized as follows. The effect of improving the hardenability by the solid solution B in γ is utilized in the base metal and the large heat input welding HAZ, and at the same time, the quenching by the precipitate B in γ (here, BN) is used. The heat-reducing effect is used in large heat input welding HAZ.

特許文献2、3では、大入熱溶接HAZ靭性を高めるために、HAZの冷却過程でγ中に析出するVNをピン止め粒子(酸化物、硫化物)に複合析出させ、このVN複合粒子がフェライト変態核として作用してHAZ組織を微細化している。   In Patent Documents 2 and 3, in order to increase the HAZ toughness of large heat input welding, VN precipitated in γ during the cooling process of HAZ is compounded and precipitated on pinning particles (oxide, sulfide). It acts as a ferrite transformation nucleus to refine the HAZ structure.

一方、非特許文献1に示されるように、V添加によって母材の強度が上昇する効果は広く知られている。   On the other hand, as shown in Non-Patent Document 1, the effect of increasing the strength of a base material by adding V is widely known.

以上説明したように、BあるいはVの添加によって、母材の強度が向上する効果と、大入熱溶接HAZの靭性が向上する効果が知られている。   As described above, the effect of improving the strength of the base material and the effect of improving the toughness of the large heat input welding HAZ by adding B or V are known.

また、特許文献4は、下記の二つの手段を講じることにより、鋼板の強度を安定かつ十分に確保することを開示している。
(1)第一の手段は、TMCP条件の精緻な制御と、eBを0.0001%以上、含有B量の1/2以下に制御することでγ中に焼入性に寄与する固溶Bと変態核として寄与する析出B(BN)を併用することで、高強度と細粒化効果による高靭性に同時に達成する。
(2)第二の手段は、V炭化物による析出強化を利用して母材強度を高める。
Patent Literature 4 discloses that the strength of a steel sheet is stably and sufficiently ensured by taking the following two measures.
(1) The first means is to precisely control the TMCP conditions and to control the eB to 0.0001% or more and the B content to 1 / or less so as to contribute to hardenability in γ. And precipitation B (BN), which contributes as transformation nuclei, are simultaneously used to achieve high strength and high toughness due to the effect of grain refinement.
(2) The second means is to increase the strength of the base material by utilizing precipitation strengthening by V carbide.

特許第3599556号公報Patent No. 3599556 特開2005−298900号公報JP 2005-298900 A 特開2007−262508号公報JP 2007-262508 A 特許第5895780号公報Japanese Patent No. 5895780

CAMP−ISIJ、6(1993)、684CAMP-ISIJ, 6 (1993), 684

一般に、母材やHAZの強度と靭性を高める希少な元素としてNiが知られている。しかし、Niは高価な元素でもあると同時に、Ni添加鋼は表面疵が生じやすく、その手入工程が発生するという問題がある。したがって、Ni添加は、低コスト(高価合金低減)化と高HAZ靭性化との間で、また、Ni添加に伴う炭素当量(Ceq)増加により大入熱溶接HAZが硬化して脆化するため、特に厚手材の高強度化と高HAZ靭性化との間で利害が対立する。   Generally, Ni is known as a rare element that increases the strength and toughness of a base material and HAZ. However, Ni is an expensive element, and at the same time, Ni-added steel has a problem that surface flaws are apt to occur and a maintenance process is required. Therefore, the addition of Ni causes the large heat input welding HAZ to be hardened and embrittled between lowering the cost (reducing the expensive alloy) and increasing the HAZ toughness, and increasing the carbon equivalent (Ceq) accompanying the addition of Ni. In particular, there is a conflict of interest between increasing the strength of a thick material and increasing the HAZ toughness.

このため、上述のような互いに利害が対立する上記(1)〜(3)の三つのニーズを同時に満足する鋼板の開発が強く求められているのが実情である。   For this reason, the fact is that there is a strong demand for the development of a steel sheet that simultaneously satisfies the above three needs (1) to (3), which have conflicting interests as described above.

前述したように、特許文献4は板厚50〜100mm厚の靭性に優れた鋼板を提供することを課題とする。しかし、角形柱のダイヤフラムに適用される鋼板の板厚が60mm以上になる溶接継手では、溶接入熱が100kJ/mmを超える超大入熱溶接となる場合があり、この条件下で安定的にvE(0℃)≧100Jとなる溶接HAZ靭性を確保することが難しい。   As described above, Patent Document 4 has an object to provide a steel plate having a thickness of 50 to 100 mm and excellent toughness. However, in the case of a welded joint in which the thickness of a steel plate applied to a prism having a square pillar shape is 60 mm or more, an extremely large heat input welding having a welding heat input exceeding 100 kJ / mm may occur. (0 ° C.) ≧ 100 J It is difficult to secure the welding HAZ toughness.

大地震発生下における超高層建築物の倒壊を防ぐため、近年、耐震性の要求レベルが高まっている。角形柱(「BOX柱」ともいう。)の塑性変形能を確保するためには、鋼材の降伏比が低い方が有利であり、降伏比が78%以下であることが望まれる。   In recent years, the demand for seismic resistance has been increasing in order to prevent the collapse of skyscrapers under the occurrence of a large earthquake. In order to ensure the plastic deformability of a square column (also referred to as a “BOX column”), it is advantageous that the yield ratio of the steel material is low, and it is desired that the yield ratio be 78% or less.

本発明は上記実情に鑑みてなされたものであり、(1)板厚40〜100mm、引張強度が550MPa〜740MPa、降伏比が78%以下の高強度で、(2)溶接入熱量>100kJ/mmの超大入熱に対してもvE(0℃)≧100Jとなる溶接HAZ靭性を有し、(3)高価合金元素の低減(Ni≦1.0質量%等)等による低コストを実現できる超大入熱溶接部における靭性が優れる鋼板を提供することを目的とする。   The present invention has been made in view of the above circumstances, and (1) high strength with a plate thickness of 40 to 100 mm, a tensile strength of 550 MPa to 740 MPa, a yield ratio of 78% or less, and (2) a heat input of welding> 100 kJ / It has a welding HAZ toughness that satisfies vE (0 ° C.) ≧ 100 J even with a very large heat input of 1 mm, and (3) low cost can be realized by reducing expensive alloy elements (Ni ≦ 1.0 mass% etc.). It is an object of the present invention to provide a steel sheet having excellent toughness in a super large heat input weld.

溶接入熱の増大に伴って、変態温度付近(800℃〜500℃)の冷速が1℃/sに低下し(例えば、スキンプレート90mm、ダイヤフラム75mmの場合、計算上、溶接入熱125kJ/mm、800〜500℃間の平均冷却速度0.5℃/s(628秒))、フェライトやベイナイトが粗大化する。このような入熱増に伴う冷却速度の低下は板厚の増加によって顕著であって、HAZ組織の微細化には不利な条件である。本発明者らは、微量のNbを利用して厚手高強度化を実現する一方、f−Nの増加、eBの適正化、B/N比の規制の追加によって、固溶Bによる母材強化の効果を損なうことなく、BN析出を積極的に活用する成分設計をすることができ、HAZ靱性を改善できることを見出した。   With the increase in welding heat input, the cooling rate near the transformation temperature (800 ° C. to 500 ° C.) decreases to 1 ° C./s (for example, in the case of a skin plate 90 mm and a diaphragm 75 mm, the welding heat input 125 kJ / mm, average cooling rate between 800 and 500 ° C. 0.5 ° C./s (628 seconds)), ferrite and bainite coarsen. Such a decrease in the cooling rate due to an increase in heat input is remarkable due to an increase in the sheet thickness, which is a disadvantageous condition for miniaturization of the HAZ structure. The present inventors have realized the use of a small amount of Nb to achieve thick and high strength, while increasing the fN, optimizing eB, and adding a regulation on the B / N ratio, thereby strengthening the base material with solid solution B. It has been found that it is possible to design a component that actively utilizes BN precipitation without impairing the effect of the above, and to improve the HAZ toughness.

一般的にはNbは制御圧延に必須元素であり、鋼板の強度靱性改善には有効だが、HAZを硬化させるのでHAZ靱性には不利とされている。しかしながら、本発明はNbを活用して厚手高強度化を実現する一方で、添加Nb量を微量とすることで前述したようにf−Nの増加、eBの適正化、B/N比の規制の追加によって、HAZ靱性を改善し、Nbの悪影響を抑制する作用効果が得られることを見出した。
すなわち、NやNbなどの微量元素の添加量適正化と母材製造条件の高精度制御により、Bの固溶、析出の高精度制御が可能となり、厚手鋼材の特性確保とHAZ靱性の改善を高度に両立することが可能となった。
Generally, Nb is an essential element for controlled rolling and is effective for improving the strength and toughness of a steel sheet, but is disadvantageous for HAZ toughness because it hardens HAZ. However, the present invention realizes thick and high strength utilizing Nb, while increasing the fN, optimizing eB, and regulating the B / N ratio as described above by using a small amount of added Nb. It has been found that the addition of N has the effect of improving HAZ toughness and suppressing the adverse effect of Nb.
In other words, by optimizing the addition amount of trace elements such as N and Nb and controlling the manufacturing conditions of the base material with high precision, it is possible to control the solid solution and precipitation of B with high precision, thereby ensuring the characteristics of thick steel and improving the HAZ toughness. It became possible to be highly compatible.

また、本発明者らは、溶接入熱の増大で懸念されるHAZ軟化においてもNb添加は有効であること、制御圧延効果により母材の細粒化が可能となり、強度靱性バランスが改善した結果、母材の熱処理が不要となることも知見した。   In addition, the present inventors have found that Nb addition is effective in HAZ softening, which is a concern due to an increase in welding heat input, and that the base material can be refined by a controlled rolling effect, resulting in an improvement in strength toughness balance. It has also been found that heat treatment of the base material is unnecessary.

また、本発明者らは、C、Nb、Bの影響を考慮して公知のPcmを改良することで大入熱HAZ硬度を十分に再現することを知見した。すなわち、本発明者らは、下記式のPcmESの値を大入熱HAZの硬度を表す指標として用いることができ、この値が低い程、HAZ硬度が低く、HAZ靱性が向上することを見出した。
PcmES=C/4+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/3+Nb/2+23×MAX((B−10.8/14.1×(MAX(N−Ti/3.4,0)),0)
In addition, the present inventors have found that a large heat input HAZ hardness can be sufficiently reproduced by improving the known Pcm in consideration of the influence of C, Nb, and B. That is, the present inventors can use the value of PcmES in the following formula as an index indicating the hardness of the large heat input HAZ, and found that the lower the value, the lower the HAZ hardness and the higher the HAZ toughness. .
PcmES = C / 4 + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 3 + Nb / 2 + 23 × MAX ((B-10.8 / 14.1 × (MAX (N-Ti / 3.4,0))) 0)

従来からHAZの硬度はCeq、Pcmといった焼入れ性指標と相関があることが知られていた。しかし、従来の思想に基づく成分設計では、更なる高強度厚手化とHAZ靱性の両立は困難であった。これに対して、本発明者らは、従来公知のPcmにC、Nb、Bの影響を考慮することにより、HAZ靱性を支配するボンド部近傍のHAZ硬度の軟化抑制と母材強度確保を同時に満足する成分を見いだした。本発明者らの前記知見に基づく本発明の要旨は、下記の通りである。   Conventionally, it has been known that the hardness of HAZ has a correlation with a hardenability index such as Ceq and Pcm. However, with the component design based on the conventional concept, it has been difficult to achieve both higher strength and thicker HAZ toughness. On the other hand, the present inventors consider the influence of C, Nb, and B on the conventionally known Pcm, thereby simultaneously suppressing the softening of the HAZ hardness near the bond portion that controls the HAZ toughness and securing the base metal strength. Satisfactory ingredients were found. The gist of the present invention based on the above findings of the present inventors is as follows.

