JP2008214754A - Method for producing thick high strength steel plate excellent in brittle fracture spreading stopping characteristic and toughness at high heat input welding thermal-affected part and the same steel plate - Google Patents

Method for producing thick high strength steel plate excellent in brittle fracture spreading stopping characteristic and toughness at high heat input welding thermal-affected part and the same steel plate Download PDF

Info

Publication number
JP2008214754A
JP2008214754A JP2008029711A JP2008029711A JP2008214754A JP 2008214754 A JP2008214754 A JP 2008214754A JP 2008029711 A JP2008029711 A JP 2008029711A JP 2008029711 A JP2008029711 A JP 2008029711A JP 2008214754 A JP2008214754 A JP 2008214754A
Authority
JP
Japan
Prior art keywords
heat input
brittle fracture
strength steel
amount
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008029711A
Other languages
Japanese (ja)
Other versions
JP5085364B2 (en
Inventor
Akihiko Kojima
明彦 児島
Yoichi Tanaka
洋一 田中
Hiroyuki Shirahata
浩幸 白幡
Kiyotaka Nakajima
清孝 中島
Yoshifumi Mizomoto
義史 溝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008029711A priority Critical patent/JP5085364B2/en
Publication of JP2008214754A publication Critical patent/JP2008214754A/en
Application granted granted Critical
Publication of JP5085364B2 publication Critical patent/JP5085364B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a thick high strength steel plate having good brittle fracture spreading resistant characteristic and toughness at high heat input welding thermal affected part, and the thick high strength steel plate obtained with this method. <P>SOLUTION: The production method is as the followings, that is, a continuously cast slab having the regulated component composition and a remained oxygen content O<SB>Ti</SB>deoxidized with Ti as a weak deoxidizing element, remained after deoxidizing with strong deoxidizing element, an effective B content:Bef applied to a solid-solution in austenitic base before transformation and a regulated carbon equivalent Ceq with respective relational formula, is cooled to ≤Ar<SB>3</SB>-200°C after continuously casting and thereafter, reheated to 950-1100°C and successively, a rougher-rolling is performed at ≥900°C to ≥30% cumulative rolling-reduction ratio and a finish-rolling is performed at ≥700°C to ≥50% cumulative rolling-reduction ratio under condition of showing formula: ä-0.5×slab heating temperature(°C)+1325}(°C) to both of the finish-rolling starting temperature and the finish-rolling finishing temperature, and successively, the cooling is performed to ≤500°C by applying an accelerated cooling. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、脆性破壊伝播停止特性と大入熱溶接熱影響部(Heat Affected Zone:以下、HAZと称することがある)靭性に優れた厚手高強度鋼板の製造方法、及び、脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板に関する。本発明に係る厚手高強度鋼板は、大型コンテナ船等の船舶向けとして主に使用されるが、建築、橋梁、タンク及び海洋構造物等、その他の溶接構造物に使用することも可能である。   The present invention relates to a method for producing a thick high-strength steel sheet having excellent brittle fracture propagation stop characteristics and high heat input weld heat affected zone (hereinafter sometimes referred to as HAZ) toughness, and brittle fracture propagation stop characteristics. And a thick high-strength steel sheet with excellent heat-affected zone toughness at high heat input welding. The thick high-strength steel plate according to the present invention is mainly used for ships such as large container ships, but can also be used for other welded structures such as buildings, bridges, tanks and offshore structures.

船舶に代表される溶接構造物の近年のニーズとして、構造物の大型化、破壊に対する高い安全性、建造における溶接の高能率化、素材である鋼材の経済性等が挙げられる。このような動向を受け、溶接構造物に使用される鋼板に対して、(1)大きな板厚での高い強度、(2)良好な脆性破壊伝播停止特性、(3)良好な大入熱溶接HAZ靭性、(4)低い製造コスト等のニーズが高まりつつある。具体的には、大型船舶に用いられる鋼板に対して、(1)板厚50〜80mmの厚手鋼板(以下、厚手材と称することがある)での降伏強度390〜460MPa級、かつ引張強度510〜570MPa級の確保、(2)脆性破壊伝播停止特性Kcaが6000N/mm1.5となる温度Tkca=6000(以下、アレスト性指標Tkca=6000と称することがある)≦−10℃の確保、(3)溶接入熱量が20kJ/mm以上の溶接部のHAZ靭性(シャルピー衝撃吸収エネルギー)vE(−20℃)≧47Jの確保、(4)高価合金元素の低減(Ni量:1%以下等)を同時に満たすことが要求される。 Recent needs for welded structures represented by ships include large-sized structures, high safety against destruction, high efficiency of welding in construction, and economical efficiency of steel materials. In response to these trends, for steel plates used in welded structures, (1) high strength at large plate thicknesses, (2) good brittle fracture propagation stop properties, and (3) good high heat input welding There is an increasing need for HAZ toughness and (4) low production costs. Specifically, (1) Yield strength of 390 to 460 MPa class and tensile strength of 510 with a thick steel plate (hereinafter sometimes referred to as a thick material) having a thickness of 50 to 80 mm with respect to a steel plate used for a large ship. ˜570 MPa class ensured, (2) temperature T kca = 6000 at which brittle fracture propagation stop characteristic Kca becomes 6000 N / mm 1.5 (hereinafter, may be referred to as arrestability index T kca = 6000 ) ≦ −10 ° C. (3) HAZ toughness (Charpy impact absorption energy) vE (−20 ° C.) ≧ 47 J for welds with welding heat input of 20 kJ / mm or more, (4) Reduction of expensive alloy elements (Ni content: 1%) The following must be satisfied at the same time.

特許文献1は船舶向け厚手高強度鋼板に関する技術の一例であり、この特許文献1には、板厚50〜80mmを有しつつ、上記(1)、(3)及び(4)のニーズを部分的に満足できる技術が開示されている。しかしながら、特許文献1に記載の厚手高強度鋼板は、その実施例の記載からわかるように、上記(2)のニーズを満足できるような技術は示されていない。   Patent Document 1 is an example of a technique related to a thick high-strength steel sheet for ships. This Patent Document 1 partially has the needs of (1), (3), and (4) while having a thickness of 50 to 80 mm. Techniques that are satisfactory to the public are disclosed. However, the thick high-strength steel sheet described in Patent Document 1 does not show a technique that can satisfy the need (2), as can be seen from the description of the examples.

また、非特許文献1には、板厚が65mmと厚手の鋼板では、小型試験片によるシャルピー衝撃吸収エネルギーが、vE(−40℃)=170Jと十分に高くても、大型破壊試験で確認される脆性破壊伝播停止特性はTkca=6000=18℃と不十分であることが示されている(同文献Fig.7参照)。これは、厚手鋼板では、小型試験片によるシャルピー衝撃吸収エネルギーvE(−40℃)を目安にして大型破壊試験で確認される脆性破壊伝播停止特性Tkca=6000≦−10℃を保証することは困難であることを示している。すなわち、大型船舶向けの厚手高強度鋼板に要求される脆性破壊伝播停止特性を小型試験片によるシャルピー衝撃特性と関連付けて判定することは、従来の技術では困難であり、ESSO試験(WES 3003準拠)に代表される全厚試験体の大型破壊試験を用いた方法でなければ、正確に評価することができなかった。 Further, in Non-Patent Document 1, in a thick steel plate having a thickness of 65 mm, even if Charpy impact absorption energy by a small test piece is sufficiently high as vE (−40 ° C.) = 170 J, it is confirmed by a large-scale fracture test. It has been shown that the brittle fracture propagation stop property is insufficient with T kca = 6000 = 18 ° C. (see FIG. 7 of the same document). This is because for thick steel plates, it is guaranteed that the brittle fracture propagation stop characteristic T kca = 6000 ≦ −10 ° C., which is confirmed by a large fracture test using Charpy impact absorption energy vE (−40 ° C.) by a small test piece as a guideline. It is difficult. In other words, it is difficult to determine the brittle fracture propagation stop characteristics required for thick high-strength steel sheets for large ships in association with the Charpy impact characteristics of small test pieces, and it is difficult with conventional technology, and an ESSO test (WES 3003 compliant) Unless it was a method using a large-scale destructive test of a full-thickness specimen represented by

従来から、脆性破壊伝播停止特性は板厚に依存性し、板厚が大きくなるほど当該特性が劣化することが知られていた。しかしながら、本発明が対象とするような50mm以上の厚手材については、この板厚効果に関する実験データは皆無であり、厚手化に起因して脆性破壊伝播停止特性がどれくらい劣化するのかが不明であった。   Conventionally, it has been known that the brittle fracture propagation stop characteristic depends on the plate thickness, and that the characteristic deteriorates as the plate thickness increases. However, for thick materials of 50 mm or more as the object of the present invention, there is no experimental data on the plate thickness effect, and it is unclear how much the brittle fracture propagation stop characteristics deteriorate due to thickening. It was.

ところで、TMCP(Thermo Mechanical Control Process)によって製造される厚手鋼板では、従来からボロン(B)添加による高強度化が図られてきた。Bの添加による効果としては、圧延後の加速冷却においてオーステナイト粒界(γ粒界)に偏析した固溶Bが、変態時の焼入性を高めることが挙げられ、特許文献1では、BにNbを複合添加することによって高強度化を図っている。特許文献1の実施例に示されているように、この場合の圧延終了温度は930〜1000℃と高めであることが特徴であり、再結晶オーステナイト(再結晶γ)から加速冷却することを必須条件として、NbとBの複合効果を発揮させて高い焼入性を引き出すことにより、強度を高めている。一方、特許文献1では、圧延終了温度を930℃よりも低い未再結晶域として低温圧延を行った場合、靭性は満足するものの強度特性は満足できず、Nb−B複合効果による高強度化が難しいことも示されている。
特許第3599556号公報 日本船舶海洋工学講演会論文集、2006A−G4−10
By the way, in the thick steel plate manufactured by TMCP (Thermo Mechanical Control Process), high strength has been conventionally achieved by adding boron (B). As an effect by addition of B, solid solution B segregated at austenite grain boundaries (γ grain boundaries) in accelerated cooling after rolling can be improved in the hardenability at the time of transformation. The strength is increased by adding Nb in combination. As shown in the examples of Patent Document 1, the rolling end temperature in this case is characterized by being as high as 930 to 1000 ° C., and it is essential to accelerate cooling from recrystallized austenite (recrystallized γ). As a condition, the strength is enhanced by exerting a combined effect of Nb and B to bring out high hardenability. On the other hand, in Patent Document 1, when low temperature rolling is performed with an unrecrystallized region having a rolling end temperature lower than 930 ° C., the toughness is satisfied but the strength characteristics cannot be satisfied, and the high strength due to the Nb—B composite effect is increased. It has also been shown to be difficult.
Japanese Patent No. 3599556 Proceedings of the Japan Marine Engineering Lecture, 2006A-G4-10

本発明者等は、特許文献1に記載の発明に比べて靭性を重視した、低温圧延(圧延終了温度:800〜900℃)の場合に、Nbに代わって微量MoをBと複合させることで厚手鋼板を高強度化することのできる発明について、既に、特願2005−230595号の特許出願(特開2007−46096号公報:以下、発明者先願と称する)において示している。しかしながら、この発明者先願においてもTkca=6000≦−10℃が満足できることは確認していない。 In the case of low-temperature rolling (rolling end temperature: 800 to 900 ° C.), which emphasizes toughness compared to the invention described in Patent Document 1, the present inventors combined a trace amount of Mo with B instead of Nb. An invention that can increase the strength of a thick steel plate has already been described in Japanese Patent Application No. 2005-230595 (Japanese Patent Application Laid-Open No. 2007-46096: hereinafter referred to as an inventor's prior application). However, even in this inventor's earlier application, it has not been confirmed that T kca = 6000 ≦ −10 ° C. can be satisfied.

一般に、母材やHAZの靭性を高める希少な元素としてNiが知られており、上記(2)や(3)の観点からNiの有効利用が考えられる。しかしながら、Niは非常に高価な元素であり、その価格は近年著しく上昇している。また、Niを添加した鋼は表面疵が生じやすいため、その手入工程が発生するという問題がある。従って、Ni添加に関して、上記(4)のニーズと上記(2)及び(3)のニーズとの間で、その利害が対立する。また、上記(1)の観点から合金添加量を増加すると、炭素当量(Ceq)が高まって大入熱溶接の場合のHAZが硬化して脆化するので、上記(1)のニーズと上記(3)のニーズとの間で利害が対立する。さらに、上記(2)の観点からTMCPにおける変態前オーステナイト組織の微細化を追求すると、焼入性が低下して強度が減少するので、上記(1)のニーズと上記(2)のニーズとの間で利害が対立する。このため、上述のような互いに利害が対立する上記(1)〜(4)の四つのニーズを同時に満足する鋼板の開発が強く求められていた。   In general, Ni is known as a rare element that enhances the toughness of a base material and HAZ. From the viewpoints of (2) and (3) above, Ni can be effectively used. However, Ni is a very expensive element, and its price has increased significantly in recent years. Further, since steel with Ni added tends to cause surface flaws, there is a problem that a care process is required. Therefore, regarding the addition of Ni, there is a conflict between the needs of (4) and the needs of (2) and (3). Further, if the amount of alloy addition is increased from the viewpoint of (1) above, the carbon equivalent (Ceq) increases and the HAZ in the case of high heat input welding hardens and becomes brittle. There is a conflict of interest with the needs of 3). Furthermore, if the refinement of the austenite structure before transformation in TMCP is pursued from the viewpoint of the above (2), the hardenability is reduced and the strength is reduced. Therefore, the needs of the above (1) and the needs of the above (2) Conflicts of interest. For this reason, there has been a strong demand for the development of a steel sheet that simultaneously satisfies the four needs (1) to (4), which have conflicting interests as described above.

本発明は上記問題に鑑みてなされたものであり、(1)板厚50〜80mm、降伏強度390〜600MPa、かつ引張強度510〜720MPaの厚手高強度で、(2)アレスト性指標Tkca=6000≦−10℃の良好な脆性破壊伝播停止特性を有し、(3)溶接入熱量≧20kJ/mmでもvE(−20℃)≧47Jとなる良好な大入熱溶接HAZ靭性を有し、(4)高価合金元素の低減(Ni≦1%等)等による低い製造コストを実現できる、脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法、及び脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板を提供することを目的とする。 The present invention has been made in view of the above problems. (1) Thickness and high strength with a plate thickness of 50 to 80 mm, a yield strength of 390 to 600 MPa, and a tensile strength of 510 to 720 MPa, and (2) an arrestability index T kca = 6000 ≦ −10 ° C. has good brittle fracture propagation stop property, (3) Even if the welding heat input ≧ 20 kJ / mm, it has good large heat input welding HAZ toughness that becomes vE (−20 ° C.) ≧ 47 J, (4) A method for producing a thick high-strength steel sheet excellent in brittle fracture propagation stopping characteristics and high heat input welding heat-affected zone toughness, which can realize low production costs due to reduction of expensive alloy elements (Ni ≦ 1%, etc.), and An object of the present invention is to provide a thick high-strength steel sheet excellent in brittle fracture propagation stopping characteristics and high heat input weld heat-affected zone toughness.

