JP2020012158A - Method of smelling steel into high cleaned steel - Google Patents

Method of smelling steel into high cleaned steel Download PDF

Info

Publication number
JP2020012158A
JP2020012158A JP2018134998A JP2018134998A JP2020012158A JP 2020012158 A JP2020012158 A JP 2020012158A JP 2018134998 A JP2018134998 A JP 2018134998A JP 2018134998 A JP2018134998 A JP 2018134998A JP 2020012158 A JP2020012158 A JP 2020012158A
Authority
JP
Japan
Prior art keywords
molten steel
inclusions
vacuum
steel
tundish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018134998A
Other languages
Japanese (ja)
Other versions
JP7035873B2 (en
Inventor
健一郎 宮本
Kenichiro Miyamoto
健一郎 宮本
太一 中江
Taichi Nakae
太一 中江
英二 渡邉
Eiji Watanabe
英二 渡邉
直也 小原
Naoya Ohara
直也 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018134998A priority Critical patent/JP7035873B2/en
Publication of JP2020012158A publication Critical patent/JP2020012158A/en
Application granted granted Critical
Publication of JP7035873B2 publication Critical patent/JP7035873B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

To provide a method of smelling steel into high cleaned steel capable of producing cast high cleaned steel by smelling in which deoxidation product is removed to be reduced rather than prior art.SOLUTION: When a vacuum degassing treatment is conducted by immersing an immersion pipe 12 of a vacuum degassing device 10 into a molten steel in a ladle 13 in which melting oxygen concentration is 40 ppm or less by adding metal Al to the molten steel which has been subjected to primary refining and blowing an inert gas, the inert gas is blown at 1.3 to 4.0 NL/min./ton under low pressure vacuum atmosphere of 1.3 kPa or less for 15 to 45 min. in first half, and the inert gas is blown at 0.3 to 1.1 NL/min./ton under high pressure vacuum atmosphere of 40 to 67 kPa for 5 to 15 min. in second half, then the vacuum degassing treated molten steel is poured into a tundish 15 in which a dam 20 partitioning a molten metal receiving section 17 and a metal discharging section 19 is arranged inside at a state upwardly projecting from a bottom, and height of the dam 20 is set at 0.3 to 0.8 times of molten steel depth.SELECTED DRAWING: Figure 1

Description

本発明は、高清浄鋼の溶製方法に係り、更に詳細には、Al脱酸による高清浄鋼の溶製方法に関する。   The present invention relates to a method for melting high-purity steel, and more particularly, to a method for melting high-purity steel by Al deoxidation.

転炉等の精錬容器において、大気圧下で吹酸脱炭して製造した一次精錬終了後の溶鋼は、鋼中の溶存酸素濃度が高いため、脱酸処理及び合金添加等による成分調整が施された後に鋳造され、製品としての特性を得ている。
脱酸には、酸素と結合して酸化物を生成する元素の添加が一般に行われており、Al(アルミニウム)の他、Si(珪素)、C(炭素)、Ti(チタン)、Ca(カルシウム)、Zr(ジルコニウム)、REM(希土類金属)等を、脱酸材として用いることが知られている。
このうち、脱酸材として用いるAlは、安価で、かつ、強い脱酸効果があり、これを用いて製造した鋼材は、飲料缶や自動車用部品材料等の用途を含めて使用実績があるため、汎用性が高い。
In a refining vessel such as a converter, molten steel produced by blowing acid decarburization under atmospheric pressure after completion of primary refining has a high dissolved oxygen concentration in the steel. After being cast, it has obtained the characteristics as a product.
For deoxidation, addition of an element that combines with oxygen to form an oxide is generally performed. In addition to Al (aluminum), Si (silicon), C (carbon), Ti (titanium), and Ca (calcium) are used. ), Zr (zirconium), REM (rare earth metal) and the like are known to be used as deoxidizers.
Of these, Al used as a deoxidizing material is inexpensive and has a strong deoxidizing effect, and steel manufactured using this has a proven track record including uses such as beverage cans and automotive parts materials. High versatility.

しかし、Alによる脱酸反応後に生成するアルミナ(Al)は、凝固後の鋼材(連続鋳造して得た鋳片)中に介在物として残存し、その粒径が粗大であると製品品質を著しく損なう原因となる場合がある。例えば、飲料缶の素材として用いる際の製缶加工時の割れの原因となるため、品質の向上を図る上で、アルミナ介在物の悪影響を排除する必要がある。
更に、溶鋼中にアルミナが多量に存在すると、鋳造時において、浸漬ノズル内面へのアルミナの付着や凝集が促進され、鋳型(モールド)内での偏流発生や浸漬ノズル閉塞が生じることに起因して、湯面の変動量が大きくなり、モールドパウダーの混入(パウダー系介在物)による品質劣化の原因となる。
However, alumina (Al 2 O 3 ) generated after the deoxidation reaction with Al remains as inclusions in the solidified steel material (a slab obtained by continuous casting). It may cause the quality to be significantly impaired. For example, it may cause cracks during the can-making process when used as a material for beverage cans, and therefore it is necessary to eliminate the adverse effects of alumina inclusions in order to improve quality.
Furthermore, when a large amount of alumina is present in the molten steel, the adhesion and aggregation of alumina to the inner surface of the immersion nozzle are promoted during casting, resulting in the occurrence of drift in the mold and the clogging of the immersion nozzle. In addition, the fluctuation amount of the molten metal surface becomes large, which causes quality deterioration due to mixing of the mold powder (powder-based inclusions).

このため、溶鋼の高清浄化が求められている。
高清浄化については、従来、真空脱ガス装置を活用する方法が検討されている。この方法には、二本の浸漬管が設けられた真空脱ガス装置を用いるRH法と、一本足形状の浸漬管を備えた真空脱ガス装置を用いるREDA法とがあるが、本発明では一本足形状の浸漬管を備えた真空脱ガス装置を用いるREDA法を前提とする。
For this reason, high purification of molten steel is required.
For high purification, a method utilizing a vacuum degassing apparatus has been studied. This method includes an RH method using a vacuum degassing device provided with two dip tubes, and a REDA method using a vacuum degassing device having a single leg-shaped dip tube. It is premised on the REDA method using a vacuum degassing device equipped with a single-footed immersion tube.

例えば、特許文献1は、真空脱炭処理後に大気圧まで復圧させる過程で脱酸を行うことを記載している(例えば、請求項4)。更に、大気圧まで復圧させる過程で、真空度を500〜760Torrにして、0.5〜2分間保持する条件を記載している(段落[0042]、表6参照)。
特許文献2は、真空脱炭処理により溶鋼の炭素濃度を30ppm(0.003重量%)以下とした後に、浸漬管内の圧力を400Torr以上で大気圧以下の高圧真空とし、金属アルミニウムを溶鋼に添加し不活性ガスを溶鋼に吹き込みながら5分以上脱酸することを記載している。この方法は、炭素を十分に低下させた後(酸素と炭素を十分に反応させた後)に金属アルミニウムを供給することで脱酸生成物の生成を抑制し、また、浸漬管の形状や浸漬深さを所定の値とすることで、浸漬管内外のスラグ中のFeO濃度を下げる方法であり、これにより、溶鋼中のアルミニウムとFeOの反応による脱酸生成物の生成を抑制することを、効果としている。
特許文献3は、一本足形状の浸漬管ではなくRH真空脱ガス装置(環流型脱ガス装置)を用いた例であるが、介在物の浮上除去を記載している。具体的には、RH真空脱ガス装置での脱炭処理に続いて、真空槽内圧力を一定あるいは更に減圧して、Alを添加すること及び取鍋内の溶鋼に対する浸漬管の浸漬深さを浅くすることが記載されている。なお、一般に、処理中に浸漬管の浸漬深さを浅くする操作は行わないが、特許文献3では、この操作によって真空槽内の溶鋼深さを浅くすることができ、この状態で環流処理を行うことにより、非金属介在物の凝集浮上を促進させることが記載されている。具体的には、浸漬管の浸漬深さを浅くする操作により、環流処理時の真空槽内の溶鋼深さを50mm以上100mm未満の範囲とすることが、効率的な介在物除去条件として記載されている。
For example, Patent Literature 1 describes that deoxidation is performed in a process of returning to atmospheric pressure after vacuum decarburization treatment (for example, claim 4). Further, there is described a condition in which the degree of vacuum is set to 500 to 760 Torr and maintained for 0.5 to 2 minutes in the process of returning to atmospheric pressure (see paragraph [0042] and Table 6).
Patent Document 2 discloses that after the carbon concentration of molten steel is reduced to 30 ppm (0.003% by weight) or less by vacuum decarburization treatment, the pressure in the immersion tube is set to a high-pressure vacuum of 400 Torr or more and the atmospheric pressure or less, and metallic aluminum is added to the molten steel. It describes that deoxidation is performed for 5 minutes or more while blowing an inert gas into molten steel. This method suppresses the generation of deoxidation products by supplying metallic aluminum after sufficiently reducing carbon (after sufficiently reacting oxygen and carbon), and also reduces the shape and dipping of the dipping tube. It is a method of reducing the concentration of FeO in the slag inside and outside the immersion pipe by setting the depth to a predetermined value, thereby suppressing the generation of deoxidation products due to the reaction between aluminum and FeO in molten steel. The effect is.
Patent Literature 3 is an example in which an RH vacuum degassing device (reflux degassing device) is used instead of a single-footed immersion tube, but describes floating removal of inclusions. Specifically, following the decarburization treatment in the RH vacuum degassing apparatus, the pressure in the vacuum chamber is kept constant or further reduced to add Al and the immersion depth of the immersion pipe to the molten steel in the ladle. It is described that the depth is shallow. In addition, generally, the operation of reducing the immersion depth of the immersion tube is not performed during the treatment. However, in Patent Document 3, this operation can reduce the depth of the molten steel in the vacuum chamber, and the reflux treatment is performed in this state. It is described that by doing so, the cohesive floating of nonmetallic inclusions is promoted. Specifically, the operation of reducing the immersion depth of the immersion pipe to set the molten steel depth in the vacuum chamber at the time of the reflux treatment to be in a range of 50 mm or more and less than 100 mm is described as an effective inclusion removal condition. ing.

特開平8−199225号公報JP-A-8-199225 特開平8−109409号公報JP-A-8-109409 特開2016−40400号公報JP-A-2006-40400

しかしながら、上記した特許文献1に記載の方法によると、本発明例と比較例のいずれについても、溶鋼のトータル酸素濃度(全酸素濃度[T・O])が30ppm未満の清浄鋼の製造を達成しているものの、更なる清浄化が望まれている。特に、特許文献1は、溶鋼表面に存在するスラグが溶鋼へ懸濁することを課題とする技術であり(例えば、段落[0009]参照)、更なる清浄化には、溶鋼中に浮遊して浮上除去し難い脱酸生成物(介在物)に着目した対策も必要である。
また、特許文献2に記載の方法では、相応の溶鋼の清浄性は得られるものの、更なる溶鋼の清浄性向上には、生成した脱酸生成物を浮上除去する必要があり、この観点の対策が望まれる。
更に、特許文献3に記載の方法では、相応の清浄化効果が得られるが、更なる溶鋼の清浄性向上が望まれている。
However, according to the method described in Patent Document 1 described above, in each of the present invention example and the comparative example, production of clean steel having a total oxygen concentration (total oxygen concentration [TO]) of molten steel of less than 30 ppm was achieved. However, further purification is desired. In particular, Patent Literature 1 discloses a technique in which slag existing on the surface of molten steel is suspended in the molten steel (for example, see paragraph [0009]). For further cleaning, the slag is suspended in the molten steel. It is also necessary to take measures against deoxidation products (inclusions) that are difficult to float and remove.
Further, although the method described in Patent Document 2 can obtain a corresponding degree of cleanliness of molten steel, in order to further improve the cleanliness of molten steel, it is necessary to float and remove generated deoxidation products. Is desired.
Furthermore, although the method described in Patent Document 3 can provide a corresponding cleaning effect, it is desired to further improve the cleanliness of molten steel.

本発明はかかる事情に鑑みてなされたもので、従来の技術よりも脱酸生成物(アルミナ介在物)を除去して低減した高清浄鋼を溶製して鋳造することが可能な高清浄鋼の溶製方法を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and is a highly clean steel capable of melting and casting a highly clean steel in which deoxidation products (alumina inclusions) are reduced and reduced compared to the prior art. It is an object of the present invention to provide a smelting method.