(1) 質量%で、
C :0.05〜0.12%
Si:0.20%以下
Mn:1.00〜2.00%
Nb:0.004〜0.020%
V :0.10%以下
Ti:0.0030〜0.0180%
Al:0.0040〜0.0800%
N :0.0030〜0.0080%
B :0.0006〜0.0025%
Ca:0.0003〜0.0040%
Mg:0.0003〜0.0040%
O :0.0015〜0.0040%
を含有し、
P :0.020%以下
S :0.010%以下に制限され、
残部が鉄および不可避的不純物からなり、
下記式(1)の炭素当量Ceq(W)が0.34〜0.42%であり、
下記式(2)のPcmが0.185〜0.230であり、
下記式(3)のf−Nが10.0以上であり、
下記式(4)のeBが4.0以下であり、
N含有量に対するB含有量の割合(B/N)が、0.20〜0.50であり、
鋼中に、円相当直径で0.5〜5.0μmの粒子が1.00×10〜1.00×10個/mmの個数密度で存在し、前記粒子のうち、原子%で10%以上のCaあるいはMgを含む粒子の割合が30%以上であることを特徴とする鋼板。
ここで、
Ceq(W)=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14・・・(1)
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5×B・・・(2)
f−N=10000×(N−eTi/3.4)・・・(3)
eB=10000×[B−0.77×{N−0.29×(Ti−2×OTi)}]・・・(4)
eTi=Ti−2×OTi・・・(5)
OTi=O−0.4×Ca−0.66×Mg−0.17×REM−0.89×Al・・・(6)
とし、
式(1)乃至式(6)に示す元素は、鋼中に含有されているそれぞれの元素の含有量(質量%)とし、不可避的不純物として混入した元素も計算に含める。また、式(6)によって与えられるOTiが0以下の場合、式(4)及び(5)において、OTiに0を代入する。
(2) さらに、質量%で、
Cu:0.10〜1.00%
Ni:0.10〜1.00%
Cr:0.03〜0.80%
Mo:0.03〜0.40%
REM:0.0003〜0.0100%
Zr:0.0003〜0.0100%
のうちの1種または2種以上を含有することを特徴とする、(1)に記載の鋼板。
(3) 更に、下記式(7)のPcmESが0.13〜0.16であることを特徴とする、(1)項又は(2)項に記載の鋼板。
但し、式(7)に示す元素は、鋼中に含有されているそれぞれの元素の含有量(質量%)とし、不可避的不純物として混入した元素も計算に含める。
PcmES=C/4+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/3+Nb/2+23×MAX((B−10.8/14.1×(MAX(N−Ti/3.4,0)),0)・・・(7)
(4) 板厚中心から両面方向へ板厚1/4厚みにおける金属組織が、フェライトを面積率で3%〜20%又は15度大角粒径が85μm以下かつアスペクト比が1.8以上の旧オーステナイト粒から生成する相を含むことを特徴とする、(1)項乃至(3)項のうちいずれかに記載の鋼板。
(5) 40mm〜100mmの板厚を有することを特徴とする、(1)項乃至(4)項のうちいずれかに記載の鋼板。
(6) 引張強さが550MPa〜740MPa、降伏比が78%以下であることを特徴とする、(1)項乃至(5)項のうちいずれかに記載の鋼板。
(1) In mass%,
C: 0.05 to 0.12%
Si: 0.20% or less Mn: 1.00-2.00%
Nb: 0.004 to 0.020%
V: 0.10% or less Ti: 0.0030 to 0.0180%
Al: 0.0040 to 0.0800%
N: 0.0030 to 0.0080%
B: 0.0006 to 0.0025%
Ca: 0.0003-0.0040%
Mg: 0.0003-0.0040%
O: 0.0015 to 0.0040%
Containing
P: 0.020% or less S: limited to 0.010% or less,
The balance consists of iron and unavoidable impurities,
The carbon equivalent Ceq (W) of the following formula (1) is 0.34 to 0.42%,
Pcm of the following formula (2) is 0.185 to 0.230;
FN in the following formula (3) is 10.0 or more;
EB of the following formula (4) is 4.0 or less,
The ratio of the B content to the N content (B / N) is 0.20 to 0.50,
Particles having a circle equivalent diameter of 0.5 to 5.0 μm are present in the steel at a number density of 1.00 × 10 2 to 1.00 × 10 4 particles / mm 2. A steel sheet wherein the proportion of particles containing 10% or more of Ca or Mg is 30% or more.
here,
Ceq (W) = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (1)
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5 × B (2)
fN = 10000 × (N-eTi / 3.4) (3)
eB = 10000 × [B−0.77 × {N−0.29 × (Ti−2 × OTi)}] (4)
eTi = Ti−2 × OTi (5)
Oti = O−0.4 × Ca−0.66 × Mg−0.17 × REM−0.89 × Al (6)
age,
The elements shown in the formulas (1) to (6) are the contents (% by mass) of the respective elements contained in the steel, and the elements mixed as unavoidable impurities are also included in the calculation. If the value of Oti given by the expression (6) is equal to or less than 0, 0 is substituted for the Oti in the expressions (4) and (5).
(2) Further, in mass%,
Cu: 0.10-1.00%
Ni: 0.10-1.00%
Cr: 0.03 to 0.80%
Mo: 0.03 to 0.40%
REM: 0.0003-0.0100%
Zr: 0.0003-0.0100%
The steel sheet according to (1), wherein the steel sheet comprises one or more of the following.
(3) The steel sheet according to the above (1) or (2), wherein PcmES of the following formula (7) is 0.13 to 0.16.
However, the elements shown in the formula (7) are the contents (% by mass) of the respective elements contained in the steel, and the elements mixed as unavoidable impurities are also included in the calculation.
PcmES = C / 4 + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 3 + Nb / 2 + 23 × MAX ((B-10.8 / 14.1 × (MAX (N-Ti / 3.4,0))) 0) ... (7)
(4) The metal structure at a thickness of 1/4 from the center of the thickness from the center of the thickness to the both sides is a ferrite having an area ratio of 3% to 20% or a 15-degree large angle grain size of 85 μm or less and an aspect ratio of 1.8 or more. The steel sheet according to any one of the above items (1) to (3), comprising a phase formed from austenite grains.
(5) The steel sheet according to any one of (1) to (4), having a thickness of 40 mm to 100 mm.
(6) The steel sheet according to any one of (1) to (5), wherein the tensile strength is 550 MPa to 740 MPa and the yield ratio is 78% or less.

本発明は上記実情に鑑みてなされたものであり、(1)板厚40〜100mm、引張強度が550MPa〜740MPa、降伏比が78%以下の高強度で、(2)溶接入熱量>100kJ/mmの超大入熱に対してもvE(0℃)≧100Jとなる溶接HAZ靭性を有し、(3)高価合金元素の低減(Ni≦1.0質量%等)等による低コストを実現できる超大入熱溶接部における靭性が優れる鋼板を提供することができる。   The present invention has been made in view of the above circumstances, and (1) high strength with a plate thickness of 40 to 100 mm, a tensile strength of 550 MPa to 740 MPa, a yield ratio of 78% or less, and (2) a heat input of welding> 100 kJ / It has a welding HAZ toughness that satisfies vE (0 ° C.) ≧ 100 J even with a very large heat input of 1 mm, and (3) low cost can be realized by reducing expensive alloy elements (Ni ≦ 1.0 mass% etc.). It is possible to provide a steel sheet having excellent toughness in a very large heat input weld.

以下、本発明の鋼板およびその製造方法の実施の形態について説明する。   Hereinafter, embodiments of a steel sheet and a method for manufacturing the same according to the present invention will be described.

なお、この実施形態は、発明の趣旨をより良く理解させるために詳細に説明するものであるから、特に指定のない限り、本発明を限定するものではない。   This embodiment is described in detail for better understanding of the gist of the invention, and therefore does not limit the invention unless otherwise specified.

本発明の要点は、TMCPによって製造される厚手鋼板(以下、TMCPによって製造されることを「TMCP型」という。)において、鋼板の高強度化と、超大入熱溶接によるHAZの靭性および低コスト等を同時に満足するため、BとVを複合添加することを特徴とし、これら窒化物形成元素と結合するNを精緻に制御することでγ中のBとVの存在状態を最適化し、鋼板と超大入熱溶接によるHAZの変態組織を制御する技術である。具体的には、γ中のBは、鋼板とHAZの両方において、固溶Bによる焼入れ性向上効果ならびに析出Bによる細粒化効果を最大限活用する思想である。一方、γ中のVは、鋼板では固溶Vとして、前記HAZでは析出V(VN等)として利用する思想である。以下、詳細を説明する。   The gist of the present invention is to increase the strength of a steel plate, toughness and low cost of HAZ by ultra-high heat input welding in a thick steel plate manufactured by TMCP (hereinafter, manufactured by TMCP is referred to as “TMCP type”). In order to simultaneously satisfy the above conditions, it is characterized by adding B and V in a complex manner, and by precisely controlling N bonded to these nitride-forming elements, the state of presence of B and V in γ is optimized. This is a technique for controlling the transformation structure of HAZ by ultra-high heat input welding. Specifically, B in γ is a concept that maximizes the effect of improving the hardenability by solid solution B and the effect of grain refinement by precipitation B in both the steel sheet and the HAZ. On the other hand, V in γ is a concept to be used as solid solution V in a steel sheet and as precipitation V (VN or the like) in the HAZ. Hereinafter, the details will be described.

まず、本発明における最大のポイントである超大入熱溶接により形成されたHAZ(以下、「超大入熱溶接HAZ」という。)の靭性を向上させるための技術を説明するが、低コスト化の観点から高価合金であるNiに頼らずに前記HAZ靭性の向上を図ることも本発明の特徴の一つでもある。   First, a technique for improving the toughness of a HAZ formed by ultra-high heat input welding (hereinafter referred to as “ultra-high heat input welding HAZ”), which is the most important point in the present invention, will be described. Another feature of the present invention is to improve the HAZ toughness without relying on Ni which is an expensive alloy.

HAZ靭性の支配要因は、大別して次の三つである。第一に硬さであり、第二にMA(マルテンサイト・オーステナイト混合相)であり、第三に有効結晶粒径である。   HAZ toughness is mainly governed by the following three factors. The first is hardness, the second is MA (mixed phase of martensite and austenite), and the third is effective crystal grain size.

硬さとMAの両面から、本発明では下記式(1)の炭素当量:Ceqを0.34〜0.45%に制限し、下記式(2)の溶接割れ感受性指標:Pcmを0.185〜0.230に制限する。
Ceq(W)=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14・・・(1)
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5×B・・・(2)
但し、式(1)及び式(2)に示す元素は、鋼中に含有されているそれぞれの元素の含有量(質量%)とし、不可避的不純物として混入した元素も計算に含める。
From the viewpoint of both hardness and MA, in the present invention, the carbon equivalent of the following formula (1): Ceq is limited to 0.34 to 0.45%, and the weld cracking susceptibility index of the following formula (2): Pcm is 0.185 to 0.185. Limit to 0.230.
Ceq (W) = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (1)
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5 × B (2)
However, the elements shown in the formulas (1) and (2) are the contents (% by mass) of the respective elements contained in the steel, and the elements mixed as unavoidable impurities are also included in the calculation.

Ceqが0.45%を超えると、HAZが有害なまでに硬化すると同時にMAが増加し、HAZが大きく脆化し、Ceqが0.34%未満であると十分な鋼板の強度が得られない。また、Pcmが0.230を超えるとHAZが有害なまでに硬化すると同時にMAが増加し、HAZが大きく脆化し、Pcmが0.185未満であると十分な鋼板の強度が得られない。   If Ceq exceeds 0.45%, HAZ is hardened to a harmful extent, and at the same time, MA increases, and HAZ is greatly embrittled. If Ceq is less than 0.34%, sufficient steel sheet strength cannot be obtained. On the other hand, if Pcm exceeds 0.230, HAZ is hardened to a harmful level, and at the same time, MA increases, HAZ is greatly embrittled, and if Pcm is less than 0.185, sufficient steel sheet strength cannot be obtained.

上記のCeqやPcmが従来から使われている一般的な指標に対して、PcmES値は、本発明の対象となるような大入熱溶接におけるHAZの硬度を最もよく表す指標である。すなわち、PcmES値では本発明において重要な元素であるC、Nb、Bの影響をより精度よく考慮できる。PcmES値が0.16を超えると、HAZが有害なまでに硬化してHAZが大きく脆化し、PcmES値が0.13未満であると十分な鋼板の強度が得られない。   The PcmES value is an index that best represents the hardness of HAZ in large heat input welding, which is an object of the present invention, in contrast to the general index in which Ceq and Pcm are conventionally used. That is, in the PcmES value, the effects of C, Nb, and B, which are important elements in the present invention, can be more accurately considered. If the PcmES value exceeds 0.16, the HAZ is hardened to a harmful extent and the HAZ becomes greatly embrittled. If the PcmES value is less than 0.13, sufficient strength of the steel sheet cannot be obtained.

PcmES=C/4+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/3+Nb/2+23×MAX((B−10.8/14.1×(MAX(N−Ti/3.4,0)),0)・・・(7)
但し、式(7)に示す元素は、鋼中に含有されているそれぞれの元素の含有量(質量%)とし、不可避的不純物として混入した元素も計算に含める。
PcmES = C / 4 + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 3 + Nb / 2 + 23 × MAX ((B-10.8 / 14.1 × (MAX (N-Ti / 3.4,0))) 0) ... (7)
However, the elements shown in the formula (7) are the contents (% by mass) of the respective elements contained in the steel, and the elements mixed as unavoidable impurities are also included in the calculation.

合金元素の総量規制とも言うべきCeqが0.34〜0.42%であっても、C、Mn、あるいは選択的添加を許容するCr、Moなど個々の元素が限定範囲を超えると、本発明のように中庸なCeqでHAZがベイナイト主体となる場合においては、HAZ硬化が大きく、脆化も大きい。これが後述する合金添加範囲を限定する大きな理由の一つである。   Even if the Ceq, which can be said to be the total amount control of the alloying elements, is 0.34 to 0.42%, when the individual elements such as C and Mn or Cr and Mo that allow selective addition exceed the limited range, the present invention When HAZ is mainly bainite with a medium Ceq as described above, HAZ hardening is large and embrittlement is also large. This is one of the major reasons for limiting the alloy addition range described later.

合金範囲の限定に当たり、本発明者らの広範な実験によれば、ベイナイト主体HAZではこれら合金の中で唯一Vのみが硬化しにくいことを知見した。これに基づき、Vの鋼板の含有量を増やす一方、C、Mn、Cr、Moなどの合金元素を低減すれば、Ceq低減分、もしくは同一CeqであってもHAZ硬さは低減され、HAZ靭性が向上する。   In limiting the range of alloys, extensive experiments conducted by the present inventors have found that, among bainite-based HAZs, only V is difficult to harden among these alloys. Based on this, while increasing the content of the steel sheet of V and reducing alloying elements such as C, Mn, Cr, and Mo, the HAZ hardness is reduced even if the Ceq is reduced or the same Ceq, and the HAZ toughness is reduced. Is improved.

MAの観点から、本発明では可能な限りSiを低減することが好ましい。Nbは、制御圧延に必須元素であり、鋼板の強度靱性改善には有効であり、適量添加することで厚手高強度化を実現する。一方で、HAZを硬化させたり、MA生成を助長したりするのでHAZ靱性には不利とされている。このため前記f−Nの増加、eBの適正化、B/N比の規制の組み合わせ、HAZ靱性を確保した。さらに、MoはCeqの係数が大きく、Cとの相互作用も大きいために焼入性が高くMA生成を助長するばかりでなく、比較的高価な元素でもあるので、本発明においては必要に応じて選択的に添加する場合でも、可能な限り低減することが好ましい。   From the viewpoint of MA, it is preferable to reduce Si as much as possible in the present invention. Nb is an essential element for controlled rolling and is effective for improving the strength and toughness of a steel sheet, and achieves thick and high strength by adding an appropriate amount. On the other hand, it hardens HAZ and promotes the formation of MA, and is disadvantageous for HAZ toughness. Therefore, the combination of the increase in fN, the optimization of eB, the regulation of the B / N ratio, and the HAZ toughness were ensured. Further, Mo has a large coefficient of Ceq and a large interaction with C, so that Mo is not only high in quenchability and promotes the formation of MA, but also a relatively expensive element. Even when it is selectively added, it is preferable to reduce it as much as possible.

