JP2020026537A - NITRIDE-DISPERSED MOLDED BODY FORMED OF Ni-BASED ALLOY - Google Patents

NITRIDE-DISPERSED MOLDED BODY FORMED OF Ni-BASED ALLOY Download PDF

Info

Publication number
JP2020026537A
JP2020026537A JP2018150162A JP2018150162A JP2020026537A JP 2020026537 A JP2020026537 A JP 2020026537A JP 2018150162 A JP2018150162 A JP 2018150162A JP 2018150162 A JP2018150162 A JP 2018150162A JP 2020026537 A JP2020026537 A JP 2020026537A
Authority
JP
Japan
Prior art keywords
mass
based alloy
nitride
less
compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018150162A
Other languages
Japanese (ja)
Other versions
JP7153502B2 (en
Inventor
裕樹 池田
Hiroki Ikeda
裕樹 池田
由夏 西面
Yuka Nishiomote
由夏 西面
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2018150162A priority Critical patent/JP7153502B2/en
Priority to PCT/JP2019/031568 priority patent/WO2020032235A1/en
Publication of JP2020026537A publication Critical patent/JP2020026537A/en
Application granted granted Critical
Publication of JP7153502B2 publication Critical patent/JP7153502B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

To provide a molded body which exhibits excellent strength in a high temperature environment.SOLUTION: A molding is obtained by solidifying a powder made up of an Ni-based alloy. The Ni-based alloy has Ni: 40.0-80.0 mass%, Cr: 13.0-25.0% mass% and C: 0.001-0.30 mass%. The Ni-based alloy has one or more element selected from the group consisting of Al: 0.10-5.0 mass%, Mo: 0.10-12.0% mass%, Co: 0.10-20.0 mass% and W: 0.10-6.0 mass%. The Ni-based alloy has one or more element selected from the group consisting of Nb, Ti and Zr of 0.1 mass% or more and 8.0 mass% or less. The Ni-based alloy further has 0.010 mass% or more and 0.20 mass% or less of N. The balance of the Ni-based alloy is Fe and inevitable impurities. The molding has nitride dispersed therein.SELECTED DRAWING: None

Description

本発明は、その材質が窒化物分散型Ni基合金である成形体に関する。詳細には、本発明は、Ni基合金からなる粉末が固化されて得られる成形体に関する。   The present invention relates to a formed body whose material is a nitride-dispersed Ni-based alloy. More specifically, the present invention relates to a compact obtained by solidifying a powder made of a Ni-based alloy.

ガスタービンの動翼及び静翼、並びに高温燃焼炉用部材のような、高温環境下で使用される部材には、耐熱性及び耐酸化性が要求される。かかる部材に、Mo、W、Al、Ti等の元素が多量に添加されたNi基合金が用いられている。   Heat resistance and oxidation resistance are required for members used in a high-temperature environment, such as blades and vanes of a gas turbine and members for a high-temperature combustion furnace. For such members, a Ni-based alloy to which elements such as Mo, W, Al, and Ti are added in a large amount is used.

このNi基合金からなる部材が溶製(鋳造による製造)されると、添加元素が大幅に偏析する。この偏析は、部材のその後の熱間加工性を損なう。   When the member made of the Ni-based alloy is melted (manufactured by casting), the added elements are largely segregated. This segregation impairs the subsequent hot workability of the component.

高温環境下で使用される部材の、粉末冶金による製造が提案されている。粉末冶金によって得られた部材では、偏析が抑制される。   Production of components used in high-temperature environments by powder metallurgy has been proposed. In a member obtained by powder metallurgy, segregation is suppressed.

特開平9−279287号公報には、耐熱合金からなる粉末が開示されている。この合金は、Zrを含有し、かつ、Y、Ce及びLaのような希土類元素を含有する。この合金では、Zr及び希土類元素が、粉末粒内に微細な酸化物を生成させる。この酸化物は、成形品の強度に寄与する。   Japanese Patent Application Laid-Open No. 9-279287 discloses a powder made of a heat-resistant alloy. This alloy contains Zr and rare earth elements such as Y, Ce and La. In this alloy, Zr and the rare earth elements produce fine oxides in the powder grains. This oxide contributes to the strength of the molded article.

国際公開第WO2009/142228号公報には、Ti又はNbの炭窒化物を含有する原子力発電用Ni基合金が開示されている。この合金では、炭窒化物によって結晶粒が微細化される。   International Publication No. WO 2009/142228 discloses a Ni-based alloy for nuclear power generation containing a carbonitride of Ti or Nb. In this alloy, the crystal grains are refined by the carbonitride.

特開平9−279287号公報JP-A-9-279287 国際公開第WO2009/142228号公報International Publication No. WO2009 / 142228

特開平9−279287号公報に開示された、酸化物分散による強化方法は、汎用性に劣る。この強化方法が適用されうる合金系は、限定的である。   The method of strengthening by oxide dispersion disclosed in JP-A-9-279287 is inferior in versatility. The alloy systems to which this strengthening method can be applied are limited.

