JP2020012157A - Method of smelling steel into high cleaned steel - Google Patents

Method of smelling steel into high cleaned steel Download PDF

Info

Publication number
JP2020012157A
JP2020012157A JP2018134994A JP2018134994A JP2020012157A JP 2020012157 A JP2020012157 A JP 2020012157A JP 2018134994 A JP2018134994 A JP 2018134994A JP 2018134994 A JP2018134994 A JP 2018134994A JP 2020012157 A JP2020012157 A JP 2020012157A
Authority
JP
Japan
Prior art keywords
molten steel
vacuum
inclusions
steel
tundish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018134994A
Other languages
Japanese (ja)
Other versions
JP7035872B2 (en
Inventor
健一郎 宮本
Kenichiro Miyamoto
健一郎 宮本
太一 中江
Taichi Nakae
太一 中江
英二 渡邉
Eiji Watanabe
英二 渡邉
直也 小原
Naoya Ohara
直也 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018134994A priority Critical patent/JP7035872B2/en
Publication of JP2020012157A publication Critical patent/JP2020012157A/en
Application granted granted Critical
Publication of JP7035872B2 publication Critical patent/JP7035872B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

To provide a method of smelling steel into high cleaned steel capable of providing cast high cleaned steel by smelling in which alumina inclusions is reduced rather than prior art.SOLUTION: When a vacuum degassing treatment is conducted by immersing immersion pipes 12 and 13 of an RH vacuum degassing device 10 into a molten steel in a ladle 14 in which dissolved oxygen concentration is 40 ppm or less by adding metal Al to the molten steel which has been subjected to primary refining, and jetting inert gas thereinto, and then circulating the molten steel between a vacuum tank 11 and the ladle 14, a degassing treatment under low pressure vacuum atmosphere of 1.3 kPa or less for 15 to 45 min. is conducted in first half of the vacuum degassing treatment, and a degassing treatment under high pressure vacuum atmosphere of 20 to 40 kPa for 5 to 15 min. in second half, then the vacuum degassing treated molten steel is poured into a tundish 15 in which a dam 20 partitioning a molten metal receiving section 17 and a metal discharging section 19 is arranged inside at a state upwardly projecting from a bottom, and height of the dam 20 is set at 0.3 to 0.8 times of molten steel depth.SELECTED DRAWING: Figure 1

Description

本発明は、高清浄鋼の溶製方法に係り、更に詳細には、Al脱酸による高清浄鋼の溶製方法に関する。   The present invention relates to a method for melting high-purity steel, and more particularly, to a method for melting high-purity steel by Al deoxidation.

転炉等の精錬容器において、大気圧下で吹酸脱炭して製造した一次精錬終了後の溶鋼は、鋼中の溶存酸素濃度が高いため、脱酸処理及び合金添加等による成分調整が施された後に鋳造され、製品としての特性を得ている。
脱酸には、酸素と結合して酸化物を生成する元素の添加が一般に行われており、Al(アルミニウム)の他、Si(珪素)、C(炭素)、Ti(チタン)、Ca(カルシウム)、Zr(ジルコニウム)、REM(希土類金属)等を、脱酸材として用いることが知られている。
このうち、脱酸材として用いるAlは、安価で、かつ、強い脱酸効果があり、これを用いて製造した鋼材は、飲料缶や自動車用部品材料等の用途を含めて使用実績があるため、汎用性が高い。
In a refining vessel such as a converter, molten steel produced by blowing acid decarburization under atmospheric pressure after completion of primary refining has a high dissolved oxygen concentration in the steel. After being cast, it has obtained the characteristics as a product.
For deoxidation, addition of an element that combines with oxygen to form an oxide is generally performed. In addition to Al (aluminum), Si (silicon), C (carbon), Ti (titanium), and Ca (calcium) are used. ), Zr (zirconium), REM (rare earth metal) and the like are known to be used as deoxidizers.
Of these, Al used as a deoxidizing material is inexpensive and has a strong deoxidizing effect, and steel manufactured using this has a proven track record including uses such as beverage cans and automotive parts materials. High versatility.

しかし、Alによる脱酸反応後に生成するアルミナ(Al)は、凝固後の鋼材(連続鋳造して得た鋳片)中に介在物として残存し、その粒径が粗大であると製品品質を著しく損なう原因となる場合がある。例えば、飲料缶の素材として用いる際の製缶加工時の割れの原因となるため、品質の向上を図る上で、アルミナ介在物の悪影響を排除する必要がある。
更に、溶鋼中にアルミナが多量に存在すると、鋳造時において、浸漬ノズル内面へのアルミナの付着や凝集が促進され、鋳型(モールド)内での偏流発生や浸漬ノズル閉塞が生じることに起因して、湯面の変動量が大きくなり、モールドパウダーの混入(パウダー系介在物)による品質劣化の原因となる。
However, alumina (Al 2 O 3 ) generated after the deoxidation reaction with Al remains as inclusions in the solidified steel material (a slab obtained by continuous casting). It may cause the quality to be significantly impaired. For example, it may cause cracks during the can-making process when used as a material for beverage cans, and therefore it is necessary to eliminate the adverse effects of alumina inclusions in order to improve quality.
Furthermore, when a large amount of alumina is present in the molten steel, the adhesion and aggregation of alumina to the inner surface of the immersion nozzle are promoted during casting, resulting in the occurrence of drift in the mold and the clogging of the immersion nozzle. In addition, the fluctuation amount of the molten metal surface becomes large, which causes quality deterioration due to mixing of the mold powder (powder-based inclusions).