上記問題を解決するための本発明の要旨は以下のとおりである。
[1] 質量%で、C :0.07%超0.12%以下、Si:0.4%以下、Mn:1.0〜2%、P :0.015%以下、S :0.005%以下、B :0.0003〜0.003%、Mo:0.01〜0.2%、Al:0.001〜0.1%、Ti:0.005〜0.02%、N :0.001〜0.008%、O :0.004%以下を含有し、強脱酸元素による脱酸後に残存し弱脱酸元素であるTiにより脱酸され得る残存酸素量OTi(%)を、下記式(1)で表される量としたとき、下記式(2)で表される、変態前のオーステナイト素地に固溶するB量{有効B量:Bef(%)}が0.0003%以上であり、さらに、炭素当量Ceq(%)を、下記式(3)で表される量としたとき、炭素当量Ceqが0.32〜0.42%の範囲を満たし、残部が鉄および不可避的不純物からなる連続鋳造スラブを、Ar(℃)が、下記式(4)で計算されるとき、連続鋳造後にAr−200℃以下まで冷却した後、950〜1100℃に再加熱し、次いで、900℃以上で累積圧下量が30%以上である粗圧延を行い、次いで、700℃以上で累積圧下量が50%以上である仕上圧延を、仕上圧延開始温度および仕上圧延終了温度が、ともに、次式{−0.5×スラブ加熱温度(℃)+1325}(℃)で表される温度以下とされた条件で行い、次いで、加速冷却を適用して500℃以下まで冷却することを特徴とする、脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法。
Ti(%)=O−0.4Ca−0.66Mg−0.17REM−0.35Zr−0.89Al ・・・(1)
{但し、式(1)において、不可避的不純物扱いの成分元素も計算に含める}
Bef(%)=B−0.77{N−0.29(Ti−2OTi)} ・・・(2)
{但し、式(2)において、OTi≦0のとき、OTi=0とする。また、OTi>0のときは、Ti−2OTi≧0.005(%)を満たすものとする。さらに、N−0.29(Ti−2OTi)≦0(但し、OTi≦0のとき、OTi=0)のときは、N−0.29(Ti−2OTi)=0とする。}
Ceq(%)=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15 ・・・(3)
Ar(℃)=(910−310C−80Mn−20Cu−55Ni−80Mo) ・・・(4)
The gist of the present invention for solving the above problems is as follows.
[1] By mass%, C: more than 0.07% and 0.12% or less, Si: 0.4% or less, Mn: 1.0 to 2%, P: 0.015% or less, S: 0.005 %: B: 0.0003-0.003%, Mo: 0.01-0.2%, Al: 0.001-0.1%, Ti: 0.005-0.02%, N: 0 0.001% to 0.008%, O: 0.004% or less, remaining after deoxidation with a strong deoxidation element, remaining oxygen amount O Ti (%) that can be deoxidized by Ti which is a weak deoxidation element When the amount is represented by the following formula (1), the B amount {effective B amount: Bef (%)} dissolved in the austenite substrate before transformation represented by the following formula (2) is 0.0003. %, And when the carbon equivalent Ceq (%) is an amount represented by the following formula (3), the carbon equivalent Ceq is 0.32 to 0.42%. Satisfies the range, the continuously cast slab balance being iron and unavoidable impurities, Ar 3 C.) is, when it is calculated by the following formula (4), after cooling to Ar 3 -200 ° C. or less after continuous casting, Reheat to 950-1100 ° C, then perform rough rolling at 900 ° C or higher and the cumulative reduction amount is 30% or more, then finish rolling at 700 ° C or higher and the cumulative reduction amount is 50% or more Both the start temperature and the finish rolling finish temperature were set to the temperature represented by the following formula {−0.5 × slab heating temperature (° C.) + 1325} (° C.), and then accelerated cooling was applied. A method for producing a thick high-strength steel sheet having excellent brittle fracture propagation stopping characteristics and high heat input heat affected zone toughness, characterized by cooling to 500 ° C. or lower.
O Ti (%) = O−0.4Ca−0.66Mg−0.17REM−0.35Zr−0.89Al (1)
{However, in the formula (1), inevitable impurities are also included in the calculation}
Bef (%) = B-0.77 {N-0.29 (Ti-2O Ti)} ··· (2)
{However, in Formula (2), when O Ti ≦ 0, O Ti = 0. Further, when O Ti > 0, it is assumed that Ti-2O Ti ≧ 0.005 (%) is satisfied. Further, when N−0.29 (Ti−2O Ti ) ≦ 0 (provided that O Ti ≦ 0 and O Ti = 0), N−0.29 (Ti−2O Ti ) = 0. }
Ceq (%) = C + Mn / 6 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15 (3)
Ar 3 (° C.) = (910-310C-80Mn-20Cu-55Ni-80Mo) (4)

[2] 前記加速冷却の後、さらに、350〜700℃で5〜60分の焼戻し熱処理を施すことを特徴とする、上記[1]に記載の脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法。
[3] 質量%で、S :0.0005〜0.005%、O :0.001〜0.004%
を含有し、さらに、質量%で、Ca:0.0003〜0.004%、Mg:0.0003〜0.004%のうちの1種または2種を含有することを特徴とする、上記[1]又は[2]に記載の脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法。
[4] さらに、質量%で、V:0.01〜0.1%を含有することを特徴とする、上記[1]〜[3]の何れか1項に記載の脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法。
[5] さらに、質量%で、Ni:0.01〜1%、Nb:0.003〜0.03%、Cu:0.01〜1%、Cr:0.01〜1%のうちの1種又は2種以上を含有することを特徴とする、上記[1]〜[4]の何れか1項に記載の脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法。
[6] さらに、質量%で、REM:0.0003〜0.02%、Zr:0.0003〜0.02%のうちの1種または2種以上を含有することを特徴とする、上記[1]〜[5]の何れか1項に記載の脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法。
[2] The brittle fracture propagation stop property and large heat input welding heat effect according to the above [1], further comprising a tempering heat treatment at 350 to 700 ° C. for 5 to 60 minutes after the accelerated cooling. A method for producing thick, high-strength steel sheets with excellent toughness.
[3] By mass%, S: 0.0005-0.005%, O: 0.001-0.004%
Further containing one or two of Ca: 0.0003 to 0.004% and Mg: 0.0003 to 0.004% by mass%, The manufacturing method of the thick high-strength steel plate excellent in the brittle fracture propagation stop characteristic and high heat input welding heat affected zone toughness as described in 1] or [2].
[4] The brittle fracture propagation stop characteristic according to any one of the above [1] to [3], further comprising V: 0.01 to 0.1% by mass%. A method for producing thick, high-strength steel sheets with excellent heat input and heat-affected zone toughness.
[5] Further, in mass%, Ni: 0.01 to 1%, Nb: 0.003 to 0.03%, Cu: 0.01 to 1%, Cr: 0.01 to 1% Thickness and high strength excellent in brittle fracture propagation stop characteristics and high heat input welding heat-affected zone toughness according to any one of the above-mentioned [1] to [4], characterized by containing seeds or two or more kinds A method of manufacturing a steel sheet.
[6] The above-mentioned, wherein the composition further contains one or more of REM: 0.0003 to 0.02% and Zr: 0.0003 to 0.02% in mass%. [1] A method for producing a thick high-strength steel sheet excellent in brittle fracture propagation stop characteristics and high heat input welding heat-affected zone toughness according to any one of [1] to [5].

[7] 質量%で、C :0.07%超0.12%以下、Si:0.4%以下、Mn:1.0〜2%、P :0.015%以下、S :0.005%以下、B :0.0003〜0.003%、Mo:0.01〜0.2%、Al:0.001〜0.1%、Ti:0.005〜0.02%、N :0.001〜0.008%、O :0.004%以下を含有し、強脱酸元素による脱酸後に残存し弱脱酸元素であるTiにより脱酸され得る残存酸素量を、下記式(5)で表される量としたとき、下記式(6)で表される、変態前のオーステナイト素地に固溶するB量{有効B量:Bef(%)}が0.0003%以上であり、さらに、炭素当量Ceq(%)を、下記式(7)で表される量としたとき、炭素当量Ceqが0.32〜0.42%の範囲を満たし、残部が鉄および不可避的不純物からなり、板厚が50〜80mmであり、降伏強度が390〜600MPaで、引張強度が510〜720MPaであり、脆性破壊伝播停止特性Kcaが6000N/mm1.5となる温度Tkca=6000が−10℃以下であり、溶接入熱量が20kJ/mm以上の大入熱溶接部のHAZ靭性の指標であるシャルピー衝撃吸収エネルギーvE(−20℃)が47J以上であることを特徴とする、脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板。
Ti(%)=O−0.4Ca−0.66Mg−0.17REM−0.35Zr−0.89Al ・・・(5)
{但し、式(1)において、不可避的不純物扱いの成分元素も計算に含める}
Bef(%)=B−0.77{N−0.29(Ti−2OTi)} ・・・(6)
{但し、式(6)において、OTi≦0のとき、OTi=0とする。また、OTi>0のときは、Ti−2OTi≧0.005(%)を満たすものとする。さらに、N−0.29(Ti−2OTi)≦0(但し、OTi≦0のとき、OTi=0)のときは、N−0.29(Ti−2OTi)=0とする。}
Ceq(%)=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15 ・・・(7)
[7] By mass%, C: more than 0.07% and 0.12% or less, Si: 0.4% or less, Mn: 1.0 to 2%, P: 0.015% or less, S: 0.005 %: B: 0.0003-0.003%, Mo: 0.01-0.2%, Al: 0.001-0.1%, Ti: 0.005-0.02%, N: 0 .001 to 0.008%, O 2: 0.004% or less, remaining after deoxidation with a strong deoxidizing element, and remaining oxygen amount that can be deoxidized with Ti, which is a weak deoxidizing element, is expressed by the following formula (5 ) Represented by the following formula (6), the amount of B dissolved in the austenite substrate before transformation {effective B amount: Bef (%)} is 0.0003% or more, Furthermore, when the carbon equivalent Ceq (%) is an amount represented by the following formula (7), the carbon equivalent Ceq satisfies the range of 0.32 to 0.42%. The balance is made of iron and inevitable impurities, the plate thickness is 50 to 80 mm, the yield strength is 390 to 600 MPa, the tensile strength is 510 to 720 MPa, and the brittle fracture propagation stop property Kca is 6000 N / mm 1.5. When the temperature T kca = 6000 is -10 ° C. or less, and the Charpy impact absorption energy vE (−20 ° C.), which is an index of the HAZ toughness of a high heat input weld having a welding heat input of 20 kJ / mm or more, is 47 J or more. A thick, high-strength steel sheet with excellent brittle fracture propagation stopping characteristics and high heat input weld heat-affected zone toughness.
O Ti (%) = O−0.4Ca−0.66Mg−0.17REM−0.35Zr−0.89Al (5)
{However, in the formula (1), inevitable impurities are also included in the calculation}
Bef (%) = B-0.77 {N-0.29 (Ti-2O Ti)} ··· (6)
{However, in Formula (6), when O Ti ≦ 0, O Ti = 0. Further, when O Ti > 0, it is assumed that Ti-2O Ti ≧ 0.005 (%) is satisfied. Further, when N−0.29 (Ti−2O Ti ) ≦ 0 (provided that O Ti ≦ 0 and O Ti = 0), N−0.29 (Ti−2O Ti ) = 0. }
Ceq (%) = C + Mn / 6 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15 (7)

[8] 質量%で、S :0.0005〜0.005%、O :0.001〜0.004%を含有し、さらに、質量%で、Ca:0.0003〜0.004%、Mg:0.0003〜0.004%のうちの1種又は2種を含有することを特徴とする、上記[7]に記載の脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板。
[9] さらに、質量%で、V :0.01〜0.1%を含有することを特徴とする、上記[7]又は[8]に記載の脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板。
[10] さらに、質量%で、Ni:0.01〜1%、Nb:0.003〜0.03%、Cu:0.01〜1%、Cr:0.01〜1%のうちの1種又は2種以上を含有することを特徴とする、上記[7]〜[9]の何れか1項に記載の脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板。
[11] さらに、質量%で、REM:0.0003〜0.02%、Zr:0.0003〜0.02%のうちの1種又は2種以上を含有することを特徴とする、上記[7]〜[10]の何れか1項に記載の脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板。
[8] In mass%, S: 0.0005 to 0.005%, O 2: 0.001 to 0.004%, and further in mass%, Ca: 0.0003 to 0.004%, Mg : It contains one or two of 0.0003 to 0.004%, and has excellent brittle fracture propagation stop characteristics and high heat input welding heat-affected zone toughness according to [7] above Thick high strength steel plate.
[9] The brittle fracture propagation stop characteristic and large heat input welding heat according to the above [7] or [8], further comprising V: 0.01 to 0.1% by mass% Thick high-strength steel sheet with excellent affected zone toughness.
[10] Further, in mass%, Ni: 0.01 to 1%, Nb: 0.003 to 0.03%, Cu: 0.01 to 1%, Cr: 0.01 to 1% Thick high strength excellent in brittle fracture propagation stop characteristics and high heat input welding heat-affected zone toughness according to any one of the above [7] to [9], characterized by containing seeds or two or more kinds steel sheet.
[11] Further, in the mass%, REM: 0.0003 to 0.02%, Zr: 0.0003 to 0.02%, or one or more of the above, 7]-[10] A thick high-strength steel sheet excellent in brittle fracture propagation stop characteristics and high heat input heat affected zone toughness according to any one of the above.

本発明の脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法、及び脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板によれば、(1)板厚50〜80mm、降伏強度390〜600MPa、かつ引張強度510〜720MPaの厚手高強度で、(2)アレスト性指標Tkca=6000≦−10℃の良好な脆性破壊伝播停止特性を有し、(3)溶接入熱量≧20kJ/mmでもvE(−20℃)≧47Jとなる良好な大入熱溶接HAZ靭性を有し、(4)高価合金元素の低減(Ni≦1%等)等による低い製造コストを実現できる。このような本発明による厚手高強度鋼板が大型船舶をはじめとする各種の溶接構造物に使用されることで、溶接構造物の大型化、破壊に対する高い安全性、建造における溶接の高能率化、素材である鋼材の経済性等々が同時に満たされことから、その産業上の効果は計り知れない。 Manufacturing method of thick high-strength steel sheet excellent in brittle fracture propagation stop characteristics and large heat input welding heat-affected zone toughness, and thick high-strength steel sheet excellent in brittle fracture propagation stop characteristics and large heat input welding heat-affected zone toughness (1) Thickness and high strength with a plate thickness of 50 to 80 mm, a yield strength of 390 to 600 MPa, and a tensile strength of 510 to 720 MPa, and (2) good brittle fracture with an arrestability index T kca = 6000 ≦ −10 ° C. (3) Good high heat input HAZ toughness with vE (−20 ° C.) ≧ 47 J even when the welding heat input ≧ 20 kJ / mm, and (4) Reduction of expensive alloy elements (Ni ≦ 1% etc.) can be realized. Such a thick high-strength steel sheet according to the present invention is used for various welded structures including large ships, so that the welded structures are enlarged, high safety against breakage, high efficiency of welding in construction, Since the economics of steel, the raw material, are satisfied at the same time, the industrial effects are immeasurable.

以下、本発明の脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法、及び脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の実施の形態について説明する。なお、この実施形態は、発明の趣旨をより良く理解させるために詳細に説明するものであるから、特に指定の無い限り、本発明を限定するものではない。   Hereinafter, the manufacturing method of a thick high strength steel sheet excellent in brittle fracture propagation stop characteristics and large heat input welding heat affected zone toughness of the present invention, and thick high excellent in brittle fracture propagation stop characteristics and large heat input welding heat affected zone toughness. An embodiment of a strength steel plate will be described. In addition, since this embodiment is described in detail for better understanding of the gist of the invention, the present invention is not limited unless otherwise specified.