国際公開第WO2009/142228号公報に開示されたNi基合金では、Nb及びTiの添加量が少ない。このNi基合金には、強度改善の余地がある。   In the Ni-based alloy disclosed in International Publication WO2009 / 142228, the amounts of Nb and Ti added are small. This Ni-based alloy has room for improvement in strength.

本発明の目的は、Ni基合金からなり、かつ高温環境下での強度に優れた成形体の提供にある。   An object of the present invention is to provide a molded body made of a Ni-based alloy and having excellent strength in a high-temperature environment.

本発明に係る成形体は、その材質がNi基合金である粉末が固化されて得られる。このNi基合金は、
Ni:40.0質量%以上80.0質量%以下
Cr:13.0質量%以上25.0%質量%以下
及び
C:0.001質量%以上0.30質量%以下
を含む。このNi基合金は、
Al:0.10質量%以上5.0質量%以下
Mo:0.10質量%以上12.0%質量%以下
Co:0.10質量%以上20.0%質量%以下
及び
W:0.10質量%以上6.0質量%以下
からなる群から選択された1種又は2種以上の元素を含む。このNi基合金は、Nb、Ti及びZrからなる群から選択された1種又は2種以上の元素を0.1質量%以上8.0質量%以下含む。このNi基合金は、0.010質量%以上0.20質量%以下のNをさらに含む。このNi基合金の残部は、Fe及び不可避的不純物である。この成形体には、窒化物が分散している。
The compact according to the present invention is obtained by solidifying a powder whose material is a Ni-based alloy. This Ni-based alloy is
Ni: 40.0% to 80.0% by mass Cr: 13.0% to 25.0% by mass and C: 0.001% to 0.30% by mass. This Ni-based alloy is
Al: 0.10% to 5.0% by mass Mo: 0.10% to 12.0% by mass Co: 0.10% to 20.0% by mass and W: 0.10% by mass One or more elements selected from the group consisting of not less than 6.0% by mass and not more than 6.0% by mass. This Ni-based alloy contains one or more elements selected from the group consisting of Nb, Ti and Zr in an amount of 0.1% by mass to 8.0% by mass. This Ni-based alloy further contains N of 0.010% by mass or more and 0.20% by mass or less. The balance of the Ni-based alloy is Fe and inevitable impurities. Nitride is dispersed in this compact.

好ましくは、窒化物は、Nb、Ti又はZrの窒化物である。   Preferably, the nitride is a nitride of Nb, Ti or Zr.

好ましくは、窒化物は、成形体の結晶の、粒界及び粒内に分散している。   Preferably, the nitride is dispersed in the grain boundaries and in the grains of the crystal of the compact.

好ましくは、窒化物の長径Aの平均Aaは、3.0μm以下である。   Preferably, the average Aa of the major axis A of the nitride is 3.0 μm or less.

好ましくは、その長径Aが3.0μm以上である窒化物の密度Dnは、0.75個/100μm以下である。 Preferably, the nitride D having a major axis A of 3.0 μm or more has a density Dn of 0.75 / 100 μm 2 or less.

本発明に係る成形体は、高温環境下での強度に優れる。   The molded article according to the present invention has excellent strength in a high-temperature environment.

以下、好ましい実施形態に基づいて、本発明が詳細に説明される。   Hereinafter, the present invention will be described in detail based on preferred embodiments.

本発明に係る成形体は、その材質がNi基合金である粉末が固化されて得られる。このNi基合金には、窒化物が分散している。窒化物は、Nと他の元素との化合物である。本発明では、窒化物の概念に炭窒化物が含まれる。炭窒化物は、N、C及び他の元素の化合物である。   The compact according to the present invention is obtained by solidifying a powder whose material is a Ni-based alloy. The nitride is dispersed in this Ni-based alloy. A nitride is a compound of N and another element. In the present invention, the concept of nitride includes carbonitride. Carbonitrides are compounds of N, C and other elements.

この成形体には、窒化物が分散している。窒化物は、炭化物に比べ、よりオストワルド成長を抑制する。窒化物が分散した成形体は、高温環境下での強度に優れている。この成形体はさらに、クリープ強度にも優れている。   Nitride is dispersed in this compact. Nitride suppresses Ostwald growth more than carbide. The molded body in which the nitride is dispersed has excellent strength in a high-temperature environment. This molded article also has excellent creep strength.

[Ni、Cr、C]
このNi基合金は、
Ni:40.0質量%以上80.0質量%以下
Cr:15.0質量%以上25.0%質量%以下
及び
C:0.001質量%以上0.30質量%以下
を含む。
[Ni, Cr, C]
This Ni-based alloy is
Ni: 40.0% to 80.0% by mass Cr: 15.0% to 25.0% by mass and C: 0.001% to 0.30% by mass.