本願発明者らは種々の実験により、一本足形状の浸漬管を取鍋内の溶鋼に浸漬し、取鍋の底部から不活性ガスを吹き込んで真空脱ガス処理を行う方式(REDA法)での環流処理において、以下の知見を見出した。
低圧真空処理(脱ガス処理)を行う前にAl脱酸を行い、この低圧真空処理後に、真空槽内の湯面と溶鋼を貯蔵する取鍋の底面との距離で決定される溶鋼の環流高さを低くし、この期間の不活性ガスの吹き込み量(以下、吹き込みガス流量とも記載)を適正な少量の範囲に制御する。これにより、介在物の凝集の促進効果と介在物の強度の向上効果が得られ、この溶鋼を所定の条件のタンディッシュを用いて連続鋳造することで、溶鋼中の介在物を破壊せずに浮上除去できる。
本発明は、以上の知見をもとになされたものであり、その要旨は以下の通りである。
According to various experiments, the inventors of the present application performed a vacuum degassing process (REDA method) in which a single-footed dip tube was immersed in molten steel in a ladle, and an inert gas was blown from the bottom of the ladle to perform vacuum degassing. The following findings were found in the reflux treatment of.
Al deoxidation is performed before performing low-pressure vacuum processing (degassing processing), and after this low-pressure vacuum processing, the reflux height of molten steel determined by the distance between the surface of the molten metal in the vacuum chamber and the bottom of the ladle for storing molten steel. The flow rate of the inert gas (hereinafter, also referred to as the flow rate of the blown gas) during this period is controlled to a proper small range. As a result, the effect of promoting the aggregation of inclusions and the effect of improving the strength of the inclusions are obtained.By continuously casting the molten steel using a tundish under predetermined conditions, the inclusions in the molten steel are not broken. Can be lifted and removed.
The present invention has been made based on the above findings, and the gist is as follows.

前記目的に沿う本発明に係る高清浄鋼の溶製方法は、大気圧下で吹酸脱炭する一次精錬を行った溶鋼に金属アルミニウムを添加して、溶鋼中の溶存酸素濃度を40ppm以下とした取鍋内の溶鋼に、真空脱ガス装置の一本足形状の浸漬管を浸漬し、前記取鍋の底から不活性ガスを吹き込んで真空脱ガス処理を行う際に、
前記真空脱ガス処理の前半に、前記浸漬管に連通する真空槽内を1.3kPa以下の低圧真空雰囲気、かつ、不活性ガスの吹き込み量を1.3〜4.0NL/分/トンとした上で、15〜45分間の脱ガス処理を行い、
前記真空脱ガス処理の後半に、前記真空槽内を40〜67kPaの高圧真空雰囲気、かつ、不活性ガスの吹き込み量を0.3〜1.1NL/分/トンとした上で、5〜15分間の脱ガス処理を行った後、
溶鋼を受け入れる受湯部と、該溶鋼を連続鋳造する鋳型に注入する排湯部とに仕切る堰が内部に、底部から上方に向けて突出させた状態で設けられ、該堰の高さを溶鋼深さの0.3倍以上0.8倍以下としたタンディッシュに、前記真空脱ガス処理した溶鋼を注湯する。
A method for melting high-purity steel according to the present invention according to the present invention, which comprises adding metallic aluminum to molten steel that has been subjected to primary refining by blowing acid decarburization under atmospheric pressure, to reduce the dissolved oxygen concentration in the molten steel to 40 ppm or less. In the molten steel in the ladle, when immersing a single-footed dip tube in a vacuum degassing device and performing vacuum degassing by blowing an inert gas from the bottom of the ladle,
In the first half of the vacuum degassing process, the inside of the vacuum chamber communicating with the immersion tube was set to a low-pressure vacuum atmosphere of 1.3 kPa or less, and the flow rate of the inert gas was set to 1.3 to 4.0 NL / min / ton. Above, perform the degassing process for 15 to 45 minutes,
In the latter half of the vacuum degassing process, the inside of the vacuum chamber is set to a high pressure vacuum atmosphere of 40 to 67 kPa, and the flow rate of the inert gas is set to 0.3 to 1.1 NL / min / ton. After performing the degassing process for
A weir partitioning a molten metal receiving part for receiving molten steel and a drainage part for injecting the molten steel into a mold for continuous casting is provided therein in a state protruding upward from the bottom, and the height of the weir is set to The molten steel subjected to the vacuum degassing treatment is poured into a tundish having a depth of 0.3 to 0.8 times the depth.

本発明の第1の特徴は、上記したように、真空脱ガス処理において、低圧真空雰囲気での脱ガス処理(脱炭処理)に続く処理として、高圧真空雰囲気で脱ガス処理を行うことにある。具体的には、真空槽を高圧真空雰囲気に変更し(圧力を上昇させ)、かつ、吹き込みガス流量を低減させることで、溶鋼の環流量を減らして、溶鋼を狭い範囲で環流させている。
一方、前記した特許文献1に記載の方法は、本発明の低圧真空雰囲気での処理に相当する脱ガス処理(真空脱ガス処理の前半処理)後に、500〜760Torr(66.7〜101kPa)の高圧雰囲気に復圧し、2.6NL/分/トンで不活性ガスを吹込んで0.5〜2分間処理することを記載している(段落[0042]、表6)。この条件は、本発明の高圧真空雰囲気での脱ガス処理と比較して、真空槽内の圧力が高めであり、ガスの吹き込み量が多い点で相違し、しかも、処理時間が短い点で相違する。
As described above, the first feature of the present invention resides in that in the vacuum degassing process, the degassing process is performed in a high-pressure vacuum atmosphere as a process following the degassing process (decarburization process) in a low-pressure vacuum atmosphere. . Specifically, the vacuum chamber is changed to a high-pressure vacuum atmosphere (pressure is increased), and the flow rate of the blown gas is reduced, so that the flow rate of the molten steel is reduced, and the molten steel is circulated in a narrow range.
On the other hand, the method described in Patent Document 1 described above has a degassing treatment (first half treatment of vacuum degassing treatment) corresponding to the treatment in a low-pressure vacuum atmosphere of the present invention, and is performed at 500 to 760 Torr (66.7 to 101 kPa). It describes that the pressure is restored to a high-pressure atmosphere, and an inert gas is blown at 2.6 NL / min / ton for 0.5 to 2 minutes (paragraph [0042], Table 6). These conditions are different in that the pressure in the vacuum chamber is higher, the amount of gas blown is larger, and the processing time is shorter, compared to the degassing treatment in a high-pressure vacuum atmosphere of the present invention. I do.

また、特許文献2は、上記したように、真空脱炭処理である低圧真空処理(真空脱ガス処理の前半処理)後に400Torr以上に復圧し、金属アルミニウム投入の後、ガス吹き込み処理を5〜20分間行うことを記載している。ガス吹き込み量は、250トン取鍋に収容した溶鋼にアルゴンガスを3Nm/分吹き込んだことが記載(段落[0031])されているため、12NL/分/トンとなる。このガス吹き込み量は、本発明の0.3〜1.1NL/分/トンと比較して多い点で相違する。
そして、特許文献3は、真空槽内の圧力を変更することなく(低圧真空雰囲気のまま)、取鍋内の溶鋼に対する浸漬管の浸漬深さを浅くする特殊な操作を記載しており、本発明のように高圧真空雰囲気とすることは記載されていない。
Further, as described above, Patent Document 2 discloses that the pressure is restored to 400 Torr or more after the low-pressure vacuum processing (the first half processing of the vacuum degassing processing) as the vacuum decarburizing processing, and after the metal aluminum is charged, the gas blowing processing is performed 5 to 20 times. Minutes. The gas blowing rate is 12 NL / min / ton because it is described that argon gas was blown at 3 Nm 3 / min into molten steel stored in a 250-ton ladle (paragraph [0031]). This gas blowing amount is different in that it is larger than 0.3 to 1.1 NL / min / ton of the present invention.
Patent Document 3 describes a special operation for reducing the immersion depth of an immersion pipe in molten steel in a ladle without changing the pressure in a vacuum chamber (while maintaining a low-pressure vacuum atmosphere). It is not described that a high-pressure vacuum atmosphere is used as in the invention.

本発明の第2の特徴は、上記した真空脱ガス処理を行った後の介在物(凝集合体させ強度を向上させた介在物)を、破壊させずに浮上除去する条件、即ち、内部に、底部から上方に向けて突出させた状態で設けられ、その高さを規定した堰が設けられたタンディッシュを用いることにある。   The second feature of the present invention is a condition for floatingly removing the inclusions (inclusions that have been improved in strength by agglomeration and coalescence) after performing the above-described vacuum degassing treatment without breaking, that is, The present invention uses a tundish provided with a weir that is provided so as to protrude upward from the bottom and has a specified height.

本発明に係る高清浄鋼の溶製方法は、真空脱ガス処理の前半に、真空槽内を1.3kPa以下の低圧真空雰囲気、かつ、不活性ガスの吹き込み量を1.3〜4.0NL/分/トンとした上で、15〜45分間の脱ガス処理を行い、真空脱ガス処理の後半に、真空槽内を40〜67kPaの高圧真空雰囲気(圧力を上昇)、かつ、不活性ガスの吹き込み量を0.3〜1.1NL/分/トン(吹き込みガス流量を低減)とした上で、5〜15分間の脱ガス処理を行うので、真空脱ガス処理の後半における、真空槽内の湯面と溶鋼を貯蔵する取鍋の底面との距離で決定される溶鋼の環流高さを低くし、この期間の不活性ガスの吹き込み量を適正な少量の範囲に制御できる。これにより、介在物の凝集の促進効果と介在物の強度の向上効果が得られる。
そして、この溶鋼を、受湯部と排湯部とに仕切り、底部から上方に向けて突出した所定高さの堰が設けられたタンディッシュに注湯して連続鋳造するので、上記した真空脱ガス処理により凝集促進と強度向上が図られた溶鋼中の介在物を、その破壊を抑制して浮上除去できる。
従って、従来の技術よりもアルミナ介在物を低減した高清浄鋼を製造でき、特に従来技術では困難であった、粒径(長径)が20μmクラスのアルミナ介在物の個数を低減し、全酸素量(T.[O]値)が概ね15ppm程度又はそれ以下の極めて高度な清浄性の鋼を安定して鋳造することが可能となる。
In the method for melting high-purity steel according to the present invention, a low-pressure vacuum atmosphere of 1.3 kPa or less and an inert gas blowing amount of 1.3 to 4.0 NL are used in the first half of the vacuum degassing process. / Min / ton, and then perform a degassing process for 15 to 45 minutes. In the latter half of the vacuum degassing process, a high-pressure vacuum atmosphere (pressure increase) of 40 to 67 kPa in the vacuum chamber and an inert gas The degassing process is performed for 5 to 15 minutes after setting the blowing amount of the gas to 0.3 to 1.1 NL / min / ton (reducing the flow rate of the blowing gas). The reflux height of the molten steel, which is determined by the distance between the molten metal surface and the bottom of the ladle for storing the molten steel, can be reduced, and the amount of inert gas blown during this period can be controlled to an appropriate small range. Thereby, the effect of promoting the aggregation of inclusions and the effect of improving the strength of the inclusions can be obtained.
Then, the molten steel is partitioned into a hot water receiving portion and a hot water discharging portion, and is poured into a tundish provided with a weir having a predetermined height protruding upward from the bottom portion, and is continuously cast. Inclusions in the molten steel, which have been promoted by coagulation and improved in strength by the gas treatment, can be floated and removed while suppressing their destruction.
Therefore, it is possible to produce high-purity steel with reduced alumina inclusions compared to the conventional technology. In particular, the number of alumina inclusions having a particle diameter (major axis) of 20 μm class, which was difficult with the conventional technology, is reduced, and the total oxygen content is reduced. (T. [O] value) It is possible to cast a highly clean steel having a stability of about 15 ppm or less stably.

本発明の一実施の形態に係る高清浄鋼の溶製方法の説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing of the smelting method of the high clean steel which concerns on one Embodiment of this invention. 同高清浄鋼の溶製方法を適用するタンディッシュの説明図である。It is explanatory drawing of the tundish which applies the smelting method of the said high clean steel. 同タンディッシュの堰の正面図である。It is a front view of the weir of the same tundish. 比較例に係る高清浄鋼の溶製方法を適用するタンディッシュの説明図である。It is explanatory drawing of the tundish which applies the smelting method of the high clean steel which concerns on a comparative example.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
まず、本発明の高清浄鋼の溶製方法に想到した経緯について説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.
First, a description will be given of the circumstances that led to the method for smelting high-purity steel of the present invention.

(本発明者らの新しい知見)
前記した特許文献1〜3等の従来技術では、ある程度の清浄化効果は認められるものの、いずれも単一の真空脱ガス工程(真空脱ガス装置)のみの処理であるため、例えば、鋼材製品中に残存する粒径20μmクラスの介在物の個数を低減したうえで、極めて厳しい清浄度(例えば、全酸素量(T.[O]値)≦15ppm)が求められる鋼材の製造への対応は困難であった(更なる清浄化に関する記載はなかった)。
(New findings of the present inventors)
In the prior arts such as Patent Documents 1 to 3 described above, although a certain degree of cleaning effect is recognized, since all of the processes are only a single vacuum degassing process (vacuum degassing device), for example, in a steel product, It is difficult to respond to the production of steel materials that require extremely strict cleanliness (for example, total oxygen content (T. [O] value) ≦ 15 ppm) after reducing the number of inclusions having a particle diameter of 20 μm class remaining in the steel. (No further cleaning was described).