船舶等の溶接構造物に使用される鋼板においては、(1)大きな板厚での高い強度、(2)良好な脆性破壊伝播停止特性、(3)良好な大入熱溶接HAZ靭性、(4)低い製造コスト等のニーズが高まっている。このようなニーズに対し、本発明に係る脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法は、質量%で、C:0.07%超0.12%以下、Si:0.4%以下、Mn:1.0〜2%、P:0.015%以下、S:0.0005〜0.005%、B:0.0003〜0.003%、Mo:0.01〜0.2%、Al:0.001〜0.1%、Ti:0.005〜0.02%、N:0.001〜0.008%、O:0.001〜0.004%を含有し、さらに、必要に応じて、Ca:0.0003〜0.004%、Mg:0.0003〜0.004%、V:0.01〜0.1%、Ni:0.01〜1%、Nb:0.003〜0.03%、Cu:0.01〜1%、Cr:0.01〜1%、REM:0.0003〜0.02%、Zr:0.0003〜0.02%のうちの1種または2種以上を含有し、強脱酸元素による脱酸後に残存し弱脱酸元素であるTiにより脱酸され得る残存酸素量OTi(%)を、下記式(1)で表される量としたとき、下記式(2)で表される、変態前のオーステナイト素地に固溶するB量{有効B量:Bef(%)}が0.0003%以上であり、さらに、炭素当量Ceq(%)を、下記式(3)で表される量としたとき、炭素当量Ceqが0.32〜0.42%の範囲を満たし、残部が鉄および不可避的不純物からなる連続鋳造スラブを、Ar(℃)が、下記式(4)で計算されるとき、連続鋳造後にAr−200℃以下まで冷却した後、950〜1100℃に再加熱し、次いで、900℃以上で累積圧下量が30%以上である粗圧延を行い、次いで、700℃以上で累積圧下量が50%以上である仕上圧延を、仕上圧延開始温度および仕上圧延終了温度が、ともに、次式{−0.5×スラブ加熱温度(℃)+1325}(℃)で表される温度以下とされた条件で行い、次いで、加速冷却を適用して500℃以下まで冷却する方法としている。
Ti(%)=O−0.4Ca−0.66Mg−0.17REM−0.35Zr−0.89Al ・・・(1)
{但し、式(1)において、不可避的不純物扱いの成分元素も計算に含める}
Bef(%)=B−0.77{N−0.29(Ti−2OTi)} ・・・(2)
{但し、式(2)において、OTi≦0のとき、OTi=0とする。また、OTi>0のときは、Ti−2OTi≧0.005(%)を満たすものとする。さらに、N−0.29(Ti−2OTi)≦0(但し、OTi≦0のとき、OTi=0)のときは、N−0.29(Ti−2OTi)=0とする。}
Ceq(%)=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15 ・・・(3)
Ar(℃)=(910−310C−80Mn−20Cu−55Ni−80Mo) ・・・(4)
In steel plates used for welded structures such as ships, (1) high strength at large plate thickness, (2) good brittle fracture propagation stop properties, (3) good high heat input welding HAZ toughness, (4 ) Needs such as low manufacturing costs are increasing. In response to such needs, the method for producing a thick high strength steel sheet having excellent brittle fracture propagation stopping characteristics and high heat input welding heat-affected zone toughness according to the present invention is in mass%, C: more than 0.07%, and 0.0. 12% or less, Si: 0.4% or less, Mn: 1.0-2%, P: 0.015% or less, S: 0.0005-0.005%, B: 0.0003-0.003% , Mo: 0.01-0.2%, Al: 0.001-0.1%, Ti: 0.005-0.02%, N: 0.001-0.008%, O: 0.001 -0.004%, and further, if necessary, Ca: 0.0003-0.004%, Mg: 0.0003-0.004%, V: 0.01-0.1%, Ni : 0.01-1%, Nb: 0.003-0.03%, Cu: 0.01-1%, Cr: 0.01-1%, REM: 0.0003 Contains 0.02%, Zr: 0.0003 to 0.02% or two or more, and can be deoxidized by Ti, which is a weak deoxidation element, remaining after deoxidation with a strong deoxidation element When the residual oxygen amount O Ti (%) is the amount represented by the following formula (1), the B amount that is solid-solved in the austenite substrate before transformation represented by the following formula (2) {effective B amount: Bef (%)} is 0.0003% or more, and when the carbon equivalent Ceq (%) is an amount represented by the following formula (3), the carbon equivalent Ceq is 0.32 to 0.42%. After cooling a continuous cast slab that satisfies the above range and the balance of iron and inevitable impurities to Ar 3 -200 ° C. or less after continuous casting when Ar 3 (° C.) is calculated by the following formula (4) , Reheat to 950 to 1100 ° C., and then the cumulative reduction amount is 3 at 900 ° C. or higher. %, Followed by finish rolling at 700 ° C. or higher and a cumulative reduction amount of 50% or more. Both the finish rolling start temperature and finish rolling end temperature are represented by the following formula {−0.5 × slab The heating temperature (° C.) +1325} (° C.) is performed under the condition of the temperature or lower, and then accelerated cooling is applied to cool to 500 ° C. or lower.
O Ti (%) = O−0.4Ca−0.66Mg−0.17REM−0.35Zr−0.89Al (1)
{However, in the formula (1), inevitable impurities are also included in the calculation}
Bef (%) = B-0.77 {N-0.29 (Ti-2O Ti)} ··· (2)
{However, in Formula (2), when O Ti ≦ 0, O Ti = 0. Further, when O Ti > 0, it is assumed that Ti-2O Ti ≧ 0.005 (%) is satisfied. Further, when N−0.29 (Ti−2O Ti ) ≦ 0 (provided that O Ti ≦ 0 and O Ti = 0), N−0.29 (Ti−2O Ti ) = 0. }
Ceq (%) = C + Mn / 6 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15 (3)
Ar 3 (° C.) = (910-310C-80Mn-20Cu-55Ni-80Mo) (4)

本発明は、TMCP型のB添加厚手鋼板において、強度、脆性破壊伝播停止特性、大入熱溶接HAZ靭性、及び低い製造コスト等を同時に満足する技術である。本発明者等は、上述したように、発明者先願(特願2005−230595号:特開2007−46096号公報)において、脆性破壊伝播停止特性を除く他の要求特性を概ね満足する技術を既に開示しているが、本発明では、脆性破壊伝播停止特性を満足するように、発明者先願の技術を改良することを目指した。本発明者等が鋭意検討を進める中で、発明者先願が具備する下記2項目の特性を緩和しない限り、現段階では脆性破壊伝播停止特性と強度を両立することは難しいことが判明した。まず、発明者先願では、高い圧延能率(圧延終了温度≧800℃)を満足しているが、本発明ではこの限りとしない。また、発明者先願では、大入熱溶接HAZ靭性の保証温度が−40℃であったが、本発明ではこれを−20℃に緩和する方法としている。   The present invention is a technology that simultaneously satisfies the strength, brittle fracture propagation stopping characteristics, high heat input welding HAZ toughness, low manufacturing cost, etc. in the TMCP type B-added thick steel sheet. As described above, the present inventors have developed a technology that generally satisfies other required characteristics except the brittle fracture propagation stop characteristics in the inventor's prior application (Japanese Patent Application No. 2005-230595: Japanese Patent Application Laid-Open No. 2007-46096). Although already disclosed, the present invention has aimed to improve the technology of the inventor's prior application so as to satisfy the brittle fracture propagation stop characteristics. It has been found that at the present stage, it is difficult to achieve both brittle fracture propagation stopping characteristics and strength unless the inventors have diligently studied and the characteristics of the following two items possessed by the inventor's prior application are not alleviated. First, the inventor's prior application satisfies a high rolling efficiency (rolling end temperature ≧ 800 ° C.), but the present invention does not limit this. Further, in the inventor's prior application, the guaranteed temperature of high heat input welding HAZ toughness was −40 ° C., but in the present invention, this is reduced to −20 ° C.

まず、本発明における最大の技術課題である脆性破壊伝播停止特性を満足するため、発明者先願をベースに、厚手鋼板の結晶粒径を極限まで微細化するTMCP条件を検討した。ここで、脆性破壊が結晶学的に同一の結晶面(へき開面:体心立方構造の鉄では{100}面に対応)で生じる最小単位は破面単位と呼ばれ、この破面単位に対応するサイズの金属組織単位を本発明では「結晶粒径」と呼ぶこととする。TMCPにおける低温加熱と低温圧延を徹底して変態前オーステナイトの微細化を限界まで追求すれば、板厚が50〜80mmである厚手鋼板であっても結晶粒径が充分に微細化し、脆性破壊伝播停止特性が目標を満足できることが明らかとなった。その条件は、Ar(℃)が次式(910−310C−80Mn−20Cu−55Ni−80Mo)で計算されるとき、連続鋳造スラブを{Ar(℃)−200(℃)}以下の温度まで冷却した後に1100℃以下に低温加熱し、次いで、900℃以上で累積圧下量が30%以上である粗圧延を行い、次いで、700℃以上で累積圧下量が50%以上である仕上圧延を、仕上圧延開始温度(℃)及び仕上圧延終了温度(℃)が、ともに、次式{−0.5×スラブ加熱温度(℃)+1325}(℃)で表される温度以下とされた条件で行い、次いで、加速冷却を適用して500℃以下まで冷却することである。 First, in order to satisfy the brittle fracture propagation stop characteristic which is the greatest technical problem in the present invention, TMCP conditions for minimizing the crystal grain size of the thick steel plate were studied based on the inventor's prior application. Here, the smallest unit in which brittle fracture occurs on the same crystallographic crystal plane (cleavage plane: corresponding to {100} plane in iron with body-centered cubic structure) is called the fracture surface unit, and corresponds to this fracture surface unit. In the present invention, the metal structure unit of the size is referred to as “crystal grain size”. If thorough low temperature heating and cold rolling in TMCP are pursued and the austenite before transformation is refined to the limit, the crystal grain size will be sufficiently refined even for thick steel plates with a thickness of 50 to 80 mm, and brittle fracture propagation will occur. It became clear that the stopping characteristics can meet the target. The condition is that when Ar 3 (° C.) is calculated by the following formula (910-310C-80Mn-20Cu-55Ni-80Mo), the temperature of the continuously cast slab is {Ar 3 (° C.) − 200 (° C.)} or less. After cooling to 1100 ° C. or lower after cooling, rough rolling is performed at 900 ° C. or higher and the cumulative reduction amount is 30% or higher, and then finish rolling at 700 ° C. or higher and the cumulative reduction amount is 50% or higher. The finish rolling start temperature (° C.) and the finish rolling end temperature (° C.) are both equal to or lower than the temperature represented by the following formula {−0.5 × slab heating temperature (° C.) + 1325} (° C.). And then applying accelerated cooling to cool below 500 ° C.

低温加熱、低温圧延のTMCPの第一の条件として、連続鋳造後のスラブをAr−200℃以下に冷却してγ(オーステナイト)→α(フェライト)変態させ、その後に1100℃以下に低温加熱することでα→γ変態させる理由は、加熱時のγを徹底的に整細粒化するためである。スラブを、{Ar(℃)−200(℃)}を超える高温から再加熱すると、スラブ内部でγ→α変態が未完了のうちに再加熱されて鋳造時の粗大γが残存してしまう。この際、スラブの冷却速度は極めて小さいので、Bの焼入性は実質的に無視できるほど小さく、上記式(4)を、スラブのArの目安として使って実用上問題ない。スラブの再加熱温度が1100℃を超えるような高温加熱だと、TiNのオストワルド成長が始まるため、ピン止め効果が低減して整細粒γを安定的に確保することが難しくなる。加熱時のγを徹底的に整細粒化できなければ、現実的なスラブ厚みの制約下(通常は200〜300mm)において、圧延条件をどれだけ工夫したとしても、板厚が50〜80mmである鋼板の変態前γを十分に微細化することは困難である。 As the first condition of TMCP for low temperature heating and low temperature rolling, the slab after continuous casting is cooled to Ar 3 −200 ° C. or lower to transform γ (austenite) → α (ferrite), and then heated to 1100 ° C. or lower. The reason why α → γ transformation is carried out is to thoroughly refine γ during heating. When the slab is reheated from a high temperature exceeding {Ar 3 (° C.) − 200 (° C.)}, the γ → α transformation is reheated incomplete in the slab, and coarse γ during casting remains. . At this time, since the cooling rate of the slab is extremely small, the hardenability of B is so small that it can be substantially ignored, and there is no practical problem using the above formula (4) as a measure of Ar 3 of the slab. When the reheating temperature of the slab is higher than 1100 ° C., Ostwald growth of TiN starts, so that the pinning effect is reduced and it becomes difficult to stably secure the fine grain γ. If γ during heating cannot be thoroughly refined, the plate thickness is 50 to 80 mm no matter how much the rolling conditions are devised under the realistic slab thickness restrictions (usually 200 to 300 mm). It is difficult to sufficiently refine γ before transformation of a certain steel sheet.

低温加熱、低温圧延のTMCPの第二の条件として、900℃以上で累積圧下量が30%以上である粗圧延を行う理由は、再結晶域圧延によって加熱時よりもさらに整細粒なγを得るためである。粗圧延が900℃未満であったり、また、累積圧下量が30%未満であると、再結晶が不十分となって歪誘起粒成長が起こり、加熱時の初期γよりもむしろ粗大になる恐れがある。   As a second condition of TMCP for low-temperature heating and low-temperature rolling, the reason for performing rough rolling with a cumulative reduction amount of 30% or more at 900 ° C. or higher is that finer γ is obtained by recrystallization zone rolling than when heating. To get. If rough rolling is less than 900 ° C. or if the cumulative reduction is less than 30%, recrystallization is insufficient and strain-induced grain growth occurs, which may become coarse rather than initial γ during heating. There is.

低温加熱、低温圧延のTMCPの第三の条件として、700℃以上で累積圧下量が50%以上である仕上圧延を、仕上圧延開始温度(℃)及び仕上圧延終了温度(℃)を、ともに、次式{−0.5×スラブ加熱温度(℃)+1325}(℃)で表される温度以下とされた条件で行う理由は、粗圧延で十分に整細粒化した再結晶粒を未再結晶域圧延することで、γ粒を延伸化させて粒界の面積を増やすとともに粒界を活性化させ、さらにγ粒内に変形帯を導入し、変態前γにおける核生成サイト密度と核生成頻度を限界まで高めるためである。仕上圧延の累積圧下量が50%未満であったり、また、次式{−0.5×スラブ加熱温度(℃)+1325}(℃)で表される温度以下の条件を満たさない場合は、変態前γの微細化が不十分となる。上記式{−0.5×スラブ加熱温度(℃)+1325}(℃)で表される温度以下の条件の金属学的な意味としては、加熱温度が高く初期γが粗大であるほど、仕上圧延をより低温で行って未再結晶域圧延を強化する必要があることを示している。例えば、加熱温度が1100℃なら仕上圧延を775℃以下で行う必要があり、1000℃加熱なら825℃以下で行う必要がある。このように、加熱温度に連動させて仕上圧延温度を規制する極めて厳格なTMCP条件を適用しないと、厚手鋼板で良好な脆性破壊伝播停止特性を安定して確保することはできない。700℃よりも低温域で仕上圧延を行うと、圧延中あるいは加速冷却までの待機時間中に鋼板の表層側が変態を開始してしまい、表層部組織が軟化すると同時に粗大化してしまい、強度と脆性破壊伝播停止特性が劣化する。   As the third condition of TMCP for low-temperature heating and low-temperature rolling, finish rolling with a cumulative reduction amount of 50% or more at 700 ° C. or higher, finish rolling start temperature (° C.) and finish rolling end temperature (° C.), The reason why the following expression {−0.5 × slab heating temperature (° C.) + 1325} (° C.) or less is performed is that the recrystallized grains that have been sufficiently refined by rough rolling are not re-recycled. By rolling the crystal zone, the γ grains are stretched to increase the area of the grain boundaries and activate the grain boundaries. Further, a deformation band is introduced into the γ grains, and the density of nucleation sites and nucleation in γ before transformation. This is to increase the frequency to the limit. If the cumulative rolling reduction of finish rolling is less than 50% or does not satisfy the conditions below the temperature represented by the following formula {−0.5 × slab heating temperature (° C.) + 1325} (° C.), transformation Pre-gamma refinement becomes insufficient. As the metallurgical meaning of the conditions below the temperature represented by the above formula {−0.5 × slab heating temperature (° C.) + 1325} (° C.), the higher the heating temperature and the coarse the initial γ, the more finish rolling. Shows that it is necessary to strengthen the non-recrystallization zone rolling at a lower temperature. For example, if the heating temperature is 1100 ° C., it is necessary to perform finish rolling at 775 ° C. or lower, and if it is heated at 1000 ° C., it is necessary to perform it at 825 ° C. or lower. Thus, unless the extremely strict TMCP condition that regulates the finish rolling temperature in conjunction with the heating temperature is applied, it is impossible to stably secure good brittle fracture propagation stop characteristics with the thick steel plate. When finish rolling is performed at a temperature lower than 700 ° C., the surface layer side of the steel sheet starts transformation during rolling or waiting time until accelerated cooling, and the surface layer structure is softened and coarsened at the same time, resulting in strength and brittleness. Destruction propagation stop characteristics deteriorate.

低温加熱、低温圧延のTMCPの第四の条件として、加速冷却を適用して500℃以下まで冷却する理由は、上述のごとく加熱、圧延条件を徹底して変態前γを限界まで微細化しても、その後の冷却が空冷であるとγ→α変態時の過冷度が小さく、結晶粒径が十分に微細化できないからである。また、加速冷却を500℃よりも高温で停止すると、板厚表層に比べて温度の高い板厚内部では、変態の途中で加速冷却が終了して空冷になるため、板厚内部の結晶粒径が十分に微細化できない。   As a fourth condition of TMCP for low temperature heating and low temperature rolling, the reason for cooling to 500 ° C. or less by applying accelerated cooling is that heating and rolling conditions are thoroughly refined to the limit before γ before transformation as described above. This is because if the subsequent cooling is air cooling, the degree of supercooling during the γ → α transformation is small and the crystal grain size cannot be sufficiently refined. In addition, when accelerated cooling is stopped at a temperature higher than 500 ° C., since the accelerated cooling is completed and air cooling is performed in the middle of the transformation inside the plate thickness where the temperature is higher than that of the plate thickness surface layer, the crystal grain size inside the plate thickness Cannot be made sufficiently fine.