[ニッケル(Ni)]
Niは、成形体の耐食性に寄与する。特にNiは、酸性環境下及び塩素イオン含有環境下における高温での耐食性に寄与する。この観点から、Ni基合金におけるNiの含有率は40.0質量%以上が好ましく、45.0質量%以上がより好ましく、50.0質量%以上が特に好ましい。オーステナイト相の安定性の観点、及びCr等の他元素との相互作用の観点から、Niの含有率は80.0質量%以下が好ましく、75.0質量%以下がより好ましく、70.0質量%以下が特に好ましい。
[Nickel (Ni)]
Ni contributes to the corrosion resistance of the molded body. In particular, Ni contributes to corrosion resistance at high temperatures in an acidic environment and an environment containing chlorine ions. From this viewpoint, the Ni content in the Ni-based alloy is preferably 40.0% by mass or more, more preferably 45.0% by mass or more, and particularly preferably 50.0% by mass or more. In light of stability of the austenite phase and interaction with other elements such as Cr, the Ni content is preferably 80.0% by mass or less, more preferably 75.0% by mass or less, and 70.0% by mass. % Is particularly preferred.

[クロム(Cr)]
Crは、成形体が高温で使用されるときの耐酸化性に寄与する。この観点から、Ni基合金におけるCrの含有率は13.0質量%以上が好ましく、15.0質量%以上がより好ましく、16.0質量%以上が特に好ましい。過剰のCrは、δ相を生成させる。δ相は、成形体の高温強度と靭性とを阻害する。δ相抑制の観点から、Crの含有率は25.0質量%以下が好ましく、23.0質量%以下がより好ましく、22.0質量%以下が特に好ましい。
[Chromium (Cr)]
Cr contributes to oxidation resistance when the molded body is used at a high temperature. From this viewpoint, the content of Cr in the Ni-based alloy is preferably 13.0% by mass or more, more preferably 15.0% by mass or more, and particularly preferably 16.0% by mass or more. Excess Cr causes the formation of the δ phase. The δ phase impairs the high-temperature strength and toughness of the compact. From the viewpoint of suppressing the δ phase, the Cr content is preferably 25.0% by mass or less, more preferably 23.0% by mass or less, and particularly preferably 22.0% by mass or less.

[炭素(C)]
Cは、Nb、Ti等と結合し、MC型炭化物を形成する。Cはさらに、Cr、Mo、W等と結合し、M6C、M7C3及びM23C6のような炭化物を形成する。これらの炭化物は、成形体の高温強さに寄与する。この観点から、Ni基合金におけるCの含有率は0.001%以上が好ましく、0.010質量%以上がより好ましく、0.020質量%以上が特に好ましい。過剰のCは、結晶粒界に連続的な炭化物を析出させる。この炭化物は、成形体の耐食性及び靭性を阻害する。耐食性及び靱性の観点から、Cの含有率は0.30質量%以下が好ましく、0.20質量%以下がより好ましく、0.15質量%以下が特に好ましい。
[Carbon (C)]
C combines with Nb, Ti and the like to form MC type carbide. C further combines with Cr, Mo, W, etc. to form carbides such as M6C, M7C3 and M23C6. These carbides contribute to the high-temperature strength of the compact. In this respect, the content of C in the Ni-based alloy is preferably equal to or greater than 0.001%, more preferably equal to or greater than 0.010% by mass, and particularly preferably equal to or greater than 0.020% by mass. Excess C precipitates continuous carbide at the grain boundaries. This carbide impairs the corrosion resistance and toughness of the compact. In light of corrosion resistance and toughness, the C content is preferably equal to or less than 0.30 mass%, more preferably equal to or less than 0.20 mass%, and particularly preferably equal to or less than 0.15 mass%.

[Al、Mo、Co、W]
このNi基合金は、Al、Mo、Co又はWを含む。Al、Mo、Co及びWは、成形体の耐熱性、耐酸化性及び強度(高温強度)に寄与する。Ni基合金が、Al、Mo、Co及びWのいずれかを単独で含有してもよい。Ni基合金が、Al、Mo、Co及びWからなる群から選択された2種以上の元素を含有してもよい。
[Al, Mo, Co, W]
This Ni-based alloy contains Al, Mo, Co or W. Al, Mo, Co and W contribute to heat resistance, oxidation resistance and strength (high-temperature strength) of the molded body. The Ni-based alloy may contain any of Al, Mo, Co and W alone. The Ni-based alloy may contain two or more elements selected from the group consisting of Al, Mo, Co, and W.

[アルミニウム(Al)]
Alは、γ‘相を生成させる。γ‘相は、成形体のクリープ破断強さ及び耐酸化性に寄与する。これらの観点から、Ni基合金におけるAlの含有率は0.10質量%以上が好ましく、0.20質量%以上がより好ましく、0.25質量%以上が特に好ましい。過剰のAlは、成形体の靱性を阻害する。靱性の観点から、Alの含有率は5.0質量%以下が好ましく、4.0質量%以下がより好ましく、3.5質量%以下が特に好ましい。
[Aluminum (Al)]
Al produces a γ 'phase. The γ 'phase contributes to the creep rupture strength and oxidation resistance of the molded body. From these viewpoints, the content of Al in the Ni-based alloy is preferably 0.10% by mass or more, more preferably 0.20% by mass or more, and particularly preferably 0.25% by mass or more. Excess Al inhibits the toughness of the compact. In light of toughness, the Al content is preferably equal to or less than 5.0% by mass, more preferably equal to or less than 4.0% by mass, and particularly preferably equal to or less than 3.5% by mass.