そこで、以下の方法が提案されている。
例えば、特許文献1には、RH真空脱ガス装置(環流型脱ガス装置)での脱炭処理に続いて、真空槽内圧力を一定あるいは更に減圧して、Alを添加すること及び取鍋内の溶鋼に対する浸漬管の浸漬深さを浅くすることが記載されている。なお、一般に、処理中に浸漬管の浸漬深さを浅くする操作は行わないが、特許文献1では、この操作によって真空槽内の溶鋼深さを浅くすることができ、この状態で環流処理を行うことにより、非金属介在物の凝集浮上を促進させることが記載されている。具体的には、浸漬管の浸漬深さを浅くする操作により、環流処理時の真空槽内の溶鋼深さを50mm以上100mm未満の範囲とすることが、効率的な介在物除去条件として記載されている。
Therefore, the following method has been proposed.
For example, in Patent Literature 1, following the decarburization treatment in an RH vacuum degassing device (reflux degassing device), the pressure in the vacuum chamber is kept constant or further reduced to add Al, and the ladle is heated. It is described that the immersion depth of the immersion tube in molten steel is reduced. In addition, generally, the operation of reducing the immersion depth of the immersion pipe is not performed during the treatment, but in Patent Document 1, this operation can reduce the depth of the molten steel in the vacuum chamber, and in this state, the reflux treatment is performed. It is described that by doing so, the cohesive floating of nonmetallic inclusions is promoted. Specifically, the operation of reducing the immersion depth of the immersion pipe to set the molten steel depth in the vacuum chamber at the time of the reflux treatment to be in a range of 50 mm or more and less than 100 mm is described as an effective inclusion removal condition. ing.

特許文献2には、RH真空脱ガス装置の真空槽内の真空度を10Torr以下まで低下させて精錬し、次いで真空槽内の真空度を10Torr超に保持し、かつ、真空槽内に窒素ガスを吹き込んで精錬する高窒素鋼の溶製方法が開示されている。具体的には、減圧下の処理が記載され、処理の前半では10Torr以下(低圧真空)で2分以上処理することで介在物の浮上分離を行い、継続する処理の後半では10Torr超(高圧真空)で真空槽内の溶鋼に窒素ガスを吹き付けて加窒処理を19〜20分間行うことが記載されている。なお、後半の処理について、段落[0026]には、「・・・しかも、真空槽内の真空度は低下した状態(雰囲気圧力が高い状態)であるので、溶鋼3の環流量が低下し、非金属介在物の浮上・分離の効果は損なわれる」と記載しており、高圧真空条件では溶鋼の環流量が低下するため、清浄化効果が損なわれることも記載されている。   Patent Document 2 discloses a method of refining by reducing the degree of vacuum in a vacuum chamber of an RH vacuum degassing apparatus to 10 Torr or less, then maintaining the degree of vacuum in the vacuum chamber at more than 10 Torr, and using nitrogen gas in the vacuum chamber. A method for melting high-nitrogen steel by refining by blowing gas is disclosed. Specifically, the process under reduced pressure is described. In the first half of the process, the inclusion is floated and separated by performing the process at 10 Torr or less (low pressure vacuum) for 2 minutes or more. ) Describes that nitrogen gas is blown onto molten steel in a vacuum chamber to perform nitriding treatment for 19 to 20 minutes. In the latter half of the process, the paragraph [0026] states, "... Moreover, since the degree of vacuum in the vacuum chamber has been reduced (atmospheric pressure is high), the ring flow rate of the molten steel 3 has been reduced, The effect of floating / separating nonmetallic inclusions is impaired. "It is also described that the cleaning effect is impaired because the ring flow rate of molten steel is reduced under high-pressure vacuum conditions.