以上が、結晶粒径を十分に微細化して脆性破壊伝播停止特性を満足するためのTMCP条件であり、このことによって上記(2)のニーズを満足できる。上述のTMCP条件では、変態前γの徹底した微細化と厚手鋼板特有の小さな冷却速度に起因して、変態時の焼入性が大幅に低下するため、ベイナイト組織あるいはベイナイト/フェライト混合組織におけるベイナイト分率が減少してフェライト分率が増加することから、発明者先願の鋼成分のままでは所定の強度を安定的に確保することが難しいことが新たな課題として浮上した。本発明では、低温加熱に起因して、そもそも固溶できるNb量が少なく、さらに低温圧延に起因してNbが歪誘起析出して固溶Nbが減少するので、焼入性に対するNb−B複合効果は非常に小さい。発明者先願の特徴である微量Moは、Nbとは対照的にγへの溶解度が大きく安定的に固溶するため、本発明のような低温加熱と低温圧延を追求した場合でも、Moの固溶状態が維持されてBの焼入性を高める効果がある。しかし、このような微量Mo−B複合による焼入性効果を利用しても、低温加熱と低温圧延を追求した場合の焼入性低下を完全に相殺することは難しく、発明者先願の鋼成分のままでは、所定の強度を安定的に確保することは難しい。この強度不足に対して、Moを増加して焼入性をさらに高めることは、合金コストと大入熱溶接HAZでの有害性の両面から適当でない。また、Niは大入熱溶接HAZ靭性の劣化を抑えつつ母材を強化する元素として有効であるが、上述した製造コストの観点から本発明では極力添加しない方針としている。つまり、Nb、Mo、Niを増加して強度不足を補うことは困難である。   The above is the TMCP condition for sufficiently miniaturizing the crystal grain size to satisfy the brittle fracture propagation stop characteristic, and this satisfies the above-mentioned need (2). Under the above-mentioned TMCP conditions, hardenability during transformation is greatly reduced due to thorough refinement of γ before transformation and a small cooling rate specific to thick steel plates, so bainite in a bainite structure or a bainite / ferrite mixed structure. Since the fraction decreases and the ferrite fraction increases, it has emerged as a new issue that it is difficult to stably secure a predetermined strength with the steel component of the inventor's earlier application. In the present invention, the amount of Nb that can be dissolved in the first place due to low-temperature heating is small, and Nb is strain-induced precipitation due to low-temperature rolling, so that the solid-solution Nb is reduced. The effect is very small. In contrast to Nb, trace amount Mo, which is a feature of the inventor's prior application, has a large solubility in γ and is stably solid-solved. Therefore, even when pursuing low temperature heating and low temperature rolling as in the present invention, The solid solution state is maintained, and there is an effect of improving the hardenability of B. However, even if the hardenability effect by such a small amount of Mo-B composite is utilized, it is difficult to completely offset the decrease in hardenability when pursuing low temperature heating and low temperature rolling. It is difficult to stably secure a predetermined strength with the components as they are. In response to this insufficient strength, it is not appropriate to increase the hardenability by increasing Mo in terms of both alloy costs and harmfulness in high heat input welding HAZ. Ni is effective as an element for strengthening the base metal while suppressing deterioration of the high heat input welding HAZ toughness, but from the viewpoint of the manufacturing cost described above, the present invention has a policy of not adding it as much as possible. That is, it is difficult to make up for the lack of strength by increasing Nb, Mo, and Ni.

そうすると、安価な強化元素として残るのはCとMnであり、大入熱溶接HAZ靭性の劣化代を勘案して、どちらの元素が有効かを判断することになる。そこで、発明者先願の微量Mo−B成分を前提に、C増加とMn増加による母材強化代と大入熱溶接HAZ脆化代のバランスを検討した結果、MnよりもCの方が有効であることがわかった。Mnを増加すると、大入熱溶接HAZの微細脆化相であるMA(Martensite−Austenite constituent)が増加し、Cを増加してセメンタイトが増加する場合よりも、大入熱溶接HAZ靭性の劣化代が大きいことが判明した。   In this case, C and Mn remain as inexpensive strengthening elements, and it is determined which element is effective in consideration of the deterioration allowance of high heat input welding HAZ toughness. Accordingly, as a result of examining the balance between the base material strengthening allowance due to the increase in C and the increase in Mn and the large heat input welding HAZ embrittlement allowance, assuming the trace amount Mo-B component of the inventor's prior application, C is more effective than Mn. I found out that When Mn is increased, MA (Martensite-Austenite constituent), which is a fine embrittlement phase of high heat input welding HAZ, is increased, and the deterioration allowance of high heat input welding HAZ toughness is larger than when C is increased and cementite is increased. Turned out to be great.

以上説明したように、微量Mo−Bによる焼入性を基本とし、発明者先願の鋼成分で不足する母材強度をCの増加で補うためには、有効B量Befを0.0003%以上確保し、炭素当量Ceqを0.32%以上確保し、加熱温度を950℃以上に制御し、加速冷却を400℃以下まで行うことが必要である。上記式(2)で計算される有効B量が0.0003%より少ないと、固溶Bが不足してBの焼入性が不足する。炭素当量Ceqが0.32%未満だと、B以外の鋼成分の焼入性が不足する。加熱温度が950℃未満だと、B炭化物が溶解しないので、有効B量が十分でも実質的な固溶Bが不足してBの焼入性が不足する。加速冷却ではなく空冷を適用すると、冷却速度が小さすぎてBの焼入性をうまく引き出せない。加速冷却を500℃よりも高温で停止すると、温度の高い板厚内部は変態途中で加速冷却が終了してしまうため、板厚内部の変態強化が十分に得られない。加速冷却においては、0.3m/m/min以上の水量密度を確保することが、Bの焼入性をうまく引き出すことができることから好ましい。
以上が脆性破壊発生特性を重視したTMCP条件において、低Niを前提に強度を満足できる技術であり、これによって、上記(2)と同時に(1)と(4)のニーズを満足することができる。
As explained above, the effective B amount Bef is set to 0.0003% in order to compensate for the base material strength which is insufficient with the steel component of the inventor's prior application by increasing the C, based on the hardenability by a small amount of Mo-B. It is necessary to secure the above, to secure a carbon equivalent Ceq of 0.32% or more, to control the heating temperature to 950 ° C. or more, and to perform accelerated cooling to 400 ° C. or less. When the effective B amount calculated by the above formula (2) is less than 0.0003%, the solid solution B is insufficient and the hardenability of B is insufficient. If the carbon equivalent Ceq is less than 0.32%, the hardenability of steel components other than B is insufficient. When the heating temperature is less than 950 ° C., the B carbide does not dissolve, so even if the effective B amount is sufficient, the substantial solid solution B is insufficient and the hardenability of B is insufficient. When air cooling is applied instead of accelerated cooling, the cooling rate is too small to bring out the hardenability of B well. When the accelerated cooling is stopped at a temperature higher than 500 ° C., the accelerated cooling is terminated in the middle of the transformation in the thick plate thickness, so that the transformation strengthening inside the thickness cannot be sufficiently obtained. In accelerated cooling, it is preferable to secure a water density of 0.3 m 3 / m 2 / min or more because the hardenability of B can be satisfactorily extracted.
The above is the technology that can satisfy the strength on the premise of low Ni under the TMCP condition that places emphasis on the brittle fracture occurrence characteristics, and by this, the needs of (1) and (4) can be satisfied simultaneously with the above (2). .

また、加速冷却後に350〜700℃で5〜60分の焼戻し熱処理を行うことにより、製造コストは上昇するものの、強度や伸び、シャルピー衝撃特性を、高精度で所定の範囲に制御できる。焼戻し熱処理の温度や時間が350℃未満や5分未満であると、焼戻し効果が発揮されない。また、焼戻し熱処理の温度や時間が700℃超えや60分超えであると、焼戻し効果が適正範囲を超えて過剰に発揮された過時効状態となり、強度低下とシャルピー衝撃特性劣化が著しくなって、適正な機械的性質が得られない。   Further, by performing tempering heat treatment at 350 to 700 ° C. for 5 to 60 minutes after accelerated cooling, the manufacturing cost increases, but the strength, elongation, and Charpy impact characteristics can be controlled within a predetermined range with high accuracy. When the temperature and time of the tempering heat treatment are less than 350 ° C. or less than 5 minutes, the tempering effect is not exhibited. Further, if the temperature and time of the tempering heat treatment are over 700 ° C. or over 60 minutes, the tempering effect is excessively exerted beyond the appropriate range, and the strength reduction and Charpy impact property deterioration become remarkable, Appropriate mechanical properties cannot be obtained.

次に、上記(3)のニーズである大入熱溶接HAZ靭性を満足するための技術を説明する。本発明の大入熱溶接HAZでは、微量Moの有害性、つまり、MAの増加が大きな課題であり、これに対して可能な限りSiを低減する必要がある。また、Nbは母材材質への貢献が小さいにも関わらず、大入熱溶接HAZを硬化やMA増加を通じて脆化させるから、可能な限り低減する必要がある。しかしながら、本発明では強度補償の観点から発明者先願よりもCを高める必要があるので、セメンタイトの有害性が顕在化して、発明者先願よりも相対的に大入熱溶接HAZ靭性が劣化することは否めず、HAZ組織微細化を促すための後述の技術を適用しなければ−20℃保証が限界である。下記技術を適用すれば、炭素当量Ceqレベルにも依存するが、−40℃保証の可能性がある。   Next, a technique for satisfying the high heat input HAZ toughness which is the need of the above (3) will be described. In the high heat input welding HAZ of the present invention, the harmfulness of a small amount of Mo, that is, an increase in MA is a big problem, and it is necessary to reduce Si as much as possible. In addition, although Nb contributes little to the material of the base material, it causes the high heat input welding HAZ to become brittle through hardening and MA increase, so it needs to be reduced as much as possible. However, in the present invention, it is necessary to increase C from the viewpoint of strength compensation as compared with the inventor's prior application, so the harmfulness of cementite becomes obvious and the relatively high heat input welding HAZ toughness deteriorates compared to the inventor's prior application. If it is unavoidable to apply the technique described later for promoting the refinement of the HAZ structure, the guarantee of −20 ° C. is the limit. If the following technology is applied, it may depend on the carbon equivalent Ceq level, but there is a possibility of -40 ° C guarantee.

すなわち、第一のHAZ組織微細化技術は、CaやMgの適正添加によって微細酸化物を多数分散させ、γ粒成長をピン止め効果によって抑制する技術である。これは、発明者先願で示された技術であるが、本発明のようにCを高めた場合でも、HAZ靭性を有効に高めることが確認された。第二のHAZ組織微細化技術は、V(C,N)変態核の利用である。発明者先願に対してCが高いから、大入熱溶接の冷却中にγ粒界やγ粒内にV(C,N)が析出しやすく、これが変態核として作用することでHAZ組織が微細化して靭性が向上することが明らかになった。炭素当量Ceqが比較的高い場合には、HAZが硬化するので靭性の確保が難しくなるが、このような場合にV添加すると、母材を強化しつつ大入熱溶接HAZ靭性を高めるため、極めて有効な手段である。これら二つのHAZ組織微細化技術は、製造コストの上昇を伴うものの、これらの一方あるいは両方を適用すれば、大入熱溶接HAZ靭性を−40℃保証できる可能性があり、好ましい形態である。   That is, the first HAZ structure refinement technique is a technique in which a large number of fine oxides are dispersed by appropriate addition of Ca and Mg, and γ grain growth is suppressed by a pinning effect. This is a technique shown in the inventor's prior application, but it was confirmed that the HAZ toughness is effectively increased even when C is increased as in the present invention. The second HAZ microstructure refinement technique is the use of V (C, N) transformation nuclei. Since C is higher than the inventor's prior application, V (C, N) is likely to precipitate in the γ grain boundaries and γ grains during the cooling of the high heat input welding, and this acts as a transformation nucleus, thereby reducing the HAZ structure. It became clear that toughness was improved by miniaturization. When the carbon equivalent Ceq is relatively high, it is difficult to ensure toughness because the HAZ hardens. However, in such a case, when V is added, the high heat input welding HAZ toughness is enhanced while strengthening the base material. It is an effective means. Although these two HAZ structure refinement techniques are accompanied by an increase in manufacturing cost, if one or both of them are applied, there is a possibility that high heat input welding HAZ toughness can be guaranteed at -40 ° C., which is a preferable form.

なお、本発明では大入熱溶接HAZ靭性を確保する観点から、炭素当量Ceqを0.42%以下に制限する。炭素当量Ceqが0.42%を超えると、上述のHAZ組織微細化技術を適用しても−20℃保証を安定的に満足することが難しいからである。   In the present invention, the carbon equivalent Ceq is limited to 0.42% or less from the viewpoint of securing high heat input welding HAZ toughness. This is because if the carbon equivalent Ceq exceeds 0.42%, it is difficult to stably satisfy the −20 ° C. guarantee even if the above-described HAZ structure refinement technique is applied.

<化学成分組成>
以下に本発明における鋼の化学成分についての限定理由を説明する。
<Chemical component composition>
Below, the reason for limitation about the chemical component of steel in this invention is demonstrated.

「C:炭素」0.07%超0.12%以下
Cは、強度向上のために重要な元素である。低温加熱、低温圧延を徹底したTMCP型厚手鋼板において、所定の強度を安定確保するために、微量Mo−B添加と相俟って0.07%超のCを添加する必要がある。また、後述する理由から、本発明ではNb、Ni、Moの添加量を必要最小限に抑える必要があるので、これらの元素を増加して高強度化することは困難である。従って、Cは非常に重要な強化元素である。さらに、C添加は大入熱HAZにおけるV(C,N)変態核の析出を促す効果もある。しかしながら、良好な大入熱溶接HAZ靭性を安定確保するためには、Cを0.12%以下に抑えることが好ましい。
“C: carbon” more than 0.07% and 0.12% or less C is an important element for improving the strength. In a TMCP type thick steel plate thoroughly subjected to low temperature heating and low temperature rolling, it is necessary to add more than 0.07% C in combination with a small amount of Mo-B addition in order to ensure a predetermined strength stably. Further, for the reason described later, in the present invention, it is necessary to suppress the addition amount of Nb, Ni, and Mo to the necessary minimum, so it is difficult to increase the strength by increasing these elements. Therefore, C is a very important strengthening element. Furthermore, the addition of C also has an effect of promoting the precipitation of V (C, N) transformation nuclei in the high heat input HAZ. However, in order to ensure stable high heat input welding HAZ toughness, it is preferable to suppress C to 0.12% or less.

「Si:ケイ素」0.4%以下
Siは、脱酸作用を有するが、強力な脱酸元素であるAlが十分に添加されている場合には不要である。比較的高い炭素当量Ceqの下で微量Moを添加する本発明の大入熱溶接HAZでは、SiはMA生成を助長する危険性が高いため、0.4%以下に抑える必要がある。また、Siの添加量は極力低くすることが好ましい。
“Si: silicon” 0.4% or less Si has a deoxidizing action, but is unnecessary when Al, which is a strong deoxidizing element, is sufficiently added. In the high heat input welding HAZ of the present invention in which a small amount of Mo is added under a relatively high carbon equivalent Ceq, since Si has a high risk of promoting MA formation, it is necessary to suppress it to 0.4% or less. Moreover, it is preferable to make the addition amount of Si as low as possible.

「Mn:マンガン」1.0〜2%
Mnは、経済的に強度を確保するために1.0%以上の添加量が必要である。但し、2%を超えてMnを添加すると、スラブの中心偏析の有害性が顕著となるうえ、大入熱溶接HAZのMA生成を助長して脆化させるため、これを上限とする。
"Mn: Manganese" 1.0-2%
Mn needs to be added in an amount of 1.0% or more in order to ensure strength economically. However, if Mn is added in excess of 2%, the hazard of center segregation of the slab becomes remarkable, and MA formation of the high heat input weld HAZ is promoted and embrittled, so this is made the upper limit.

「P:リン」0.015%以下
Pは、不純物元素であり、良好な脆性破壊伝播停止特性と大入熱溶接HAZ靭性を安定的に確保するために、0.015%以下に低減する必要がある。
“P: Phosphorus” 0.015% or less P is an impurity element, and it is necessary to reduce it to 0.015% or less in order to stably secure good brittle fracture propagation stopping characteristics and high heat input HAZ toughness. There is.

「S:硫黄」0.0005〜0.005%
Sは、大入熱溶接HAZでのピン止め効果のために0.0005%以上添加する。Sは適正に添加されたCaやMgと結合して、微細な硫化物を数多く形成してγ細粒化をもたらす。しかしながら、Sが0.005%を超えると、硫化物が粗大化してピン止め効果が低下すると同時に、破壊起点しての有害性も顕著となり、大入熱溶接HAZ靭性が劣化するため、0.005%を上限とする。
“S: sulfur” 0.0005 to 0.005%
S is added in an amount of 0.0005% or more for the pinning effect in the high heat input welding HAZ. S combines with properly added Ca and Mg to form a large number of fine sulfides, resulting in γ-fine graining. However, if S exceeds 0.005%, the sulfide becomes coarse and the pinning effect is reduced, and at the same time, the hazard at the start of fracture becomes significant, and the high heat input welding HAZ toughness deteriorates. The upper limit is 005%.