[モリブデン(Mo)]
Moは、固溶強化に寄与する。この観点から、Ni基合金におけるMoの含有率は0.10質量%以上が好ましく、1.0質量%以上がより好ましく、2.0質量%以上が特に好ましい。過剰のMoは、μ相又はσ相の生成を助長する。μ相及びσ相は、成形体の靱性を損なう。靱性の観点から、Moの含有率は12.0質量%以下が好ましく、10.0質量%以下がより好ましく、8.0質量%以下が特に好ましい。
[Molybdenum (Mo)]
Mo contributes to solid solution strengthening. In this respect, the content of Mo in the Ni-based alloy is preferably equal to or greater than 0.10% by mass, more preferably equal to or greater than 1.0% by mass, and particularly preferably equal to or greater than 2.0% by mass. Excess Mo promotes the formation of the μ or σ phase. The μ phase and the σ phase impair the toughness of the compact. From the viewpoint of toughness, the Mo content is preferably 12.0% by mass or less, more preferably 10.0% by mass or less, and particularly preferably 8.0% by mass or less.

[コバルト(Co)]
Coは、γ‘相のNi固溶体に対する溶解度を高める。従ってCoは、成形体の高温延性及び高温強度を高める。これらの観点から、Ni基合金におけるCoの含有率は0.10質量%以上が好ましく、3.0質量%以上がより好ましく、5.0質量%以上が特に好ましい。過剰のCoは、成形体の靱性及び強度を損なう。靱性及び強度の観点から、Coの含有率は20.0質量%以下が好ましく、18.0質量%以下がより好ましく、17.0質量%以下が特に好ましい。
[Cobalt (Co)]
Co enhances the solubility of the γ ′ phase in the Ni solid solution. Therefore, Co enhances the high-temperature ductility and high-temperature strength of the compact. From these viewpoints, the content of Co in the Ni-based alloy is preferably 0.10% by mass or more, more preferably 3.0% by mass or more, and particularly preferably 5.0% by mass or more. Excessive Co impairs the toughness and strength of the compact. In light of toughness and strength, the Co content is preferably equal to or less than 20.0% by mass, more preferably equal to or less than 18.0% by mass, and particularly preferably equal to or less than 17.0% by mass.

[タングステン(W)]
Wは、固溶強化に寄与する。この観点から、Ni基合金におけるWの含有率は0.10質量%以上が好ましく、0.50質量%以上がより好ましく、1.0質量%以上が特に好ましい。過剰のWは、成形体の靱性及び強度を損なう。靱性及び強度の観点から、Wの含有率は6.0質量%以下が好ましく、5.0質量%以下がより好ましく、4.5質量%以下が特に好ましい。
[Tungsten (W)]
W contributes to solid solution strengthening. In this respect, the W content in the Ni-based alloy is preferably equal to or greater than 0.10% by mass, more preferably equal to or greater than 0.50% by mass, and particularly preferably equal to or greater than 1.0% by mass. Excessive W impairs the toughness and strength of the compact. In light of toughness and strength, the content of W is preferably equal to or less than 6.0% by mass, more preferably equal to or less than 5.0% by mass, and particularly preferably equal to or less than 4.5% by mass.

[Nb、Ti、Zr]
このNi基合金は、ニオブ(Nb)、チタン(Ti)又はジルコニウム(Zr)を含む。Ni基合金が、Nb、Ti及びZrのいずれかを単独で含有してもよい。Ni基合金が、Nb、Ti及びZrからなる群から選択された2種以上の元素を含有してもよい。Nb、Ti及びZrのそれぞれは、C及びN(後に詳説)と結合して炭窒化物を生成する。この炭窒化物は、成形体の強度に寄与する。この観点から、Ni基合金におけるNb、Ti及びZrの合計含有率は0.1質量%以上が好ましく、1.0質量%以上がより好ましく、1.5質量%以上が特に好ましい。過剰のNb、Ti及びZrは、成形体の靱性及び強度を損なう。靱性及び強度の観点から、Nb、Ti及びZrの合計含有率は8.0質量%以下が好ましく、7.5質量%以下がより好ましく、7.0質量%以下が特に好ましい。
[Nb, Ti, Zr]
This Ni-based alloy contains niobium (Nb), titanium (Ti) or zirconium (Zr). The Ni-based alloy may contain any one of Nb, Ti and Zr alone. The Ni-based alloy may contain two or more elements selected from the group consisting of Nb, Ti, and Zr. Each of Nb, Ti and Zr combines with C and N (detailed below) to form carbonitrides. This carbonitride contributes to the strength of the compact. In this respect, the total content of Nb, Ti, and Zr in the Ni-based alloy is preferably equal to or greater than 0.1% by mass, more preferably equal to or greater than 1.0% by mass, and particularly preferably equal to or greater than 1.5% by mass. Excessive Nb, Ti and Zr impair the toughness and strength of the compact. In light of toughness and strength, the total content of Nb, Ti, and Zr is preferably equal to or less than 8.0% by mass, more preferably equal to or less than 7.5% by mass, and particularly preferably equal to or less than 7.0% by mass.