特開2016−40400号公報JP-A-2006-40400 特開2015−42777号公報JP 2015-42777 A

しかしながら、上記した特許文献1に記載の方法では、相応の清浄化効果は得られるが、更なる溶鋼の清浄性向上が望まれている。
また、特許文献2に記載の方法は、特許文献1に記載の方法と同様、例えば10Torr以下の低圧真空下で処理を行うことから相応の清浄化効果は得られる。しかし、加窒処理の条件は、加窒に対して最適化された条件であるため、介在物を浮上除去する観点からは、以下の課題があることを本発明者らは知見した。
上記した20分程度の加窒処理は、処理時間として長時間であるため、低圧真空処理中に槽内に付着した地金の再溶解や耐火物の欠損等の発生頻度が大きくなる。この地金中には種々の粒径の介在物も含まれており、また、耐火物の欠損はそれ自体が外来系の介在物となってしまう。
However, while the method described in Patent Document 1 described above can provide a corresponding cleaning effect, it is desired to further improve the cleanliness of molten steel.
Further, in the method described in Patent Document 2, similar to the method described in Patent Document 1, for example, the treatment is performed under a low-pressure vacuum of 10 Torr or less, so that a corresponding cleaning effect can be obtained. However, the present inventors have found that since the conditions of the nitriding treatment are conditions optimized for the nitriding, there is the following problem from the viewpoint of floating removal of inclusions.
Since the above-described nitriding treatment for about 20 minutes is a long processing time, the frequency of occurrence of redissolution of the metal adhered to the tank during the low-pressure vacuum treatment and loss of the refractory increases. Inclusions of various particle sizes are also included in the metal, and the refractory deficiency itself becomes a foreign inclusion.

本発明はかかる事情に鑑みてなされたもので、従来の技術よりもアルミナ介在物を低減した高清浄鋼を溶製して鋳造することが可能な高清浄鋼の溶製方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a method of smelting high-cleanliness steel capable of smelting and casting high-cleanliness steel with reduced alumina inclusions compared to the conventional technology. Aim.

本発明者らは種々の実験により、RH真空脱ガス装置での環流処理において、真空槽内の溶鋼の湯面と溶鋼を貯蔵する取鍋の底面との距離で決定される溶鋼の環流高さを低くすることで、介在物の凝集の促進効果と介在物の強度の向上効果が得られ、この溶鋼を所定の条件のタンディッシュを用いて連続鋳造することで、溶鋼中の介在物を破壊せずに浮上除去できることを見出した。
本発明は、以上の知見をもとになされたものであり、その要旨は以下の通りである。
The present inventors have conducted various experiments to determine the reflux height of molten steel determined by the distance between the molten steel surface in the vacuum chamber and the bottom surface of the ladle for storing molten steel in the reflux treatment in the RH vacuum degassing apparatus. The effect of accelerating the aggregation of inclusions and improving the strength of inclusions can be obtained by lowering the temperature.The continuous casting of this molten steel using a tundish under specified conditions destroys the inclusions in the molten steel. It has been found that it can be lifted and removed without doing so.
The present invention has been made based on the above findings, and the gist is as follows.

前記目的に沿う本発明に係る高清浄鋼の溶製方法は、大気圧下で吹酸脱炭する一次精錬を行った溶鋼に金属アルミニウムを添加して、溶鋼中の溶存酸素濃度を40ppm以下とした取鍋内の溶鋼に、RH真空脱ガス装置の浸漬管を浸漬して、該浸漬管の上昇管から不活性ガスを吹き込み、前記RH真空脱ガス装置の真空槽と前記取鍋との間で溶鋼を環流させる真空脱ガス処理を行う際に、
前記真空脱ガス処理の前半に、前記真空槽内を1.3kPa以下の低圧真空雰囲気とした上で、15〜45分間の脱ガス処理を行い、
前記真空脱ガス処理の後半に、前記真空槽内を20〜40kPaの高圧真空雰囲気とした上で、5〜15分間の脱ガス処理を行った後、
溶鋼を受け入れる受湯部と、該溶鋼を連続鋳造する鋳型に注入する排湯部とに仕切る堰が内部に、底部から上方に向けて突出させた状態で設けられ、該堰の高さを溶鋼深さの0.3倍以上0.8倍以下としたタンディッシュに、前記真空脱ガス処理した溶鋼を注湯する。
A method for melting high-purity steel according to the present invention according to the present invention, which comprises adding metallic aluminum to molten steel that has been subjected to primary refining by blowing acid decarburization under atmospheric pressure, to reduce the dissolved oxygen concentration in the molten steel to 40 ppm or less. The immersion pipe of the RH vacuum degassing device is immersed in the molten steel in the ladle thus prepared, and an inert gas is blown from the rising pipe of the immersion tube, so that the inert gas is blown between the vacuum tank of the RH vacuum degassing device and the ladle. When performing vacuum degassing to recirculate molten steel at
In the first half of the vacuum degassing process, the inside of the vacuum chamber was set to a low-pressure vacuum atmosphere of 1.3 kPa or less, and then subjected to a degassing process for 15 to 45 minutes.
In the latter half of the vacuum degassing process, after performing a degassing process for 5 to 15 minutes after setting the inside of the vacuum chamber to a high-pressure vacuum atmosphere of 20 to 40 kPa,
A weir partitioning a molten metal receiving part for receiving molten steel and a drainage part for injecting the molten steel into a mold for continuous casting is provided therein in a state protruding upward from the bottom, and the height of the weir is set to The molten steel subjected to the vacuum degassing treatment is poured into a tundish having a depth of 0.3 to 0.8 times the depth.