「B:ボロン(ホウ素)」0.0003〜0.003%
「Mo:モリブデン」0.01〜0.2%
BとMoは、本発明の特徴的な元素であり、最も重要な元素である。既に詳述したように、低温加熱と低温圧延の下でも微量Mo−Bの複合効果によって焼入性が高まり、強度を効果的に高める。そのためには、Bを0.0003%以上、Moを0.01%以上添加する必要がある。但し、0.003%を超えてBを添加すると、焼入性が低下すると同時に、B系の粗大析出物が生成して大入熱溶接HAZ靭性が劣化するため、これを上限とする。また、0.2%を超えてMoを添加すると、強度確保には有効であるものの、大入熱溶接HAZのMAが増加して脆化する。その上、Moは非常に高価なので0.2%を超える多量添加は工業製品としての経済性を著しく失う。従って、Moの上限は0.2%である。また、大入熱溶接HAZ靭性と経済性の両面を考慮すると、0.15%以下のMo添加が好ましい。
微量MoとBの複合添加は、γの再結晶を抑制する効果も有しており、極微量Nbしか使えない低温加熱と低温圧延においては、未再結晶域圧延の安定化に貢献する。
“B: Boron” 0.0003 to 0.003%
"Mo: Molybdenum" 0.01-0.2%
B and Mo are characteristic elements of the present invention and are the most important elements. As already described in detail, the hardenability is increased by the combined effect of a small amount of Mo-B even under low temperature heating and low temperature rolling, and the strength is effectively increased. For that purpose, it is necessary to add 0.0003% or more of B and 0.01% or more of Mo. However, if B is added in excess of 0.003%, the hardenability is lowered, and at the same time, B-based coarse precipitates are generated and the high heat input HAZ toughness is deteriorated. Further, if Mo is added over 0.2%, it is effective for securing the strength, but the MA of the high heat input HAZ increases and becomes brittle. In addition, since Mo is very expensive, addition of a large amount exceeding 0.2% significantly loses economic efficiency as an industrial product. Therefore, the upper limit of Mo is 0.2%. In consideration of both high heat input welding HAZ toughness and economy, addition of 0.15% or less of Mo is preferable.
The combined addition of trace amounts of Mo and B has an effect of suppressing recrystallization of γ, and contributes to stabilization of non-recrystallization zone rolling in low temperature heating and low temperature rolling in which only a very small amount of Nb can be used.

「Al:アルミニウム」0.001〜0.1%
Alは、脱酸を担い、Oを低減して鋼の清浄度を高めるために必要である。Al以外のSi、Ti、Ca、Mg等も脱酸作用があるが、たとえこれらの元素が添加される場合でも、0.001%以上のAlがないと安定的にO(酸素)を0.004%以下に抑えることは難しい。但し、Alが0.1%を超えるとアルミナ系粗大酸化物がクラスター化する傾向を強め、製鋼ノズルつまりが発生したり、破壊起点としての有害性が顕在化するため、これを上限とする。
“Al: Aluminum” 0.001 to 0.1%
Al is necessary for carrying out deoxidation, reducing O, and increasing the cleanliness of steel. Si, Ti, Ca, Mg, and the like other than Al also have a deoxidizing action, but even when these elements are added, O (oxygen) is stably reduced to 0. It is difficult to keep it below 004%. However, if Al exceeds 0.1%, the tendency of the alumina-based coarse oxide to be clustered is strengthened, and a steelmaking nozzle is clogged, or the harmfulness as a fracture starting point becomes obvious, so this is the upper limit.

「Ti:チタン」0.005〜0.02%
「N:窒素」0.001〜0.008%
「有効B量:Bef(%)」0.0003%以上
Tiは、Nと結合してTiNを形成し固溶Nを低減する。その結果、添加されたBがBNを形成することを抑え、γ中の固溶Bを確保することでBの焼入性を確保する効果がある。同時に、TiNは、スラブ再加熱時と大入熱溶接HAZでピン止め効果に貢献し、γ細粒化に寄与する。このような二つの効果を同時に発揮するために、Tiを0.005〜0.02%、Nを0.001〜0.008%、有効B量(Bef)を0.0003%以上とする必要がある。TiとNが、それぞれ0.005%、0.001%に満たないと、TiNによるピン止め効果が十分に発揮されず、母材と大入熱溶接HAZの靭性が劣化する。TiとNがそれぞれ0.02%、0.008%を超えると、TiC析出や固溶N増加によって母材と大入熱溶接HAZの靭性が劣化する。さらに、TiとNが適正範囲にあっても、有効B量が0.0003%未満であると、γ中の固溶Bの量が不足して焼入性を確保できないから、強度が確保できない。
"Ti: Titanium" 0.005-0.02%
“N: Nitrogen” 0.001 to 0.008%
“Effective B amount: Bef (%)” 0.0003% or more Ti combines with N to form TiN and reduce solute N. As a result, there is an effect of suppressing the formation of BN by the added B and ensuring the hardenability of B by securing the solid solution B in γ. At the same time, TiN contributes to the pinning effect during slab reheating and high heat input welding HAZ, and contributes to γ refinement. In order to exhibit these two effects simultaneously, it is necessary to make Ti 0.005-0.02%, N 0.001-0.008%, and the effective B amount (Bef) 0.0003% or more. There is. If Ti and N are less than 0.005% and 0.001%, respectively, the pinning effect by TiN is not sufficiently exhibited, and the toughness of the base material and the high heat input welding HAZ deteriorates. If Ti and N exceed 0.02% and 0.008%, respectively, the toughness of the base metal and the high heat input welding HAZ deteriorates due to TiC precipitation and increase in solute N. Furthermore, even if Ti and N are in an appropriate range, if the effective B amount is less than 0.0003%, the amount of solid solution B in γ is insufficient and the hardenability cannot be ensured, so the strength cannot be ensured. .

以下に、有効B量(Bef)の考え方を説明する。
化学成分として添加されたTiは、溶鋼中の脱酸で消費される場合があり(低Alの場合に起こりやすい)、脱酸後に残ったTiが凝固後のγ中でTiNを形成する。この際、Tiに対してNが過剰であると、TiNを形成した後に残ったNがBの一部と結合してBNを形成する。そして、BNを形成した残りのBが固溶Bとして焼入性に寄与する。この焼入性に寄与する固溶B量を本発明では有効B量Bef(%)として扱う。
The concept of the effective B amount (Bef) will be described below.
Ti added as a chemical component may be consumed by deoxidation in molten steel (prone to occur in the case of low Al), and Ti remaining after deoxidation forms TiN in γ after solidification. At this time, if N is excessive with respect to Ti, N remaining after forming TiN is combined with a part of B to form BN. And the remaining B which formed BN contributes to hardenability as the solid solution B. In the present invention, the amount of dissolved B that contributes to the hardenability is treated as the effective B amount Bef (%).

各元素の添加量、熱力学的な反応順序、生成物質の化学量論組成に基づいた有効B量Befの計算方法について以下に説明する。
まず、脱酸力の高い順に、Ca、Mg、REM(希土類元素)、Zr、AlがOと結合すると仮定する。この際の脱酸生成物として、CaO、MgO、REM、ZrO、Alを仮定して、脱酸されるO量を計算する。Tiよりも脱酸力の強いこれらの元素によって脱酸が完了しない場合、これらの強脱酸元素による脱酸後に残存し、弱脱酸元素であるTiによって脱酸され得る残存酸素量OTi(%)を、下記式(1)で表される量とした時、次式{OTi(%)>0}を満たす。
Ti(%)=O−0.4Ca−0.66Mg−0.17REM−0.35Zr−0.89Al ・・・(1)
但し、上記式(1)において、不可避的不純物扱いの成分元素も計算に含める。
A method for calculating the effective B amount Bef based on the addition amount of each element, the thermodynamic reaction sequence, and the stoichiometric composition of the product will be described below.
First, it is assumed that Ca, Mg, REM (rare earth element), Zr, and Al are combined with O in descending order of deoxidizing power. Assuming CaO, MgO, REM 2 O 3 , ZrO 2 , and Al 2 O 3 as deoxidation products at this time, the amount of O to be deoxidized is calculated. In the case where deoxidation is not completed by these elements having a stronger deoxidizing power than Ti, the residual oxygen amount O Ti that remains after deoxidation by these strong deoxidation elements and can be deoxidized by Ti, which is a weak deoxidation element. %) Is the amount represented by the following formula (1), the following formula {O Ti (%)> 0} is satisfied.
O Ti (%) = O−0.4Ca−0.66Mg−0.17REM−0.35Zr−0.89Al (1)
However, in the above formula (1), component elements that are treated as inevitable impurities are also included in the calculation.

この場合、残ったO(=OTi)をTiが脱酸することになる。そこで、Tiを仮定して、脱酸で消費されるTiを差し引いた残りのTiは、Ti−2OTi≧0.005(%)で表され、この値が0.005%以上になる必要がある。ここで、脱酸で消費されるTiを差し引いた残りのTiが0.005%以上必要なのは、上述したように、本発明に必要なTiNを確保するためである。脱酸で消費されるTiを差し引いた残りのTiが0.005%未満であると、TiNによるピン止め効果が十分に発揮されず、厚手母材と大入熱溶接HAZ靭性が劣化する。 In this case, Ti deoxidizes the remaining O (= O Ti ). Therefore, assuming Ti 2 O 3 , the remaining Ti after subtracting Ti consumed in deoxidation is expressed as Ti-2O Ti ≧ 0.005 (%), and this value is 0.005% or more. Need to be. Here, the reason why 0.005% or more of the remaining Ti after subtracting Ti consumed in deoxidation is necessary is to secure TiN necessary for the present invention as described above. If the remaining Ti after subtracting Ti consumed by deoxidation is less than 0.005%, the pinning effect by TiN is not sufficiently exhibited, and the thick base material and the high heat input weld HAZ toughness deteriorate.

また、脱酸で残った0.005%以上のTiがTiNを形成し、Nが残る場合は下記式が正の値、Nが残らない場合は下記式が0又は負の値になる。
N−0.29(Ti−2OTi)>0 :Nが残る場合
N−0.29(Ti−2OTi)≦0 :Nが残らない場合
Further, 0.005% or more of Ti remaining after deoxidation forms TiN, and when N remains, the following formula becomes a positive value, and when N does not remain, the following formula becomes 0 or a negative value.
N-0.29 (Ti-2O Ti )> 0: If N remains N-0.29 (Ti-2O Ti ) ≦ 0: If N does not remain

また、上記式{N−0.29(Ti−2OTi)}が正の値となってNが残る場合は、Bの一部がBNとして消費されるので、下記式(2)によって有効B量Befが計算される。
Bef(%)=B−0.77{N−0.29(Ti−2OTi)} ・・・(2)
但し、上記式(2)において、OTi≦0のとき、OTi=0とする。また、OTi>0のときは、式{Ti−2OTi≧0.005(%)}を満たすものとする。さらに、式{N−0.29(Ti−2OTi)≦0(但し、OTi≦0のとき、OTi=0)}のときは、式{N−0.29(Ti−2OTi)=0}とする。
Further, when the above expression {N-0.29 (Ti-2O Ti )} becomes a positive value and N remains, a part of B is consumed as BN. The quantity Bef is calculated.
Bef (%) = B-0.77 {N-0.29 (Ti-2O Ti)} ··· (2)
However, in the above formula (2), when O Ti ≦ 0, O Ti = 0. Further, when O Ti > 0, the expression {Ti-2O Ti ≧ 0.005 (%)} is satisfied. Further, the formula {N-0.29 (Ti-2O Ti) ≦ 0 ( provided that when the O Ti ≦ 0, O Ti = 0)} When the equation {N-0.29 (Ti-2O Ti) = 0}.

また、式{N−0.29(Ti−2OTi)}が0または負の値となってNが残らない場合は、有効B量Befは、Bef(%)=Bで表される量となる。 Further, when the expression {N−0.29 (Ti−2O Ti )} is 0 or a negative value and N does not remain, the effective B amount Bef is the amount represented by Bef (%) = B. Become.

次に、上述した残存酸素量OTiの式におけるCa、Mg、REM、Zr、Alの係数について述べると、溶鋼中での脱酸反応(酸化反応)による生成物(酸化物)としてCaO、MgO、REM、ZrO、Alを仮定し、これらの酸化物として存在するO量を質量%で計算する。例えば、CaOの場合、原子量はCaが40でOが16であるから、Caの質量%に対して16/40=0.4のOが結合する。Alであれば、原子量はAlが27でOが16であるから、Alの質量%に対して(16×3)/(27×2)=0.89のOが結合する。以下同様の計算概念として、上述のOTi式の各元素の係数(0.66:Mg、0.17:REM、0.35:Zr)を規定した。 Next, the coefficients of Ca, Mg, REM, Zr, and Al in the above-described equation of residual oxygen amount O Ti will be described. As products (oxides) by deoxidation reaction (oxidation reaction) in molten steel, CaO, MgO , REM 2 O 3 , ZrO 2 , and Al 2 O 3 are assumed, and the amount of O present as these oxides is calculated by mass%. For example, in the case of CaO, since the atomic weight is 40 for Ca and 16 for O, O of 16/40 = 0.4 is bonded to the mass% of Ca. In the case of Al 2 O 3 , since the atomic weight is 27 for Al and 16 for O, O of (16 × 3) / (27 × 2) = 0.89 is bonded to the mass% of Al. Hereinafter, as the same calculation concept, coefficients (0.66: Mg, 0.17: REM, 0.35: Zr) of each element of the above-mentioned O Ti formula were defined.

また、有効B量Befの導出式概念を、低温側から高温側に遡って示すと以下のようになる。
有効B量Bef(%)=成分B量−B as BN
→ B as BN = 0.77(N−N as TiN)
→ N as TiN = 0.29(Ti−Ti as Ti
→ Ti as Ti= 2(O−O as CaO−O as MgO−O as REM−O as ZrO−O as Al
→ O as CaO=0.4Ca
→ O as MgO=0.66Mg
→ O as REM=0.17REM
→ O as ZrO=0.35Zr
→ O as Al=0.89Al
Further, the concept of the derivation formula for the effective B amount Bef is shown as follows from the low temperature side to the high temperature side.
Effective B amount Bef (%) = component B amount−B as BN
→ B as BN = 0.77 (N-N as TiN)
→ N as TiN = 0.29 (Ti-Ti as Ti 2 O 3 )
→ Ti as Ti 2 O 3 = 2 (O—O as CaO—O as MgO—O as REM 2 O 3 —O as ZrO 2 —O as Al 2 O 3 )
→ O as CaO = 0.4Ca
→ O as MgO = 0.66Mg
→ O as REM 2 O 3 = 0.17 REM
→ O as ZrO 2 = 0.35Zr
→ O as Al 2 O 3 = 0.89Al

次に、有効B量Befの導出式概念を、高温側から低温側への反応順に示すと以下のようになる。すなわち、製鋼での精錬→凝固工程において、以下の順で反応する。   Next, the derivation concept of the effective B amount Bef is shown as follows in the order of reaction from the high temperature side to the low temperature side. That is, it reacts in the following order in the refining → solidification process in steelmaking.

[1]液相(溶鋼中)での脱酸反応(1600℃付近)
Oとの化学的親和力の強い順にCaO→MgO→REM→ZrO→Alの反応が生じ、溶鋼中の溶存Oが減少していく。これで脱酸が完了する場合は、OTi≦0で表される。脱酸が完了せずに溶存Oが残る場合は、OTi>0、Ti−2OTi≧0.005(%)で表され、Alより弱脱酸元素であるTiがTiとして脱酸に寄与し、成分Tiから脱酸で消費されたTi as Tiを差し引いた残りのTiが0.005%以上となる。
[1] Deoxidation reaction in liquid phase (in molten steel) (around 1600 ° C)
The reaction of CaO → MgO → REM 2 O 3 → ZrO 2 → Al 2 O 3 occurs in the order of strong chemical affinity with O, and the dissolved O in the molten steel decreases. When deoxidation is completed by this, it is represented by O Ti ≦ 0. When dissolved O remains without completing deoxidation, it is represented by O Ti > 0, Ti-2O Ti ≧ 0.005 (%), and Ti, which is a weaker deoxidizing element than Al, is desorbed as Ti 2 O 3. The remaining Ti that contributes to the acid and subtracts the Ti as Ti 2 O 3 consumed by deoxidation from the component Ti becomes 0.005% or more.