特許文献1は、本発明の低圧真空雰囲気での処理相当の脱ガス処理(真空脱ガス処理の前半)後に、高圧雰囲気に復圧することによって浸漬管外へ介在物の浮上除去が可能となることを段落[0028]に記載し、段落[0042]等に具体的な条件を記載している。
上記条件について、本発明者らの知見では、スラグ粒子よりは小さいが例えば70μm以上の粒径が大きな介在物については効果が見込めるものの、粒径が小さな介在物(例えば、50μm以下)に対しては顕著な効果が望めないことを知見した。
更に、本発明者らは、ガス吹き込みによる溶鋼環流(溶鋼流)における介在物の挙動は、介在物の凝集合体と溶鋼流の剪断力による介在物の破壊のバランスによって決定されるものと考え、高圧真空に復圧させた後のガスの吹き込み処理によって、条件次第では崩壊を抑制しながら粒径が小さな介在物(例えば、50μm以下)の凝集合体が可能であることを知見した。
具体的には、特許文献1に記載の条件よりも、ガス吹き込み量を削減し、かつ、長時間処理を行うことで、介在物の崩壊を抑制して介在物を凝集合体させることが可能となり、更に、介在物の高強度化が可能となる。これによって、取鍋で浮上除去できる程度とは言えないものの介在物の凝集合体効果が得られ、連続鋳造までの間に崩壊しない程度の介在物強度が得られるため、連続鋳造のタンディッシュでの介在物浮上除去につなげることができる。
Patent Document 1 discloses that after the degassing process corresponding to the process in a low-pressure vacuum atmosphere of the present invention (the first half of the vacuum degassing process), the pressure is restored to a high-pressure atmosphere so that the inclusions can be floated and removed outside the immersion tube. Is described in paragraph [0028], and specific conditions are described in paragraph [0042] and the like.
With respect to the above conditions, the present inventors have found that although an effect can be expected for inclusions smaller than slag particles but having a large particle diameter of, for example, 70 μm or more, for inclusions having a small particle diameter (for example, 50 μm or less). Found that a remarkable effect could not be expected.
Furthermore, the present inventors consider that the behavior of inclusions in molten steel reflux (molten steel flow) due to gas injection is determined by the balance between the agglomeration and coalescence of inclusions and the fracture of inclusions due to the shearing force of the molten steel flow, It has been found that the gas blowing treatment after the pressure is restored to a high-pressure vacuum enables aggregation and coalescence of inclusions having a small particle size (for example, 50 μm or less) while suppressing collapse depending on conditions.
Specifically, it is possible to reduce the amount of gas blown and perform the treatment for a longer time than the conditions described in Patent Document 1, thereby suppressing the collapse of inclusions and causing the inclusions to aggregate and coalesce. Further, it is possible to increase the strength of the inclusion. As a result, the effect of agglomeration and coalescence of inclusions is obtained although it is not to the extent that it can be lifted and removed with a ladle, and the strength of inclusions that does not collapse before continuous casting is obtained. This can lead to the removal of inclusions.

特許文献2は、本発明の低圧真空雰囲気での処理相当の脱ガス処理(真空脱ガス処理の前半)後に、高圧雰囲気に復圧し、アルミニウムを添加した上でガス吹き込みをすることによって浸漬管外のスラグのFeOを還元することを記載しているが、脱酸生成物の凝集合体や浮上除去については記載していない。また、特許文献2は、上記した作用を得るための条件として、高圧真空に復圧させた後に、アルゴンガスを12NL/分/トン吹き込む条件を記載している。
本発明者らは、当該条件ではガス吹き込みによって介在物の凝集合体は起こるものの、介在物の崩壊も顕著であることを知見した。即ち、特許文献2に記載の条件よりもガス吹き込み量を削減することで、崩壊を抑制して介在物の凝集合体が可能であり、更に、介在物の高強度化が可能である。これによって、取鍋で浮上除去できる程度とは言えないものの介在物の凝集合体効果が得られ、連続鋳造までの間に崩壊しない程度の介在物強度が得られるため、連続鋳造のタンディッシュでの介在物浮上除去につなげることができる。
Patent Document 2 discloses that after degassing (first half of vacuum degassing) corresponding to the processing in a low-pressure vacuum atmosphere of the present invention, the pressure is restored to a high-pressure atmosphere, aluminum is added, and gas is blown into the immersion pipe. Describes reducing FeO of the slag, but does not describe agglomeration and coalescence of deoxidized products or floating removal. Further, Patent Document 2 describes, as a condition for obtaining the above-described operation, a condition in which argon gas is blown at 12 NL / min / ton after returning to high-pressure vacuum.
The present inventors have found that, under the above conditions, the inclusion and aggregation of inclusions are caused by gas blowing, but the collapse of the inclusions is also remarkable. That is, by reducing the amount of gas blown more than the conditions described in Patent Document 2, it is possible to suppress collapse and aggregate and coalesce inclusions, and to further increase the strength of inclusions. By this, although it is not possible to say that it can be lifted and removed with a ladle, the effect of agglomeration and coalescence of inclusions is obtained, and the strength of inclusions that does not collapse before continuous casting is obtained, so that it can be used in a tundish of continuous casting. This can lead to the removal of inclusions.

特許文献3はRH法において、脱炭処理に続くAl添加後に、取鍋内の溶鋼に対する浸漬管の浸漬深さを浅くする特殊な操作によって、真空槽内の溶鋼深さを50mm以上100mm未満の範囲とすることを記載している。
この方法では、真空槽内の溶鋼量が少なくなり、真空槽内の溶鋼の単位体積当たりの撹拌力が大きくなるため、及び、溶鋼の浮上に要する時間が短くなるため、溶鋼中の介在物の凝集や浮上が促進されるとしている。
しかしながら、真空槽内の少量容積の溶鋼に対する撹拌が激しすぎると、凝集合体した粒子の一部は合体直後に剪断による崩壊を起こすこととなり、崩壊により再度細粒化した粒子が取鍋内へと排出されることとなる。
Patent Document 3 discloses that in the RH method, after Al addition following decarburization treatment, the depth of molten steel in the vacuum chamber is reduced to 50 mm or more and less than 100 mm by a special operation of reducing the immersion depth of the immersion pipe with respect to the molten steel in the ladle. It is described that it is a range.
In this method, the amount of molten steel in the vacuum chamber is reduced, the stirring force per unit volume of the molten steel in the vacuum chamber is increased, and the time required for floating the molten steel is reduced, so that inclusions in the molten steel are reduced. Coagulation and levitation are promoted.
However, if the stirring of the small volume of molten steel in the vacuum chamber is too vigorous, some of the aggregated and coalesced particles will collapse by shearing immediately after coalescence, and the particles that have been refined again by the collapse will enter the ladle. Will be discharged.

更に、当該技術においては、脱炭後に浸漬管の浸漬深さを浅くする特殊な操作により真空槽内の溶鋼深さを調整するため、溶鋼を貯蔵する取鍋の底面から真空槽内の溶鋼の湯面(溶鋼ヘッド)までの距離は脱炭処理時から不変であり、また、真空槽内の圧力は一定(低圧真空のまま)であるため溶鋼の吸い上げ力も一定であり、取鍋内の撹拌(環流速度)も概ね同一となる。
このため、真空槽内と取鍋内を循環する溶鋼について、循環時における高低差は一定であり、循環する単位時間当たりの溶鋼量も一定であるため、本発明者らは、介在物の凝集合体以外に、循環する環流の剪断力による介在物の崩壊が発生して、高清浄化が進みにくいものと考えた。
Furthermore, in the art, in order to adjust the depth of molten steel in the vacuum chamber by a special operation of reducing the immersion depth of the immersion pipe after decarburization, the molten steel in the vacuum chamber is removed from the bottom of the ladle that stores the molten steel. The distance to the molten metal surface (the molten steel head) has not changed since the decarburization process, and the pressure in the vacuum chamber is constant (with low-pressure vacuum), so the suction force of the molten steel is constant, and the stirring in the ladle is constant. (Reflux velocity) is also substantially the same.
Therefore, for molten steel circulating in the vacuum chamber and the ladle, the height difference during circulation is constant, and the amount of molten steel per unit time circulating is also constant. Other than the coalescence, it was considered that the inclusions collapsed due to the shearing force of the circulating reflux, and it was difficult for high purification to proceed.

そこで、本発明では、真空脱ガス処理を行う際に、低圧真空雰囲気での脱炭処理時の介在物の凝集合体や浮上除去の後に、高圧真空雰囲気での処理を設けて溶鋼の撹拌を弱める(高圧真空化及びガス吹き込み量の削減)条件を規定した。
即ち、上記した高圧真空雰囲気での処理により、真空槽内の溶鋼の湯面を低下させ、取鍋の底面から真空槽内の溶鋼の湯面までの距離を短縮させて、環流時における溶鋼の循環高さ方向の距離を短くし位置エネルギーを低減することで撹拌エネルギーを弱め、かつ、撹拌を弱めること(高圧真空化及びガス吹き込み量の削減)でも撹拌エネルギーを弱め、これにより、凝集した介在物の崩壊を防止し、介在物の凝集合体を緩やかに促進する。また、一定の時間(5〜15分)処理することで、凝集合体した介在物の強度向上を図る。
Therefore, in the present invention, when performing the vacuum degassing process, after the agglomeration and coalescence of inclusions during the decarburization process in the low-pressure vacuum atmosphere and the floating removal, a process in the high-pressure vacuum atmosphere is provided to weaken the stirring of the molten steel. (High pressure vacuum and reduction of gas blowing amount) Conditions were specified.
That is, by the above treatment in a high-pressure vacuum atmosphere, the molten steel level in the vacuum chamber is lowered, the distance from the bottom of the ladle to the molten steel level in the vacuum chamber is shortened, and the molten steel level at reflux is reduced. The stirring energy is weakened by shortening the distance in the circulation height direction and reducing the potential energy, and the stirring energy is also weakened by weakening the stirring (high-pressure vacuum and reducing the amount of gas injection), thereby forming a coagulated interposition. Prevents disintegration of substances and moderately promotes agglomerated coalescence of inclusions. In addition, by performing the treatment for a certain time (5 to 15 minutes), the strength of the aggregated and integrated inclusion is improved.

(真空脱ガス処理による介在物除去に関する従来知見)
真空脱ガス処理の方法としては、RH真空脱ガス装置を用いたRH法が一般的であるが、これとは別に、図1に示す真空脱ガス装置(以下、単に脱ガス装置とも記載)10を用いたREDA法が考案され実用化されている。この真空脱ガス装置10は従来公知のものであり、真空槽11と、この真空槽11の下部に連通する一本足形状の浸漬管(大径浸漬管)12とを有し、取鍋13の底部に設けられたガス吹き込み孔14から不活性ガスを吹き込む(底吹きする)ことで、脱ガス処理を行うものである。
本発明者らは、RH法とREDA法のいずれについても、真空脱ガス処理における清浄化(介在物除去)は、真空槽内に吸い上げられた介在物の凝集合体と、凝集物の槽外排出(取鍋内浮上)のバランスにより決まるものと考えた。
(Conventional knowledge on removal of inclusions by vacuum degassing)
As a method of vacuum degassing, an RH method using an RH vacuum degassing device is generally used, but separately from this, a vacuum degassing device (hereinafter simply referred to as a degassing device) 10 shown in FIG. Has been devised and put to practical use. The vacuum degassing apparatus 10 is a conventionally known one, and includes a vacuum chamber 11 and a single-footed immersion pipe (large-diameter immersion pipe) 12 communicating with a lower portion of the vacuum chamber 11. The degassing process is performed by blowing (bottom blowing) an inert gas through a gas blowing hole 14 provided at the bottom of the above.
The present inventors have proposed that in both the RH method and the REDA method, the cleaning (inclusion removal) in the vacuum degassing process includes the aggregation and coalescence of inclusions sucked into the vacuum tank and the discharge of aggregates out of the tank. (Floating in the ladle) was considered to be determined by the balance.

この介在物の凝集合体に関しては、「介在物粒子が耐火物壁へ衝突することにより、壁面での介在物の凝集が促進される」ことや、「溶鋼流動における乱流成分中での介在物粒子同士の衝突による凝集合体促進」などの現象が唱えられている。
一般的に、真空脱ガス処理においては、溶鋼環流量が増加することにより、ある程度のレベルまでの介在物の凝集合体及び浮上除去が促進されることが知られており、その効果は低圧真空処理で顕著である。
本発明は、上記した処理に加え、脱ガス処理の後半で高圧真空処理及びガス吹込み量の削減を行うことにより、緩やかな凝集合体を促進しつつ、介在物の崩壊防止や強度向上を実現することを特徴としている。このとき、一部の介在物の浮上除去は進行するが、当該精錬処理に続く連続鋳造工程において、タンディッシュにより、最終的に介在物を浮上除去させる特徴も有している。
Regarding the agglomeration and coalescence of the inclusions, "inclusion of inclusions on the wall is promoted by the collision of the inclusion particles against the refractory wall" and "inclusion in the turbulent component in the flow of molten steel." Phenomena such as "promotion of agglomeration and coalescence by collision of particles" are proposed.
In general, in vacuum degassing, it is known that increasing the flow rate of molten steel ring promotes agglomeration and flotation of inclusions to a certain level and removal by floating. Is remarkable.
The present invention, in addition to the above-described treatment, realizes prevention of inclusion collapse and improvement in strength while promoting gentle cohesion and coalescence by performing high-pressure vacuum treatment and reducing the amount of gas injection in the latter half of the degassing treatment. It is characterized by doing. At this time, the floating removal of some inclusions proceeds, but there is also a feature that the inclusions are finally lifted and removed by a tundish in a continuous casting process following the refining process.