本発明の第1の特徴は、上記したように、真空脱ガス処理の前半に低圧真空雰囲気で脱ガス処理(脱炭処理)を行い、これに続く処理として、真空脱ガス処理の後半に高圧真空雰囲気で脱ガス処理を行うことにある。この真空脱ガス処理の後半では、真空槽を高圧真空雰囲気に変更し(圧力を上昇させ)、溶鋼の環流量を減らして、溶鋼を狭い範囲で環流させている。このとき、取鍋内の溶鋼に対する浸漬管の浸漬深さは変更する必要がない(一定であってよい)。
一方、前記した特許文献1に記載の方法は、真空槽内の圧力を変更することなく(低圧真空雰囲気のまま)、取鍋内の溶鋼に対する浸漬管の浸漬深さを浅くする特殊な操作を記載しており、本発明のように高圧真空雰囲気とすることは記載されていない。
As described above, the first feature of the present invention is that the degassing process (decarburization process) is performed in a low-pressure vacuum atmosphere in the first half of the vacuum degassing process, and the high-pressure process is performed in the latter half of the vacuum degassing process. Degassing is performed in a vacuum atmosphere. In the latter half of the vacuum degassing process, the vacuum chamber is changed to a high-pressure vacuum atmosphere (pressure is increased) to reduce the annular flow rate of the molten steel so that the molten steel is circulated in a narrow range. At this time, it is not necessary to change the immersion depth of the immersion tube with respect to the molten steel in the ladle (it may be constant).
On the other hand, the method described in Patent Document 1 described above employs a special operation of reducing the immersion depth of the immersion pipe with respect to the molten steel in the ladle without changing the pressure in the vacuum chamber (while maintaining the low-pressure vacuum atmosphere). However, it is not described that a high-pressure vacuum atmosphere is used as in the present invention.

また、特許文献2は、低圧真空下での脱炭処理(本発明の低圧真空雰囲気での脱ガス処理に相当)を記載し、その後に高圧真空下で処理することを記載しているが、この処理は加窒についての記載であり、高清浄化には効果が無い旨を示唆している。
更に、特許文献2は、前記したように、加窒処理時間として19〜20分を記載して、本発明の高圧真空雰囲気での脱ガス処理とは異なる条件を例示し、不活性ガスの吹込み量を、低圧真空雰囲気での脱ガス処理と比較して減少させる高圧真空雰囲気での脱ガス処理では、清浄化効果が損なわれることを実質的に記載している。
Patent Document 2 describes a decarburization process under a low-pressure vacuum (corresponding to a degassing process in a low-pressure vacuum atmosphere of the present invention), and then describes a process under a high-pressure vacuum. This treatment describes nitriding and suggests that it is not effective for high purification.
Further, as described above, Patent Document 2 describes 19 to 20 minutes as the nitriding treatment time, exemplifies a condition different from the degassing treatment in the high-pressure vacuum atmosphere of the present invention, and blows the inert gas. It is substantially described that the cleaning effect is impaired in the degassing treatment in a high-pressure vacuum atmosphere in which the filling amount is reduced as compared with the degassing treatment in a low-pressure vacuum atmosphere.

本発明の第2の特徴は、上記した真空脱ガス処理を行った後の介在物(凝集合体させ強度を向上させた介在物)を、破壊させずに浮上除去する条件、即ち、内部に、底部から上方に向けて突出させた状態で設けられ、その高さを規定した堰が設けられたタンディッシュを用いることにある。   The second feature of the present invention is a condition for floatingly removing the inclusions (inclusions that have been improved in strength by agglomeration and coalescence) after performing the above-described vacuum degassing treatment without breaking, that is, The present invention uses a tundish provided with a weir that is provided so as to protrude upward from the bottom and has a specified height.