さらに、有効結晶粒径の観点から、本発明では二つのHAZ組織微細化技術を適用することが好ましい。第一の技術は、γ中のB析出物とV析出物を変態核として同時に利用することである。化学量論的な計算上の有効ボロン量、すなわち、下記式(4)で表される有効ボロン量(eB)が4.0以下、N含有量に対するB含有量の割合(B/N比)が、0.20〜0.50となるようにN量を適正に制御する。   Further, from the viewpoint of effective crystal grain size, it is preferable to apply two HAZ structure refinement techniques in the present invention. The first technique is to simultaneously use B precipitates and V precipitates in γ as transformation nuclei. The effective boron amount in the stoichiometric calculation, that is, the effective boron amount (eB) represented by the following formula (4) is 4.0 or less, and the ratio of the B content to the N content (B / N ratio) However, the N amount is appropriately controlled so as to be 0.20 to 0.50.

eB=10000×[B−0.77×{N−0.29×(Ti−2×eTi)}]・・・(4)
eTi=Ti−2×OTi・・・(5)
OTi=O−0.4×Ca−0.66×Mg−0.17×REM−0.89×Al・・・(6)
但し、式(4)乃至式(6)に示す元素は、鋼中に含有されているそれぞれの元素の含有量(質量%)とし、不可避的不純物として混入した元素も計算に含める。また、式(6)によって与えられるOTiが0以下の場合、式(4)及び(5)において、OTiに0を代入する。
eB = 10000 × [B−0.77 × {N−0.29 × (Ti−2 × eTi)}] (4)
eTi = Ti−2 × OTi (5)
Oti = O−0.4 × Ca−0.66 × Mg−0.17 × REM−0.89 × Al (6)
However, the elements shown in the formulas (4) to (6) are the contents (% by mass) of the respective elements contained in the steel, and the elements mixed as unavoidable impurities are also included in the calculation. If the value of Oti given by the expression (6) is equal to or less than 0, 0 is substituted for the Oti in the expressions (4) and (5).

eB及びB/N比を前記範囲にすることで、溶接入熱量>100kJ/mmの超大入熱溶接の冷却中にγ粒界やγ粒内にBN、VNあるいはV(C,N)が析出し、これらの単独あるいは複合の粒子がフェライトのみならずベイナイトの変態核としても有効に作用し、HAZ組織を微細化する。eB及びB/N比を前記範囲にすることによって、HAZにおいてB焼入性の過剰な発現を回避し、過度な硬化とMA増加を抑える作用が得られる。   By setting the eB and the B / N ratio in the above ranges, BN, VN, or V (C, N) precipitates in the γ grain boundary or in the γ grain during cooling of the welding with a heat input of> 100 kJ / mm. However, these single or composite particles effectively act as not only ferrite but also transformation nuclei of bainite, and refine the HAZ structure. By setting the eB and the B / N ratio in the above ranges, an effect of avoiding excessive expression of B hardenability in HAZ and suppressing excessive hardening and an increase in MA can be obtained.

また、HAZ組織を微細化する第二の技術は、CaやMgの適正添加によって微細な酸化物や硫化物を多数分散させ、γ粒成長をピン止め効果によって抑制することで、ベイナイト組織(結晶方位差15°を結晶粒界としたときの結晶粒)を微細化する。MgやAlを含有する微細な酸化物や硫化物の一部にはB析出物やV析出物の有効な析出核として作用し、これらの複合介在物が変態核としてγ粒界やγ粒内からの変態を促進してHAZ組織をより一層微細化する効果もあることがわかった。以上のHAZ組織微細化技術は、結果的にHAZの焼入性を低減するので、硬さとMAを低減する観点からも貢献する。   A second technique for refining the HAZ structure is to disperse a large number of fine oxides and sulfides by appropriately adding Ca and Mg, and to suppress the growth of γ grains by a pinning effect. The crystal grain (when the orientation difference of 15 ° is a crystal grain boundary) is refined. Some of the fine oxides and sulfides containing Mg and Al act as effective precipitation nuclei for B precipitates and V precipitates, and these composite inclusions serve as transformation nuclei in γ grain boundaries and in γ grains. It has been found that there is also an effect of accelerating the transformation from Hg to further refine the HAZ structure. Since the HAZ structure refinement technology described above eventually reduces the hardenability of HAZ, it also contributes from the viewpoint of reducing hardness and MA.

上記第一の技術によって0℃のシャルピー吸収エネルギーを確保し、これに第二の技術を組み合わせることでHAZ組織を微細化すれば、−20℃あるいは−40℃のシャルピー吸収エネルギーを確保できる可能性もある。   Possibility of securing Charpy absorbed energy of -20 ° C or -40 ° C by securing the Charpy absorbed energy of 0 ° C by the above-mentioned first technique, and by combining this with the second technique to refine the HAZ structure. There is also.

以上説明した硬さ低減、MA低減、HAZ組織微細化の施策を通じて、本発明の鋼板への超大入熱によって形成されたHAZは、Niに頼ることなく高いvE(0℃)を達成することができる。   Through the measures described above for reducing the hardness, reducing the MA, and refining the HAZ structure, the HAZ formed by the extremely large heat input to the steel sheet of the present invention can achieve a high vE (0 ° C.) without relying on Ni. it can.

次に、厚手高強度化のための技術を説明する。   Next, a technique for thick and high strength will be described.

板厚40〜100mmの鋼板において所定の強度を確保するためには、鋼成分ならびにTMCP条件を適正範囲に制御限定する必要がある。   In order to secure a predetermined strength in a steel plate having a thickness of 40 to 100 mm, it is necessary to control and limit the steel composition and the TMCP conditions to appropriate ranges.

まず、鋼成分の総量ともいえる前記式(1)に示す炭素当量Ceqは焼入性を表す指標でもあり、0.34以上にする必要がある。炭素当量Ceqが0.34%未満の低い焼入性では、板厚100mmの下で550MPa〜740MPaの引張強度と、78%以下の降伏比を安定的に確保するのは難しい。一方、HAZの硬化とMA生成を抑制するために、Ceqを0.42%以下とするが、0.41%以下または0.39%以下に制限してもよい。   First, the carbon equivalent Ceq shown in the above formula (1), which can be said to be the total amount of steel components, is also an index indicating hardenability and needs to be 0.34 or more. With a low hardenability with a carbon equivalent Ceq of less than 0.34%, it is difficult to stably secure a tensile strength of 550 MPa to 740 MPa and a yield ratio of 78% or less under a plate thickness of 100 mm. On the other hand, in order to suppress HAZ curing and MA generation, Ceq is set to 0.42% or less, but may be limited to 0.41% or less or 0.39% or less.

<化学成分組成>
以下に本発明における鋼板(および鋼板の製造に用いられる連続鋳造スラブ)の化学成分についての限定理由を説明する。
<Chemical composition>
Hereinafter, the reasons for limiting the chemical composition of the steel sheet (and the continuous cast slab used for manufacturing the steel sheet) in the present invention will be described.

(C:0.05〜0.12%)
Cは、強度向上のために重要な元素である。低温加熱、低温圧延を徹底したTMCP型厚手鋼板において、所定の強度を安定確保するために、0.05%以上のCを含有させる必要がある。好ましくは、0.06%以上または0.07%以上のCを含有させることにより、より安定して強度を高めることができる。さらに、CはHAZにおけるV(C、N)変態核の析出を促す効果もある。しかしながら、良好なHAZ靭性を安定確保するためには、Cを0.12%以下に抑える必要がある。Cを0.11%以下または0.10%以下に制限してもよい。
(C: 0.05-0.12%)
C is an important element for improving the strength. In a TMCP-type thick steel plate thoroughly subjected to low-temperature heating and low-temperature rolling, it is necessary to contain 0.05% or more of C in order to stably secure a predetermined strength. Preferably, by adding C in an amount of 0.06% or more or 0.07% or more, the strength can be more stably increased. Further, C also has the effect of promoting the precipitation of V (C, N) transformation nuclei in HAZ. However, in order to stably secure good HAZ toughness, C needs to be suppressed to 0.12% or less. C may be limited to 0.11% or less or 0.10% or less.

(Si:0.20%以下)
Siは、脱酸作用を有するが、強力な脱酸元素であるAlが十分に含有されている場合には不要である。鋼板を強化する作用もあるが、他の元素に比べるとその効果は相対的に小さい。比較的高い炭素当量Ceqが必要となる本発明の鋼板では、SiはHAZにおいてMA生成を助長する危険性が高いため、0.20%以下に抑える必要がある。HAZ靭性の観点からSiを極力低くすることが好ましく0.16%以下または0.13%以下に制限してもよい。
(Si: 0.20% or less)
Si has a deoxidizing effect, but is unnecessary when Al, which is a strong deoxidizing element, is sufficiently contained. It also has the effect of strengthening the steel sheet, but its effect is relatively small compared to other elements. In the steel sheet of the present invention that requires a relatively high carbon equivalent Ceq, Si has a high risk of promoting the formation of MA in the HAZ, so it must be suppressed to 0.20% or less. From the viewpoint of HAZ toughness, it is preferable to reduce Si as much as possible, and it may be limited to 0.16% or less or 0.13% or less.

(Mn:1.00〜2.00%)
Mnは、経済的に強度を確保するために1.00%以上の含有量が必要である。ただし、2.0%を超えてMnを含有させると、スラブの中心偏析の有害性が顕著となる上、HAZの硬化とMA生成を助長して脆化させるため、これを上限とする。強度を確保するためには、Mnを1.10%以上または1.20%以上に制限しても、HAZの硬化とMA生成を更に抑制するために、1.80%以下、1.60%以下または1.50%以下に制限してもよい。
(Mn: 1.00-2.00%)
Mn must have a content of 1.00% or more in order to economically secure strength. However, when Mn is contained in excess of 2.0%, the harmful effect of segregation of the center of the slab becomes remarkable, and the hardening of HAZ and the formation of MA are promoted to cause embrittlement, so that the upper limit is set. Even if Mn is limited to 1.10% or more or 1.20% or more to secure strength, 1.80% or less and 1.60% to further suppress HAZ curing and MA generation. Or less than 1.50%.

(Nb:0.004〜0.020%)
Nbは、制御圧延効果(熱間圧延中のオーステナイトの未再結晶温度上昇効果と再結晶抑制効果)、Bと同時添加することによる焼入れ性向上効果(Bとの複合効果)を奏することから厚手鋼板の強度と靱性を確保するために重要である。また大入熱溶接HAZで懸念される過度の軟化を抑制するためにも有効である。これらの効果を享受するためには、0.004%以上のNbを含有させる。より好ましくは、0.008%以上含有させると良い。しかし、多過ぎる添加は大入熱溶接HAZ靭性に対するNbの有害さが顕在化するため、本発明では0.020%以下の微量Nbしか含有させない。0.012%以下に抑えることがより好ましい。
(Nb: 0.004 to 0.020%)
Nb is thick because it has a controlled rolling effect (an effect of increasing the temperature of unrecrystallized austenite during hot rolling and an effect of suppressing recrystallization) and an effect of improving the hardenability by adding simultaneously with B (combined effect with B). It is important to ensure the strength and toughness of the steel sheet. It is also effective for suppressing excessive softening which is a concern in the large heat input welding HAZ. In order to enjoy these effects, 0.004% or more of Nb is contained. More preferably, the content is 0.008% or more. However, if too much is added, the harmful effect of Nb on the high heat input welding HAZ toughness becomes apparent, and therefore, only a small amount of 0.020% or less Nb is contained in the present invention. More preferably, the content is controlled to 0.012% or less.

(V:0.10%以下)
Vは、本発明の特徴的な元素である。すでに詳述したように、Vは本発明のTMCP条件において鋼板を効果的に強化する。その一方で、Vは、本発明の鋼板の溶接時に形成されるHAZの硬化やMA増加を抑えると同時に、γ中に析出させたVNやV(C,N)は変態核として作用し、HAZ組織を微細化して靭性を高める。この効果を発揮するために0.02%以上のVを用いても良い。HAZの靭性をより高めるために、Vを0.03%以上に制限することがより好ましい。しかしながら、Vが0.10%を超えると、HAZの組織微細化効果が飽和すると同時にHAZの硬化が著しくなるので、HAZ靭性が劣化する。したがって、Vの含有量を0.10%以下にする必要がある。必要に応じて、Vを0.07%以下に制限してもよい。
(V: 0.10% or less)
V is a characteristic element of the present invention. As already detailed, V effectively strengthens the steel sheet under the TMCP conditions of the present invention. On the other hand, V suppresses hardening of HAZ formed during welding of the steel sheet of the present invention and an increase in MA, and VN and V (C, N) precipitated in γ act as transformation nuclei, and HAZ. Refine the structure to increase toughness. To achieve this effect, V of 0.02% or more may be used. In order to further increase the toughness of the HAZ, it is more preferable to limit V to 0.03% or more. However, when V exceeds 0.10%, the HAZ toughening effect is saturated and the hardening of the HAZ becomes remarkable, so that the HAZ toughness deteriorates. Therefore, the V content needs to be 0.10% or less. If necessary, V may be limited to 0.07% or less.

(Al:0.0040〜0.0800%)
Alは、脱酸を担い、O(酸素)を低減して鋼の清浄度を高めるために必要である。Al以外のSi、Ti、Ca、Mg、REM等も脱酸作用があるが、たとえこれらの元素が含有される場合でも、0.0040%以上のAlがないと安定的にOを0.0050%以下に抑えることは難しい。ただし、Alが0.0800%を超えるとアルミナ系粗大酸化物がクラスター化する傾向を強め、破壊起点としての有害性が顕在化するため、これを上限とする。Alを0.0600%以下、0.0400%以下または0.0300%以下に制限することがより好ましい。
(Al: 0.0040 to 0.0800%)
Al plays a role in deoxidation, reducing O (oxygen) and increasing the cleanliness of steel. Si, Ti, Ca, Mg, REM, etc. other than Al also have a deoxidizing effect, but even if these elements are contained, O is stably added to 0.0050% if 0.0040% or more of Al is not present. It is difficult to keep it below%. However, if the Al content exceeds 0.0800%, the alumina-based coarse oxide tends to be clustered and the harmfulness as a fracture starting point becomes apparent, so this is set as the upper limit. It is more preferable to limit Al to 0.0600% or less, 0.0400% or less, or 0.0300% or less.