(タンディッシュに関する知見)
連続鋳造においては、連続鋳造速度に対応する量で溶鋼がタンディッシュに注湯されるため(例えば、8トン/分以下程度の量)、タンディッシュ内での溶鋼の流動速度が、取鍋のガス撹拌における溶鋼の撹拌流速よりも小さく、介在物の凝集合体の効果が望みにくい。
しかし、タンディッシュの内部に堰(下堰)を立設し、タンディッシュ内の溶鋼に上昇流を発生させると、タンディッシュ内の湯面に存在するスラグの撹拌効果を抑制した状態で、30〜50μm程度の粒子径を有する溶鋼中の介在物を浮上させ、これをスラグに捕捉させる効果が期待できる。
なお、タンディッシュ内の溶鋼流による剪断力で、30〜50μm程度の粒子径を有する介在物は崩壊し浮上除去が困難となる可能性があるが、上記した高圧真空処理によって30〜50μm程度の介在物は強度が向上されているため、タンディッシュ内での浮上除去が促進される。
(Knowledge on tundish)
In continuous casting, since molten steel is poured into a tundish in an amount corresponding to the continuous casting speed (for example, an amount of about 8 tons / minute or less), the flow speed of the molten steel in the tundish is controlled by the ladle. It is smaller than the stirring flow rate of the molten steel in gas stirring, and it is difficult to expect the effect of inclusion and coalescence of inclusions.
However, when a weir (lower weir) is erected inside the tundish to generate ascending flow in the molten steel in the tundish, the agitating effect of the slag existing on the surface of the molten metal in the tundish is suppressed. The effect of floating inclusions in molten steel having a particle diameter of about 50 μm and trapping them in slag can be expected.
The inclusions having a particle size of about 30 to 50 μm may be disintegrated and become difficult to float and remove due to the shearing force due to the flow of the molten steel in the tundish. Since the inclusions have improved strength, floating removal in the tundish is promoted.

本発明の真空脱ガス処理で得られる30〜50μm程度の粒子径を有する介在物(凝集合体した介在物)は、その強度が向上しているものの、溶鋼の剪断力で破壊する可能性は残るため、内部に下堰を立設したタンディッシュを用いることで、破壊を抑制した介在物の浮上を促進できる。これは、下堰の代わりに、例えばタンディッシュ溶鋼の上部分を仕切る上堰を用いると、溶鋼流が一旦強制的に下降流となった後に、上堰の下流側に回り込む上昇流が強制的に発生して介在物に剪断力が作用する原因となるが、下堰を用いる場合は、このような堰の下流側に回り込む溶鋼流が弱くなる(更には発生しない)ため、剪断力が弱くなる(更には発生しない)ことによるものと考えられる。
従って、タンディッシュの内部に下堰を立設する必要がある。
Inclusions (agglomerated inclusions) having a particle size of about 30 to 50 μm obtained by the vacuum degassing process of the present invention have improved strength, but may still be broken by the shear force of molten steel. Therefore, by using a tundish in which a lower weir is erected inside, the floating of inclusions whose destruction is suppressed can be promoted. This is because, for example, when an upper weir that separates the upper part of a tundish molten steel is used instead of the lower weir, the molten steel flow once becomes a downward flow, and then the upward flow that goes around the downstream side of the upper weir is forced. When the lower weir is used, the flow of molten steel flowing to the downstream side of such a weir becomes weaker (and does not occur), so that the shear force is weaker. This is considered to be caused by (or not to occur).
Therefore, it is necessary to erect a lower weir inside the tundish.

以上の知見に基づき、本発明者らは、従来の技術よりも脱酸生成物(アルミナ介在物)を除去して低減した高清浄鋼を溶製して鋳造することが可能な高清浄鋼の溶製方法に想到した。
即ち、図1、図2に示すように、本発明の一実施の形態に係る高清浄鋼の溶製方法は、大気圧下で吹酸脱炭する一次精錬を行った溶鋼に金属アルミニウムを添加して、溶鋼中の溶存酸素濃度を40ppm以下とした取鍋13内の溶鋼に、一本足形状の浸漬管12を備えた真空脱ガス装置10を用いて真空脱ガス処理を行う際に、真空脱ガス処理の前半に低圧真空雰囲気かつ所定のガス吹き込み量で脱ガス処理を行い、引き続き、真空脱ガス処理の後半に高圧真空雰囲気でガス吹き込み量を削減して脱ガス処理を行った後、タンディッシュ15に注湯して連続鋳造する方法である。
以下、詳しく説明する。
Based on the above findings, the present inventors have developed a high-purity steel capable of melting and casting a high-purity steel that has been reduced by removing deoxidation products (alumina inclusions) as compared with the prior art. I came up with a smelting method.
That is, as shown in FIG. 1 and FIG. 2, the method for smelting high-purity steel according to one embodiment of the present invention involves adding metallic aluminum to molten steel that has been subjected to primary refining by blowing acid decarburization under atmospheric pressure. Then, when performing a vacuum degassing process on the molten steel in the ladle 13 with the dissolved oxygen concentration in the molten steel being 40 ppm or less using the vacuum degassing apparatus 10 having the single-footed immersion pipe 12, After performing degassing in the first half of the vacuum degassing process in a low-pressure vacuum atmosphere and a predetermined gas blowing amount, and subsequently performing degassing in the second half of the vacuum degassing process by reducing the gas blowing amount in a high-pressure vacuum atmosphere Is a method of pouring into a tundish 15 for continuous casting.
The details will be described below.

まず、大気圧下で吹酸脱炭する一次精錬(代表例:転炉での吹錬)を行った溶鋼を、取鍋13へ供給する。
通常、吹酸脱炭が行われた溶鋼中の溶存酸素濃度は100〜800ppm程度であるため、脱酸する必要がある。
本発明では、金属アルミニウムを添加する(金属アルミニウムを含むものを添加することも含む)ことで、溶鋼中の溶存酸素濃度を40ppm以下とすることを前提としている。
上記した処理により、溶鋼中にはアルミニウム酸化物(アルミナ:以下、介在物とも記載)が存在することとなる。
First, molten steel that has been subjected to primary refining for blowing acid decarburization under atmospheric pressure (representative example: blowing in a converter) is supplied to the ladle 13.
Usually, the dissolved oxygen concentration in the molten steel subjected to the blowing acid decarburization is about 100 to 800 ppm, so it is necessary to deoxidize.
The present invention is based on the premise that the concentration of dissolved oxygen in molten steel is reduced to 40 ppm or less by adding metallic aluminum (including adding metallic aluminum).
By the above-described processing, aluminum oxide (alumina: hereinafter also referred to as inclusions) is present in the molten steel.

上記した金属アルミニウムの添加により生成した介在物の浮上除去、凝集合体、破壊防止の各処理、即ち、高清浄化処理を行う精錬工程として、脱ガス処理を用いる。
この高清浄化の手段としては、前記した真空脱ガス装置10を用いる。
具体的には、図1に示すように、溶鋼中の溶存酸素濃度を40ppm以下とした取鍋13内の溶鋼に、真空脱ガス装置10の一本足形状の浸漬管12を浸漬し、取鍋13の底部に設けられたガス吹き込み孔14から不活性ガスを吹き込むことで真空脱ガス処理を行う。なお、ここでは、取鍋13の内径(取鍋13内の溶鋼湯面の直径)Dと浸漬管12の内径(浸漬部分の浸漬管12内の溶鋼湯面の直径)dとの比d/Dを0.3〜0.9とし、取鍋13に設けられたガス吹き込み孔14と浸漬管12の水平方向の中心間距離を0.1d〜0.5dとしている。
これにより、脱炭反応速度を極低炭素域まで高位に維持し、炭素濃度10ppm以下まで、工業的に採用できる脱ガス時間で処理できる。
この真空脱ガス処理は、以下のように、前半と後半に分けて行う。
A degassing process is used as a refining process for performing each of the processes of floating removal, aggregation and coalescence, and prevention of destruction of the inclusions generated by the addition of the metal aluminum, that is, a refining process of performing a high purification process.
As means for this high purification, the above-mentioned vacuum degassing device 10 is used.
Specifically, as shown in FIG. 1, the one-leg-shaped immersion pipe 12 of the vacuum degassing device 10 is immersed in molten steel in a ladle 13 in which the concentration of dissolved oxygen in the molten steel is 40 ppm or less. Vacuum degassing is performed by blowing an inert gas through a gas blowing hole 14 provided at the bottom of the pan 13. Here, the ratio d / of the inner diameter D of the ladle 13 (diameter of the molten steel surface in the ladle 13) and the inner diameter of the immersion tube 12 (the diameter of the molten steel surface in the immersion tube 12 of the immersion portion) d / D is 0.3 to 0.9, and the distance between the horizontal center of the gas blowing hole 14 provided in the ladle 13 and the immersion tube 12 is 0.1 d to 0.5 d.
As a result, the decarburization reaction rate can be maintained at a high level up to the extremely low carbon region, and the carbon concentration can be reduced to 10 ppm or less with a degassing time that can be industrially adopted.
This vacuum degassing process is performed in the first half and the second half as follows.

まず、真空脱ガス処理の前半(以下、前半処理又は低圧真空処理とも記載)に、浸漬管12に連通する真空槽11内を1.3kPa(9.75Torr)以下の低圧真空雰囲気、かつ、不活性ガスの吹き込み量(以下、底吹きガス流量とも記載)を1.3〜4.0NL/分/トンとした上で、15〜45分間の脱ガス処理を行う。
この脱ガス処理の第一目的は、溶鋼の炭素濃度の調整(脱炭)であるため、上記した条件を採用する必要がある。
First, in the first half of the vacuum degassing process (hereinafter, also referred to as the first half process or the low-pressure vacuum process), the inside of the vacuum chamber 11 communicating with the immersion tube 12 is set to a low-pressure vacuum atmosphere of 1.3 kPa (9.75 Torr) or less, and The degassing process is performed for 15 to 45 minutes after setting the blowing amount of the active gas (hereinafter, also referred to as a bottom blowing gas flow rate) to 1.3 to 4.0 NL / min / ton.
Since the first purpose of this degassing treatment is to adjust the carbon concentration of the molten steel (decarburization), it is necessary to adopt the above conditions.

ここで、真空槽11内の圧力が1.3kPaを超える場合、脱炭反応が遅くなって処理時間が遅延するため、溶鋼の温度低下を招く。
底吹きガス流量が1.3NL/分/トン未満である場合、真空度悪化時と同様に脱炭反応が遅くなり、処理時間遅延による溶鋼温度の低下を招く。一方、底吹きガス流量が4.0NL/分/トンを超える場合、スプラッシュの多量発生による槽内の地金付着に起因した溶鋼歩留まりの低下や、処理時間の遅延等による脱炭処理の不都合が生じる場合がある。
なお、上記した真空槽11内の圧力、かつ、底吹きガス流量の範囲であれば、15〜45分程度の時間で、脱ガス処理を完了させることができる。
Here, when the pressure in the vacuum chamber 11 exceeds 1.3 kPa, the decarburization reaction is delayed and the treatment time is delayed, so that the temperature of the molten steel decreases.
If the flow rate of the bottom blown gas is less than 1.3 NL / min / ton, the decarburization reaction becomes slow as in the case of the deterioration of the degree of vacuum, resulting in a decrease in the temperature of the molten steel due to a delay in the processing time. On the other hand, when the flow rate of the bottom blown gas exceeds 4.0 NL / min / ton, there are disadvantages of the decarburization treatment such as a decrease in the yield of molten steel due to the adhesion of metal in the tank due to the generation of a large amount of splash and a delay in the treatment time. May occur.
If the pressure in the vacuum chamber 11 and the flow rate of the bottom blown gas are within the above ranges, the degassing process can be completed in about 15 to 45 minutes.

上記した処理条件により、介在物の挙動が以下に示すようになることを、本発明者らは知見した。なお、介在物の挙動はその大きさに応じて特徴があるため、代表的な粒径を、70μm以上、30〜50μm、20μm以下、の3種類として記述した。   The present inventors have found that the behavior of the inclusions is as follows according to the above-described processing conditions. In addition, since the behavior of the inclusion has a characteristic according to the size, the representative particle size is described as three types of 70 μm or more, 30 to 50 μm, and 20 μm or less.

(70μm以上)
凝集合体により70μm以上となった介在物は、溶鋼中の流動において慣性力が高いものと推定され、真空槽11と取鍋13を循環する溶鋼流(環流)から外れ、取鍋内を浮上する傾向が強い。
従って、環流に残存することにより、剪断力を受けて破壊することが少ないものと推定される。
(70 μm or more)
Inclusions having a size of 70 μm or more due to agglomeration and coalescence are presumed to have a high inertial force in the flow in the molten steel, so that the inclusions deviate from the molten steel flow (reflux) circulating in the vacuum tank 11 and the ladle 13 and float in the ladle. Strong tendency.
Therefore, it is presumed that it is less likely to be broken by receiving a shearing force by remaining in the reflux.