[窒素(N)]
このNi基合金は、Nをさらに含む。NはNb、Ti又はZrと結合し、窒化物(炭窒化物を含む)を形成する。この窒化物は、成形体の強度に寄与する。この観点から、Ni基合金におけるNの含有率は0.010質量%以上が好ましく、0.030質量%以上がより好ましく、0.040質量%以上が特に好ましい。過剰のNは、過剰の窒化物を生成する。過剰な窒化物は、成形体の靱性を阻害する。靱性の観点から、Nの含有率は0.20質量%以下が好ましく、0.15質量%以下がより好ましく、0.10質量%以下が特に好ましい。
[Nitrogen (N)]
This Ni-based alloy further contains N. N combines with Nb, Ti or Zr to form nitrides (including carbonitrides). This nitride contributes to the strength of the compact. In this respect, the N content in the Ni-based alloy is preferably equal to or greater than 0.010 mass%, more preferably equal to or greater than 0.030 mass%, and particularly preferably equal to or greater than 0.040 mass%. Excess N produces excess nitride. Excess nitride impairs the toughness of the compact. In light of toughness, the N content is preferably equal to or less than 0.20 mass%, more preferably equal to or less than 0.15 mass%, and particularly preferably equal to or less than 0.10 mass%.

[残部]
Ni基合金の残部は、Fe及び不可避的不純物である。
[Remainder]
The balance of the Ni-based alloy is Fe and inevitable impurities.

[窒化物]
前述の通り、この成形体には、窒化物が分散している。この窒化物には、炭窒化物が含まれる。この窒化物は、成形体の高温強度に寄与しうる。この窒化物はさらに、成形体の耐クリープ性にも寄与しうる。炭窒化物として、Nb−C−N化合物、Ti−C−N化合物、Zr−C−N化合物、Nb−Ti−C−N化合物、Ti−Zr−C−N化合物、Zr−Nb−C−N化合物及びNb−Ti−Zr−C−N化合物が例示される。炭窒化物以外の窒化物として、Nb−N化合物、Ti−N化合物、Zr−N化合物、Nb−Ti−N化合物、Ti−Zr−N化合物、Zr−Nb−N化合物及びNb−Ti−Zr−N化合物が例示される。
[Nitride]
As described above, nitrides are dispersed in this compact. The nitride includes carbonitride. This nitride can contribute to the high-temperature strength of the compact. This nitride can also contribute to the creep resistance of the compact. As carbonitrides, Nb-CN compound, Ti-CN compound, Zr-CN compound, Nb-Ti-CN compound, Ti-Zr-CN compound, Zr-Nb-C- N compounds and Nb-Ti-Zr-CN compounds are exemplified. As nitrides other than carbonitrides, Nb-N compounds, Ti-N compounds, Zr-N compounds, Nb-Ti-N compounds, Ti-Zr-N compounds, Zr-Nb-N compounds and Nb-Ti-Zr -N compounds are exemplified.

窒化物は、成形体の結晶の粒界に分散しうる。窒化物はさらに、この結晶の粒内にも分散しうる。粒界及び粒内の両方に窒化物が分散した成形体は、高温強度及び耐クリープ性に優れる。   The nitride can be dispersed at the crystal grain boundaries of the compact. Nitride may also be dispersed within the grains of the crystal. A compact in which nitrides are dispersed both in the grain boundaries and in the grains has excellent high-temperature strength and creep resistance.

窒化物の長径Aの平均Aaは、3.0μm以下が好ましい。換言すれば、成形体に微細な窒化物が分散することが好ましい。微細な窒化物が分散した成形体は、高温強度及び耐クリープ性に優れる。高温強度及び耐クリープ性の観点から、長径Aの平均Aaは2.5μm以下がより好ましく、2.0μm以下が特に好ましい。長径Aは、成形体の断面がEMPAマッピングで観察されることで測定されうる。それぞれの窒化物の輪郭内に画かれうる最長の線分が、長径Aである。無作為に抽出された10個以上の窒化物の長径が測定され、平均される。   The average Aa of the major axis A of the nitride is preferably 3.0 μm or less. In other words, it is preferable that fine nitrides are dispersed in the compact. A compact in which fine nitrides are dispersed has excellent high-temperature strength and creep resistance. In light of high-temperature strength and creep resistance, the average Aa of the major axis A is more preferably equal to or less than 2.5 μm, and particularly preferably equal to or less than 2.0 μm. The major axis A can be measured by observing a cross section of the molded body by EMPA mapping. The longest line segment that can be drawn within the outline of each nitride is the major axis A. The major axes of 10 or more randomly selected nitrides are measured and averaged.