[2]固相(凝固γ中)での脱窒反応(1300℃付近〜800℃付近)
Nとの化学的親和力の強い順にTiN→BN→AlNの反応が生じ、固相γ中の固溶Nが減少していく。まず、脱酸で消費された残りのTiが脱窒反応を起こす。これで脱窒が完了する場合は、N−0.29(Ti−2OTi)≦0で表され、γ中に固溶Nが存在しないので、BはBNを形成せずに全てが固溶Bとして存在する。一方、Tiによって脱窒が完了せず、固溶Nが残る場合は、N−0.29(Ti−2OTi)>0で表され、Bの一部がBNを生成して残りが固溶Bとなる。
[2] Denitrification reaction in solid phase (in solidification γ) (around 1300 ° C to 800 ° C)
The reaction of TiN → BN → AlN occurs in the order of strong chemical affinity with N, and the solid solution N in the solid phase γ decreases. First, the remaining Ti consumed by deoxidation causes a denitrification reaction. When denitrification is completed in this way, N−0.29 (Ti−2O Ti ) ≦ 0, and since solute N does not exist in γ, B does not form BN but is completely dissolved. Present as B. On the other hand, when denitrification is not completed by Ti and solid solution N remains, it is represented by N-0.29 (Ti-2O Ti )> 0, and a part of B generates BN and the remaining is solid solution. B.

一方、Tiよりも脱酸力の強い元素によって脱酸が完了する場合には、下記式を満たす。
Ti≦0
この場合、Tiは脱酸では消費されない。TiがTiNを形成し、Nが残る場合は下記式を満たす。
N−0.29Ti>0
この際の有効B量Befは下記式で計算される。
Bef(%)=B−0.77(N−0.29Ti)
TiがTiNを形成し、Nが残らない場合は下記式を満たす。
N−0.29Ti≦0
この際の有効B量Befは下記式で計算される。
Bef(%)=B
On the other hand, when deoxidation is completed by an element having a stronger deoxidizing power than Ti, the following formula is satisfied.
O Ti ≦ 0
In this case, Ti is not consumed by deoxidation. When Ti forms TiN and N remains, the following formula is satisfied.
N-0.29Ti> 0
The effective B amount Bef at this time is calculated by the following equation.
Bef (%) = B−0.77 (N−0.29Ti)
When Ti forms TiN and N does not remain, the following formula is satisfied.
N−0.29Ti ≦ 0
The effective B amount Bef at this time is calculated by the following equation.
Bef (%) = B

なお、上記各式において、式(N−0.29Ti)における0.29Tiは、N as TiNを意味する。ここで、原子量はTiが48でNが14であるから、Ti(正確には脱酸で消費されたTiを差し引いた残りのTi)の質量%に対して14/48=0.29のNが結合する。また、N−0.29Ti≦0であれば、Nは全てTiNで固定され、γ(オーステナイト)素地中に固溶Nは存在しない。一方、N−0.29Ti>0ならば、γ素地中にはTiNの他に固溶Nが存在するので、この固溶Nは、Bと結合してBNを生成し、有効B量を減少させる。   In the above formulas, 0.29Ti in the formula (N-0.29Ti) means N as TiN. Here, since the atomic weight is 48 for Ti and 14 for N, 14/48 = 0.29 N with respect to the mass% of Ti (exactly Ti remaining after subtracting Ti consumed in deoxidation). Join. If N−0.29Ti ≦ 0, all N is fixed by TiN, and no solid solution N exists in the γ (austenite) substrate. On the other hand, if N−0.29Ti> 0, solid solution N exists in addition to TiN in the γ substrate, so this solid solution N combines with B to produce BN, reducing the effective B amount. Let

「O:酸素」0.001〜0.004%以下
Oは、0.004%以下に抑える必要がある。Oが0.004%を超えると、酸化物の一部が粗大化して破壊起点として有害性をもたらし、母材と大入熱溶接HAZの靭性が劣化する。一方で、Oは0.001%以上確保する必要がある。その理由は、大入熱溶接HAZの溶融線近傍において、HAZ靭性を高めるためにCaやMgの適正添加によって微細な酸化物を多数分散させ、ピン止め効果を強化してγ細粒化を図るためである。Oが0.001%未満だと、酸化物個数が不足して十分なピン止め効果が得られない。
“O: Oxygen” 0.001 to 0.004% or less O needs to be suppressed to 0.004% or less. When O exceeds 0.004%, a part of the oxide is coarsened to cause harmfulness as a fracture starting point, and the toughness of the base material and the high heat input welding HAZ is deteriorated. On the other hand, it is necessary to secure O of 0.001% or more. The reason is that in the vicinity of the fusion line of the high heat input welding HAZ, a large number of fine oxides are dispersed by appropriate addition of Ca and Mg in order to increase the HAZ toughness, and the pinning effect is strengthened to achieve γ fine graining. Because. When O is less than 0.001%, the number of oxides is insufficient and a sufficient pinning effect cannot be obtained.

「Ca:カルシウム」0.0003〜0.004%
「Mg:マグネシウム」0.0003〜0.004%
Ca、Mgは、溶鋼への添加順序を考慮しつつ、一方あるいは両方を0.0003%以上添加することで、CaやMgを含有する10〜500nmの酸化物や硫化物を1000個/mm以上確保することができる。CaやMgが0.0003%未満だと、ピン止め粒子である酸化物や硫化物の個数が不足する。しかしながら、それぞれ0.004%超添加すると、酸化物や硫化物が粗大化してピン止め粒子の個数が不足すると同時に、破壊起点としての有害性も顕著となり、大入熱溶接HAZ靭性が劣化する。
“Ca: Calcium” 0.0003 to 0.004%
“Mg: Magnesium” 0.0003 to 0.004%
Ca and Mg are added in an amount of 0.0003% or more while considering the order of addition to molten steel, and 1000 / mm 2 of oxides and sulfides of 10 to 500 nm containing Ca and Mg are added. This can be ensured. When Ca or Mg is less than 0.0003%, the number of oxides and sulfides as pinning particles is insufficient. However, when adding over 0.004% of each, oxides and sulfides become coarse and the number of pinning particles becomes insufficient, and at the same time, the harmfulness as a fracture starting point becomes remarkable, and the high heat input welding HAZ toughness deteriorates.

「V:バナジウム」0.01〜0.1%
Vは、母材を強化しつつ大入熱溶接HAZ靭性を高める有効な元素である。Cの添加量が比較的高い本発明においては、大入熱溶接HAZの冷却過程でγ中にV(C,N)が析出しやすく、これが変態核として作用することでHAZ組織が微細化し靭性が向上する。この効果を発揮するためには、0.01%以上のVが必要である。しかしながら、Vが0.1%を超えると、HAZの組織微細化効果が飽和すると同時にHAZの硬化が著しくなるので、HAZ靭性が劣化する。従って、0.1%がVの上限である。
“V: Vanadium” 0.01 to 0.1%
V is an effective element that enhances the high heat input welding HAZ toughness while strengthening the base material. In the present invention in which the amount of C added is relatively high, V (C, N) is likely to precipitate in γ during the cooling process of high heat input welding HAZ, and this acts as a transformation nucleus to refine the HAZ structure and toughness. Will improve. In order to exert this effect, 0.01% or more of V is necessary. However, if V exceeds 0.1%, the effect of refining the HAZ structure is saturated, and at the same time, the hardening of the HAZ becomes remarkable, so that the HAZ toughness deteriorates. Therefore, 0.1% is the upper limit of V.

「Ni:ニッケル」0.01〜1%
Niは、靭性の劣化を抑えて強度を確保するために有効である。そのためには0.01%以上のNi添加が好ましい。しかしながら、Niは合金コストが非常に高いうえに、表面疵の手入工程が発生するという問題がある。従って、Niは1%以下に抑える必要がある。また、Niは極力低くすることが好ましい。
"Ni: Nickel" 0.01-1%
Ni is effective for suppressing strength deterioration and ensuring strength. For that purpose, Ni addition of 0.01% or more is preferable. However, Ni has a problem that the alloy cost is very high and a surface flawing process occurs. Therefore, Ni needs to be suppressed to 1% or less. Moreover, it is preferable to make Ni as low as possible.

「Nb:ニオブ」0.003〜0.03%
Nbは、仕上圧延における未再結晶域圧延を促すために有効である。そのためには0.003%以上のNb添加が好ましい。しかしながら、既に詳述したように、低温加熱と低温圧延の下では焼入性にほとんど効かないので、強化元素としては役に立たない。さらには、大入熱溶接HAZ靭性に対してNbは有害である。従って、本発明では未再結晶域圧延を促すために0.03%以下の極微量Nbしか添加せず、好ましくは0.02%以下に抑える。また、仕上圧延での累積圧下量を大きく確保できる場合には、Nb無添加でも十分に母材組織が微細化して良好な脆性破壊伝播停止特性が得られるため、Nbを添加しないことが大入熱溶接HAZ靭性の観点からさらに好ましい。
"Nb: Niobium" 0.003-0.03%
Nb is effective for promoting non-recrystallization zone rolling in finish rolling. For that purpose, Nb addition of 0.003% or more is preferable. However, as already described in detail, since it hardly affects the hardenability under low temperature heating and low temperature rolling, it is not useful as a strengthening element. Furthermore, Nb is detrimental to high heat input HAZ toughness. Therefore, in the present invention, in order to promote non-recrystallization zone rolling, only a very small amount of Nb of 0.03% or less is added, and preferably 0.02% or less. In addition, when the cumulative reduction amount in finish rolling can be secured, it is important not to add Nb because the base metal structure can be sufficiently refined even when Nb is not added and good brittle fracture propagation stop characteristics are obtained. More preferable from the viewpoint of thermal welding HAZ toughness.

「Cu:銅」0.01〜1%、
「Cr:クロム」0.01〜1%
Cu、Crは、強度を確保するために有効であり、ともに0.01%以上の添加量で効果を発揮する。一方、大入熱溶接HAZ靭性を劣化させる観点から、ともに1%が上限である。
“Cu: Copper” 0.01 to 1%,
"Cr: Chrome" 0.01-1%
Cu and Cr are effective for securing the strength, and both exhibit an effect when added in an amount of 0.01% or more. On the other hand, from the viewpoint of degrading the high heat input welding HAZ toughness, the upper limit is 1%.

「REM:希土類元素(ランタノイド系元素)」0.0003〜0.02%
「Zr:ジルコニウム」0.0003〜0.02%
REM(希土類元素)、Zrは、脱酸と脱硫に関与して、中心偏析部の粗大な延伸MnSの生成を抑えて硫化物を球状無害化し、母材と大入熱溶接HAZの靭性を改善する。これらの効果を発揮するためには、REMとZrの下限はともに0.0003%である。但し、これらの添加量を増やしても効果は飽和するため、経済性の観点からREMとZrの上限はともに0.02%である。なお、本発明で添加するREMとは、LaやCeなどのランタノイド系元素である。
"REM: rare earth element (lanthanoid element)" 0.0003 to 0.02%
“Zr: zirconium” 0.0003 to 0.02%
REM (rare earth element) and Zr are involved in deoxidation and desulfurization to suppress the formation of coarse stretched MnS at the center segregation part and make the sulfide spherical harmless, improving the toughness of the base metal and high heat input welding HAZ. To do. In order to exert these effects, the lower limits of REM and Zr are both 0.0003%. However, even if these addition amounts are increased, the effect is saturated, so the upper limits of REM and Zr are both 0.02% from the viewpoint of economy. The REM added in the present invention is a lanthanoid element such as La or Ce.

以上説明したように、本発明に係る脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法、及び脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板によれば、(1)板厚50〜80mm、降伏強度390〜600MPa、かつ引張強度510〜720MPaの厚手高強度で、(2)アレスト性指標Tkca=6000≦−10℃の良好な脆性破壊伝播停止特性を有し、(3)溶接入熱量≧20kJ/mmでもvE(−20℃)≧47Jとなる良好な大入熱溶接HAZ靭性を有し、(4)高価合金元素の低減(Ni≦1%等)等による低い製造コストを実現できる。このような本発明による厚手高強度鋼板が大型船舶をはじめとする各種の溶接構造物に使用されることで、溶接構造物の大型化、破壊に対する高い安全性、建造における溶接の高能率化、素材である鋼材の経済性等々が同時に満たされことから、その産業上の効果は計り知れない。 As described above, the method for producing a thick high-strength steel sheet having excellent brittle fracture propagation stop characteristics and high heat input heat affected zone toughness according to the present invention, and brittle fracture propagation stop characteristics and large heat input weld heat affected zone toughness. (1) Arrestability index T kca = 6000 ≦ − According to the thick high-strength steel plate excellent in (1) the thickness is 50-80 mm, the yield strength is 390-600 MPa, and the tensile strength is 510-720 MPa. It has good brittle fracture propagation stop characteristics at 10 ° C, and (3) has good high heat input weld HAZ toughness where vE (-20 ° C) ≥ 47 J even when the welding heat input ≥ 20 kJ / mm, (4) Low production costs can be realized by reducing expensive alloy elements (Ni ≦ 1%, etc.). Such a thick high-strength steel sheet according to the present invention is used for various welded structures including large ships, so that the welded structures are enlarged, high safety against breakage, high efficiency of welding in construction, Since the economics of steel, the raw material, are satisfied at the same time, the industrial effects are immeasurable.

以下、本発明に係る脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法、及び脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の実施例を挙げ、本発明をより具体的に説明するが、本発明は、もとより下記実施例に限定されるものではなく、前、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれるものである。   Hereinafter, a method for producing a thick high-strength steel sheet having excellent brittle fracture propagation stop characteristics and large heat input welding heat affected zone toughness according to the present invention, and a thick material having excellent brittle fracture propagation stopping characteristics and large heat input weld heat affected zone toughness. Examples of the high-strength steel sheet will be given and the present invention will be described more specifically, but the present invention is not originally limited to the following examples, and is appropriately changed within a range that can be adapted to the purpose described above and below. It is also possible to carry out with addition of these, all of which are included in the technical scope of the present invention.

[サンプル作製]
製鋼工程において溶鋼の脱酸・脱硫と化学成分を制御し、連続鋳造によって下記表1に示す化学成分のスラブを作製した。そして、下記表2及び表3に示す製造条件で、前記スラブを再加熱して厚板圧延することで板厚50〜80mmに仕上げ、加速冷却を行い、さらに、必要に応じてオフラインでの焼戻し処理を行い、厚手鋼板のサンプルを作製した。
[Sample preparation]
In the steel making process, deoxidation / desulfurization of the molten steel and chemical components were controlled, and slabs having chemical components shown in Table 1 below were produced by continuous casting. Then, under the production conditions shown in Table 2 and Table 3 below, the slab is reheated and rolled to a thick plate to finish the plate to a thickness of 50 to 80 mm, accelerated cooling is performed, and offline tempering is performed as necessary. Processing was performed to prepare a thick steel plate sample.

[評価試験]
上記方法によって作製した厚手鋼板のサンプルについて、以下のような評価試験を行った。
母材の引張特性及びシャルピー衝撃特性については、厚手鋼板サンプルの板厚1/2部−圧延長手(L)方向から試験片を採取して測定して評価した。
また、母材の脆性破壊伝播停止特性については、全厚試験体を温度勾配型ESSO試験(WES 3003準拠)によって破壊し、アレスト性指標Tkca=6000を求めて評価した。
また、継手のHAZ靭性については、突合せ開先をエレクトロガス溶接(EGW)によって1パス溶接し、板厚1/2部の溶融線から1mm離れたHAZにノッチを入れて調べた。この際、−20℃で3本のシャルピー衝撃試験を行ない、平均の吸収エネルギー値を評価した。また、参考として、−40℃における特性も調べた。
[Evaluation test]
The following evaluation tests were performed on samples of thick steel plates produced by the above method.
The tensile properties and Charpy impact properties of the base material were evaluated by collecting and measuring test pieces from the plate thickness 1/2 part of the thick steel plate sample-rolling longitudinal (L) direction.
Further, the brittle fracture propagation stop property of the base material was evaluated by breaking the full thickness specimen by a temperature gradient type ESSO test (WES 3003 compliant) and obtaining an arrestability index T kca = 6000 .
Further, the HAZ toughness of the joint was examined by notching a HAZ that was 1 mm away from the melt line having a thickness of 1/2 part by welding the butt groove by one pass by electrogas welding (EGW). At this time, three Charpy impact tests were performed at −20 ° C. to evaluate the average absorbed energy value. For reference, the characteristics at −40 ° C. were also examined.

本実施例の厚手鋼板の化学成分組成の一覧を表1に示すとともに、鋼板の製造条件の一覧を表2及び表3に示し、また、厚手鋼板と溶接継手の機械的性質の一覧を表4及び表5に示す。   A list of chemical composition of the thick steel plate of this example is shown in Table 1, a list of manufacturing conditions of the steel plate is shown in Table 2 and Table 3, and a list of mechanical properties of the thick steel plate and the welded joint is shown in Table 4. And in Table 5.