(30〜50μm)
凝集合体により30〜50μmとなった介在物は、粒径の増加(凝集合体)は果たせたものの、顕著な浮上除去は起こりにくく、環流中に残存する傾向が強いものと推定される。
このため、介在物は、剪断力を受けて破壊される傾向があるものと考えられた。
剪断力は、溶鋼流の存在に伴って不可避的に発生するものであり、その発生条件としては、脱ガス処理を長時間行う場合、溶鋼の搬送中に取鍋底からガスが吹き込まれる場合、取鍋からタンディッシュへ溶鋼を落下流で供給する場合、等があげられる。
(30-50 μm)
It is presumed that the inclusions having a particle size of 30 to 50 μm due to the cohesion and coalescence were able to increase the particle size (agglomeration and coalescence), but were not likely to remarkably float off and remain in the reflux.
For this reason, it was considered that the inclusions tended to be broken by the shearing force.
The shear force is inevitably generated with the presence of the molten steel flow. Conditions for the generation include a case where degassing is performed for a long time, a case where gas is blown from the bottom of the ladle during the transfer of the molten steel, and a case where the shear force is generated. For example, when molten steel is supplied from a pot to a tundish in a falling flow.

(20μm以下)
20μm以下の介在物は、凝集合体を経ても30〜50μmと同様に顕著な浮上除去は起こりにくく、環流中に残存する傾向が強いものと考えられる。また、30〜50μmの介在物と同様に、剪断力を受けて破壊される傾向があるものと考えられる。
(20 μm or less)
It is considered that inclusions having a size of 20 μm or less are hardly remarkably floated and removed as in the case of 30 to 50 μm even after agglomeration and coalescence, and have a strong tendency to remain in the reflux. In addition, it is considered that, similarly to the inclusion having a size of 30 to 50 μm, it tends to be broken by receiving a shearing force.

上記した前半処理に引き続き真空脱ガス処理の後半(以下、後半処理又は高圧真空処理とも記載)に、真空槽11内を40kPa(300Torr)以上67kPa(500Torr)以下の高圧真空雰囲気、かつ、不活性ガスの吹き込み量(以下、底吹きガス流量とも記載)を0.3〜1.1NL/分/トンとした上で、5〜15分間の脱ガス処理を行う。これにより、介在物の凝集合体や強度向上(剪断力によって破壊しない程度の強度向上)の作用効果を狙う。
このような脱ガス処理を行うことで、溶鋼の高清浄化の効果が得られることについて、本発明者らは以下の機構が働いたものと考えた。
In the second half of the vacuum degassing process (hereinafter also referred to as the second half process or the high-pressure vacuum process) subsequent to the first half process described above, the inside of the vacuum chamber 11 is a high-pressure vacuum atmosphere of 40 kPa (300 Torr) to 67 kPa (500 Torr) and an inert gas. The degassing process is performed for 5 to 15 minutes after setting the gas blowing amount (hereinafter also referred to as the bottom blowing gas flow rate) to 0.3 to 1.1 NL / min / ton. This aims at the effect of coagulation and cohesion of inclusions and an improvement in strength (strength that is not broken by shearing force).
The present inventors considered that the following mechanism worked on the fact that the effect of high purification of molten steel was obtained by performing such a degassing treatment.

脱炭を主目的とする前半処理に比較して後半処理は、高圧真空(40kPa〜67kPa)としており、取鍋13の底面から真空槽11内の溶鋼湯面(溶鋼ヘッド)までの距離(湯面高さ、環流高さ)を短縮できる。これによって、真空槽11内と取鍋13内を循環し環流する溶鋼について、環流の循環高さ方向の距離を低減して位置エネルギーを低減することで、撹拌エネルギーを弱めることができる。
また、高圧真空とすることで、溶鋼の吸い上げ量が低減し、更に、底吹きガス流量の低下と組み合わせることで、環流速度を低減でき、撹拌エネルギーを弱めることもできる。
ここで、真空槽内の圧力が40kPa未満の低圧真空である場合、たとえ底吹きガス流量が適正範囲内であっても撹拌エネルギーが大きく、凝集合体した介在物の顕著な破壊抑制効果が得られない。一方、真空槽内の圧力が67kPa超の場合、真空槽内の環流が停滞し粒子の衝突頻度が極端に低下するため微細粒子の凝集合体が進まず、その後のタンディッシュでの浮上除去が困難となる。
Compared to the first half treatment mainly for decarburization, the latter half treatment uses a high-pressure vacuum (40 kPa to 67 kPa), and the distance from the bottom surface of the ladle 13 to the molten steel surface (the molten steel head) in the vacuum chamber 11. Surface height, recirculation height) can be reduced. Thus, for molten steel circulating and circulating in the vacuum chamber 11 and the ladle 13, the stirring energy can be reduced by reducing the distance energy in the circulation height direction and reducing the potential energy.
Further, by setting the high-pressure vacuum, the suction amount of the molten steel is reduced, and further, in combination with the reduction in the flow rate of the bottom blown gas, the recirculation speed can be reduced, and the stirring energy can be reduced.
Here, when the pressure in the vacuum chamber is a low-pressure vacuum of less than 40 kPa, even if the flow rate of the bottom-blown gas is within an appropriate range, the stirring energy is large, and a remarkable effect of suppressing the destruction of the aggregated and integrated inclusions is obtained. Absent. On the other hand, when the pressure in the vacuum chamber is higher than 67 kPa, the reflux in the vacuum chamber is stagnated, and the collision frequency of the particles is extremely reduced, so that the agglomeration and aggregation of the fine particles do not proceed, and it is difficult to float and remove in the subsequent tundish. Becomes

底吹きガス流量が0.3NL/分/トン未満である場合、環流の停滞による粒子衝突の頻度低下に起因した凝集合体(粒子の粗大化)が不足し、タンディッシュでの浮上除去が困難となる。一方、底吹きガス流量が1.1NL/分/トンを超える場合、撹拌エネルギーが強く凝集合体した介在物粒子の破壊抑制効果が低下することとなる。
ここで、上記した底吹きガス流量の上限は、介在物粒子同士の合体頻度が高く、崩壊が実質的に発生せず、強度向上が可能と考えられるため、好ましくは0.5NL/分/トンとするとよい。
If the flow rate of the bottom blown gas is less than 0.3 NL / min / ton, there is a shortage of agglomerated coalescence (coarse particles) due to a decrease in the frequency of particle collisions due to stagnation of reflux, and it is difficult to float and remove in a tundish. Become. On the other hand, when the bottom blown gas flow rate exceeds 1.1 NL / min / ton, the stirring energy is strong, and the effect of suppressing the destruction of the aggregated and coalesced inclusion particles is reduced.
Here, the upper limit of the flow rate of the bottom blown gas is preferably 0.5 NL / min / ton because it is considered that the frequency of coalescence of the inclusion particles is high, the collapse does not substantially occur, and the strength can be improved. It is good to

上記した真空槽11内の圧力と底吹きガス流量により、凝集合体した介在物の崩壊防止と、環流を継続することによる緩やかな介在物の凝集合体の進行と、凝集合体させた介在物の強度の向上とが得られるが、その顕著な効果を得るためには、処理時間を5〜15分とする必要がある。
具体的には、前記した低圧真空処理によって凝集合体した直後の介在物は強度が低く、溶鋼流の剪断力を受けて破壊する場合がある。このため、処理時間は15分以下とするとよい。一方、5分以上の処理であれば、凝集合体した介在物は強度を向上できる。
これにより、後述するタンディッシュでの処理まで介在物の破壊を抑制できる(タンディッシュでの浮上除去が可能となる)。
The pressure in the vacuum chamber 11 and the flow rate of the bottom-blown gas prevent the collapse of the aggregated inclusions, gradually promote the aggregation of the inclusions by continuing the reflux, and the strength of the aggregated inclusions. However, in order to obtain the remarkable effect, the processing time needs to be 5 to 15 minutes.
Specifically, the inclusion immediately after agglomeration and coalescence by the low-pressure vacuum treatment described above has low strength, and may be broken by the shearing force of the molten steel flow. Therefore, the processing time may be set to 15 minutes or less. On the other hand, if the treatment is performed for 5 minutes or more, the inclusions that have aggregated and coalesced can improve the strength.
Thereby, the destruction of the inclusions can be suppressed until the processing in the tundish described later (floating removal in the tundish becomes possible).

粒径に応じた介在物の挙動は以下の通りである。
(70μm以上)
低圧真空処理時(前半処理時)に概ね取鍋13内での浮上が終了しており、一部溶鋼中に残存したとしても、高圧真空処理時(後半処理時)にも取鍋13内で浮上するものと考えらえる。
(30〜50μm)
低圧真空処理時の凝集合体により30〜50μmとなった介在物は、環流中に残存する傾向が強いが、高圧真空処理時にも溶鋼の環流中に存在し、破壊を抑制しながら強度は向上するものと考えられた。また、介在物の凝集合体を緩やかに促進する。
これによって、介在物は破壊が進行することなく、真空脱ガス処理以降の工程に搬送される溶鋼中に存在することとなるが、この介在物は、後述するタンディッシュでの浮上除去につなげることができる。
The behavior of inclusions according to the particle size is as follows.
(70 μm or more)
Floating in the ladle 13 is almost completed during low-pressure vacuum processing (first half processing), and even if partly remains in the molten steel, it also remains in the ladle 13 during high-pressure vacuum processing (second half processing). It seems to be emerging.
(30-50 μm)
Inclusions that have become 30 to 50 μm due to agglomeration and coalescence during low-pressure vacuum processing have a strong tendency to remain in the reflux, but also exist in the reflux of molten steel during high-pressure vacuum processing, and the strength is improved while suppressing breakage. Was considered one. In addition, it gradually promotes the aggregation and coalescence of inclusions.
As a result, the inclusions are present in the molten steel conveyed to the process after the vacuum degassing process without the destruction progressing, but these inclusions can be used for floating removal in a tundish described later. Can be.

(20μm以下)
低圧真空処理による凝集合体を経ても20μm以下の介在物は、高圧真空処理において破壊を防止しながら環流処理による凝集合体が緩やかに進み、強度も向上するものと考えられる。
従って、真空脱ガス処理以降に供給される溶鋼は、20μm以下の介在物が減少し、例えば、30〜50μm程度に凝集合体してその強度も向上しているものと考えられ、この介在物がタンディッシュで浮上除去される。
(20 μm or less)
It is considered that the inclusions having a size of 20 μm or less even after being subjected to agglomeration and coalescence by the low-pressure vacuum treatment, the agglomeration and coalescence by the reflux treatment slowly progress while preventing destruction in the high-pressure vacuum treatment, and the strength is improved.
Therefore, in the molten steel supplied after the vacuum degassing treatment, inclusions of 20 μm or less are reduced, and for example, it is considered that the strength is improved by aggregating and coalescing to about 30 to 50 μm, and the inclusions are considered to be increased. It is removed by floating with a tundish.

上記した高圧真空処理を経た溶鋼からは、70μm以上の介在物が浮上除去されている。
また、30〜50μm程度の介在物は、上記した脱ガス処理により従来技術に比べて破壊が発生しなくなったため、その存在割合を高位に維持でき、更に強度も向上させているため、存在割合が高位の状態で、溶鋼をタンディッシュまで搬送できる。
更に、20μm以下の介在物は、上記した精錬処理(一次精錬〜真空脱ガス処理)を経て、破壊を抑制した凝集合体(例えば、30μm以上に凝集合体)が起こり、従来の技術に比べて存在割合を低減させた(あるいは20μm以下の介在物の増加を抑制した)状態で、溶鋼をタンディッシュまで搬送できる。
Inclusions of 70 μm or more are floated and removed from the molten steel that has been subjected to the high-pressure vacuum treatment described above.
In addition, since the inclusions of about 30 to 50 μm do not cause destruction as compared with the prior art due to the above-described degassing treatment, the abundance ratio can be maintained at a high level, and the strength is further improved. In a high state, molten steel can be transported to the tundish.
Further, the inclusions having a size of 20 μm or less are subjected to the above-described refining treatment (primary refining to vacuum degassing treatment) to cause agglomeration and coalescence (for example, agglomeration and coalescence of 30 μm or more) with suppressed destruction. The molten steel can be transported to the tundish with the ratio reduced (or the increase in inclusions of 20 μm or less is suppressed).