その長径Aが3.0μm以上である窒化物の密度Dnは、0.75個/100μm以下が好ましい。密度Dnがこの範囲内である成形体は、高温強度及び耐クリープ性に優れる。高温強度及び耐クリープ性の観点から、密度Dnは0.50個/100μm以下がより好ましく、0.40個/100μm以下が特に好ましい。密度Dnの測定は、成形体の断面がEMPAマッピングで観察されることでなされる。無作為に抽出された20μm×20μmのゾーンにおいて、長径Aが3.0μm以上である窒化物の個数が、カウントされる。この個数が、密度Dnである。 The density Dn of the nitride having a major axis A of 3.0 μm or more is preferably 0.75 / 100 μm 2 or less. A molded article having a density Dn within this range is excellent in high-temperature strength and creep resistance. In light of high-temperature strength and creep resistance, the density Dn is more preferably equal to or less than 0.50 / 100 μm 2 and particularly preferably equal to or less than 0.40 / 100 μm 2 . The measurement of the density Dn is performed by observing the cross section of the molded body by EMPA mapping. In a randomly extracted zone of 20 μm × 20 μm, the number of nitrides having a major axis A of 3.0 μm or more is counted. This number is the density Dn.

[粉末の製造]
粉末の製造方法には、種々の方法が採用されうる。好ましくは、粉末は、アトマイズによって得られうる。好ましいアトマイズは、ガスアトマイズである。ガスアトマイズでは、底部に細孔を有する容器(石英坩堝)の中に、原料が投入される。この原料が、アルゴンガス又は窒素ガスの雰囲気中で、高周波誘導炉によって加熱され、溶融する。細孔から流出する原料に、アルゴンガス又は窒素ガスが噴射される。原料は急冷されて凝固し、粉末が得られる。
[Production of powder]
Various methods can be adopted as a method for producing the powder. Preferably, the powder can be obtained by atomization. Preferred atomizing is gas atomizing. In gas atomization, a raw material is charged into a container (quartz crucible) having a pore at the bottom. This raw material is heated and melted in a high-frequency induction furnace in an atmosphere of argon gas or nitrogen gas. Argon gas or nitrogen gas is injected into the raw material flowing out of the pores. The raw material is quenched and solidified to obtain a powder.

噴射されるガスとして窒素ガスが採用されることで、適量のNを含有するNi基合金からなる粉末が得られうる。原料が加熱され溶融されるときの雰囲気がアルゴンガスとされることで、過剰なNを含有しないNi基合金が得られうる。このNi基合金から、微細な窒化物が分散する成形体が得られうる。   By using nitrogen gas as the gas to be injected, a powder composed of a Ni-based alloy containing an appropriate amount of N can be obtained. By setting the atmosphere when the raw material is heated and melted to argon gas, a Ni-based alloy containing no excessive N can be obtained. From this Ni-based alloy, a compact in which fine nitrides are dispersed can be obtained.

[HIP]
この粉末に、必要に応じ、分級(例えば粒子径が500μm以下の粒子を抽出)がなされる。分級後の粉末が、炭素鋼製のカプセルに充填される。このカプセルの内部が真空脱気され、さらにこのカプセルが封止されてビレットが得られる。このビレットに、HIP成形(熱間等方圧プレス)が施される。HIP成形の、好ましい圧力は50MPa以上300MPa以下であり、好ましい焼結温度は1000℃以上1350℃以下である。HIP成形により、成形体が得られる。
[HIP]
If necessary, the powder is classified (for example, particles having a particle size of 500 μm or less are extracted). The powder after classification is filled in a carbon steel capsule. The inside of the capsule is evacuated to a vacuum, and the capsule is sealed to obtain a billet. The billet is subjected to HIP molding (hot isostatic pressing). The preferred pressure for the HIP molding is from 50 MPa to 300 MPa, and the preferred sintering temperature is from 1000 ° C. to 1350 ° C. A molded article is obtained by HIP molding.

HIPにおいて、Ni基合金に含有されたNが他の元素と結合し、窒化物が生成しうる。このHIPにより、微細は窒化物が分散した成形体が得られうる。成形体に熱処理(例えば時効)が施されることで、窒化物が生成してもよい。   In HIP, N contained in the Ni-based alloy may combine with other elements to generate nitride. By this HIP, a compact in which fine nitrides are dispersed can be obtained. By subjecting the molded body to heat treatment (for example, aging), nitrides may be generated.

以下、実施例によって本発明の効果が明らかにされるが、この実施例の記載に基づいて本発明が限定的に解釈されるべきではない。   Hereinafter, the effects of the present invention will be clarified by examples, but the present invention should not be construed as being limited based on the description of the examples.

[実施例1]
所定の組成を有する原料を、準備した。この原料を、アルゴンガス雰囲気中にてアルミナ製坩堝で、高周波誘導加熱法にて加熱した。この加熱によって原料を溶融させ、溶湯を得た。坩堝下にある直径が5mmのノズルから、溶湯を落下させた。この溶湯に、窒素ガスを噴霧し、粉末を得た。この粉末の組成が、下記の表1に示されている。この粉末を炭素鋼製のカプセルに入れ、真空脱気した。このカプセルを封止し、ビレットを得た。このビレットに、HIP成形を施した。HIPの温度は、1200℃であった。HIPにより、φ50の棒状成形体が得られた。この成形体に、熱処理を施した。
[Example 1]
A raw material having a predetermined composition was prepared. This raw material was heated in an alumina crucible in an argon gas atmosphere by a high-frequency induction heating method. The raw material was melted by this heating to obtain a molten metal. The molten metal was dropped from a nozzle having a diameter of 5 mm below the crucible. Nitrogen gas was sprayed on the molten metal to obtain a powder. The composition of this powder is shown in Table 1 below. This powder was placed in a carbon steel capsule and degassed under vacuum. The capsule was sealed to obtain a billet. This billet was subjected to HIP molding. The HIP temperature was 1200 ° C. By HIP, a φ50 rod-shaped compact was obtained. This molded body was subjected to a heat treatment.