Figure 2008214754
Figure 2008214754

Figure 2008214754
Figure 2008214754

Figure 2008214754
Figure 2008214754

Figure 2008214754
Figure 2008214754

Figure 2008214754
Figure 2008214754

[評価結果]
表1に示す鋼1〜15は本発明鋼であり、鋼の化学成分を適正化し、TMCPにおける低温加熱と低温圧延を徹底することにより、厚手であるのにも関わらず、表4に示すように、390〜600MPaの降伏強度と510〜720MPaの引張強度、及び、−10℃未満の良好な脆性破壊伝播停止特性Tkca=6000を満足し、さらに、大入熱溶接であるのにも関わらず、−20℃において良好なHAZ靭性が、Ni添加量を1%以下に抑えながら、同時に満足できていることがわかる。
[Evaluation results]
Steels 1 to 15 shown in Table 1 are steels of the present invention, and as shown in Table 4 despite being thick by optimizing the chemical composition of the steel and thoroughly carrying out low temperature heating and low temperature rolling in TMCP. Further, it satisfies the yield strength of 390 to 600 MPa, the tensile strength of 510 to 720 MPa, and the favorable brittle fracture propagation stop property T kca = 6000 below -10 ° C., and further, although it is a high heat input welding. It can be seen that good HAZ toughness at −20 ° C. is satisfied at the same time while suppressing the Ni addition amount to 1% or less.

一方、表1に示す比較鋼16〜24は、鋼の化学成分が適正でないため、また、表2に示す比較鋼1A〜1Iは鋼板製造条件が適正でないため、表4及び表5に示すように、降伏強度、引張強度、Tkca=6000、大入熱溶接HAZ靭性の何れかが劣り、本発明の厚手高強度鋼板のように、これら複数の要求特性を同時に満足することができないことがわかる。 On the other hand, the comparative steels 16 to 24 shown in Table 1 are not appropriate in the chemical composition of the steel, and the comparative steels 1A to 1I shown in Table 2 are not appropriate in the steel sheet manufacturing conditions. In addition, any of yield strength, tensile strength, T kca = 6000 and high heat input welding HAZ toughness is inferior, and it is impossible to simultaneously satisfy the plurality of required characteristics as in the thick high strength steel sheet of the present invention. Recognize.

鋼16は、CとCeqが低いため、鋼19はBと有効B量が低いため、鋼23と鋼24は有効B量が低いために、焼入性が不足して降伏強度や引張強度が劣っている。
鋼17は、Cが高いため、鋼18はSiが高ため、鋼20はMoが高いため、鋼21はNbが高いため、鋼22はCeqが高いために、大入熱溶接HAZの硬化やMA生成やセメンタイト生成が助長され、その靭性が劣っている。
Since Steel 16 has a low C and Ceq, Steel 19 has a low B and effective B amount, and Steel 23 and Steel 24 have a low effective B amount, resulting in insufficient hardenability and yield strength and tensile strength. Inferior.
Steel 17 is high in C, Steel 18 is high in Si, Steel 20 is high in Mo, Steel 21 is high in Nb, and Steel 22 is high in Ceq. MA formation and cementite formation are promoted and its toughness is inferior.

また、鋼1Aは、スラブ再加熱の開始温度が高いため、鋼1Bは加熱温度が高いために、加熱時のγ粒が粗大化して脆性破壊伝播停止特性Tkca=6000が劣っている。
鋼1Cは、加熱温度が低すぎるためにB炭化物が十分に溶体化されず、固溶Bが不足して焼入性が低下し、降伏強度と引張強度が劣っている。さらに、粗圧延の終了温度が低すぎるために再結晶粒が十分に整細粒化されず、Tkca=6000が劣っている。
鋼1Dは、粗圧延の終了温度が低すぎるため、鋼1Eは粗圧延の累積圧下量が少ないために再結晶粒が十分に整細粒化されず、Tkca=6000が劣っている。
鋼1Fと鋼1Gは、仕上圧延の開始温度と終了温度が高すぎて上記式{−0.5×スラブ加熱温度(℃)+1325}を満足しないため、母材の結晶粒径の微細化が不十分であり、Tkca=6000が劣っている。
鋼1Hは、仕上圧延の累積圧下量が少ないため、母材の結晶粒径の微細化が不十分であり、Tkca=6000が劣っている。
鋼1Iは、加速冷却の停止温度が高いため、板厚内部の変態強化と結晶粒径微細化が不十分となり、引張強度とTkca=6000が劣っている。
Steel 1A has a high slab reheating start temperature, and Steel 1B has a high heating temperature. Therefore, the γ grains during heating are coarsened and the brittle fracture propagation stop characteristic T kca = 6000 is inferior.
In Steel 1C, since the heating temperature is too low, the B carbide is not sufficiently solutionized, the solid solution B is insufficient, the hardenability is lowered, and the yield strength and the tensile strength are inferior. Furthermore, since the end temperature of the rough rolling is too low, the recrystallized grains are not sufficiently refined, and T kca = 6000 is inferior.
In Steel 1D, the end temperature of rough rolling is too low, and in Steel 1E, the cumulative reduction amount of rough rolling is small, so that the recrystallized grains are not sufficiently refined, and T kca = 6000 is inferior.
Steel 1F and Steel 1G are too high in the finish rolling start temperature and finish temperature and do not satisfy the above formula {−0.5 × slab heating temperature (° C.) + 1325}. Insufficient and T kca = 6000 is inferior.
Since steel 1H has a small amount of cumulative reduction in finish rolling, refinement of the crystal grain size of the base material is insufficient, and T kca = 6000 is inferior.
Since steel 1I has a high accelerated cooling stop temperature, the transformation strengthening inside the plate thickness and the refinement of crystal grain size are insufficient, and the tensile strength and T kca = 6000 are inferior.

以上説明した実施例の結果より、本発明の脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板が、(1)板厚50〜80mm、降伏強度390〜600MPa、かつ引張強度510〜720MPaの厚手高強度で、(2)アレスト性指標Tkca=6000≦−10℃の良好な脆性破壊伝播停止特性を有し、(3)溶接入熱量≧20kJ/mmでもvE(−20℃)≧47Jとなる良好な大入熱溶接HAZ靭性を有し、(4)高価合金元素の低減(Ni≦1%等)等による低い製造コストを実現できることが明らかである。 From the results of the examples described above, a thick high-strength steel plate excellent in brittle fracture propagation stopping characteristics and high heat input welding heat-affected zone toughness of the present invention is (1) thickness 50-80 mm, yield strength 390-600 MPa, In addition, it has a thick high strength with a tensile strength of 510 to 720 MPa, (2) has an arrestability index T kca = 6000 ≦ −10 ° C. and has a good brittle fracture propagation stop property, and (3) vE even when the welding heat input ≧ 20 kJ / mm It is clear that it has good large heat input weld HAZ toughness (−20 ° C.) ≧ 47 J, and (4) low manufacturing cost can be realized by reducing expensive alloy elements (Ni ≦ 1%, etc.).

Claims (11)

質量%で、
C :0.07%超0.12%以下、
Si:0.4%以下、
Mn:1.0〜2%、
P :0.015%以下、
S :0.005%以下、
B :0.0003〜0.003%、
Mo:0.01〜0.2%、
Al:0.001〜0.1%、
Ti:0.005〜0.02%、
N :0.001〜0.008%、
O :0.004%以下
を含有し、強脱酸元素による脱酸後に残存し弱脱酸元素であるTiにより脱酸され得る残存酸素量OTi(%)を、下記式(1)で表される量としたとき、下記式(2)で表される、変態前のオーステナイト素地に固溶するB量{有効B量:Bef(%)}が0.0003%以上であり、さらに、炭素当量Ceq(%)を、下記式(3)で表される量としたとき、炭素当量Ceqが0.32〜0.42%の範囲を満たし、残部が鉄および不可避的不純物からなる連続鋳造スラブを、Ar(℃)が、下記式(4)で計算されるとき、連続鋳造後にAr−200℃以下まで冷却した後、950〜1100℃に再加熱し、次いで、900℃以上で累積圧下量が30%以上である粗圧延を行い、次いで、700℃以上で累積圧下量が50%以上である仕上圧延を、仕上圧延開始温度および仕上圧延終了温度が、ともに、次式{−0.5×スラブ加熱温度(℃)+1325}(℃)で表される温度以下とされた条件で行い、次いで、加速冷却を適用して500℃以下まで冷却することを特徴とする、脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法。
Ti(%)=O−0.4Ca−0.66Mg−0.17REM−0.35Zr−0.89Al ・・・(1)
{但し、式(1)において、不可避的不純物扱いの成分元素も計算に含める}
Bef(%)=B−0.77{N−0.29(Ti−2OTi)} ・・・(2)
{但し、式(2)において、OTi≦0のとき、OTi=0とする。また、OTi>0のときは、Ti−2OTi≧0.005(%)を満たすものとする。さらに、N−0.29(Ti−2OTi)≦0(但し、OTi≦0のとき、OTi=0)のときは、N−0.29(Ti−2OTi)=0とする。}
Ceq(%)=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15 ・・・(3)
Ar(℃)=(910−310C−80Mn−20Cu−55Ni−80Mo) ・・・(4)
% By mass
C: more than 0.07% and 0.12% or less,
Si: 0.4% or less,
Mn: 1.0-2%,
P: 0.015% or less,
S: 0.005% or less,
B: 0.0003 to 0.003%,
Mo: 0.01 to 0.2%,
Al: 0.001 to 0.1%,
Ti: 0.005 to 0.02%,
N: 0.001 to 0.008%,
The remaining oxygen amount O Ti (%), which is not more than 0.004% and remains after deoxidation with a strong deoxidation element and can be deoxidized with Ti, which is a weak deoxidation element, is represented by the following formula (1). The amount of B dissolved in the austenite substrate before transformation represented by the following formula (2) {effective B amount: Bef (%)} is 0.0003% or more, and carbon When the equivalent Ceq (%) is an amount represented by the following formula (3), the carbon equivalent Ceq satisfies the range of 0.32 to 0.42%, and the balance is iron and inevitable impurities. When Ar 3 (° C.) is calculated by the following formula (4), after cooling to Ar 3 −200 ° C. or lower after continuous casting, it is reheated to 950 to 1100 ° C., and then accumulated at 900 ° C. or higher. Rough rolling with a reduction amount of 30% or more, then at 700 ° C or more In finish rolling with a cumulative reduction amount of 50% or more, the finish rolling start temperature and finish rolling end temperature are both represented by the following formula {−0.5 × slab heating temperature (° C.) + 1325} (° C.) A thick high-strength steel sheet excellent in brittle fracture propagation stopping characteristics and high heat input heat affected zone toughness, characterized by performing under the following conditions and then cooling to 500 ° C. or less by applying accelerated cooling Production method.
O Ti (%) = O−0.4Ca−0.66Mg−0.17REM−0.35Zr−0.89Al (1)
{However, in the formula (1), inevitable impurities are also included in the calculation}
Bef (%) = B-0.77 {N-0.29 (Ti-2O Ti)} ··· (2)
{However, in Formula (2), when O Ti ≦ 0, O Ti = 0. Further, when O Ti > 0, it is assumed that Ti-2O Ti ≧ 0.005 (%) is satisfied. Further, when N−0.29 (Ti−2O Ti ) ≦ 0 (provided that O Ti ≦ 0 and O Ti = 0), N−0.29 (Ti−2O Ti ) = 0. }
Ceq (%) = C + Mn / 6 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15 (3)
Ar 3 (° C.) = (910-310C-80Mn-20Cu-55Ni-80Mo) (4)
前記加速冷却の後、さらに、350〜700℃で5〜60分の焼戻し熱処理を施すことを特徴とする、請求項1に記載の脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法。   The accelerating cooling is followed by tempering heat treatment at 350 to 700 ° C for 5 to 60 minutes, and is excellent in brittle fracture propagation stopping characteristics and high heat input welding heat affected zone toughness. A manufacturing method for thick and high strength steel sheets. 質量%で、
S :0.0005〜0.005%、
O :0.001〜0.004%
を含有し、さらに、質量%で、
Ca:0.0003〜0.004%、
Mg:0.0003〜0.004%
のうちの1種または2種を含有することを特徴とする、請求項1又は2に記載の脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法。
% By mass
S: 0.0005 to 0.005%,
O: 0.001 to 0.004%
In addition, in mass%,
Ca: 0.0003 to 0.004%,
Mg: 0.0003 to 0.004%
The manufacturing method of the thick high-strength steel plate excellent in the brittle fracture propagation stop characteristic and high heat-input welding heat affected zone toughness of Claim 1 or 2 characterized by including 1 type or 2 types of these.
さらに、質量%で、
V:0.01〜0.1%
を含有することを特徴とする、請求項1〜3の何れか1項に記載の脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法。
Furthermore, in mass%,
V: 0.01 to 0.1%
The manufacturing method of the thick high-strength steel plate excellent in the brittle fracture propagation stop characteristic and high heat input welding heat affected zone toughness of any one of Claims 1-3 characterized by containing.
さらに、質量%で、
Ni:0.01〜1%、
Nb:0.003〜0.03%、
Cu:0.01〜1%、
Cr:0.01〜1%
のうちの1種又は2種以上を含有することを特徴とする、請求項1〜4の何れか1項に記載の脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法。
Furthermore, in mass%,
Ni: 0.01 to 1%,
Nb: 0.003 to 0.03%,
Cu: 0.01 to 1%,
Cr: 0.01 to 1%
The thick and excellent in brittle fracture propagation stop characteristics and high heat input welding heat-affected zone toughness according to any one of claims 1 to 4, characterized by containing at least one of A method for producing a strength steel plate.
さらに、質量%で、
REM:0.0003〜0.02%、
Zr:0.0003〜0.02%
のうちの1種または2種以上を含有することを特徴とする、請求項1〜5の何れか1項に記載の脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法。
Furthermore, in mass%,
REM: 0.0003 to 0.02%,
Zr: 0.0003 to 0.02%
1 to 2 or more types, The thick high thickness which was excellent in the brittle fracture propagation stop characteristic of any one of Claims 1-5, and the high heat input welding heat affected zone toughness A method for producing a strength steel plate.
質量%で、
C :0.07%超0.12%以下、
Si:0.4%以下、
Mn:1.0〜2%、
P :0.015%以下、
S :0.005%以下、
B :0.0003〜0.003%、
Mo:0.01〜0.2%、
Al:0.001〜0.1%、
Ti:0.005〜0.02%、
N :0.001〜0.008%、
O :0.004%以下
を含有し、強脱酸元素による脱酸後に残存し弱脱酸元素であるTiにより脱酸され得る残存酸素量を、下記式(5)で表される量としたとき、下記式(6)で表される、変態前のオーステナイト素地に固溶するB量{有効B量:Bef(%)}が0.0003%以上であり、さらに、炭素当量Ceq(%)を、下記式(7)で表される量としたとき、炭素当量Ceqが0.32〜0.42%の範囲を満たし、残部が鉄および不可避的不純物からなり、板厚が50〜80mmであり、降伏強度が390〜600MPaで、引張強度が510〜720MPaであり、脆性破壊伝播停止特性Kcaが6000N/mm1.5となる温度Tkca=6000が−10℃以下であり、溶接入熱量が20kJ/mm以上の大入熱溶接部のHAZ靭性の指標であるシャルピー衝撃吸収エネルギーvE(−20℃)が47J以上であることを特徴とする、脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板。
Ti(%)=O−0.4Ca−0.66Mg−0.17REM−0.35Zr−0.89Al ・・・(5)
{但し、式(1)において、不可避的不純物扱いの成分元素も計算に含める}
Bef(%)=B−0.77{N−0.29(Ti−2OTi)} ・・・(6)
{但し、式(6)において、OTi≦0のとき、OTi=0とする。また、OTi>0のときは、Ti−2OTi≧0.005(%)を満たすものとする。さらに、N−0.29(Ti−2OTi)≦0(但し、OTi≦0のとき、OTi=0)のときは、N−0.29(Ti−2OTi)=0とする。}
Ceq(%)=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15 ・・・(7)
% By mass
C: more than 0.07% and 0.12% or less,
Si: 0.4% or less,
Mn: 1.0-2%,
P: 0.015% or less,
S: 0.005% or less,
B: 0.0003 to 0.003%,
Mo: 0.01 to 0.2%,
Al: 0.001 to 0.1%,
Ti: 0.005 to 0.02%,
N: 0.001 to 0.008%,
O: The amount of residual oxygen, which is not more than 0.004% and remains after deoxidation with a strong deoxidation element and can be deoxidized with Ti, which is a weak deoxidation element, is represented by the following formula (5). When represented by the following formula (6), the B amount {effective B amount: Bef (%)} dissolved in the austenite substrate before transformation is 0.0003% or more, and the carbon equivalent Ceq (%) Is the amount represented by the following formula (7), the carbon equivalent Ceq satisfies the range of 0.32 to 0.42%, the balance is made of iron and inevitable impurities, and the plate thickness is 50 to 80 mm. Yes, the yield strength is 390 to 600 MPa, the tensile strength is 510 to 720 MPa, the brittle fracture propagation stop property Kca is 6000 N / mm 1.5 , the temperature T kca = 6000 is −10 ° C. or less, and the welding heat input Large heat input melting of 20kJ / mm or more Thick high-strength steel sheet with excellent brittle fracture propagation stopping characteristics and high heat input welding heat-affected zone toughness, characterized in that Charpy impact absorption energy vE (−20 ° C.), which is an index of HAZ toughness of the zone, is 47 J or more .
O Ti (%) = O−0.4Ca−0.66Mg−0.17REM−0.35Zr−0.89Al (5)
{However, in the formula (1), inevitable impurities are also included in the calculation}
Bef (%) = B-0.77 {N-0.29 (Ti-2O Ti)} ··· (6)
{However, in Formula (6), when O Ti ≦ 0, O Ti = 0. Further, when O Ti > 0, it is assumed that Ti-2O Ti ≧ 0.005 (%) is satisfied. Further, when N−0.29 (Ti−2O Ti ) ≦ 0 (provided that O Ti ≦ 0 and O Ti = 0), N−0.29 (Ti−2O Ti ) = 0. }
Ceq (%) = C + Mn / 6 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15 (7)
質量%で、
S :0.0005〜0.005%、
O :0.001〜0.004%
を含有し、さらに、質量%で、
Ca:0.0003〜0.004%、
Mg:0.0003〜0.004%
のうちの1種又は2種を含有することを特徴とする、請求項7に記載の脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板。
% By mass
S: 0.0005 to 0.005%,
O: 0.001 to 0.004%
In addition, in mass%,
Ca: 0.0003 to 0.004%,
Mg: 0.0003 to 0.004%
A thick high-strength steel sheet excellent in brittle fracture propagation stopping characteristics and high heat input welding heat-affected zone toughness according to claim 7, characterized by containing one or two of them.
さらに、質量%で、
V :0.01〜0.1%
を含有することを特徴とする、請求項7又は8に記載の脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板。
Furthermore, in mass%,
V: 0.01 to 0.1%
A thick high-strength steel sheet excellent in brittle fracture propagation stopping characteristics and high heat input welding heat-affected zone toughness according to claim 7 or 8, characterized by comprising:
さらに、質量%で、
Ni:0.01〜1%、
Nb:0.003〜0.03%、
Cu:0.01〜1%、
Cr:0.01〜1%
のうちの1種又は2種以上を含有することを特徴とする、請求項7〜9の何れか1項に記載の脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板。
Furthermore, in mass%,
Ni: 0.01 to 1%,
Nb: 0.003 to 0.03%,
Cu: 0.01 to 1%,
Cr: 0.01 to 1%
Thickness excellent in brittle fracture propagation stop characteristics and high heat input heat affected zone toughness according to any one of claims 7 to 9, characterized in that it contains one or more of Strength steel plate.
さらに、質量%で、
REM:0.0003〜0.02%、
Zr:0.0003〜0.02%
のうちの1種又は2種以上を含有することを特徴とする、請求項7〜10の何れか1項に記載の脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板。
Furthermore, in mass%,
REM: 0.0003 to 0.02%,
Zr: 0.0003 to 0.02%
Thickness excellent in brittle fracture propagation stop characteristics and high heat input heat affected zone toughness according to any one of claims 7 to 10, characterized in that it contains one or more of Strength steel plate.
JP2008029711A 2007-02-09 2008-02-08 Manufacturing method of thick high-strength steel plate with excellent brittle fracture propagation stop characteristics and high heat input weld heat affected zone toughness, and thick high strength steel plate with excellent brittle fracture propagation stop characteristics and high heat input weld heat affected zone toughness Active JP5085364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008029711A JP5085364B2 (en) 2007-02-09 2008-02-08 Manufacturing method of thick high-strength steel plate with excellent brittle fracture propagation stop characteristics and high heat input weld heat affected zone toughness, and thick high strength steel plate with excellent brittle fracture propagation stop characteristics and high heat input weld heat affected zone toughness