続いて、真空脱ガス処理した溶鋼を、取鍋13(溶鋼鍋)から、ロングノズル16を介してタンディッシュ15に注湯する(図2参照)。
タンディッシュ15には、その内部を、取鍋13からロングノズル16を介して溶鋼を受け入れる受湯部17と、溶鋼を連続鋳造する鋳型18に注入する排湯部19とに仕切る堰(下堰)20が設けられている。なお、排湯部19の底部には浸漬ノズル21が設けられ、排湯部19内の溶鋼を浸漬ノズル21を介して鋳型18に注入している。
堰20は、タンディッシュ15の底面22から浴面(湯面)に向かうように(底部から上方へ向けて突出させた状態で)立設されたものであり、その高さを、溶鋼深さ(浴深)H(m)の0.3倍(0.3×H)以上0.8倍(0.8×H)以下にしたものである。なお、溶鋼深さH(m)とは、堰20を配置した部分のタンディッシュ15の底面22から浴面までの距離を意味する。
Subsequently, the molten steel subjected to the vacuum degassing process is poured from a ladle 13 (a molten steel ladle) into a tundish 15 via a long nozzle 16 (see FIG. 2).
The tundish 15 has a weir (lower weir) that divides the inside of the tundish into a hot water receiving portion 17 that receives molten steel from a ladle 13 via a long nozzle 16 and a hot water discharging portion 19 that injects molten steel into a mold 18 for continuous casting. ) 20 are provided. In addition, an immersion nozzle 21 is provided at the bottom of the drainage section 19, and molten steel in the drainage section 19 is injected into the mold 18 via the immersion nozzle 21.
The weir 20 is erected from the bottom surface 22 of the tundish 15 toward the bath surface (water surface) (in a state protruding upward from the bottom), and the height thereof is set to the molten steel depth. (Bath depth) It is 0.3 times (0.3 × H) or more and 0.8 times (0.8 × H) or less of H (m). The molten steel depth H (m) means the distance from the bottom surface 22 of the tundish 15 where the weir 20 is arranged to the bath surface.

前記したように、タンディッシュ内で溶鋼の上昇流を有効に作用させるには、堰の高さを、溶鋼深さの0.3倍以上にする必要がある。一方、堰の高さが溶鋼深さの0.8倍を超える場合、上昇流がタンディッシュ内の湯面スラグを撹拌する可能性があり好ましくない。
従って、堰20の高さを、溶鋼深さH(m)の0.3倍(好ましくは、0.4倍)以上0.8倍(好ましくは、0.7倍)以下にした。
なお、堰は、タンディッシュ内の溶鋼の流れ方向に、間隔を有して複数設置することもできる。この場合、溶鋼の流れ方向に隣り合う堰の間に、溶鋼に下降流を形成するための上堰を設置して、溶鋼の流れを側面視して上下方向にジグザグ状にし、タンディッシュ内での溶鋼の滞留時間を長くすることもできる。
なお、前記した本発明の脱ガス処理に従えば、30〜50μm程度の介在物の強度は向上しているため、堰を複数設置しても従来に比べると介在物の浮上除去を促進できるが、複数の堰を用いる際には下堰を必須とし、上堰の数を抑制すると良い。これは、同じ数の堰を設置する場合であっても、上堰の数が増えるに従って介在物の破壊が進むものと考えられるためである。
As described above, the height of the weir must be 0.3 times or more the depth of the molten steel in order for the upward flow of the molten steel to effectively act in the tundish. On the other hand, when the height of the weir exceeds 0.8 times the molten steel depth, the rising flow may agitate the molten metal slag in the tundish, which is not preferable.
Therefore, the height of the weir 20 is set to 0.3 times (preferably 0.4 times) or more and 0.8 times (preferably 0.7 times) or less of the molten steel depth H (m).
In addition, a plurality of weirs can be installed at intervals in the flow direction of the molten steel in the tundish. In this case, between the weirs adjacent to the flow direction of the molten steel, an upper weir to form a downward flow in the molten steel is installed, and the flow of the molten steel is zigzag in a vertical direction when viewed from the side, and in a tundish. The residence time of the molten steel can be extended.
According to the above-described degassing treatment of the present invention, since the strength of the inclusions of about 30 to 50 μm is improved, even if a plurality of weirs are provided, the floating removal of the inclusions can be promoted as compared with the related art. When using a plurality of weirs, the lower weir is essential and the number of upper weirs should be reduced. This is because even if the same number of weirs are installed, it is considered that the destruction of the inclusion proceeds as the number of upper weirs increases.

また、堰20の底部近傍には、使用後のタンディッシュ15内の残湯の排出を容易にするため、一般に貫通孔23を設けている(図3参照)。この貫通孔23の形状は、正面視して四角形であり、浴面の幅をWとすると、高さ方向の内幅W1が1/5×W、幅方向の内幅W2が1/5×Wである。なお、貫通孔の構成は、残湯の排出を容易にできる構成であれば、特に限定されるものではなく、例えば、高さ方向の内幅W1を1/5×W以下の範囲で、また、幅方向の内幅W2を1/5×W以下の範囲で、それぞれ調整できる。
この貫通孔23は、堰20に2個(1個又は複数個でもよい)形成されているが、この程度の貫通孔23であれば、前記した溶鋼に上昇流を発生させる作用効果は得られる。また、上記した貫通孔と開口面積が同等か、それ以下の貫通孔であれば、タンディッシュ内の溶鋼に上昇流を発生させることが可能であり、本発明の作用効果は得られるものと考えられる。
In addition, a through hole 23 is generally provided near the bottom of the weir 20 in order to easily discharge the remaining hot water in the tundish 15 after use (see FIG. 3). The shape of the through-hole 23 is a square when viewed from the front, and when the width of the bath surface is W, the inner width W1 in the height direction is 5 × W, and the inner width W2 in the width direction is 5 × W. W. The configuration of the through hole is not particularly limited as long as the configuration is such that the remaining hot water can be easily discharged. For example, the inner width W1 in the height direction is set to 1 / × W or less. , The width W2 in the width direction can be adjusted within a range of ×× W or less.
Although two (one or a plurality of) through holes 23 are formed in the weir 20, the effect of generating the upward flow in the molten steel can be obtained with such a through hole 23. . Also, if the opening area is equal to or smaller than the above-mentioned through hole, it is possible to generate an upward flow in the molten steel in the tundish, and it is considered that the operation and effect of the present invention can be obtained. Can be

これにより、タンディッシュ15内の溶鋼に上昇流を発生させ、凝集合体した30〜50μm程度の粒子径を有するアルミナ介在物を浮上させて、これを湯面上のスラグに捕捉させる効果が得られる。
従って、得られた溶鋼を連続鋳造することで、従来よりもアルミナ介在物の個数を低減でき、特に粒径が20μm以下クラスのアルミナ介在物の個数を低減した鋼材(成品)を製造できる。特に、この鋼材は、介在物の含有量規制に対して最も要求の厳しい高炭素系の高清浄鋼を用いた製品においても、介在物に起因する製品不合(製品不良)を著しく低減できることが可能となる。なお、高炭素系の高清浄鋼とは、例えば、炭素含有量が0.1質量%以上の鋼材であり、上限については、高炭素系の高清浄鋼であれば特に限定されるものではないが、常用される鋼材であれば1.5質量%程度である。
As a result, an upward flow is generated in the molten steel in the tundish 15, and the effect of causing the alumina inclusions having a particle diameter of about 30 to 50 μm which have aggregated and coalesced to float and trapping them in the slag on the surface of the molten metal is obtained. .
Therefore, by continuously casting the obtained molten steel, the number of alumina inclusions can be reduced as compared with the conventional method, and in particular, a steel material (finished product) in which the number of alumina inclusions having a particle size of 20 μm or less is reduced can be manufactured. In particular, this steel material can significantly reduce product mismatch (product failure) caused by inclusions even in products using high-carbon high-purity steel, which is the most demanding for inclusion content regulations. Becomes The high-carbon high-purity steel is, for example, a steel material having a carbon content of 0.1% by mass or more, and the upper limit is not particularly limited as long as it is a high-carbon high-purity steel. However, if it is a commonly used steel material, it is about 1.5% by mass.

次に、本発明の作用効果を確認するために行った実施例について説明する。
ここでは、以下の方法を基本として実機水準にて各条件を変更し、鋳造後の定常部鋳片の清浄性の評価を行った。ここで、定常部鋳片とは、鋳造するチャージの連続鋳造長さの概ね中央部分(品質が安定した部分)を意味する。なお、評価対象の鋼種は、高清浄性が求められる棒線材の鋼種(歯車用鋼)とした。
Next, an example performed to confirm the operation and effect of the present invention will be described.
Here, based on the following method, each condition was changed at the actual machine level, and the cleanliness of the slab of the stationary part after casting was evaluated. Here, the slab of the steady portion means a substantially central portion (a portion where the quality is stable) of the continuous casting length of the charge to be cast. The steel type to be evaluated was a steel type (steel for gears) of a rod and wire material requiring high cleanliness.

350トンの転炉にて一次精錬を行った後、取鍋内に出鋼した溶鋼(炭素濃度:0.20〜0.22質量%、溶鋼中溶存酸素濃度:質量割合で100〜300ppm、程度で一定)を、取鍋精錬設備(LF)に移動して取鍋精錬処理を行った。その際、取鍋内の溶鋼に金属アルミニウムを、出鋼時と合計で溶鋼1トンあたり3.0〜9.0kg添加し、脱酸処理とスラグ精錬を行い溶鋼中のT.[O]濃度を30〜40ppmの概ね一定に調整した。
その後、更に取鍋を移動し、真空脱ガス装置(REDA)による真空脱ガス処理を実施した。そして、この取鍋内の溶鋼をタンディッシュに注湯して、連続鋳造を実施した。
試験条件とその結果及び評価を、表1に示す。
Molten steel (carbon concentration: 0.20 to 0.22% by mass, dissolved oxygen concentration in molten steel: 100 to 300 ppm by mass ratio) in a ladle after primary refining in a 350 ton converter Was moved to a ladle refining facility (LF) to perform a ladle refining process. At that time, a total of 3.0 to 9.0 kg of metallic aluminum per ton of molten steel was added to the molten steel in the ladle at the time of tapping, and deoxidation treatment and slag refining were performed. The [O] concentration was adjusted to be approximately constant at 30 to 40 ppm.
After that, the ladle was further moved, and a vacuum degassing process was performed by a vacuum degassing device (REDA). Then, the molten steel in the ladle was poured into a tundish to perform continuous casting.
Table 1 shows the test conditions, results and evaluation.

Figure 2020012158
Figure 2020012158

表1には、真空脱ガス装置による真空脱ガス処理の前半(「脱ガス処理前半」)と後半(「脱ガス処理後半」)の各処理条件(「時間」、「真空槽内圧力」、及び、「底吹きガス流量」)を記載している。
ここで、実施例1〜12と比較例1〜9には上記した各処理条件を記載しているが、従来法については、真空脱ガス処理の後半の高圧真空処理を行わず、処理終了まで低圧真空雰囲気下(1.3kPa以下)で脱ガス処理を行っているため、真空脱ガス処理の後半については「(処理なし)」と記載している。なお、従来法の真空脱ガス処理後に行う後述するタンディッシュの鋳造条件は実施例1と同一である。
Table 1 shows the processing conditions (“time”, “pressure in the vacuum chamber”), the first half (“first half of degassing”) and the second half (“second half of degassing”) of the vacuum degassing by the vacuum degassing apparatus. And "Bottom blown gas flow rate").
Here, the processing conditions described above are described in Examples 1 to 12 and Comparative Examples 1 to 9. However, in the conventional method, high-pressure vacuum processing is not performed in the latter half of the vacuum degassing processing, and until the processing is completed. Since the degassing process is performed in a low-pressure vacuum atmosphere (1.3 kPa or less), “(no treatment)” is described in the latter half of the vacuum degassing process. Note that the tundish casting conditions described below, which are performed after the conventional vacuum degassing process, are the same as in Example 1.

「タンディッシュ」の欄には、「堰の形状」と「下堰高さ」を記載している。
ここで、「堰の形状」とは、タンディッシュ内に配置される堰の構造であり、「A」はタンディッシュ内を受湯部と排湯部に仕切る下堰の構造(図2参照)を、「B」は図4に示すタンディッシュ30に設置された上堰31の構造を、それぞれ指している。
上記した下堰は、タンディッシュの底部に立設され、その高さを溶深H(m)に対して0.2×H〜0.9×Hの範囲で設定した堰である。なお、下堰の底部近傍には、使用後のタンディッシュ内の残湯の排出を容易にするため貫通孔を設けている(図3参照)。この貫通孔は、浴面の幅をWとして、高さ方向の内幅W1が1/5×W(0.26m)であり、幅方向の内幅W2が1/5×W(0.26m)である。
また、上堰31は、受湯部32側の溶鋼深さをH(m)とすると、深さ方向の上部部分(湯面部分)「0.3×H(Hの0.3倍)」のみを、受湯部32側と排湯部33側とに区切る堰である。この場合、溶鋼の深さ方向の上部分を流れる溶鋼流は、上堰31に沿って上堰31の下側に回り込む強制的な流れが発生(強制的な下降流が生成した後、上堰31の下側を通過して、強制的な上昇流が生成)する。
In the column “Tundish”, “Shape of weir” and “height of lower weir” are described.
Here, the “shape of the weir” is the structure of a weir arranged in the tundish, and “A” is the structure of a lower weir that partitions the inside of the tundish into a hot water receiving part and a hot water discharging part (see FIG. 2). "B" indicates the structure of the upper weir 31 installed in the tundish 30 shown in FIG.
The lower weir described above is an upright that is set up on the bottom of the tundish and whose height is set in the range of 0.2 × H to 0.9 × H with respect to the melt depth H (m). A through hole is provided in the vicinity of the bottom of the lower weir to facilitate discharge of residual hot water from the used tundish (see FIG. 3). This through hole has an inner width W1 in the height direction of 1 / × W (0.26 m), and an inner width W2 in the width direction of 浴 × W (0.26 m), where W is the width of the bath surface. ).
Further, assuming that the molten steel depth on the side of the hot water receiving portion 32 is H (m), the upper weir 31 has an upper part (a molten metal part) in the depth direction “0.3 × H (0.3 times H)”. This is a weir that separates only the hot water receiving part 32 side and the hot water discharging part 33 side. In this case, the molten steel flow flowing in the upper part of the molten steel in the depth direction generates a forced flow that flows to the lower side of the upper weir 31 along the upper weir 31 (after a forced downward flow is generated, 31, a forced upward flow is generated).