[実施例2−8及び比較例13−20]
原料の組成を変更した他は、実施例1と同様にして、実施例2−8及び比較例13−20の成形体を得た。粉末の組成が、下記の表1及び3に示されている。
[Example 2-8 and Comparative Example 13-20]
Except having changed the composition of the raw material, it carried out similarly to Example 1, and obtained the molded object of Example 2-8 and Comparative Example 13-20. The composition of the powder is shown in Tables 1 and 3 below.

[比較例9−12]
溶製により、下記の表2に示される組成の成形体を得た。この成形体に、熱処理を施した。
[Comparative Example 9-12]
By smelting, a molded article having the composition shown in Table 2 below was obtained. This molded body was subjected to a heat treatment.

[引張り試験]
成形体から、切削にて試験片を製作した。この試験片を、649℃(1200F)の環境下で引張り試験に供し、引っ張り強度と破断伸びとを測定した。この結果が、下記の表1−3に示されている。
[Tension test]
A test piece was produced from the molded body by cutting. This test piece was subjected to a tensile test in an environment of 649 ° C. (1200 F), and the tensile strength and the elongation at break were measured. The results are shown in Tables 1-3 below.

[引張り試験]
EMPAのマッピングを実施し、画像解析により長径の平均Aa及び密度Dnを算出した。この結果が、下記の表1−3に示されている。
[Tension test]
EMPA mapping was performed, and the average Aa of the major axis and the density Dn were calculated by image analysis. The results are shown in Tables 1-3 below.

表1−3に示されるように、各実施例に係る成形体は、Nの含有率が異なる以外はほぼ同等の組成を有する比較例の成形体に比べ、高温強度に優れている。この評価結果から、本発明の優位性は明らかである。   As shown in Table 1-3, the molded articles according to the examples are superior in the high-temperature strength as compared with the molded articles of the comparative examples having substantially the same composition except for the N content. From the evaluation results, the superiority of the present invention is clear.

以上説明された成形体は、高温環境下で使用される種々の部材に適している。   The molded body described above is suitable for various members used in a high-temperature environment.

Claims (5)

その材質がNi基合金である粉末が固化されて得られる成形体であって、
上記Ni基合金が、
Ni:40.0質量%以上80.0質量%以下
Cr:13.0質量%以上25.0%質量%以下
及び
C:0.001質量%以上0.30質量%以下
を含んでおり、
上記Ni基合金が、
Al:0.10質量%以上5.0質量%以下
Mo:0.10質量%以上12.0%質量%以下
Co:0.10質量%以上20.0質量%以下
及び
W:0.10質量%以上6.0質量%以下
からなる群から選択された1種又は2種以上の元素を含み、
上記Ni基合金が、Nb、Ti及びZrからなる群から選択された1種又は2種以上の元素を0.1質量%以上8.0質量%以下含み、
上記Ni基合金が、0.010質量%以上0.20質量%以下のNをさらに含み、
上記Ni基合金の残部は、Fe及び不可避的不純物であり、
窒化物が分散している成形体。
A molded body obtained by solidifying a powder whose material is a Ni-based alloy,
The Ni-based alloy is
Ni: 40.0% by mass to 80.0% by mass, Cr: 13.0% by mass to 25.0% by mass and C: 0.001% by mass to 0.30% by mass,
The Ni-based alloy is
Al: 0.10% to 5.0% by mass Mo: 0.10% to 12.0% by mass Co: 0.10% to 20.0% by mass and W: 0.10% by mass % Or more, and contains one or more elements selected from the group consisting of 6.0% by mass or less,
The Ni-based alloy contains one or more elements selected from the group consisting of Nb, Ti, and Zr in an amount of 0.1% by mass to 8.0% by mass,
The Ni-based alloy further contains 0.010% by mass or more and 0.20% by mass or less of N,
The balance of the Ni-based alloy is Fe and inevitable impurities,
Molded body in which nitride is dispersed.
上記窒化物が、Nb、Ti又はZrの窒化物である請求項1に記載の成形体。   The molded article according to claim 1, wherein the nitride is a nitride of Nb, Ti, or Zr. 上記窒化物が、上記成形体の結晶の、粒界及び粒内に分散している請求項1又は2に記載の成形体。   The compact according to claim 1, wherein the nitride is dispersed in grain boundaries and in grains of the crystal of the compact. 上記窒化物の長径Aの平均Aaが3.0μm以下である請求項1から3のいずれかに記載の成形体。   The molded article according to any one of claims 1 to 3, wherein an average Aa of the major axis A of the nitride is 3.0 µm or less. その長径Aが3.0μm以上である窒化物の密度Dnが、0.75個/100μm以下である請求項1から4のいずれかに記載の成形体。 The molded article according to any one of claims 1 to 4, wherein the nitride D whose major axis A is 3.0 µm or more has a density Dn of 0.75 / 100 µm 2 or less.
JP2018150162A 2018-08-09 2018-08-09 Molded body made of nitride-dispersed Ni-based alloy Active JP7153502B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018150162A JP7153502B2 (en) 2018-08-09 2018-08-09 Molded body made of nitride-dispersed Ni-based alloy
PCT/JP2019/031568 WO2020032235A1 (en) 2018-08-09 2019-08-09 NITRIDE-DISPERSED MOLDED BODY WHICH IS FORMED OF Ni-BASED ALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018150162A JP7153502B2 (en) 2018-08-09 2018-08-09 Molded body made of nitride-dispersed Ni-based alloy