(B:0.0006〜0.0025%)
Bは、本発明の特徴的な元素である。すでに詳述したように、本発明では鋼板とHAZの両方において、γ中に一部を固溶Bとして存在させるとともに、一部をBNとして析出させるため、前記有効ボロン量eBを4.0以下、前記B/N比を0.20〜0.50に制御する。γ中に析出させたBNは変態核として作用し、HAZの組織微細化、硬さ低減、MA低減を通じて靭性を高める。このようなBの作用効果を有効とするために、Bを0.0006%以上含有させる必要がある。必要に応じて、Bを0.0008%以上に制限しても良い。一方、0.0025%を超えてBを含有させると、粗大なB析出物が生成してHAZ靭性が劣化するため、これを上限とする。過剰な固溶B、すなわち過度な焼入性制御とHAZ靭性向上を高位安定して両立させるため、Bを0.0015%以下に制限しても良い。
(B: 0.0006 to 0.0025%)
B is a characteristic element of the present invention. As already described in detail, in the present invention, in both the steel sheet and the HAZ, since a part of γ is present as solid solution B and a part thereof is precipitated as BN, the effective boron amount eB is 4.0 or less. , The B / N ratio is controlled to 0.20 to 0.50. The BN precipitated in γ acts as a transformation nucleus, and enhances the toughness of the HAZ by reducing the structure of the HAZ, reducing the hardness, and reducing the MA. In order to make the function and effect of B effective, it is necessary to contain B in an amount of 0.0006% or more. If necessary, B may be limited to 0.0008% or more. On the other hand, when B is contained in excess of 0.0025%, coarse B precipitates are formed and the HAZ toughness is deteriorated. Therefore, the upper limit is set. Excess solid solution B, that is, B may be limited to 0.0015% or less in order to achieve both high hardenability control and high HAZ toughness with high stability.

(Ca:0.0003〜0.0040%、;Mg:0.0003〜0.0040%)
Ca、Mgは、Bと同様に本発明の特徴的な元素である。溶鋼への添加順序を考慮しつつ、Ca、Mgをそれぞれ0.0003%以上含有させることで、CaやMgを含有する0.01μm〜0.5μmの酸化物や硫化物を1000個/mm以上確保することができる。これらの粒子は、大入熱溶接HAZのピン止め粒子となる。さらにCaやMgを含有する円相当直径で0.5〜5.0μmの酸化物や硫化物を1.00×10〜1.00×10個/mm確保することができる。
(Ca: 0.0003-0.0040%; Mg: 0.0003-0.0040%)
Ca and Mg, like B, are characteristic elements of the present invention. By taking into account the order of addition to the molten steel, 0.0003% or more of each of Ca and Mg is contained, so that oxides and sulfides of 0.01 μm to 0.5 μm containing Ca and Mg of 1000 / mm 2 are contained. The above can be secured. These particles become the pinning particles of the high heat input welding HAZ. Furthermore, 1.00 × 10 2 to 1.00 × 10 4 oxides / mm 2 containing Ca or Mg and having an equivalent circle diameter of 0.5 to 5.0 μm can be secured.

CaやMgが0.0003%未満だと、前記酸化物や硫化物の粒子の個数が不足する場合がある。CaやMgが0.0003%未満含有する場合は上述した効果が十分に得られない。一方で、CaやMgを0.0040%超含有させると、酸化物や硫化物が粗大化してピン止め粒子の個数が不足すると同時に、破壊起点としての有害性も顕著となり、良好なHAZ靭性が得られない場合がある。   If the content of Ca or Mg is less than 0.0003%, the number of the oxide or sulfide particles may be insufficient. If the content of Ca or Mg is less than 0.0003%, the above-mentioned effects cannot be sufficiently obtained. On the other hand, when Ca or Mg is contained in excess of 0.0040%, oxides and sulfides are coarsened and the number of pinning particles is insufficient, and at the same time, the harmfulness as a fracture starting point becomes remarkable, and good HAZ toughness is obtained. May not be obtained.

また、前記粒子のうち、原子%で10%以上のCaあるいはMgを含む粒子の割合が30%以上であるとフェライトの変態核として作用し、組織微細化によるHAZ靱性向上が達成できる。これらの粒子の割合は、40%以上がより好ましく、50%以上が更に好ましい。但し、原子%で10%以上のCaあるいはMgを含む粒子の割合が30%未満であると、HAZ靱性が低下する。   Further, when the proportion of particles containing 10% or more of Ca or Mg in atomic% among the above particles is 30% or more, it acts as a transformation nucleus of ferrite, and improvement in HAZ toughness due to refinement of the structure can be achieved. The ratio of these particles is more preferably 40% or more, and even more preferably 50% or more. However, if the percentage of particles containing 10% or more of Ca or Mg in atomic% is less than 30%, the HAZ toughness decreases.

(O:0.0015〜0.0040%)
Oは、0.0040%以下に抑える必要がある。Oが0.0040%を超えると、酸化物の一部が粗大化して破壊起点として有害性をもたらし、母材と大入熱溶接HAZの靭性が劣化する。一方で、γ粒のピン止め効果やフェライト変態核として十分な酸化物数を確保するためには、Oは0.0015%以上確保する必要がある。
(O: 0.0015-0.0040%)
O needs to be suppressed to 0.0040% or less. If O exceeds 0.0040%, part of the oxide becomes coarse, causing harmfulness as a fracture starting point, and the toughness of the base metal and the high heat input welding HAZ deteriorates. On the other hand, in order to secure the pinning effect of the γ grains and a sufficient number of oxides as ferrite transformation nuclei, O needs to be secured at 0.0015% or more.

(Ti:0.0030〜0.0180%; N:0.0030〜0.0080%)
Tiは、Nと結合してTiNを形成し、スラブ再加熱時とHAZでピン止め粒子として作用し、γ細粒化を介して鋼板やHAZの組織を微細化して靭性を高める。そして、TiNを形成した残りのNはBと結合してBNを形成し、さらにγ中に固溶Bを存在させ、B焼入性をも活用する。以上の効果を同時に発揮するために、Tiを0.0050〜0.0200%、Nを0.0030〜0.0080%とする必要がある。
(Ti: 0.0030 to 0.0180%; N: 0.0030 to 0.0080%)
Ti combines with N to form TiN, acts as pinning particles at the time of slab reheating and at the HAZ, refines the structure of the steel sheet or HAZ through γ refinement, and increases toughness. Then, the remaining N forming TiN combines with B to form BN, and furthermore, solute B exists in γ to utilize B hardenability. In order to simultaneously exert the above effects, it is necessary to set Ti to 0.0050 to 0.0200% and N to 0.0030 to 0.0080%.

TiとNが、それぞれ0.0030%、0.0030%に満たないと、TiNによるピン止め効果が十分に発揮されず、鋼板とHAZの靭性が劣化する。TiとNがそれぞれ0.0180%、0.0080%を超えると、TiC析出や固溶N増加によって鋼板とHAZの靭性が劣化する。Tiは0.018%以下に制限することがより好ましい。なお、N量は、含有量の前記の範囲に限定するが、前記有効ボロン量eBを制御する上で自ずと制約されるものである。   If the contents of Ti and N are less than 0.0030% and 0.0030%, respectively, the pinning effect by TiN is not sufficiently exhibited, and the toughness of the steel sheet and the HAZ deteriorates. If the contents of Ti and N exceed 0.0180% and 0.0080%, respectively, the toughness of the steel sheet and HAZ deteriorates due to the precipitation of TiC and an increase in solid solution N. More preferably, Ti is limited to 0.018% or less. The amount of N is limited to the above range of the content, but is naturally restricted in controlling the effective boron amount eB.

(有効ボロン量eB:4.0以下)
以下に、化学量論的な計算上の有効ボロン量eBの考え方を説明する。なお、以下に示す元素を含む式において、元素は、鋼中に含有されているそれぞれの元素の含有量(質量%)を表す。
(Effective boron amount eB: 4.0 or less)
Hereinafter, the concept of the effective boron amount eB in the stoichiometric calculation will be described. In the formulas including the elements shown below, the elements represent the contents (% by mass) of the respective elements contained in the steel.

化学成分として添加されたTiは、溶鋼中の脱酸で消費される場合があり(低Alの場合に起こりやすい)、脱酸後に残ったTiが凝固後のγ中でTiNを形成する。この際、Tiに対してNが過剰であると、TiNを形成した後に残ったNがBの一部と結合してBNを形成する。そして、BNを形成した残りのBが固溶Bとして焼入性を発現する。この焼入性に寄与するγ中の固溶B量を本発明では有効ボロン量(eB)として扱う。各元素の添加量、熱力学的な反応順序、生成物質の化学量論組成に基づいたeBの計算方法について以下に説明する。   Ti added as a chemical component may be consumed by deoxidation in molten steel (which is likely to occur in the case of low Al), and Ti remaining after deoxidation forms TiN in γ after solidification. At this time, if N is excessive with respect to Ti, N remaining after forming TiN is combined with a part of B to form BN. And the remaining B which formed BN expresses hardenability as solid solution B. In the present invention, the amount of solid solution B in γ that contributes to the hardenability is treated as an effective boron amount (eB). The method of calculating eB based on the addition amount of each element, the thermodynamic reaction order, and the stoichiometric composition of the product will be described below.

まず、脱酸力の高い順に、Ca、Mg、REM(希土類元素)、AlがOと結合すると仮定する。この際の脱酸生成物として、CaO、MgO、REM、Alを仮定して、脱酸されるO量を計算する。 First, it is assumed that Ca, Mg, REM (rare earth element), and Al bond with O in descending order of deoxidizing power. Assuming CaO, MgO, REM 2 O 3 , and Al 2 O 3 as deoxidation products at this time, the amount of O to be deoxidized is calculated.

Tiよりも脱酸力の強いこれらの元素によって脱酸が完了しない場合、これらの強脱酸元素による脱酸後に残存し、弱脱酸元素であるTiによって脱酸され得る残存酸素量OTi(%)は、下記式(6)で表される。
OTi(%)=O−0.4×Ca−0.66×Mg−0.17×REM−0.89×Al ・・・ (6)
ただし、式(6)に示す元素は、鋼中に含有されているそれぞれの元素の含有量(質量%)とし、不可避的不純物扱いの成分元素も計算に含める。また、OTiが0%以下の場合、残存酸素量OTiを0%とみなす。
If deoxidation is not completed by these elements having a stronger deoxidizing power than Ti, the residual oxygen amount OTi (%) which remains after deoxidation by these strongly deoxidized elements and can be deoxidized by Ti which is a weak deoxidized element. ) Is represented by the following equation (6).
Oti (%) = O−0.4 × Ca−0.66 × Mg−0.17 × REM−0.89 × Al (6)
However, the elements shown in the formula (6) are the contents (% by mass) of the respective elements contained in the steel, and the component elements treated as inevitable impurities are also included in the calculation. When the Oti is 0% or less, the residual oxygen amount Oti is regarded as 0%.

この場合、残った酸素(つまり、OTi)をTiが脱酸することになる。なお、意図的に添加してない不可避的不純物扱いの脱酸に寄与する成分元素も酸素と結合する。残存酸素量OTiはTiによって脱酸され得る残存酸素量であり、Tiと結合してTiを形成する。このとき3個のOに対して2個のTiが結合する。したがって、Tiを質量%で考えると、Oの原子量は16なので、Oが3個で48である。また、Tiの原子量は48なので、Tiが2個で96である。よって、Tiを構成するTiはO(ここではOTi)の2倍の質量と計算される。これが脱酸で消費されるTiの量である。そこで、Tiを仮定して、脱酸で消費されるTiを差し引いた残りのチタン量である有効チタン量:eTiは、下記式(5)で表される。 In this case, Ti deoxidizes the remaining oxygen (that is, Oti). Note that component elements that are not intentionally added and contribute to deoxidation treated as inevitable impurities also combine with oxygen. The residual oxygen amount OTi is the residual oxygen amount that can be deoxidized by Ti, and combines with Ti to form Ti 2 O 3 . At this time, two Tis are bonded to three Os. Therefore, considering Ti 2 O 3 in terms of mass%, the atomic weight of O is 16, so that the number of O is 48 for three. In addition, since the atomic weight of Ti is 48, it is 96 for two Tis. Therefore, Ti constituting Ti 2 O 3 is calculated to have twice the mass of O (here, OTi). This is the amount of Ti consumed in deoxidation. Therefore, assuming Ti 2 O 3 , the effective titanium amount: eTi, which is the remaining titanium amount after subtracting the Ti consumed in the deoxidation, is represented by the following equation (5).

eTi=Ti−2×OTi ・・・ (5)
また、式(5)に示す元素は、鋼中に含有されているそれぞれの元素の含有量(質量%)とし、不可避的不純物として混入した元素も計算に含める。また、式(6)によって与えられるOTiが0以下の場合、式(5)において、OTiに0を代入する。
eTi = Ti−2 × OTi (5)
The elements shown in the formula (5) are the contents (% by mass) of the respective elements contained in the steel, and the elements mixed as unavoidable impurities are also included in the calculation. If the value of Oti given by Expression (6) is 0 or less, 0 is substituted for Oti in Expression (5).