本発明に係る高清浄鋼の溶製方法は、真空脱ガス処理の前半に、真空槽内を1.3kPa以下の低圧真空雰囲気とした上で、15〜45分間の脱ガス処理を行い、真空脱ガス処理の後半に、真空槽内を20〜40kPaの高圧真空雰囲気とした上で(圧力を上昇させた上で)、5〜15分間の脱ガス処理を行うことにより、真空脱ガス処理の後半における溶鋼の循環量を前半よりも減らして、溶鋼を狭い範囲で環流させている。これにより、介在物の凝集の促進効果と介在物の強度の向上効果が得られる。
そして、この溶鋼を、受湯部と排湯部とに仕切り、底部から上方に向けて突出した所定高さの堰が設けられたタンディッシュに注湯して連続鋳造するので、上記した真空脱ガス処理により凝集促進と強度向上が図られた溶鋼中の介在物を、その破壊を抑制して浮上除去できる。
従って、従来の技術よりもアルミナ介在物を低減した高清浄鋼を製造でき、特に従来技術では困難であった、粒径(長径)が20μmクラスのアルミナ介在物の個数を低減し、全酸素量(T.[O]値)が概ね15ppm程度又はそれ以下の極めて高度な清浄性の鋼を安定して鋳造することが可能となる。
In the method for melting high-purity steel according to the present invention, in the first half of the vacuum degassing process, the inside of the vacuum chamber is set to a low-pressure vacuum atmosphere of 1.3 kPa or less, and the degassing process is performed for 15 to 45 minutes. In the latter half of the degassing process, the inside of the vacuum chamber is set to a high-pressure vacuum atmosphere of 20 to 40 kPa (after increasing the pressure), and the degassing process is performed for 5 to 15 minutes, so that the vacuum degassing process is performed. The amount of circulation of the molten steel in the second half is reduced from that in the first half, and the molten steel is circulated in a narrow range. Thereby, the effect of promoting the aggregation of inclusions and the effect of improving the strength of the inclusions can be obtained.
Then, the molten steel is partitioned into a hot water receiving portion and a hot water discharging portion, and is poured into a tundish provided with a weir having a predetermined height protruding upward from the bottom portion, and is continuously cast. Inclusions in the molten steel, which have been promoted by coagulation and improved in strength by the gas treatment, can be floated and removed while suppressing their destruction.
Therefore, it is possible to produce high-purity steel with reduced alumina inclusions compared to the conventional technology. In particular, the number of alumina inclusions having a particle diameter (major axis) of 20 μm class, which was difficult with the conventional technology, is reduced, and the total oxygen content is reduced. (T. [O] value) It is possible to cast a highly clean steel having a stability of about 15 ppm or less stably.

本発明の一実施の形態に係る高清浄鋼の溶製方法の説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing of the smelting method of the high clean steel which concerns on one Embodiment of this invention. 同高清浄鋼の溶製方法を適用するタンディッシュの説明図である。It is explanatory drawing of the tundish which applies the smelting method of the said high clean steel. 同タンディッシュの堰の正面図である。It is a front view of the weir of the same tundish. 比較例に係る高清浄鋼の溶製方法を適用するタンディッシュの説明図である。It is explanatory drawing of the tundish which applies the smelting method of the high clean steel which concerns on a comparative example.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
まず、本発明の高清浄鋼の溶製方法に想到した経緯について説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.
First, a description will be given of the circumstances that led to the method for smelting high-purity steel of the present invention.

(本発明者らの新しい知見)
前記した特許文献1、2等の従来技術では、ある程度の清浄化効果は認められるものの、いずれも単一の真空脱ガス工程(RH真空脱ガス装置)のみの処理であるため、例えば、鋼材製品中に残存する粒径20μmクラスの介在物の個数を低減したうえで、極めて厳しい清浄度(例えば、全酸素量(T.[O]値)≦15ppm)が求められる鋼材の製造への対応は困難であった(更なる清浄化に関する記載はなかった)。
(New findings of the present inventors)
In the prior arts described in Patent Documents 1 and 2 and the like, although a certain degree of cleaning effect is recognized, since all of them are only a single vacuum degassing process (RH vacuum degassing device), for example, steel products In response to the reduction of the number of inclusions having a particle diameter of 20 μm class remaining in the steel and the production of steel materials requiring extremely strict cleanliness (for example, total oxygen content (T. [O] value) ≦ 15 ppm), Difficult (no further cleaning was mentioned).

前記した特許文献1は、脱炭処理に続くAl添加後に、取鍋内の溶鋼に対する浸漬管の浸漬深さを浅くする特殊な操作によって、真空槽内の溶鋼深さを50mm以上100mm未満の範囲とすることを記載している。
この方法では、真空槽内の溶鋼量が少なくなり、真空槽内の溶鋼の単位体積当たりの撹拌力が大きくなるため、及び、溶鋼の浮上に要する時間が短くなるため、溶鋼中の介在物の凝集や浮上が促進されるとしている。
しかしながら、真空槽内の少量容積の溶鋼に対する撹拌が激しすぎると、凝集合体した粒子の一部は合体直後に剪断による崩壊を起こすこととなり、崩壊により再度細粒化した粒子が取鍋内へと排出されることとなる。
The above-mentioned Patent Document 1 discloses that the depth of molten steel in a vacuum chamber is in a range of 50 mm or more and less than 100 mm by a special operation of reducing the immersion depth of an immersion pipe in molten steel in a ladle after Al addition following decarburization treatment. Is described.
In this method, the amount of molten steel in the vacuum chamber is reduced, the stirring force per unit volume of the molten steel in the vacuum chamber is increased, and the time required for floating the molten steel is reduced, so that inclusions in the molten steel are reduced. Coagulation and levitation are promoted.
However, if the stirring of the small volume of molten steel in the vacuum chamber is too vigorous, some of the aggregated and coalesced particles will collapse by shearing immediately after coalescence, and the particles that have been refined again by the collapse will enter the ladle. Will be discharged.