「鋳片の清浄度」の欄には、「20μm以上の介在物検出個数の評価」と「T.[O]」を記載している。
「20μm以上の介在物検出個数の評価」には、定常部鋳片の代表位置から切り出したサンプル(一辺が概ね30mmの矩形)を鏡面研磨後に光学顕微鏡にて調査した、長径が20μm以上のアルミナ介在物個数(単位面積当たりのアルミナ介在物の検出個数に換算)を用いて行った。なお、表1では、従来法の試験条件下で得られた長径20μm以上の介在物検出個数を「1.00」として、他の試験条件で得られた介在物検出個数を指数化し、この指数が1.00以上を「不合格」とし、1.00未満を「合格」として、評価した。
「T.[O]」の欄には、定常部鋳片の代表位置のトータル酸素濃度(全酸素量)を測定し、従来法で得られた18ppm(×評価)を基準として、この基準より高い値となった場合を×評価(不合格)とし、低い値となった場合を○評価(合格)として、それぞれ示した。
In the column of "cleanness of slab", "Evaluation of the number of detected inclusions of 20 μm or more" and "T. [O]" are described.
“Evaluation of the number of detected inclusions of 20 μm or more” includes samples cut from a representative position of a slab of a stationary part (a rectangle with a side of approximately 30 mm) which were mirror-polished and examined by an optical microscope. The number of inclusions (converted to the number of detected alumina inclusions per unit area) was used. In Table 1, the number of detected inclusions having a major axis of 20 μm or more obtained under the test conditions of the conventional method was set to “1.00”, and the number of detected inclusions obtained under other test conditions was converted into an index. Was evaluated as "Fail" when 1.00 or more and "Pass" when less than 1.00.
In the column of “T. [O]”, the total oxygen concentration (total oxygen amount) at the representative position of the slab of the stationary part was measured, and based on 18 ppm (× evaluation) obtained by the conventional method, The case where the value was high was evaluated as x evaluation (fail), and the case where the value was low was evaluated as o evaluation (pass).

「総合評価」は、「20μm以上の介在物検出個数の評価」の欄が合格評価かつ「T.[O]」の欄が○評価の場合を○評価(合格)、これ以外の評価の組み合わせを×評価(不合格)と判断した。   “Comprehensive evaluation” means “evaluation of the number of detected inclusions of 20 μm or more” in the column of “pass” and “T. [O]” in the column of “○”. Was evaluated as x evaluation (fail).

表1中の実施例1〜12は、真空脱ガス装置10を用いて、真空脱ガス処理の前半に、低圧真空雰囲気かつ所定の底吹きガス流量の下で脱ガス処理(真空槽内圧力:1.3kPa以下、底吹きガス流量:1.3〜4.0NL/分/トン、処理時間:15〜45分間)を行い、引き続き、真空脱ガス処理の後半に、高圧真空雰囲気かつ底吹きガス流量を低減させた下で脱ガス処理(真空槽内圧力:40〜67kPa、底吹きガス流量:0.3〜1.1NL/分/トン、処理時間:5〜15分間)を行った後、適正範囲の高さ(0.3×H〜0.8×Hの範囲)の下堰を有するタンディッシュへ注湯して、連続鋳造した結果である。
この場合、真空脱ガス処理による介在物の凝集の促進効果と凝集合体した介在物の強度の向上効果、及び、タンディッシュによる凝集合体したアルミナ介在物の浮上除去効果が得られた。
その結果、表1に示すように、「20μm以上の介在物検出個数の評価」と「T.[O]」は共に良好であり、鋳片の清浄性を良好にできた(総合評価:○)。
In Examples 1 to 12 in Table 1, in the first half of the vacuum degassing process, the degassing process was performed using the vacuum degassing device 10 under a low-pressure vacuum atmosphere and a predetermined bottom-blowing gas flow rate (pressure in the vacuum chamber: 1.3 kPa or less, bottom-blowing gas flow rate: 1.3 to 4.0 NL / min / ton, processing time: 15 to 45 minutes), and then, in the latter half of the vacuum degassing process, a high-pressure vacuum atmosphere and bottom-blowing gas After performing a degassing process (pressure in the vacuum chamber: 40 to 67 kPa, bottom blown gas flow rate: 0.3 to 1.1 NL / min / ton, processing time: 5 to 15 minutes) while reducing the flow rate, This is a result of pouring into a tundish having a lower weir having an appropriate range of height (range of 0.3 × H to 0.8 × H) and performing continuous casting.
In this case, the effect of promoting the coagulation of inclusions by the vacuum degassing treatment, the effect of improving the strength of the coagulated and coalesced inclusions, and the effect of floating and removing the coagulated and coalesced alumina inclusions by the tundish were obtained.
As a result, as shown in Table 1, both “Evaluation of the number of detected inclusions of 20 μm or more” and “T. [O]” were good, and the cleanliness of the slab was good (overall evaluation: ○). ).

一方、比較例1は、実施例1の条件に対し、脱ガス処理後半の時間の条件を適正範囲の上限値超(20分)とした場合の結果であり、表1に示すように、鋳片中に存在するアルミナ介在物の個数が多くなり、鋳片の清浄性が悪くなった(総合評価:×)。
これは、脱ガス処理後半での処理時間が長くなり過ぎ、凝集した介在物の破壊を招くため、タンディッシュでの介在物の浮上除去が不足したことによるものと考えられる。
On the other hand, Comparative Example 1 is a result when the condition of the second half of the degassing process is set to be more than the upper limit of the appropriate range (20 minutes) with respect to the condition of Example 1, and as shown in Table 1, The number of alumina inclusions present in the piece increased, and the cleanliness of the cast piece deteriorated (overall evaluation: ×).
This is considered to be due to the fact that the treatment time in the latter half of the degassing treatment was too long, and the aggregated inclusions were destroyed, so that the floating removal of the inclusions in the tundish was insufficient.

比較例2は、実施例6の条件に対し、脱ガス処理後半の時間の条件を適正範囲の下限値未満(1分)とした場合の結果であり、表1に示すように、鋳片中に存在するアルミナ介在物の個数が多くなり、鋳片の清浄性が悪くなった(総合評価:×)。
これは、脱ガス処理後半での処理時間が不足し、凝集した介在物の強度向上が不足したため、真空脱ガス処理以降から鋳造までにおいて、凝集した介在物の破壊を招き、タンディッシュでの浮上除去が不足したことによるものと考えられる。
Comparative Example 2 is a result when the condition of the second half of the degassing process was set to be less than the lower limit of the appropriate range (1 minute) with respect to the condition of Example 6, as shown in Table 1. The number of the alumina inclusions present in the sample increased, and the cleanliness of the cast slab deteriorated (comprehensive evaluation: ×).
This is because the treatment time in the latter half of the degassing process is insufficient, and the strength of the aggregated inclusions is insufficient, so that from the vacuum degassing process to the casting, the aggregated inclusions are destroyed and the tundish rises. It is considered that the removal was insufficient.

比較例3は、実施例1の条件に対し、脱ガス処理後半の真空槽内圧力の条件を適正範囲の下限値未満(10kPa)とした場合の結果であり、表1に示すように、鋳片中に存在するアルミナ介在物の個数が多くなり、鋳片の清浄性が悪くなった(総合評価:×)。
これは、真空槽内の圧力が低くなり過ぎ、脱ガス処理前半に対する、取鍋の底面から真空槽内の溶鋼湯面までの距離の短縮が不足する結果となり、撹拌エネルギーの低減が不足して凝集合体した介在物の破壊を招き、タンディッシュでの浮上除去が不足したことによるものと考えられる。
Comparative Example 3 is a result when the condition of the vacuum chamber pressure in the latter half of the degassing process was set to be less than the lower limit of the appropriate range (10 kPa) with respect to the condition of Example 1, and as shown in Table 1, The number of alumina inclusions present in the piece increased, and the cleanliness of the cast piece deteriorated (overall evaluation: ×).
This means that the pressure in the vacuum chamber is too low, and the distance from the bottom of the ladle to the molten steel surface in the vacuum chamber is insufficient for the first half of the degassing process. This is considered to be due to the destruction of the agglomerates and inclusions, resulting in insufficient floating removal in the tundish.

比較例4は、実施例7の条件に対し、脱ガス処理後半の真空槽内圧力の条件を適正範囲の上限値超(90kPa)とした場合の結果であり、表1に示すように、鋳片中に存在するアルミナ介在物の個数が多くなり、鋳片の清浄性が悪くなった(総合評価:×)。
これは、真空槽内の圧力が高くなり過ぎ、真空槽内の環流が停滞して粒子の衝突頻度が極端に低下するため、微細粒子の凝集合体が進まず、その後のタンディッシュでの浮上除去が困難になったことによるものと考えられる。
Comparative Example 4 is a result when the condition of the pressure in the vacuum chamber in the latter half of the degassing process was set to be more than the upper limit of the appropriate range (90 kPa) with respect to the condition of Example 7, and as shown in Table 1, The number of alumina inclusions present in the piece increased, and the cleanliness of the cast piece deteriorated (overall evaluation: ×).
This is because the pressure in the vacuum chamber becomes too high, the reflux in the vacuum chamber stagnates, and the frequency of collision of particles decreases extremely, so that the agglomeration and aggregation of fine particles do not proceed, and the floating removal in a tundish thereafter It is thought that this was because it became difficult.

比較例5は、実施例8の条件に対し、脱ガス処理後半の底吹きガス流量の条件を適正範囲の下限値未満(0.1NL/分/トン)とした場合の結果であり、表1に示すように、鋳片中に存在するアルミナ介在物の個数が多くなり、鋳片の清浄性が悪くなった(総合評価:×)。
これは、底吹きガス流量を低下させ過ぎ、真空槽内の環流の停滞による粒子の衝突頻度の低下に起因して、微細粒子の凝集合体が不足し、タンディッシュでの浮上除去が困難になったことによるものと考えられる。
Comparative Example 5 is a result when the condition of the bottom blown gas flow rate in the latter half of the degassing process was set to be less than the lower limit value of the appropriate range (0.1 NL / min / ton) with respect to the condition of Example 8. As shown in (1), the number of alumina inclusions present in the slab increased, and the cleanliness of the slab deteriorated (overall evaluation: ×).
This is because the flow rate of the bottom blown gas is excessively reduced, and the collision frequency of the particles is reduced due to the stagnation of the reflux in the vacuum chamber, so that the agglomeration and aggregation of the fine particles are insufficient, and the floating removal in the tundish becomes difficult. This is probably due to

比較例6は、実施例10の条件に対し、脱ガス処理後半の底吹きガス流量の条件を適正範囲の上限値超(1.5NL/分/トン)とした場合の結果であり、表1に示すように、鋳片中に存在するアルミナ介在物の個数が多くなり、鋳片の清浄性が悪くなった(総合評価:×)。
これは、底吹きガス流量を増加させ過ぎ、撹拌エネルギーが強くなって凝集合体した介在物粒子の破壊抑制効果が低下したため、その後のタンディッシュでの浮上除去が不足したことによるものと考えられる。
Comparative Example 6 is a result when the condition of the flow rate of the bottom blown gas in the latter half of the degassing process is set to exceed the upper limit of the appropriate range (1.5 NL / min / ton) with respect to the condition of Example 10. As shown in (1), the number of alumina inclusions present in the slab increased, and the cleanliness of the slab deteriorated (overall evaluation: ×).
This is probably because the flow rate of the bottom-blown gas was excessively increased, the stirring energy was increased, and the effect of suppressing the destruction of the aggregated inclusion particles was reduced, so that the subsequent floating removal in the tundish was insufficient.

比較例7は、実施例11の条件に対し、下堰の高さ位置を適正範囲の下限値未満(0.2×H)にした場合の結果であり、表1に示すように、鋳片中に存在するアルミナ介在物の個数が多くなり、鋳片の清浄性が悪くなった(総合評価:×)。
これは、下堰の高さが低くなり過ぎて、本発明の真空脱ガス処理条件に従う処理を実施しても、タンディッシュでの介在物の浮上除去の際に、上昇流の発生が不足したことによる。
Comparative Example 7 is a result when the height position of the lower weir is set to be less than the lower limit of the appropriate range (0.2 × H) with respect to the condition of Example 11, and as shown in Table 1, The number of alumina inclusions present therein increased, and the cleanliness of the slab deteriorated (overall rating: ×).
This is because the height of the lower weir becomes too low, and even when the processing according to the vacuum degassing processing conditions of the present invention is performed, the generation of the upward flow is insufficient during the floating removal of the inclusions in the tundish. It depends.