このeTiが、HAZ靭性改善効果があるTiNを生成するTi量となる。 脱酸で残ったTiがTiNを形成した後に残存する窒素量f-Nは、下記式(3)で表される。
f-N=10000×(N−eTi×14/48)≒ 10000×(N−eTi/3.4) ・・・(3)
ここで、f-Nが正の値の場合には窒素が残存していることを、f-Nが0または負の値の場合にはNが残存していないことを意味する。
f-N>0の場合:Nが残る
f-N≦0の場合:Nが残らない
This eTi is the amount of Ti that produces TiN having an HAZ toughness improving effect. The amount of nitrogen fN remaining after Ti remaining after deoxidation forms TiN is represented by the following formula (3).
fN = 10000 × (N-eTi × 14/48) ≒ 10000 × (N-eTi / 3.4) (3)
Here, when fN is a positive value, it means that nitrogen remains, and when fN is 0 or a negative value, it means that N does not remain.
When f-N> 0: N remains f-N≤0: N does not remain

また、f-Nが0より大きくなる場合、つまり窒素が残存している場合は、Bの一部がBNとして消費されるので、下記式(4)によって有効ボロン量eBが計算される。
eB=10000×(B−10.8/14×(N−eTi×14/48))
≒ 10000×〔B−0.77×{N−0.29×(Ti−2×OTi)}〕 ・・・(4)
When fN is larger than 0, that is, when nitrogen remains, a part of B is consumed as BN. Therefore, the effective boron amount eB is calculated by the following equation (4).
eB = 10000 × (B-10.8 / 14 × (N-eTi × 14/48))
{10000 × [B-0.77 × {N−0.29 × (Ti−2 × OTi)}} (4)

また、f-Nが0または負の値となって窒素が残らない場合は、鋼板とHAZの両方において、γ中のBの一部をBNとして析出させることができない。そのため、γ中のB析出物とV析出物を変態核として同時に利用することができず、溶接入熱量>100kJ/mmの超大入熱溶接の冷却中にγ粒界やγ粒内にBN、VNを析出させることができず、フェライトのみならずベイナイトの変態核が欠乏し、HAZ組織を微細化させることができない。本発明において、HAZ組織を微細化させる効果を得るためには、f-Nは10.0以上である必要がある。   When fN is 0 or a negative value and no nitrogen remains, a part of B in γ cannot be precipitated as BN in both the steel sheet and the HAZ. Therefore, B precipitates and V precipitates in γ cannot be simultaneously used as transformation nuclei, and BN, γ, and γ are present in the γ grain boundaries and γ grains during the cooling of ultra-high heat input welding with a heat input of> 100 kJ / mm. VN cannot be precipitated, and transformation nuclei of bainite as well as ferrite are deficient, and the HAZ structure cannot be refined. In the present invention, fN needs to be 10.0 or more in order to obtain the effect of refining the HAZ structure.

次に、上述した残存酸素量OTiの式(6)におけるCa、Mg、REM、Alの係数について述べると、溶鋼中での脱酸反応(酸化反応)による生成物(酸化物)としてCaO、MgO、REM、Alを仮定し、これらの酸化物として存在するO量を質量%で計算する。例えば、CaOの場合、原子量はCaが40でOが16であるから、Caの質量%に対して16/40=0.4のOが結合する(CaO中のO量(質量%)=0.4Ca)。Alであれば、原子量はAlが27でOが16であるから、Alの質量%に対して(16×3)/(27×2)=0.89のOが結合する(Al中のO量(質量%)=0.89Al)。以下同様の計算概念として、上述のOTi式(6)の各元素の係数(0.66:Mg、0.17:REM)を規定した。 Next, regarding the coefficients of Ca, Mg, REM, and Al in the above formula (6) of the residual oxygen amount Oti, CaO, MgO are produced as products (oxides) by deoxidation reaction (oxidation reaction) in molten steel. , REM 2 O 3 and Al 2 O 3 are assumed, and the amount of O present as these oxides is calculated in mass%. For example, in the case of CaO, since the atomic weight is 40 and O is 16, O of 16/40 = 0.4 is bonded to the mass% of Ca (the O content (% by mass) in CaO = 0). .4Ca). In the case of Al 2 O 3 , since the atomic weight is 27 and O is 16, O of (16 × 3) / (27 × 2) = 0.89 is bonded to the mass% of Al (Al O content in 2 O 3 (% by mass) = 0.89 Al). Hereinafter, as a similar calculation concept, the coefficients (0.66: Mg, 0.17: REM) of each element of the above-mentioned OTi formula (6) are defined.

また、有効ボロン量eBの導出式の概念を、低温側から高温側に遡って示すと以下のようになる。
有効ボロン量eB=10000×(成分B量−(生成したBN中のB量(質量%)))
→生成したBN中のB量(質量%)=0.77×{成分N量−(生成したTiN中のN量(質量%)}
→生成したTiN中のN量(質量%)=0.29×{(成分Ti量−(生成したTi中のTi量(質量%)}
→生成したTi中のTi量(質量%)=2×{鋼中のO量−(生成したCaO中のO量(質量%))−(生成したMgO中のO量(質量%))−(生成したREM中のO量(質量%)}−(生成したAl中のO量(質量%))}
→(生成したCaO中のO量(質量%))=0.4×Ca
→(生成したMgO中のO量(質量%))=0.66×Mg
→(生成したREM中のO量(質量%))=0.17×REM
→(生成したAl中のO量(質量%))=0.89×Al
In addition, the concept of the derivation formula of the effective boron amount eB is as follows when retroactively shown from the low temperature side to the high temperature side.
Effective boron amount eB = 10000 × (component B amount- (B amount in generated BN (% by mass)))
→ Amount of B in generated BN (mass%) = 0.77 × {amount of component N− (amount of N in generated TiN (mass%)}
→ N amount (mass%) in generated TiN = 0.29 × {(component Ti amount− (Ti amount (mass%) in generated Ti 2 O 3 )}
→ Ti content (mass%) in generated Ti 2 O 3 = 2 × 2O content in steel− (O content in generated CaO (mass%)) − (O content in generated MgO (mass%) ))-(O content (mass%) in generated REM 2 O 3 {-(O content (mass%) in generated Al 2 O 3 )}
→ (O content (% by mass) in generated CaO) = 0.4 × Ca
→ (O content (% by mass) in generated MgO) = 0.66 × Mg
→ (O content (mass%) in the generated REM 2 O 3 ) = 0.17 × REM
→ (O content (% by mass) in generated Al 2 O 3 ) = 0.89 × Al

次に、有効ボロン量eBの導出式の概念を、高温側から低温側への反応順に示すと以下のようになる。すなわち、製鋼での精錬→凝固工程において、以下の順で反応する。   Next, the concept of the derivation formula of the effective boron amount eB is shown as follows in the order of reaction from the high temperature side to the low temperature side. That is, in the refining → solidification process in steelmaking, the following reactions occur.

[液相(溶鋼中)での脱酸反応(1600℃付近)]
Oとの化学的親和力の強い順にCaO→MgO→REM→Alの反応が生じ、溶鋼中の溶存Oが減少していく。これで脱酸が完了する場合は、OTi≦0で表される。脱酸が完了せずに溶存Oが残る場合は、OTi>0、eTi=Ti−2OTiで表され、Alより弱脱酸元素であるTiがTiとして脱酸に寄与し、Ti含有量から脱酸で消費されたTi量(生成したTi中のTi量)を差し引いた残りが有効チタン量eTiとなる。
[Deoxidation reaction in liquid phase (in molten steel) (around 1600 ° C)]
The reaction of CaO → MgO → REM 2 O 3 → Al 2 O 3 occurs in the order of strong chemical affinity with O, and the dissolved O in the molten steel decreases. When deoxidation is completed by this, it is represented by OTi ≦ 0. In the case where dissolved O remains without deoxidation being completed, it is represented by OTi> 0 and eTi = Ti-2OTi, and Ti which is a weaker deoxidizing element than Al contributes to deoxidation as Ti 2 O 3 and contains Ti. The remaining amount obtained by subtracting the amount of Ti consumed by deoxidation (the amount of Ti in the generated Ti 2 O 3 ) from the amount is the effective titanium amount eTi.

[固相(凝固γ中)での脱窒反応(1300℃付近〜800℃付近)]
Nとの化学的親和力の強い順にTiN→BN→AlNの反応が生じ、固相γ中の固溶Nが減少していく。まず、脱酸で消費された残りのTiが脱窒反応を起こす。これで脱窒が完了する場合は、f-N≦0で表され、γ中に固溶Nが存在しないので、BがBNを形成せずにすべてが固溶Bとして存在する。一方、Tiによって脱窒が完了せず、固溶Nが残る場合は、f-N>0で表され、Bの一部がBNを生成して残りが固溶Bとなる。
[Denitrification reaction in solid phase (in solidification γ) (around 1300 ° C to 800 ° C)]
The reaction of TiN → BN → AlN occurs in the order of increasing chemical affinity with N, and the amount of solute N in the solid phase γ decreases. First, the remaining Ti consumed in the deoxidation causes a denitrification reaction. When denitrification is completed by this, it is expressed by fN ≦ 0, and there is no solid solution N in γ, so that B does not form BN and all exist as solid solution B. On the other hand, when the denitrification is not completed by Ti and solid solution N remains, it is expressed by fN> 0, and a part of B forms BN and the remainder becomes solid solution B.

一方、Tiよりも脱酸力の強い元素によって脱酸が完了する場合には、Tiは脱酸では消費されず、OTi≦0となる。この場合、OTi=0として、上記式(5)からeTiを算出して、得られたeTi値を上記式(5)に代入することにより、f-Nを算出する。また、OTi≦0の場合、上記式(4)においてOTi=0を代入して、eBの値を算出する。   On the other hand, when the deoxidation is completed by an element having a stronger deoxidizing power than Ti, Ti is not consumed in the deoxidation, and Oti ≦ 0. In this case, fTi is calculated by calculating eTi from the above equation (5), assuming that Oti = 0, and substituting the obtained eTi value into the above equation (5). In the case of Oti ≦ 0, the value of eB is calculated by substituting Oti = 0 in the above equation (4).

脱酸で消費された残りのTiがTiNを形成し、且つNが残る場合、f-N>0となる。この場合のeBは下記式で計算される。
eB=10000×{B−0.77×(N−0.29×eTi)}
If the remaining Ti consumed in the deoxidation forms TiN and N remains, fN> 0. The eB in this case is calculated by the following equation.
eB = 10000 × {B−0.77 × (N−0.29 × eTi)}

f-N≦0の場合、脱酸で消費された残りのTiがTiNを形成し、Nが残らない。このような場合、NはすべてTiNで固定され、γ素地中に固溶Nは存在しないので、鋼板とHAZの両方において、γ中のBの一部をBNとして析出させることができない。そのため、前述したように、HAZ組織を微細化させることができない。本発明において、HAZ組織を微細化させる効果を得るためには、f-Nは10.0以上である必要がある。   When fN ≦ 0, the remaining Ti consumed in the deoxidation forms TiN, and no N remains. In such a case, all of N is fixed by TiN, and no solid solution N exists in the γ-base, so that a part of B in γ cannot be precipitated as BN in both the steel sheet and the HAZ. Therefore, as described above, the HAZ structure cannot be refined. In the present invention, fN needs to be 10.0 or more in order to obtain the effect of refining the HAZ structure.

不可避的不純物元素のうち、P、S及びOの含有量は下記のように制限される。
(P:0.020%以下)
Pは、不純物元素であり、良好な脆性破壊伝播停止特性とHAZの靭性を安定的に確保するために、0.020%以下に低減する必要がある。
Among the unavoidable impurity elements, the contents of P, S and O are limited as follows.
(P: 0.020% or less)
P is an impurity element and needs to be reduced to 0.020% or less in order to stably secure good brittle fracture propagation stop characteristics and HAZ toughness.

(S:0.010%以下)
Sは、0.010%以下に抑える必要がある。Sが0.010%を超えると、硫化物の一部が粗大化して破壊起点として有害性をもたらし、鋼板とHAZの靭性が劣化する。靭性向上のため、Sを0.004%以下または0.003%以下に制限してもよい。
(S: 0.010% or less)
S needs to be suppressed to 0.010% or less. When S exceeds 0.010%, a part of the sulfide is coarsened to cause harm as a fracture starting point, and the toughness of the steel sheet and the HAZ deteriorates. For improving toughness, S may be limited to 0.004% or less or 0.003% or less.

本発明の鋼板には、選択元素成分として、Cu、Ni、Cr、Mo、REM及びZrのうちの1種または2種以上を下記の含有量にて含有しても良い。   The steel sheet of the present invention may contain one or more of Cu, Ni, Cr, Mo, REM, and Zr as selective element components in the following content.

(Ni:0.10〜1.00%)
Niは、靭性の劣化を抑えて強度を確保するために有効である。そのためには0.10%以上のNiを含有させることが好ましい。しかしながら、Niは合金コストが非常に高い上に、表面疵の手入れ工程が発生するという問題がある。したがって、Niは1.00%以下に抑える。また、Niの含有量は極力低くすることが好ましく、0.70%以下、0.50%以下または0.30%以下に制限しても良い。
(Ni: 0.10-1.00%)
Ni is effective for suppressing deterioration of toughness and securing strength. For that purpose, it is preferable to contain 0.10% or more of Ni. However, Ni has a problem that the alloy cost is extremely high and a step of repairing surface flaws occurs. Therefore, Ni is suppressed to 1.00% or less. The Ni content is preferably as low as possible, and may be limited to 0.70% or less, 0.50% or less, or 0.30% or less.

(Cu:0.10〜1.00%; Cr:0.03〜0.80%; Mo:0.03〜0.40%)
Cu、Cr、Moは、強度を確保するために有効であり、その効果を享受するため少なくともCu:0.10%以上、Cr及びMo:0.03%以上の含有が必要である。一方、HAZ靭性を劣化させる観点から、それぞれ1.00%、0.80%、0.40%が上限である。MoはNi同様に高価な元素であり、さらにHAZのMA生成を助長する危険性も高いので、Moの含有量はNi同様に極力低くすることが好ましい。HAZ靭性向上のため、Cu、Crを0.50%以下または0.30%以下に、Moを0.30%以下または0.1%以下に制限しても良い。
(Cu: 0.10 to 1.00%; Cr: 0.03 to 0.80%; Mo: 0.03 to 0.40%)
Cu, Cr and Mo are effective for securing the strength, and in order to enjoy the effect, it is necessary to contain at least Cu: 0.10% or more and Cr and Mo: 0.03% or more. On the other hand, from the viewpoint of deteriorating HAZ toughness, the upper limits are 1.00%, 0.80%, and 0.40%, respectively. Mo is an expensive element like Ni and has a high risk of promoting the formation of HAZ in MA. Therefore, it is preferable that the content of Mo be as low as possible like Ni. In order to improve the HAZ toughness, Cu and Cr may be limited to 0.50% or less or 0.30% or less, and Mo may be limited to 0.30% or less or 0.1% or less.