更に、当該技術においては、脱炭後に浸漬管の浸漬深さを浅くする特殊な操作により真空槽内の溶鋼深さを調整するため、溶鋼を貯蔵する取鍋の底面から真空槽内の溶鋼の湯面(溶鋼ヘッド)までの距離は脱炭処理時から不変であり、また、真空槽内の圧力は一定(低圧真空のまま)であるため溶鋼の吸い上げ力も一定であり、取鍋内の撹拌(環流速度)も概ね同一となる。
このため、真空槽内と取鍋内を循環する溶鋼について、循環時における高低差は一定であり、循環する単位時間当たりの溶鋼量も一定であるため、本発明者らは、介在物の凝集合体以外に、循環する環流の剪断力による介在物の崩壊が発生して、高清浄化が進みにくいものと考えた。
Furthermore, in the art, in order to adjust the depth of molten steel in the vacuum chamber by a special operation of reducing the immersion depth of the immersion pipe after decarburization, the molten steel in the vacuum chamber is removed from the bottom of the ladle that stores the molten steel. The distance to the molten metal surface (the molten steel head) has not changed since the decarburization process, and the pressure in the vacuum chamber is constant (with low-pressure vacuum), so the suction force of the molten steel is constant, and the stirring in the ladle is constant. (Reflux velocity) is also substantially the same.
Therefore, for molten steel circulating in the vacuum chamber and the ladle, the height difference during circulation is constant, and the amount of molten steel per unit time circulating is also constant. Other than the coalescence, it was considered that the inclusions collapsed due to the shearing force of the circulating reflux, and it was difficult for high purification to proceed.

そこで、本発明では、RH真空脱ガス装置により真空脱ガス処理を行う際に、低圧真空雰囲気での脱炭処理時の介在物の凝集合体や浮上除去の後に、高圧真空雰囲気での処理を設けて溶鋼の撹拌を弱める(高圧真空化)条件を規定した。
即ち、上記した高圧真空雰囲気での処理により、真空槽内の溶鋼の湯面を低下させ、取鍋の底面から真空槽内の溶鋼の湯面までの距離を短縮させて、環流時における溶鋼の循環高さ方向の距離を短くし位置エネルギーを低減することで撹拌エネルギーを弱め、かつ、撹拌を弱める(高圧真空化)ことでも撹拌エネルギーを弱め、これにより、凝集した介在物の崩壊を防止し、介在物の凝集合体を緩やかに促進する。また、一定の時間(5〜15分)処理することで、凝集合体した介在物の強度向上を図る。
Therefore, in the present invention, when performing a vacuum degassing process with an RH vacuum degassing device, a process in a high-pressure vacuum atmosphere is provided after agglomeration and inclusion of inclusions during the decarburization process in a low-pressure vacuum atmosphere and floating removal. The conditions for weakening the stirring of the molten steel (high-pressure vacuum) were specified.
That is, by the above treatment in a high-pressure vacuum atmosphere, the molten steel level in the vacuum chamber is lowered, the distance from the bottom of the ladle to the molten steel level in the vacuum chamber is shortened, and the molten steel level at reflux is reduced. The stirring energy is weakened by shortening the distance in the circulation height direction and reducing the potential energy, and the stirring energy is also weakened by weakening the stirring (high-pressure vacuum), thereby preventing the collapse of aggregated inclusions. Slowly promotes the aggregation and coalescence of inclusions. In addition, by performing the treatment for a certain time (5 to 15 minutes), the strength of the aggregated and integrated inclusion is improved.