Publications (2)

Publication Number Publication Date
JP2020026537A true JP2020026537A (en) 2020-02-20
JP7153502B2 JP7153502B2 (en) 2022-10-14

Family

ID=69414328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018150162A Active JP7153502B2 (en) 2018-08-09 2018-08-09 Molded body made of nitride-dispersed Ni-based alloy

Country Status (2)

Country Link
JP (1) JP7153502B2 (en)
WO (1) WO2020032235A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111254316A (en) * 2020-04-01 2020-06-09 山东理工大学 (MoNbZrTi) high-entropy alloy reinforced Ni-based alloy and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237573A (en) * 1997-02-27 1998-09-08 Daido Steel Co Ltd Electrifying roll for plating
JP2002302726A (en) * 2001-04-05 2002-10-18 Daido Steel Co Ltd HIGH HARDNESS- AND HIGH CORROSION-RESISTANT Ni ALLOY

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06330226A (en) * 1993-05-19 1994-11-29 Nippon Steel Corp Multiple-layered steel excellent in high temperature corrosion resistance and its production
JP4755432B2 (en) 2005-03-15 2011-08-24 日本精線株式会社 Alloy wire for heat resistant spring and heat resistant coil spring for high temperature environment using the same
JP5082112B2 (en) * 2008-02-07 2012-11-28 日本冶金工業株式会社 Ni-base alloy material excellent in strength, workability and creep characteristics at room temperature, and its production method
JP6532182B2 (en) * 2013-08-06 2019-06-19 日立金属株式会社 Ni-based alloy, Ni-based alloy for gas turbine combustor, gas turbine combustor member, liner member, transition piece member, liner, transition piece

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237573A (en) * 1997-02-27 1998-09-08 Daido Steel Co Ltd Electrifying roll for plating
JP2002302726A (en) * 2001-04-05 2002-10-18 Daido Steel Co Ltd HIGH HARDNESS- AND HIGH CORROSION-RESISTANT Ni ALLOY

Also Published As

Publication number Publication date
WO2020032235A1 (en) 2020-02-13
JP7153502B2 (en) 2022-10-14

Similar Documents

Publication Publication Date Title
JP6690790B2 (en) Alloy material, method for manufacturing the alloy material, product using the alloy material, and fluid machine having the product
US20200016658A1 (en) Cobalt based alloy additive manufactured article, cobalt based alloy product, and method for manufacturing same
KR20180040513A (en) Ni-based superalloy powder for lamination molding
CA3061851C (en) Cobalt based alloy additive manufactured article, cobalt based alloy product, and method for manufacturing same
JP5596697B2 (en) Aluminum oxide forming nickel base alloy
JP6698280B2 (en) Alloy powder
EP3467128B1 (en) Extrusion die made of hot working steel and production method thereof
JP6850223B2 (en) Ni-based superalloy powder for laminated molding
CN111560564B (en) Resource-saving high-nitrogen duplex stainless steel and near-net forming method thereof
JP6011946B2 (en) Nickel-based intermetallic compound composite sintered material and method for producing the same
JP7153502B2 (en) Molded body made of nitride-dispersed Ni-based alloy
CN117660804A (en) Titanium alloy and method for producing same
EP3725901A1 (en) Cobalt-based alloy powder, cobalt-based alloy sintered body, and method for manufacturing cobalt-based alloy sintered body
JP2020063495A (en) Co-BASED ALLOY AND POWDER THEREOF
KR102477415B1 (en) Multi-nano-phase separation-based high-entropy refractory metal-oxide composite and manufacturing method thereof
KR102490974B1 (en) Co-based alloy structure and manufacturing method thereof
WO2016186037A1 (en) Hard sintered alloy and method for manufacturing same
JP7213022B2 (en) Co-based alloy and its powder
JP7406329B2 (en) Ni-Cr-Mo precipitation hardening alloy
JP6306393B2 (en) Machine parts
JP7339412B2 (en) Ni-based alloy powder for additive manufacturing and additive manufacturing
JP2019014920A (en) Co-BASED ALLOY POWDER FOR ELECTRON BEAM LAMINATION MOLDING
KR102319905B1 (en) Alloy for high temperature and manufacturing method thereof
JP2022180747A (en) Powder and compact made of multi-component alloy
JP6302530B2 (en) Hard powder for iron-base wear-resistant sintered alloy and iron-base wear-resistant sintered alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221003

R150 Certificate of patent or registration of utility model

Ref document number: 7153502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150