(REM:0.0003〜0.0100%; Zr:0.0003〜0.0100%)
REM及びZrは、脱酸と脱硫に関与して、中心偏析部の粗大な延伸MnSの生成を抑えて硫化物を球状無害化し、鋼板とHAZの靭性を改善する。これらの効果を発揮するためには、REM及びZrの含有量の下限はいずれも0.0003%である。ただし、含有量を増やしても効果は飽和するため、経済性の観点から上限はいずれも0.0100%である。なお、本発明で含有するREMとは、LaやCeなどのランタノイド系元素と、スカンジウム、イットリウムである。
なお、鋼成分の残部はFeおよび不可避不純物である。
(REM: 0.0003-0.0100%; Zr: 0.0003-0.0100%)
REM and Zr are involved in deoxidation and desulfurization, suppress generation of coarse stretched MnS in the central segregation portion, render sulfides spherical and harmless, and improve the toughness of the steel sheet and HAZ. In order to exhibit these effects, the lower limits of the contents of REM and Zr are both 0.0003%. However, since the effect is saturated even if the content is increased, the upper limit is 0.0100% in all cases from the viewpoint of economy. The REM contained in the present invention includes lanthanoid elements such as La and Ce, and scandium and yttrium.
The balance of the steel component is Fe and inevitable impurities.

(鋼板の金属組織)
本発明の鋼板は、板厚中心から両面方向へ板厚1/4厚みにおける金属組織が、フェライトを面積率で3%〜20%又は15度大角粒径が85μm以下かつアスペクト比が1.8以上の旧オーステナイト粒からなる層を含むことが好ましい。
(Metal structure of steel sheet)
In the steel sheet of the present invention, the metal structure at a thickness of 1/4 from the center of the thickness from the center of the thickness to the both sides has a ferrite area ratio of 3% to 20% or a 15-degree large-angle grain size of 85 μm or less and an aspect ratio of 1.8. It is preferable to include a layer composed of the above-mentioned prior austenite grains.

15度大角粒径とは、隣接粒との方位差が15度以上である場合を大角粒界と定義して測定した円相当直径の平均値と定義する。結晶方位の測定にはEBSD(電子線後方散乱回折)法などを用いる。アスペクト比とは、15度大角粒を楕円近似した際の長径を短径で除した値を意味する。   The 15-degree large-angle grain size is defined as the average value of the circle-equivalent diameter measured by defining a case where the azimuth difference between adjacent grains is 15 degrees or more as a large-angle grain boundary. An EBSD (Electron Beam Backscatter Diffraction) method or the like is used for measuring the crystal orientation. The aspect ratio means a value obtained by dividing a major axis by a minor axis when a 15-degree large-angle grain is approximated by an ellipse.

鋼の靱性は、母相の硬度が低く、結晶粒径が細粒であるほど良好である。0℃のシャルピー吸収エネルギーを満足するためには、フェライト面積率が3〜20%存在し、低硬度にする必要がある。ただしフェライト面積率が20%超存在すると、引張強度を確保することができなくなる。15度大角粒径を85μm以下とすることで、0℃のシャルピー吸収エネルギーを満足するのに十分な細粒組織が得られる。旧オーステナイト粒のアスペクト比が1.8以上とすることで、その後の相変態により、15度大角粒径が85μm以下の場合と同等の細粒化効果が得られる。   The toughness of steel is better as the hardness of the matrix is lower and the crystal grain size is finer. In order to satisfy the Charpy absorbed energy of 0 ° C., the ferrite area ratio is required to be 3 to 20% and low in hardness. However, if the ferrite area ratio exceeds 20%, it becomes impossible to secure the tensile strength. By setting the 15-degree large-angle particle size to 85 μm or less, a fine-grained structure sufficient to satisfy the Charpy absorbed energy at 0 ° C. can be obtained. By setting the aspect ratio of the prior-austenite grains to 1.8 or more, the same phase-reducing effect as in the case where the 15-degree large-angle grain size is 85 μm or less can be obtained by the subsequent phase transformation.

(本発明の鋼板の製造方法)
本発明の鋼板の製造方法では、TMCP条件の精緻な制御と、有効ボロン量eBを4.0以下、B/N比を0.20〜0.50に制御することでγ中に焼入性に寄与する固溶Bと変態核として寄与する析出B(BN)を併用して、高強度と細粒化効果による高靭性に同時に達成することができる。すなわち、固溶Bにより母材およびHAZのγ粒界からの粒界フェライト粗大化を抑制する一方、HAZではBNを析出させて、微細な粒内変態フェライト生成核とする。これらを組み合わせて母材の高強度化およびHAZ組織全体の細粒化、靱性向上の両立を図る。
(Method for producing steel sheet of the present invention)
In the method for producing a steel sheet according to the present invention, the quenchability in γ is controlled by precisely controlling the TMCP conditions and controlling the effective boron amount eB to 4.0 or less and the B / N ratio to 0.20 to 0.50. , And high precipitation and high toughness due to the effect of grain refinement can be simultaneously achieved. In other words, while solid solution B suppresses coarsening of grain boundary ferrite from the γ grain boundary of the base material and HAZ, BN precipitates in HAZ to form fine intragranular transformed ferrite generation nuclei. By combining these, it is possible to achieve both high strength of the base material, fine graining of the entire HAZ structure, and improvement of toughness.

また、本発明の鋼板の製造方法のTMCP条件では、V添加が極めて有効な強化手段である。これは、鋼成分(Ceq)とTMCP条件を適正化して得られるベイナイト組織が加速冷却や焼戻処理においてV炭化物(VC、V等)が微細高密度に析出する素地として好適なためである。 Further, under the TMCP conditions in the method for producing a steel sheet of the present invention, V addition is an extremely effective strengthening means. This is because the bainite structure obtained by optimizing the steel component (Ceq) and the TMCP conditions is suitable as a base on which V carbides (VC, V 4 C 3 etc.) precipitate at a high density in accelerated cooling or tempering. It is.

本発明の鋼板の製造方法としては、前記した鋼成分のスラブは950℃以上1200℃以下に加熱して、板厚中心部の特性を改善し、オーステナイトの再結晶を促進するため1パス当たり8%以上の圧下率にて160〜80mmに圧延する必要がある。   According to the method for producing a steel sheet of the present invention, the slab of the steel component is heated to 950 ° C. or more and 1200 ° C. or less to improve the properties at the center of the sheet thickness and promote recrystallization of austenite by 8% per pass. It is necessary to roll to 160 to 80 mm at a rolling reduction of at least%.

950℃未満の低温加熱では、凝固偏析した合金元素が十分に固溶せず析出物のまま残存する懸念があり、圧延後の加速冷却時において合金元素による焼入性が十分に発揮されず、強度を安定的に確保するのが難しい。一方、1200℃を超える高温加熱だと、γ粒が著しく粗大化し、圧延によってもγ粒の細粒化が不十分となり、靭性を安定的に確保するのが難しい。   At a low-temperature heating of less than 950 ° C., there is a concern that the solidified and segregated alloy element does not form a solid solution and remains as a precipitate, and hardenability by the alloy element is not sufficiently exhibited during accelerated cooling after rolling. It is difficult to secure strength stably. On the other hand, if the heating is performed at a high temperature exceeding 1200 ° C., the γ grains are remarkably coarsened, and the γ grains are insufficiently refined even by rolling, and it is difficult to stably maintain the toughness.

前記圧延されたスラブに対して、表面温度820℃未満あるいは未再結晶温度範囲で最終板厚まで制御圧延を行う。未再結晶温度域で圧延することにより、オーステナイトに加工歪みが蓄積し、変態後のαが微細になるため、強度靱性を向上できる。しかし、700℃未満の低温圧延を行うと、水冷開始前にγから多くのαが生成して鋼板の強度が大幅に低下するため、限定されたCeq下で強度を安定的に確保するのが難しい。また、累積圧下率を高めることによってαが細粒化するので、鋼板の靱性を向上させる効果がある。   Control rolling is performed on the rolled slab to a final thickness at a surface temperature of less than 820 ° C. or in a non-recrystallization temperature range. By rolling in the non-recrystallization temperature range, work strain is accumulated in austenite, and α after transformation becomes fine, so that strength toughness can be improved. However, when low-temperature rolling at a temperature lower than 700 ° C. is performed, a large amount of α is generated from γ before the start of water cooling, and the strength of the steel sheet is significantly reduced. Therefore, it is necessary to stably secure the strength under a limited Ceq. difficult. Further, by increasing the cumulative draft, α becomes finer, so that there is an effect of improving the toughness of the steel sheet.

圧延終了後、速やかに、鋼表面温度が700℃以上から300℃以下まで2℃/s〜15℃/sの加速冷却にて前記鋼板を冷却する。700℃超で圧延終了後、冷却開始までの時間が長時間化し、加速冷却の開始が700℃未満となった場合、加速冷却開始までの間にγ再結晶粒が成長して、室温での結晶粒径が粗大化し、靭性が劣化する懸念が生じる。一方、加速冷却を300℃より高温で停止すると、本発明が対象とする板厚40mm以上では、鋼板内部が十分冷却されないために変態が完了せず、加速冷却終了後は未変態部が放冷、すなわち徐冷されることになるため、ベイナイト組織分率が少なくなって強度が不足する。加速冷却においては、0.3m/m/min以上の水量密度を確保することが、強度と靭性を両立するために好ましい。 Immediately after the rolling is completed, the steel sheet is cooled by accelerated cooling at a temperature of 2 ° C./s to 15 ° C./s from a steel surface temperature of 700 ° C. or more to 300 ° C. or less. After rolling at over 700 ° C., the time until the start of cooling is prolonged, and when the start of accelerated cooling is less than 700 ° C., γ-recrystallized grains grow before the start of accelerated cooling, and There is a concern that the crystal grain size becomes coarse and the toughness is deteriorated. On the other hand, when the accelerated cooling is stopped at a temperature higher than 300 ° C., the transformation is not completed because the inside of the steel sheet is not sufficiently cooled, and the untransformed portion is left to cool after the completion of the accelerated cooling when the thickness of the steel sheet is 40 mm or more. That is, since it is gradually cooled, the bainite structure fraction decreases and the strength becomes insufficient. In the accelerated cooling, it is preferable to ensure a water density of 0.3 m 3 / m 2 / min or more in order to achieve both strength and toughness.

加速冷却後に350〜700℃で5〜60分の焼戻熱処理をおこなうことにより、製造コストは上昇するものの、強度や伸び、シャルピー衝撃特性を、高精度で所定の範囲に制御できる。焼戻熱処理の温度や時間が350℃未満や5分未満など不完全であると、十分な焼戻効果が発揮されない。また、焼戻熱処理の温度や時間が700℃超えや60分超えなど過剰であると、析出物の粗大化などを通じて強度低下とシャルピー衝撃特性劣化し、適正な機械的性質が得られない。   By performing a tempering heat treatment at 350 to 700 ° C. for 5 to 60 minutes after the accelerated cooling, the strength, elongation and Charpy impact characteristics can be controlled within a predetermined range with high accuracy, although the production cost is increased. If the temperature or time of the tempering heat treatment is incomplete such as less than 350 ° C. or less than 5 minutes, a sufficient tempering effect cannot be exhibited. On the other hand, if the temperature and time of the tempering heat treatment are excessive, such as exceeding 700 ° C. or exceeding 60 minutes, the strength is reduced and the Charpy impact characteristics are degraded due to coarsening of precipitates, and proper mechanical properties cannot be obtained.

以下、本発明に係る鋼板の実施例を挙げ、本発明をより具体的に説明するが、本発明は、もとより下記実施例に限定されるものではなく、前、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれるものである。   Hereinafter, the present invention will be described in more detail with reference to Examples of the steel sheet according to the present invention. However, the present invention is not limited to the following Examples, and a range that can conform to the purpose of the preceding and the following. It is also possible to implement the present invention with appropriate modifications, and all of them are included in the technical scope of the present invention.

(サンプル作製)
製鋼工程において溶鋼の脱酸・脱硫と鋼成分を制御し、連続鋳造によって表1−1〜1−3に示す鋼組成を有する鋼No.1〜33のスラブを作製した。そして、前記スラブを表2−1の項目「加熱温度」に示す温度に加熱し、1パス当たり8%以上の圧下率にて最小板厚120mmまで圧延した。次いで、圧延された各スラブに対して、項目「板厚(mm)」の板厚になるまで熱間圧延を行った。
(Sample preparation)
In the steelmaking process, the deoxidation and desulfurization of the molten steel and the steel composition were controlled, and the steel No. having the steel composition shown in Tables 1-1 to 1-3 by continuous casting. 1-33 slabs were produced. Then, the slab was heated to the temperature shown in the item “heating temperature” in Table 2-1 and rolled to a minimum thickness of 120 mm at a rolling reduction of 8% or more per pass. Next, hot rolling was performed on each of the rolled slabs until the thickness of the item “plate thickness (mm)” was reached.

表2−1の項目「板厚(mm)」の板厚が得られた時の熱間圧延温度、すなわち、熱間圧延の仕上圧延温度は、表2−1の項目「仕上圧延温度(℃)」である。熱間圧延の仕上圧延後、表2−1に示される「水冷開始温度(℃)」から「水冷停止温度(℃)」まで、発明例1〜17及び比較例1〜17の熱間圧延終了後の鋼板に対して、2℃/s〜15℃/sの冷却速度にてそれぞれ加速冷却を行った。   The hot rolling temperature at the time when the sheet thickness of the item “sheet thickness (mm)” in Table 2-1 was obtained, that is, the finish rolling temperature of the hot rolling, is shown in the item “finish rolling temperature (° C.) of Table 2-1. ) ". After finish rolling of hot rolling, hot rolling of Invention Examples 1 to 17 and Comparative Examples 1 to 17 was completed from “water cooling start temperature (° C.)” to “water cooling stop temperature (° C.)” shown in Table 2-1. The subsequent steel plate was subjected to accelerated cooling at a cooling rate of 2 ° C./s to 15 ° C./s, respectively.