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007030374 2007-02-09
JP2007030374 2007-02-09
JP2008029711A JP5085364B2 (en) 2007-02-09 2008-02-08 Manufacturing method of thick high-strength steel plate with excellent brittle fracture propagation stop characteristics and high heat input weld heat affected zone toughness, and thick high strength steel plate with excellent brittle fracture propagation stop characteristics and high heat input weld heat affected zone toughness

Publications (2)

Publication Number Publication Date
JP2008214754A true JP2008214754A (en) 2008-09-18
JP5085364B2 JP5085364B2 (en) 2012-11-28

Family

ID=39835154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008029711A Active JP5085364B2 (en) 2007-02-09 2008-02-08 Manufacturing method of thick high-strength steel plate with excellent brittle fracture propagation stop characteristics and high heat input weld heat affected zone toughness, and thick high strength steel plate with excellent brittle fracture propagation stop characteristics and high heat input weld heat affected zone toughness

Country Status (1)

Country Link
JP (1) JP5085364B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159473A (en) * 2009-01-09 2010-07-22 Sumitomo Metal Ind Ltd Thick steel plate and method for producing the same
WO2010143726A1 (en) * 2009-06-11 2010-12-16 新日本製鐵株式会社 Process for producing thick high-strength steel plate with excellent toughness of heat-affected zone in high heat input welding and thick high-strength steel plate with excellent toughness of heat-affected zone in high heat input welding
JP2011074447A (en) * 2009-09-30 2011-04-14 Jfe Steel Corp High strength steel excellent in toughness in high heat input weld heat-affected zone
CN103014530A (en) * 2012-12-21 2013-04-03 鞍钢股份有限公司 Method for improving impact property of D-level ship plate
EP2594657A1 (en) * 2010-11-22 2013-05-22 Nippon Steel & Sumitomo Metal Corporation Electron beam welded joint, steel material for use in electron beam welded joint, and manufacturing method thereof
JP2013117055A (en) * 2011-12-05 2013-06-13 Jfe Steel Corp Steel material for large heat-input welding and method for manufacturing the same
EP2644730A1 (en) * 2010-11-22 2013-10-02 Nippon Steel & Sumitomo Metal Corporation Electron beam welded joint, steel material for electron beam welding, and manufacturing method thereof
EP2644735A1 (en) * 2010-11-22 2013-10-02 Nippon Steel & Sumitomo Metal Corporation Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
CN103695777A (en) * 2013-12-20 2014-04-02 宝山钢铁股份有限公司 Thick steel plate with excellent tenacity for excellent-tenacity welding heat affected zone and manufacturing method thereof
JP2016112590A (en) * 2014-12-16 2016-06-23 新日鐵住金株式会社 Continuous casting piece and producing method thereof
JP2019023324A (en) * 2017-07-21 2019-02-14 新日鐵住金株式会社 Steel plate and method for manufacturing steel plate
JP2019035107A (en) * 2017-08-14 2019-03-07 新日鐵住金株式会社 Steel plate and method of producing steel plate
JP2020033585A (en) * 2018-08-28 2020-03-05 日本製鉄株式会社 steel sheet
JP2020033584A (en) * 2018-08-28 2020-03-05 日本製鉄株式会社 steel sheet
WO2021156925A1 (en) * 2020-02-03 2021-08-12 日本製鉄株式会社 Thick steel sheet
CN114672733A (en) * 2022-03-30 2022-06-28 江苏省沙钢钢铁研究院有限公司 690 MPa-grade steel plate capable of being welded under high heat input and production method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046096A (en) * 2005-08-09 2007-02-22 Nippon Steel Corp Method for producing thick high strength steel plate having excellent toughness, and thick high strength steel plate having excellent toughness
JP2007056279A (en) * 2005-08-22 2007-03-08 Nippon Steel Corp STEEL FOR WELDED STRUCTURE HAVING 590 N/mm2 CLASS TENSILE STRENGTH AND EXCELLENT IN TOUGHNESS IN BASE MATERIAL AND HEAT AFFECTED ZONE, AND ITS MANUFACTURING METHOD
JP2007284712A (en) * 2006-04-13 2007-11-01 Nippon Steel Corp Method for producing thick high-strength steel plate excellent in toughness and thick high-strength steel plate excellent in toughness
JP2007302993A (en) * 2006-04-13 2007-11-22 Nippon Steel Corp High-strength steel plate with superior arrestability
JP2007314828A (en) * 2006-05-24 2007-12-06 Nippon Steel Corp High-strength steel pipe superior in strain aging resistance for line pipe, high-strength steel sheet for line pipe, and method for manufacturing them

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046096A (en) * 2005-08-09 2007-02-22 Nippon Steel Corp Method for producing thick high strength steel plate having excellent toughness, and thick high strength steel plate having excellent toughness
JP2007056279A (en) * 2005-08-22 2007-03-08 Nippon Steel Corp STEEL FOR WELDED STRUCTURE HAVING 590 N/mm2 CLASS TENSILE STRENGTH AND EXCELLENT IN TOUGHNESS IN BASE MATERIAL AND HEAT AFFECTED ZONE, AND ITS MANUFACTURING METHOD
JP2007284712A (en) * 2006-04-13 2007-11-01 Nippon Steel Corp Method for producing thick high-strength steel plate excellent in toughness and thick high-strength steel plate excellent in toughness
JP2007302993A (en) * 2006-04-13 2007-11-22 Nippon Steel Corp High-strength steel plate with superior arrestability
JP2007314828A (en) * 2006-05-24 2007-12-06 Nippon Steel Corp High-strength steel pipe superior in strain aging resistance for line pipe, high-strength steel sheet for line pipe, and method for manufacturing them

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159473A (en) * 2009-01-09 2010-07-22 Sumitomo Metal Ind Ltd Thick steel plate and method for producing the same
WO2010143726A1 (en) * 2009-06-11 2010-12-16 新日本製鐵株式会社 Process for producing thick high-strength steel plate with excellent toughness of heat-affected zone in high heat input welding and thick high-strength steel plate with excellent toughness of heat-affected zone in high heat input welding
JP4681690B2 (en) * 2009-06-11 2011-05-11 新日本製鐵株式会社 Manufacturing method of thick high strength steel plate with excellent heat input heat affected zone toughness, and thick high strength steel plate with high heat input heat affected zone toughness
KR101176612B1 (en) 2009-06-11 2012-08-23 신닛뽄세이테쯔 카부시키카이샤 Process for producing thick high-strength steel plate with excellent toughness of heat-affected zone in high heat input welding and thick high-strength steel plate with excellent toughness of heat-affected zone in high heat input welding
JP2011074447A (en) * 2009-09-30 2011-04-14 Jfe Steel Corp High strength steel excellent in toughness in high heat input weld heat-affected zone
EP2644735A4 (en) * 2010-11-22 2014-05-07 Nippon Steel & Sumitomo Metal Corp Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
EP2594657A1 (en) * 2010-11-22 2013-05-22 Nippon Steel & Sumitomo Metal Corporation Electron beam welded joint, steel material for use in electron beam welded joint, and manufacturing method thereof
EP2644730A1 (en) * 2010-11-22 2013-10-02 Nippon Steel & Sumitomo Metal Corporation Electron beam welded joint, steel material for electron beam welding, and manufacturing method thereof
EP2644735A1 (en) * 2010-11-22 2013-10-02 Nippon Steel & Sumitomo Metal Corporation Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
EP2594657A4 (en) * 2010-11-22 2014-04-23 Nippon Steel & Sumitomo Metal Corp Electron beam welded joint, steel material for use in electron beam welded joint, and manufacturing method thereof
EP2644730A4 (en) * 2010-11-22 2014-05-07 Nippon Steel & Sumitomo Metal Corp Electron beam welded joint, steel material for electron beam welding, and manufacturing method thereof
JP2013117055A (en) * 2011-12-05 2013-06-13 Jfe Steel Corp Steel material for large heat-input welding and method for manufacturing the same
CN103014530A (en) * 2012-12-21 2013-04-03 鞍钢股份有限公司 Method for improving impact property of D-level ship plate
CN103695777A (en) * 2013-12-20 2014-04-02 宝山钢铁股份有限公司 Thick steel plate with excellent tenacity for excellent-tenacity welding heat affected zone and manufacturing method thereof
JP2016112590A (en) * 2014-12-16 2016-06-23 新日鐵住金株式会社 Continuous casting piece and producing method thereof
JP2019023324A (en) * 2017-07-21 2019-02-14 新日鐵住金株式会社 Steel plate and method for manufacturing steel plate
JP2019035107A (en) * 2017-08-14 2019-03-07 新日鐵住金株式会社 Steel plate and method of producing steel plate
JP2020033585A (en) * 2018-08-28 2020-03-05 日本製鉄株式会社 steel sheet
JP2020033584A (en) * 2018-08-28 2020-03-05 日本製鉄株式会社 steel sheet
JP7206701B2 (en) 2018-08-28 2023-01-18 日本製鉄株式会社 steel plate
JP7206700B2 (en) 2018-08-28 2023-01-18 日本製鉄株式会社 steel plate
WO2021156925A1 (en) * 2020-02-03 2021-08-12 日本製鉄株式会社 Thick steel sheet
JPWO2021156925A1 (en) * 2020-02-03 2021-08-12
JP7315874B2 (en) 2020-02-03 2023-07-27 日本製鉄株式会社 thick steel plate
CN114672733A (en) * 2022-03-30 2022-06-28 江苏省沙钢钢铁研究院有限公司 690 MPa-grade steel plate capable of being welded under high heat input and production method thereof
CN114672733B (en) * 2022-03-30 2023-02-24 江苏省沙钢钢铁研究院有限公司 690 MPa-grade steel plate capable of being welded under high heat input and production method thereof

Also Published As

Publication number Publication date
JP5085364B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
JP5085364B2 (en) Manufacturing method of thick high-strength steel plate with excellent brittle fracture propagation stop characteristics and high heat input weld heat affected zone toughness, and thick high strength steel plate with excellent brittle fracture propagation stop characteristics and high heat input weld heat affected zone toughness
JP4612735B2 (en) Manufacturing method of thick high-strength steel plate with excellent brittle fracture propagation stop characteristics and high heat input weld heat affected zone toughness, and thick high strength steel plate with excellent brittle fracture propagation stop characteristics and high heat input weld heat affected zone toughness
JP4660315B2 (en) Manufacturing method of thick high strength steel plate with excellent toughness and thick high strength steel plate with excellent toughness
JP4681690B2 (en) Manufacturing method of thick high strength steel plate with excellent heat input heat affected zone toughness, and thick high strength steel plate with high heat input heat affected zone toughness
JP5079419B2 (en) Steel for welded structure with excellent toughness of weld heat affected zone, method for producing the same, and method for producing welded structure
JP7219882B2 (en) Steel material for pressure vessel and its manufacturing method
JP3898814B2 (en) Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness
JP5212124B2 (en) Thick steel plate and manufacturing method thereof
CN108291287B (en) High strength steel having excellent embrittlement prevention and embrittlement initiation resistance of welded portion and method for producing the same
JP2011105963A (en) Method for manufacturing low yield ratio high tensile strength steel plate excellent in low temperature toughness
JP2008214653A (en) High strength thick steel plate for structural purpose having excellent brittle crack arrest property, and method for producing the same
JP2022510933A (en) Steel materials with excellent hydrogen-induced crack resistance and their manufacturing methods
JP2007284712A (en) Method for producing thick high-strength steel plate excellent in toughness and thick high-strength steel plate excellent in toughness
JP6477743B2 (en) High-strength ultra-thick steel plate excellent in brittle crack propagation stopping characteristics and weld heat-affected zone toughness and method for producing the same
JP7364906B2 (en) Steel materials and their manufacturing methods
JP7207199B2 (en) Steel material and its manufacturing method
JP6308148B2 (en) Ultra-high heat input welding heat-affected zone toughness excellent low-yield-ratio high-strength steel sheet for building structures and manufacturing method thereof
JP2007224404A (en) High tensile strength steel plate having excellent strength and low temperature toughness, and method for producing high tensile strength steel plate
JP3882701B2 (en) Method for producing welded structural steel with excellent low temperature toughness
JP4259374B2 (en) High strength steel sheet with excellent low temperature toughness and weld heat affected zone toughness and method for producing the same
JP2020033585A (en) steel sheet
JP5895780B2 (en) Steel plate excellent in toughness of heat-affected zone with high heat input welding and manufacturing method thereof
WO2018030171A1 (en) High-strength thick steel plate and production method therefor
JP6274375B1 (en) High strength thick steel plate and manufacturing method thereof
JPS6256518A (en) Production of high strength steel sheet for high heat input welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120905

R151 Written notification of patent or utility model registration

Ref document number: 5085364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350