(RH真空脱ガス処理による介在物除去に関する従来知見)
図1に示すRH法に用いるRH真空脱ガス装置(以下、単に脱ガス装置とも記載)10は従来公知のものであり、真空槽11と、この真空槽11の下部に連通する2本の浸漬管、即ち、溶鋼の上昇側と下降側の浸漬管12、13とを有するものである。使用にあっては、取鍋14内の溶鋼を、2本の浸漬管12、13を通じて真空槽11内に吸い上げ、上昇側の浸漬管(上昇管)12から不活性ガスの吹き込み(通常、5〜15NL/分/トン程度。溶鋼1トンに対する1分あたりのガス吹込み量)を行い、ガスリフト効果によって上昇側と下降側の浸漬管12、13を通じて、取鍋14と真空槽11との間で循環させる。
(Conventional knowledge on inclusion removal by RH vacuum degassing)
An RH vacuum degassing device (hereinafter, also simply referred to as a degassing device) 10 used in the RH method shown in FIG. 1 is a conventionally known device, and includes a vacuum chamber 11 and two immersion pipes communicating with a lower portion of the vacuum chamber 11. It has pipes, that is, immersion pipes 12 and 13 on the ascending side and the descending side of molten steel. In use, the molten steel in the ladle 14 is sucked up into the vacuum chamber 11 through the two immersion tubes 12 and 13, and an inert gas is blown from the immersion tube (rising tube) 12 on the rising side (normally, 5). 1515 NL / min / ton, gas injection amount per minute per 1 ton of molten steel), and between the ladle 14 and the vacuum tank 11 through the ascending and descending immersion pipes 12 and 13 due to the gas lift effect. To circulate.

真空脱ガス処理における清浄化(介在物除去)は、真空槽11内に吸い上げられた介在物の凝集合体と、凝集物の槽外排出(取鍋内浮上)のバランスにより決まることが知られている。
この介在物の凝集合体に関しては、「介在物粒子が耐火物壁へ衝突することにより、壁面での介在物の凝集が促進される」ことや、「溶鋼流動における乱流成分中での介在物粒子同士の衝突による凝集合体促進」などの現象が唱えられている。
一般的に、真空脱ガス処理においては、溶鋼環流量が増加することにより、ある程度のレベルまでの介在物の凝集合体及び浮上除去が促進されることが知られており、その効果は低圧真空処理で顕著である。
本発明は、上記した処理に加え、脱ガス処理の後半で高圧真空処理を行うことにより、緩やかな凝集合体を促進しつつ、介在物の崩壊防止や強度向上を実現することを特徴としている。このとき、一部の介在物の浮上除去は進行するが、当該精錬処理に続く連続鋳造工程において、タンディッシュにより、最終的に介在物を浮上除去させる特徴も有している。
It is known that the cleaning (removal of inclusions) in the vacuum degassing process is determined by the balance between the aggregation and coalescence of the inclusions sucked into the vacuum chamber 11 and the discharge of the aggregates from the tank (floating in the ladle). I have.
Regarding the agglomeration and coalescence of the inclusions, "inclusion of inclusions on the wall is promoted by the collision of the inclusion particles against the refractory wall" and "inclusion in the turbulent component in the flow of molten steel." Phenomena such as "promotion of agglomeration and coalescence by collision of particles" are proposed.
In general, in vacuum degassing, it is known that increasing the flow rate of molten steel ring promotes agglomeration and flotation of inclusions to a certain level and removal by floating. Is remarkable.
The present invention is characterized in that, in addition to the above-described treatment, by performing a high-pressure vacuum treatment in the latter half of the degassing treatment, gentle aggregation and coalescence are promoted, while preventing the inclusion from collapsing and improving the strength. At this time, the floating removal of some inclusions proceeds, but there is also a feature that the inclusions are finally lifted and removed by a tundish in a continuous casting process following the refining process.

(タンディッシュに関する知見)
連続鋳造においては、連続鋳造速度に対応する量で溶鋼がタンディッシュに注湯されるため(例えば、8トン/分以下程度の量)、タンディッシュ内での溶鋼の流動速度が、取鍋のガス撹拌における溶鋼の撹拌流速よりも小さく、介在物の凝集合体の効果が望みにくい。
しかし、タンディッシュの内部に堰(下堰)を立設し、タンディッシュ内の溶鋼に上昇流を発生させると、タンディッシュ内の湯面に存在するスラグの撹拌効果を抑制した状態で、30〜50μm程度の粒子径を有する溶鋼中の介在物を浮上させ、これをスラグに捕捉させる効果が期待できる。
なお、タンディッシュ内の溶鋼流による剪断力で、30〜50μm程度の粒子径を有する介在物は崩壊し浮上除去が困難となる可能性があるが、上記した高圧真空処理によって30〜50μm程度の介在物は強度が向上されているため、タンディッシュ内での浮上除去が促進される。
(Knowledge on tundish)
In continuous casting, since molten steel is poured into a tundish in an amount corresponding to the continuous casting speed (for example, an amount of about 8 tons / minute or less), the flow speed of the molten steel in the tundish is controlled by the ladle. It is smaller than the stirring flow rate of the molten steel in gas stirring, and it is difficult to expect the effect of inclusion and coalescence of inclusions.
However, when a weir (lower weir) is erected inside the tundish to generate ascending flow in the molten steel in the tundish, the agitating effect of the slag existing on the surface of the molten metal in the tundish is suppressed. The effect of floating inclusions in molten steel having a particle diameter of about 50 μm and trapping them in slag can be expected.
The inclusions having a particle size of about 30 to 50 μm may be disintegrated and become difficult to float and remove due to the shearing force due to the flow of the molten steel in the tundish. Since the inclusions have improved strength, floating removal in the tundish is promoted.