なお、本発明に係る鋼材に含まれる粒子の円相当直径、個数密度、Ca、Mgを原子%で10%以上含む粒子の個数割合は、電子顕微鏡を用いた画像解析により決定した。具体的には、FE−SEM(電界放射型走査電子顕微鏡、Field Emission Scanning Electron Microscope))で観察可能な粒子のうち、Ca、Mgを含む粒子の割合を計測した。粒子にCa、Mgが含まれているかどうかは、エネルギー分散型X線元素分析装置(EDS)によって判定すればよい。粒子におけるCa、Mgの濃度は、EDSの面分析にて介在物全体の平均を定量して求めた。この定量時に使用する電子ビーム径は0.0001〜1.0μm、SEM観察倍率は1000〜10000倍とし、粒子内の任意の位置を定量した。   The equivalent circle diameter and the number density of the particles contained in the steel material according to the present invention, and the number ratio of the particles containing 10% or more by atomic% of Ca and Mg were determined by image analysis using an electron microscope. Specifically, the proportion of particles containing Ca and Mg was measured among particles observable by FE-SEM (Field Emission Scanning Electron Microscope). Whether Ca and Mg are contained in the particles may be determined by an energy dispersive X-ray element analyzer (EDS). The Ca and Mg concentrations in the particles were determined by quantifying the average of the entire inclusions by EDS surface analysis. The electron beam diameter used in this quantification was 0.0001 to 1.0 μm, and the SEM observation magnification was 1,000 to 10,000 times, and an arbitrary position in the particle was quantified.

粒子個数の測定方法は、鋼材から抽出レプリカを作成し、エネルギー分散型X線元素分析装置(EDS)付きのFE−SEMで、円相当直径が0.5〜5.0μmの大きさの粒子個数を、少なくとも1000μm以上の面積につき測定し、単位面積当たりの個数に換算した。例えば、2万倍の倍率にて1視野を100μm×80μmとして観察した場合、1視野あたりの観察面積は20μmであるから少なくとも50視野につき観察を行う。この時の0.5〜5.0μmの粒子の個数が50視野(1000μm)で100個であれば、粒子個数は1平方mmあたり1×10個と換算できる。 The method of measuring the number of particles is as follows: an extraction replica is prepared from a steel material, and the number of particles having a circle equivalent diameter of 0.5 to 5.0 μm is measured with an FE-SEM equipped with an energy dispersive X-ray element analyzer (EDS) Was measured for an area of at least 1000 μm 2 and converted to the number per unit area. For example, when one field of view is observed at 100,000 × 80 μm at a magnification of 20,000 ×, the observation area per one field of view is 20 μm 2 , so that observation is performed for at least 50 fields of view. If the number of particles of 0.5 to 5.0 μm at this time is 100 in 50 visual fields (1000 μm 2 ), the number of particles can be converted to 1 × 10 5 per square mm.

本発明例1〜17の鋼板及び比較例1〜17の鋼板を用いて、溶接入熱100kJ/mm超のエレクトロスラグ溶接(ESW)により角形柱を製造した。それぞれの鋼板から得られた角形柱の平面部から測定用試料を切り出し、降伏強度、引張強度、降伏比(YR(%))及び0℃シャルピー吸収エネルギーを測定した。この測定結果を表3−1及び3−2に示す。また、それぞれの鋼板から得られた角形柱の平面部について、板厚中心から両面方向へ板厚1/4厚みにおける金属組織を測定した。この結果を表3−1及び3−2の「鋼板断面の金属組織」の欄に示す。尚、「パンケーキ厚み(μm)」の項目は、板厚1/4厚みにおける金属組織における旧オーステナイト粒からなる組織の厚みである。また、項目「0.5〜5.0μm粒子個数密度」及び項目「10原子%以上Ca、Mg含有粒子の割合」は、前述したように電子顕微鏡を用いた画像解析による決定手法によって得られた測定値である。   Using the steel sheets of Examples 1 to 17 of the present invention and the steel sheets of Comparative Examples 1 to 17, square columns were manufactured by electroslag welding (ESW) with a welding heat input of more than 100 kJ / mm. Samples for measurement were cut out from the flat portions of the rectangular columns obtained from the respective steel plates, and the yield strength, tensile strength, yield ratio (YR (%)), and Charpy absorbed energy at 0 ° C. were measured. The measurement results are shown in Tables 3-1 and 3-2. Further, the metallographic structure of the flat portion of the rectangular column obtained from each of the steel plates was measured at a plate thickness of 1/4 thickness from both sides in the direction from the center of the plate thickness. The results are shown in Table 3-1 and 3-2 in the column of "metal structure of steel plate cross section". The item of “pancake thickness (μm)” is the thickness of the structure composed of old austenite grains in the metal structure at a 板 thickness. In addition, the item “0.5 to 5.0 μm particle number density” and the item “Ratio of particles containing 10 atomic% or more of Ca and Mg” are measured values obtained by a determination method by image analysis using an electron microscope as described above. is there.

鋼成分、製造条件とも本発明が限定する範囲にある本発明例1〜17の鋼板は、表2−2に示すように、鋼板の強度(降伏強度、引張強度)・靭性はもとより、溶接入熱100kJ/mm超のエレクトロスラグ溶接(ESW)により製造された角形柱のHAZ部の靭性もきわめて良好であることが確認された。本発明例5は、Ceqが上限近くであり且つPcmが下限近くの組成の鋼板No.5が用いられているが、加速冷却後に350〜700℃で5〜60分の焼戻熱処理が行われているので、鋼板の機械的特性及びHAZ靱性は良好であった。   As shown in Table 2-2, the steel sheets of Examples 1 to 17 of the present invention, in which both the steel components and the production conditions are limited by the present invention, have not only the strength (yield strength, tensile strength) and toughness of the steel sheet but also the welding input. It was confirmed that the toughness of the HAZ portion of the rectangular column manufactured by electroslag welding (ESW) with a heat exceeding 100 kJ / mm was also very good. Invention Example 5 shows that the steel sheet No. having a composition in which Ceq is near the upper limit and Pcm is near the lower limit. Although No. 5 was used, tempering heat treatment was performed at 350 to 700 ° C. for 5 to 60 minutes after accelerated cooling, so that the mechanical properties and HAZ toughness of the steel sheet were good.

これに対し、比較例1〜16の鋼板は、鋼成分が本発明の限定範囲を逸脱しているため、鋼板特性および/または角形柱のHAZ部の靭性が本発明例に対し明らかに劣る。   On the other hand, the steel compositions of Comparative Examples 1 to 16 are clearly inferior in the steel sheet properties and / or the toughness of the HAZ portion of the prismatic column to those of the present invention, because the steel components deviate from the limited range of the present invention.

比較例1の鋼板は、C量が低い鋼No.18により製造されているため、HAZ部の靭性は良好であるが、Pcmが低いために鋼板の降伏強度が不十分であり、78%以下の降伏比にならなかった。比較例2の鋼板は、逆にC量が高い鋼No.19により製造されているため、Pcmが0.230を超えており、HAZ部の靭性が劣る。鋼No.20を用いて製造された比較例3は、強度及び靱性が良好であるが、Si含有量が過剰であるため、製造条件が適正であっても、HAZ部の靭性が低い。鋼No.21を用いて製造された比較例4は、強度及び靱性が良好であるが、Mn量が低いため、製造条件が適正であっても、HAZ部の靭性が低い。鋼No.22を用いて製造された比較例5は、Mn量とMg量が高く、CeqとPcmESが高いため、製造条件が適正であってもHAZ部の靭性が劣る。   The steel sheet of Comparative Example 1 had a low C content. 18, the toughness of the HAZ portion was good, but the yield strength of the steel sheet was insufficient due to the low Pcm, and the yield ratio did not become 78% or less. Conversely, the steel sheet of Comparative Example 2 was steel No. 2 having a high C content. 19, Pcm exceeds 0.230, and the toughness of the HAZ portion is inferior. Steel No. Comparative Example 3 manufactured using No. 20 has good strength and toughness, but has an excessively high Si content, so that the toughness of the HAZ portion is low even under appropriate manufacturing conditions. Steel No. Comparative Example 4 manufactured using No. 21 has good strength and toughness, but has a low Mn content, so that the toughness of the HAZ portion is low even under appropriate manufacturing conditions. Steel No. Comparative Example 5 manufactured using No. 22 has a high Mn content and a high Mg content and high Ceq and PcmES, and thus the HAZ portion has poor toughness even under proper manufacturing conditions.

P量が過剰な鋼No.23およびS量が過剰な鋼No.24で製造された比較例6と比較例7は製造条件が適正であってもHAZ部の靭性が劣る。Ceqが低い鋼No.25で製造された比較例8は製造条件が適正であってもフェライト面積率が高すぎるため、降伏強度と引張強度が低い。   Steel No. with excessive P content Steel No. 23 containing excessive amounts of S and S. In Comparative Examples 6 and 7 manufactured in No. 24, the toughness of the HAZ portion is inferior even if the manufacturing conditions are proper. Steel No. with low Ceq Comparative Example 8 manufactured in Example 25 has a low yield strength and low tensile strength because the ferrite area ratio is too high even when the manufacturing conditions are appropriate.

PcmESが過剰な鋼No.26で製造された比較例9は製造条件が適正であっても製造条件が適正であってもHAZ部の靭性が劣る。Nbが低い鋼No.27で製造された比較例10は製造条件が適正であっても、フェライト面積率が高く、旧オーステナイト粒のパンケーキ厚みが厚くアスペクト比が小さいため、降伏強度・引張強度・YRが低い。Nbが過剰でMgが低い鋼No.28で製造された比較例11は製造条件が適正であっても10原子%以上のCaやMgを含有する円相当直径で0.5〜5.0μmの酸化物や硫化物が1.00×10〜1.00×10個/mm存在しておらず、HAZ靱性が劣る。Vが過剰でPcmESが過剰な鋼No.29で製造された比較例12はHAZ靱性が劣る。Tiが低い鋼No.30で製造された比較例13は製造条件が適正であってもHAZ靱性が劣る。 Steel No. with excessive PcmES. In Comparative Example 9 manufactured in No. 26, the toughness of the HAZ portion is inferior even if the manufacturing conditions are proper or the manufacturing conditions are proper. Steel No. with low Nb Comparative Example 10 manufactured in No. 27 has a low ferrite area ratio, a large pancake thickness of old austenite grains, and a small aspect ratio even under appropriate manufacturing conditions, so that the yield strength, tensile strength, and YR are low. Steel No. with excessive Nb and low Mg. In Comparative Example 11 manufactured in Example 28, even if the manufacturing conditions were proper, oxides and sulfides having a circle equivalent diameter of 0.5 to 5.0 μm containing 10 atomic% or more of Ca and Mg were 1.00 × 10 2 to 1.00 × 10 4 pieces / mm 2 are not present, and the HAZ toughness is poor. Steel No. V with excess V and excess PcmES. Comparative Example 12 manufactured in No. 29 has inferior HAZ toughness. Steel No. with low Ti Comparative Example 13 manufactured in No. 30 is inferior in HAZ toughness even when manufacturing conditions are proper.

TiとCaが高く、eBとPcmESが高い鋼No.31で製造された比較例14は製造条件が適正であってもHAZ靱性が劣る。Alが低い鋼No.32で製造された比較例15は製造条件が適正であっても円相当直径で0.5〜5.0μmの酸化物や硫化物が1.00×10〜1.00×10個/mm存在しておらず、HAZ靱性が劣る。Alが高い鋼No.33で製造された比較例16は製造条件が適正であってもHAZ靱性が劣る。Nが低いため、eBが高くf−Nが低い鋼No.34で製造された比較例17は製造条件が適正であってもHAZ靱性が劣る。Nが高くCaが低いため、B/Nが低く、PcmESが低い鋼No.35で製造された比較例18は製造条件が適正であってもHAZ靱性が劣る。Bが低いため、B/Nが低い鋼No.36で製造された比較例19は製造条件が適正であってもHAZ靱性が劣る。Bが高いため、eBとB/Nが高い鋼No.37で製造された比較例20は製造条件が適正であってもHAZ靱性が劣る。 Steel No. with high Ti and Ca and high eB and PcmES. Comparative Example 14 manufactured in No. 31 is inferior in HAZ toughness even when manufacturing conditions are proper. Steel No. with low Al In Comparative Example 15 manufactured in Example No. 32, 1.00 × 10 2 to 1.00 × 10 4 oxides or sulfides having an equivalent circle diameter of 0.5 to 5.0 μm / even when the manufacturing conditions were appropriate. mm 2 does not exist, HAZ toughness is poor. Steel No. with high Al Comparative Example 16 manufactured in No. 33 is inferior in HAZ toughness even when manufacturing conditions are appropriate. No. N, the steel No. with high eB and low fN. Comparative Example 17 manufactured in No. 34 is inferior in HAZ toughness even when manufacturing conditions are appropriate. Steel No. with low B / N and low PcmES due to high N and low Ca. Comparative Example 18 manufactured at 35 had poor HAZ toughness even under proper manufacturing conditions. Steel No. B having a low B / N due to low B. Comparative Example 19 manufactured in No. 36 is inferior in HAZ toughness even when manufacturing conditions are proper. B is high, so that eB and B / N are high. Comparative Example 20 manufactured at 37 had poor HAZ toughness even under proper manufacturing conditions.

eBが高い鋼No.38で製造された比較例21は製造条件が適正であってもHAZ靱性が劣る。CaとMgが低く、B/Nが高い鋼No.39で製造された比較例22は製造条件が適正であっても10原子%以上のCaやMgを含有する円相当直径で0.5〜5.0μmの酸化物や硫化物が1.00×10〜1.00×10個/mm存在しておらず、HAZ靱性が劣る。Ceqが高い鋼No.40で製造された比較例23は製造条件が適正であってもHAZ靱性が劣る。本願の適正な成分範囲を満足する鋼No.16で製造されてはいるが、比較例24は製造条件の仕上圧延温度が高いためフェライト面積率が低く、旧オーステナイト粒のパンケーキ厚みが薄く、アスペクト比も低いため、降伏強度と引張強度が過剰であり、母材のシャルピー値が劣る。 Steel No. with high eB Comparative Example 21 manufactured in No. 38 is inferior in HAZ toughness even when manufacturing conditions are proper. Steel No. with low Ca and Mg and high B / N. In Comparative Example 22 manufactured in Step 39, oxides and sulfides having a circle equivalent diameter of 0.5 to 5.0 μm containing 10 atomic% or more of Ca and Mg were 1.00 × even if the manufacturing conditions were appropriate. 10 2 to 1.00 × 10 4 pieces / mm 2 are not present, and the HAZ toughness is poor. Steel No. with high Ceq Comparative Example 23 manufactured at 40 had poor HAZ toughness even under proper manufacturing conditions. The steel No. satisfying the appropriate component range of the present application. In Comparative Example 24, the finish rolling temperature of the production conditions was high, the ferrite area ratio was low, the pancake thickness of the prior austenite grains was thin, and the aspect ratio was low, so that the yield strength and tensile strength were low. It is excessive and the Charpy value of the base material is inferior.