比較例8は、実施例12の条件に対し、下堰の高さ位置を適正範囲の上限値超(0.9×H)にした場合の結果であり、表1に示すように、鋳片中に存在するアルミナ介在物の個数が多くなり、鋳片の清浄性が悪くなった(総合評価:×)。
これは、下堰の高さが高くなり過ぎて、上昇流がタンディッシュ内の湯面スラグを撹拌し、浮上した介在物が再度溶鋼中へ巻き込まれたことによるものと考えられる。
Comparative Example 8 is a result when the height position of the lower weir is set to exceed the upper limit value of the appropriate range (0.9 × H) with respect to the conditions of Example 12, and as shown in Table 1, The number of alumina inclusions present therein increased, and the cleanliness of the slab deteriorated (overall rating: ×).
This is considered to be because the height of the lower weir became too high, the rising flow stirred the molten metal slag in the tundish, and the floating inclusions were caught in the molten steel again.

比較例9は、実施例1の条件に対し、タンディッシュの堰の構造が異なる(図4に示す上堰を採用)場合の結果である。
比較例9は従来法に比べて、介在物検出個数は増加し、トータル酸素濃度(T.[O]ppm)も増加する結果が得られている(総合評価:×)。
比較例9では、溶鋼深さ方向の上部分を流れる溶鋼流が、上堰に沿って上堰の下側を回り込む強制的な流れが発生(強制的な下降流が生成した後、上堰の下側を通過して、強制的な上昇流が生成)するため、溶鋼に与える剪断力が実施例1や従来法に比べて大きいものと推察され、凝集した介在物の破壊を招き、タンディッシュでの介在物の浮上除去が不足したものと推察された。
なお、定常部鋳片における20μm以上の介在物検出個数の評価は、実施例1よりも比較例9の方が多い結果が得られているが、タンディッシュで浮上除去しにくい20μm程度の介在物個数も比較例9の方が多い傾向にあった。このため、比較例9の条件である上堰は、介在物を崩壊させる剪断力が実施例1に比べて大きいものと推定された。
Comparative Example 9 is a result in the case where the structure of the tundish weir is different from the condition of Example 1 (the upper weir shown in FIG. 4 is employed).
In Comparative Example 9, the number of inclusions detected increased and the total oxygen concentration (T. [O] ppm) increased as compared to the conventional method (Comprehensive evaluation: ×).
In Comparative Example 9, the molten steel flow flowing in the upper portion of the molten steel in the depth direction caused a forced flow to flow around the lower side of the upper weir along the upper weir (after a forced downward flow was generated, As a result, a forced upward flow is generated after passing through the lower side), so that the shearing force applied to the molten steel is presumed to be greater than that in Example 1 or the conventional method. It was presumed that the removal of inclusions at the site was insufficient.
In addition, in the evaluation of the number of detected inclusions of 20 μm or more in the slab of the stationary part, the results of Comparative Example 9 were larger than those of Example 1, but the inclusions of about 20 μm which were difficult to float and remove with a tundish were obtained. Comparative Example 9 also tended to have a larger number. For this reason, it was presumed that the upper weir, which is the condition of Comparative Example 9, had a greater shearing force for collapsing the inclusions than that of Example 1.

従来法は、前記したように、実施例1の条件に対し、真空脱ガス処理の後半処理を実施することなく、連続鋳造前に溶鋼を貯蔵した取鍋を連続鋳造機のそば(近傍)で10分間静置する時間を取った後、連続鋳造を実施した場合の結果であり、表1に示すように、鋳片中に存在するアルミナ介在物の個数が多くなり、鋳片の清浄性が悪くなった(総合評価:×)。
これは、凝集合体した介在物の強度向上の効果や、凝集した介在物の崩壊を防ぎながら更に凝集合体を促進する効果が不足し、タンディッシュでの浮上除去が不足したことによるものと考えられる。
In the conventional method, as described above, the ladle storing the molten steel before the continuous casting is placed near (in the vicinity of) the continuous casting machine without performing the second half process of the vacuum degassing process with respect to the conditions of the first embodiment. This is a result of a case where continuous casting was performed after a period of standing for 10 minutes, and as shown in Table 1, the number of alumina inclusions present in the slab increased, and the cleanliness of the slab was reduced. It became worse (overall rating: ×).
This is considered to be due to the lack of the effect of improving the strength of the aggregated inclusions and the effect of further promoting the aggregations while preventing the collapse of the aggregated inclusions, and the insufficient floating removal in the tundish. .

従って、本発明の高清浄鋼の溶製方法を用いることで、従来の技術よりもアルミナ介在物を低減した高清浄鋼を製造でき、特に粒径が20μmクラスのアルミナ介在物の個数を低減し、全酸素量(T.[O]値)が概ね15ppm程度又はそれ以下の極めて高度な清浄性の鋼を安定して鋳造できることを確認できた。   Therefore, by using the method for melting high clean steel of the present invention, it is possible to manufacture high clean steel in which alumina inclusions are reduced as compared with the prior art, and in particular, it is possible to reduce the number of alumina inclusions having a particle size of 20 μm class. It was confirmed that an extremely high cleanliness steel having a total oxygen content (T. [O] value) of about 15 ppm or less can be stably cast.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の高清浄鋼の溶製方法を構成する場合も本発明の権利範囲に含まれる。   As described above, the present invention has been described with reference to the embodiments. However, the present invention is not limited to the configurations described in the above-described embodiments, but includes the matters described in the claims. Other embodiments and modifications that can be considered within the scope are also included. For example, a case where the method for melting high-purity steel of the present invention is configured by combining some or all of the above-described embodiments and modified examples is also included in the scope of the present invention.

10:真空脱ガス装置、11:真空槽、12:浸漬管、13:取鍋、14:ガス吹き込み孔、15:タンディッシュ、16:ロングノズル、17:受湯部、18:鋳型、19:排湯部、20:堰、21:浸漬ノズル、22:底面、23:貫通孔、30:タンディッシュ、31:上堰、32:受湯部、33:排湯部 10: vacuum degassing device, 11: vacuum tank, 12: immersion tube, 13: ladle, 14: gas blowing hole, 15: tundish, 16: long nozzle, 17: hot water receiving part, 18: mold, 19: Hot water discharge unit, 20: weir, 21: immersion nozzle, 22: bottom surface, 23: through hole, 30: tundish, 31: upper weir, 32: hot water receiving unit, 33: hot water discharging unit

Claims (1)

大気圧下で吹酸脱炭する一次精錬を行った溶鋼に金属アルミニウムを添加して、溶鋼中の溶存酸素濃度を40ppm以下とした取鍋内の溶鋼に、真空脱ガス装置の一本足形状の浸漬管を浸漬し、前記取鍋の底から不活性ガスを吹き込んで真空脱ガス処理を行う際に、
前記真空脱ガス処理の前半に、前記浸漬管に連通する真空槽内を1.3kPa以下の低圧真空雰囲気、かつ、不活性ガスの吹き込み量を1.3〜4.0NL/分/トンとした上で、15〜45分間の脱ガス処理を行い、
前記真空脱ガス処理の後半に、前記真空槽内を40〜67kPaの高圧真空雰囲気、かつ、不活性ガスの吹き込み量を0.3〜1.1NL/分/トンとした上で、5〜15分間の脱ガス処理を行った後、
溶鋼を受け入れる受湯部と、該溶鋼を連続鋳造する鋳型に注入する排湯部とに仕切る堰が内部に、底部から上方に向けて突出させた状態で設けられ、該堰の高さを溶鋼深さの0.3倍以上0.8倍以下としたタンディッシュに、前記真空脱ガス処理した溶鋼を注湯することを特徴とする高清浄鋼の溶製方法。
One-legged vacuum degassing device for molten steel in a ladle with metallic aluminum added to the molten steel that has been subjected to primary refining with blowing acid decarburization under atmospheric pressure to reduce the dissolved oxygen concentration in the molten steel to 40 ppm or less When immersing the dip tube of, and performing a vacuum degassing process by blowing an inert gas from the bottom of the ladle,
In the first half of the vacuum degassing process, the inside of the vacuum chamber communicating with the immersion tube was set to a low-pressure vacuum atmosphere of 1.3 kPa or less, and the flow rate of the inert gas was set to 1.3 to 4.0 NL / min / ton. Above, perform the degassing process for 15 to 45 minutes,
In the latter half of the vacuum degassing process, the inside of the vacuum chamber is set to a high pressure vacuum atmosphere of 40 to 67 kPa, and the flow rate of the inert gas is set to 0.3 to 1.1 NL / min / ton. After performing the degassing process for
A weir for partitioning the molten steel into a receiving part for receiving molten steel and a drainage part for pouring the molten steel into a mold for continuous casting is provided in a state protruding upward from the bottom, and the height of the weir is set to A method for producing high-purity steel, comprising: pouring the molten steel subjected to the vacuum degassing treatment into a tundish having a depth of 0.3 to 0.8 times the depth.
JP2018134998A 2018-07-18 2018-07-18 Melting method of high-clean steel Active JP7035873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018134998A JP7035873B2 (en) 2018-07-18 2018-07-18 Melting method of high-clean steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018134998A JP7035873B2 (en) 2018-07-18 2018-07-18 Melting method of high-clean steel

Publications (2)

Publication Number Publication Date
JP2020012158A true JP2020012158A (en) 2020-01-23
JP7035873B2 JP7035873B2 (en) 2022-03-15

Family

ID=69170420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018134998A Active JP7035873B2 (en) 2018-07-18 2018-07-18 Melting method of high-clean steel

Country Status (1)

Country Link
JP (1) JP7035873B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112011671A (en) * 2020-09-11 2020-12-01 山东钢铁集团日照有限公司 Method for removing impurities in RH single-link molten steel under vacuum

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102220616B1 (en) * 2019-06-17 2021-02-25 박남희 Sprinkler system for preventing frost

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09287017A (en) * 1996-04-19 1997-11-04 Nippon Steel Corp Method for melting high purity steel
JP2000038613A (en) * 1998-07-21 2000-02-08 Nippon Steel Corp Method for refining molten steel having small quantity of dust under reduced pressure
JP2017166026A (en) * 2016-03-16 2017-09-21 新日鐵住金株式会社 Manufacturing method of high cleanliness steel
JP2018066031A (en) * 2016-10-17 2018-04-26 新日鐵住金株式会社 Manufacturing method of high cleanliness steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09287017A (en) * 1996-04-19 1997-11-04 Nippon Steel Corp Method for melting high purity steel
JP2000038613A (en) * 1998-07-21 2000-02-08 Nippon Steel Corp Method for refining molten steel having small quantity of dust under reduced pressure
JP2017166026A (en) * 2016-03-16 2017-09-21 新日鐵住金株式会社 Manufacturing method of high cleanliness steel
JP2018066031A (en) * 2016-10-17 2018-04-26 新日鐵住金株式会社 Manufacturing method of high cleanliness steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112011671A (en) * 2020-09-11 2020-12-01 山东钢铁集团日照有限公司 Method for removing impurities in RH single-link molten steel under vacuum

Also Published As

Publication number Publication date
JP7035873B2 (en) 2022-03-15

Similar Documents

Publication Publication Date Title
JP6686837B2 (en) Highly clean steel manufacturing method
JP2020012157A (en) Method of smelling steel into high cleaned steel
JP6593233B2 (en) Manufacturing method of high clean steel
JP2020012158A (en) Method of smelling steel into high cleaned steel
JP6428307B2 (en) Manufacturing method of high clean steel
JP6686838B2 (en) Highly clean steel manufacturing method
JP6443200B2 (en) Manufacturing method of high clean steel
JP2005131661A (en) Method and equipment for continuously casting high cleanness steel by tundish
JP7035871B2 (en) Melting method of high-clean steel
JP7035870B2 (en) Melting method of high-clean steel
JPH0765120B2 (en) Method and apparatus for refining molten metal by ultrasonic wave
JP2017128751A (en) Manufacturing method of high cleanliness steel
JP2017171983A (en) Method for reducing coarse inclusion by lf treatment
JP2808197B2 (en) Vacuum refining of molten steel using large diameter immersion tube
JP7234837B2 (en) Continuous casting method
JPH07224317A (en) Production of high cleanliness steel
JP2018188685A (en) Ladle refining method of molten steel
JP2005074460A (en) Continuous casting method of slab of extremely low carbon steel
JP3377325B2 (en) Melting method of high cleanness ultra low carbon steel
JP2915631B2 (en) Vacuum refining of molten steel in ladle
KR20180094235A (en) Method for treatment of molten steel
JPH09241720A (en) Ladle refining apparatus
JP2018109213A (en) Method and apparatus for desulfurizing molten steel
JPH0324221A (en) Continuous vacuum refining method
JP2000202602A (en) Method for removing inclusion in tundish for continuos casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220214

R151 Written notification of patent or utility model registration

Ref document number: 7035873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151