Figure 2020033584
Figure 2020033584

Figure 2020033584
Figure 2020033584

Figure 2020033584
Figure 2020033584

Figure 2020033584
Figure 2020033584

Figure 2020033584
Figure 2020033584

Figure 2020033584
Figure 2020033584

本発明の厚手高強度鋼板が高層ビルをはじめとする各種の溶接構造物に使用されることで、溶接構造物の大型化、破壊に対する高い安全性、建造における溶接の高能率化、素材である鋼材の経済性等々が同時に満たされることから、その産業上の効果は計り知れない。   The thick high-strength steel sheet of the present invention is used for various types of welded structures including high-rise buildings, thereby increasing the size of the welded structure, increasing the safety against destruction, increasing the efficiency of welding in building, and improving the material. Since the economics of steel materials are satisfied at the same time, their industrial effects are immense.

Claims (6)

質量%で、
C :0.05〜0.12%
Si:0.20%以下
Mn:1.00〜2.00%
Nb:0.004〜0.020%
V :0.10%以下
Ti:0.0030〜0.0180%
Al:0.0040〜0.0800%
N :0.0030〜0.0080%
B :0.0006〜0.0025%
Ca:0.0003〜0.0040%
Mg:0.0003〜0.0040%
O :0.0015〜0.0040%
を含有し、
P :0.020%以下
S :0.010%以下に制限され、
残部が鉄および不可避的不純物からなり、
下記式(1)の炭素当量Ceq(W)が0.34〜0.42%であり、
下記式(2)のPcmが0.185〜0.230であり、
下記式(3)のf−Nが10.0以上であり、
下記式(4)のeBが4.0以下であり、
N含有量に対するB含有量の割合(B/N)が、0.20〜0.50であり、
鋼中に、円相当直径で0.5〜5.0μmの粒子が1.00×10〜1.00×10個/mmの個数密度で存在し、前記粒子のうち、原子%で10%以上のCaあるいはMgを含む粒子の割合が30%以上であることを特徴とする鋼板。
ここで、
Ceq(W)=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14・・・(1)
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5×B・・・(2)
f−N=10000×(N−eTi/3.4)・・・(3)
eB=10000×〔B−0.77×{N−0.29×(Ti−2×OTi)}〕・・・(4)
eTi=Ti−2×OTi・・・(5)
OTi=O−0.4×Ca−0.66×Mg−0.17×REM−0.89×Al・・・(6)
とし、
式(1)乃至式(6)に示す元素は、鋼中に含有されているそれぞれの元素の含有量(質量%)とし、不可避的不純物として混入した元素も計算に含める。また、式(6)によって与えられるOTiが0以下の場合、式(4)及び(5)において、OTiに0を代入する。
In mass%,
C: 0.05 to 0.12%
Si: 0.20% or less Mn: 1.00-2.00%
Nb: 0.004 to 0.020%
V: 0.10% or less Ti: 0.0030 to 0.0180%
Al: 0.0040 to 0.0800%
N: 0.0030 to 0.0080%
B: 0.0006 to 0.0025%
Ca: 0.0003-0.0040%
Mg: 0.0003-0.0040%
O: 0.0015 to 0.0040%
Containing
P: 0.020% or less S: limited to 0.010% or less,
The balance consists of iron and unavoidable impurities,
The carbon equivalent Ceq (W) of the following formula (1) is 0.34 to 0.42%,
Pcm of the following formula (2) is 0.185 to 0.230;
FN in the following formula (3) is 10.0 or more;
EB of the following formula (4) is 4.0 or less,
The ratio of the B content to the N content (B / N) is 0.20 to 0.50,
Particles having a circle equivalent diameter of 0.5 to 5.0 μm are present in the steel at a number density of 1.00 × 10 2 to 1.00 × 10 4 particles / mm 2. A steel sheet wherein the proportion of particles containing 10% or more of Ca or Mg is 30% or more.
here,
Ceq (W) = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (1)
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5 × B (2)
fN = 10000 × (N-eTi / 3.4) (3)
eB = 10000 × [B−0.77 × {N−0.29 × (Ti−2 × OTi)}} (4)
eTi = Ti−2 × OTi (5)
Oti = O−0.4 × Ca−0.66 × Mg−0.17 × REM−0.89 × Al (6)
age,
The elements shown in the formulas (1) to (6) are the contents (% by mass) of the respective elements contained in the steel, and the elements mixed as unavoidable impurities are also included in the calculation. If the value of Oti given by the expression (6) is equal to or less than 0, 0 is substituted for the Oti in the expressions (4) and (5).
さらに、質量%で、
Cu:0.10〜1.00%
Ni:0.10〜1.00%
Cr:0.03〜0.80%
Mo:0.03〜0.40%
REM:0.0003〜0.0100%
Zr:0.0003〜0.0100%
のうちの1種または2種以上を含有することを特徴とする、請求項1に記載の鋼板。
Furthermore, in mass%,
Cu: 0.10-1.00%
Ni: 0.10-1.00%
Cr: 0.03 to 0.80%
Mo: 0.03 to 0.40%
REM: 0.0003-0.0100%
Zr: 0.0003-0.0100%
The steel sheet according to claim 1, wherein the steel sheet contains one or more of the following.
更に、下記式(7)のPcmESが0.13〜0.16であることを特徴とする、請求項1又は2に記載の鋼板。
PcmES=C/4+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/3+Nb/2+23×MAX((B−10.8/14.1×(MAX(N−Ti/3.4,0)),0)・・・(7)
但し、式(7)に示す元素は、鋼中に含有されているそれぞれの元素の含有量(質量%)とし、不可避的不純物として混入した元素も計算に含める。
The steel sheet according to claim 1, wherein PcmES of the following formula (7) is 0.13 to 0.16. 4.
PcmES = C / 4 + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 3 + Nb / 2 + 23 × MAX ((B-10.8 / 14.1 × (MAX (N-Ti / 3.4,0))) 0) ... (7)
However, the elements shown in the formula (7) are the contents (% by mass) of the respective elements contained in the steel, and the elements mixed as unavoidable impurities are also included in the calculation.
板厚中心から両面方向へ板厚1/4厚みにおける金属組織が、フェライトを面積率で3%〜20%又は15度大角粒径が85μm以下かつアスペクト比が1.8以上の旧オーステナイト粒から生成する相を含むことを特徴とする、請求項1乃至3のうちいずれか1項に記載の鋼板。   The metal structure at a thickness of 1/4 thickness from the center of the thickness in both directions from the center of the thickness is a ferrite of 3% to 20% in area ratio or a 15-degree large-angle grain size of former austenite grains of 85 μm or less and an aspect ratio of 1.8 or more. The steel sheet according to any one of claims 1 to 3, further comprising a generated phase. 40mm〜100mmの板厚を有することを特徴とする、請求項1乃至4のうちいずれか1項に記載の鋼板。   The steel sheet according to any one of claims 1 to 4, wherein the steel sheet has a thickness of 40 mm to 100 mm. 引張強さが550MPa〜740MPa、降伏比が78%以下であることを特徴とする、請求項1乃至5のうちいずれか1項に記載の鋼板。   The steel sheet according to any one of claims 1 to 5, wherein a tensile strength is 550 MPa to 740 MPa and a yield ratio is 78% or less.
JP2018159276A 2018-08-28 2018-08-28 steel plate Active JP7206700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018159276A JP7206700B2 (en) 2018-08-28 2018-08-28 steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018159276A JP7206700B2 (en) 2018-08-28 2018-08-28 steel plate

Publications (2)

Publication Number Publication Date
JP2020033584A true JP2020033584A (en) 2020-03-05
JP7206700B2 JP7206700B2 (en) 2023-01-18

Family

ID=69669121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018159276A Active JP7206700B2 (en) 2018-08-28 2018-08-28 steel plate

Country Status (1)

Country Link
JP (1) JP7206700B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07331381A (en) * 1994-06-06 1995-12-19 Nippon Steel Corp Seamless steel tube having high strength and high toughness and its production
JP2008214754A (en) * 2007-02-09 2008-09-18 Nippon Steel Corp Method for producing thick high strength steel plate excellent in brittle fracture spreading stopping characteristic and toughness at high heat input welding thermal-affected part and the same steel plate
JP2008280573A (en) * 2007-05-09 2008-11-20 Kobe Steel Ltd Steel sheet having excellent toughness in weld heat-affected zone in high heat input welding
JP2010159473A (en) * 2009-01-09 2010-07-22 Sumitomo Metal Ind Ltd Thick steel plate and method for producing the same
JP2013087334A (en) * 2011-10-19 2013-05-13 Nippon Steel & Sumitomo Metal Corp Steel sheet having excellent toughness in weld heat affected zone and method for manufacturing the same
JP2013204118A (en) * 2012-03-29 2013-10-07 Nippon Steel & Sumitomo Metal Corp High tensile strength steel for ultrahigh heat input welding having excellent heat-affected zone low temperature toughness
WO2014091604A1 (en) * 2012-12-13 2014-06-19 新日鐵住金株式会社 Steel material for welding
JP2018031055A (en) * 2016-08-24 2018-03-01 新日鐵住金株式会社 Cast slab and manufacturing method of cast slab

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07331381A (en) * 1994-06-06 1995-12-19 Nippon Steel Corp Seamless steel tube having high strength and high toughness and its production
JP2008214754A (en) * 2007-02-09 2008-09-18 Nippon Steel Corp Method for producing thick high strength steel plate excellent in brittle fracture spreading stopping characteristic and toughness at high heat input welding thermal-affected part and the same steel plate
JP2008280573A (en) * 2007-05-09 2008-11-20 Kobe Steel Ltd Steel sheet having excellent toughness in weld heat-affected zone in high heat input welding
JP2010159473A (en) * 2009-01-09 2010-07-22 Sumitomo Metal Ind Ltd Thick steel plate and method for producing the same
JP2013087334A (en) * 2011-10-19 2013-05-13 Nippon Steel & Sumitomo Metal Corp Steel sheet having excellent toughness in weld heat affected zone and method for manufacturing the same
JP2013204118A (en) * 2012-03-29 2013-10-07 Nippon Steel & Sumitomo Metal Corp High tensile strength steel for ultrahigh heat input welding having excellent heat-affected zone low temperature toughness
WO2014091604A1 (en) * 2012-12-13 2014-06-19 新日鐵住金株式会社 Steel material for welding
JP2018031055A (en) * 2016-08-24 2018-03-01 新日鐵住金株式会社 Cast slab and manufacturing method of cast slab

Also Published As

Publication number Publication date
JP7206700B2 (en) 2023-01-18

Similar Documents

Publication Publication Date Title
TWI478785B (en) High heat input welding steel
KR101176612B1 (en) Process for producing thick high-strength steel plate with excellent toughness of heat-affected zone in high heat input welding and thick high-strength steel plate with excellent toughness of heat-affected zone in high heat input welding
EP3617337A1 (en) HIGH-Mn STEEL AND PRODUCTION METHOD THEREFOR
JP4897126B2 (en) Thick steel plate manufacturing method
JP5172391B2 (en) Steel sheet with excellent toughness and uniform elongation of weld heat affected zone
JP6989606B2 (en) High-strength steel with excellent fracture initiation and propagation resistance at low temperatures, and its manufacturing method
JPWO2010013358A1 (en) High-strength thick steel material excellent in toughness and weldability, high-strength extra-thick H-section steel and methods for producing them
JP2008214754A (en) Method for producing thick high strength steel plate excellent in brittle fracture spreading stopping characteristic and toughness at high heat input welding thermal-affected part and the same steel plate
JP2008163446A (en) Steel member for high heat input welding
WO2015159793A1 (en) Steel h-beam and method for manufacturing same
JP2016141834A (en) High strength ultra thick h-shaped steel excellent in toughness and production method therefor
JP2019199649A (en) Non-tempered low yield ratio high tensile thick steel sheet and its production method
JP2016183387A (en) Thick steel plate for low temperature and production method therefor
JP5276871B2 (en) Low yield specific thickness steel plate with excellent toughness of weld heat affected zone
WO2013088715A1 (en) Steel material for high-heat-input welding
JP5272759B2 (en) Thick steel plate manufacturing method
JP2022510933A (en) Steel materials with excellent hydrogen-induced crack resistance and their manufacturing methods
JP2007284712A (en) Method for producing thick high-strength steel plate excellent in toughness and thick high-strength steel plate excellent in toughness
JP2005068478A (en) Method for manufacturing thick steel plate with low yield ratio and high tension superior in toughness at heat-affected zone in super heavy-heat-input welding
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
EP3378962B1 (en) High heat input welded steel material
JP7206701B2 (en) steel plate
JP7265008B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JP7207199B2 (en) Steel material and its manufacturing method
JP2017160537A (en) High strength ultra thick steel sheet excellent in brittleness crack propagation stopping characteristics and heat affected zone toughness, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221219

R151 Written notification of patent or utility model registration

Ref document number: 7206700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151