本発明の真空脱ガス処理で得られる30〜50μm程度の粒子径を有する介在物(凝集合体した介在物)は、その強度が向上しているものの、溶鋼の剪断力で破壊する可能性は残るため、内部に下堰を立設したタンディッシュを用いることで、破壊を抑制した介在物の浮上を促進できる。これは、下堰の代わりに、例えばタンディッシュ溶鋼の上部分を仕切る上堰を用いると、溶鋼流が一旦強制的に下降流となった後に、上堰の下流側に回り込む上昇流が強制的に発生して介在物に剪断力が作用する原因となるが、下堰を用いる場合は、このような堰の下流側に回り込む溶鋼流が弱くなる(更には発生しない)ため、剪断力が弱くなる(更には発生しない)ことによるものと考えられる。
従って、タンディッシュの内部に下堰を立設する必要がある。
Inclusions (agglomerated inclusions) having a particle size of about 30 to 50 μm obtained by the vacuum degassing process of the present invention have improved strength, but may still be broken by the shear force of molten steel. Therefore, by using a tundish in which a lower weir is erected inside, the floating of inclusions whose destruction is suppressed can be promoted. This is because, for example, when an upper weir that separates the upper part of a tundish molten steel is used instead of the lower weir, the molten steel flow once becomes a downward flow, and then the upward flow that goes around the downstream side of the upper weir is forced. When the lower weir is used, the flow of molten steel flowing to the downstream side of such a weir becomes weaker (and does not occur), so that the shear force is weaker. This is considered to be caused by (or not to occur).
Therefore, it is necessary to erect a lower weir inside the tundish.

以上の知見に基づき、本発明者らは、従来の技術よりもアルミナ介在物を低減した高清浄鋼を溶製して鋳造することが可能な高清浄鋼の溶製方法に想到した。
即ち、図1、図2に示すように、本発明の一実施の形態に係る高清浄鋼の溶製方法は、大気圧下で吹酸脱炭する一次精錬を行った溶鋼に金属アルミニウムを添加して、溶鋼中の溶存酸素濃度を40ppm以下とした取鍋14内の溶鋼に、RH真空脱ガス装置10を用いて真空脱ガス処理を行う際に、真空脱ガス処理の前半に低圧真空雰囲気で脱ガス処理を行い、引き続き、真空脱ガス処理の後半に高圧真空雰囲気で脱ガス処理を行った後、タンディッシュ15に注湯して連続鋳造する方法である。
以下、詳しく説明する。
Based on the above findings, the present inventors have conceived of a method for producing a high-purity steel capable of producing and casting a high-purity steel in which alumina inclusions are reduced as compared with the conventional technology.
That is, as shown in FIG. 1 and FIG. 2, the method for smelting high-purity steel according to one embodiment of the present invention involves adding metallic aluminum to molten steel that has been subjected to primary refining by blowing acid decarburization under atmospheric pressure. Then, when the molten steel in the ladle 14 in which the dissolved oxygen concentration in the molten steel is set to 40 ppm or less is subjected to the vacuum degassing process using the RH vacuum degassing device 10, a low pressure vacuum atmosphere is provided in the first half of the vacuum degassing process. In this method, a degassing process is performed in a high-pressure vacuum atmosphere in the latter half of the vacuum degassing process, and then the molten metal is poured into the tundish 15 to perform continuous casting.
The details will be described below.

まず、大気圧下で吹酸脱炭する一次精錬(代表例:転炉での吹錬)を行った溶鋼を、取鍋14へ供給する。
通常、吹酸脱炭が行われた溶鋼中の溶存酸素濃度は100〜800ppm程度であるため、脱酸する必要がある。
本発明では、金属アルミニウムを添加する(金属アルミニウムを含むものを添加することも含む)ことで、溶鋼中の溶存酸素濃度を40ppm以下とすることを前提としている。
上記した処理により、溶鋼中にはアルミニウム酸化物(アルミナ:以下、介在物とも記載)が存在することとなる。
First, molten steel that has been subjected to primary refining (typical example: blowing in a converter) for blowing acid decarburization under atmospheric pressure is supplied to the ladle 14.
Usually, the dissolved oxygen concentration in the molten steel subjected to the blowing acid decarburization is about 100 to 800 ppm, so it is necessary to deoxidize.
The present invention is based on the premise that the concentration of dissolved oxygen in molten steel is reduced to 40 ppm or less by adding metallic aluminum (including adding metallic aluminum).
By the above-described processing, aluminum oxide (alumina: hereinafter also referred to as inclusions) is present in the molten steel.

上記した金属アルミニウムの添加により生成した介在物の浮上除去、凝集合体、破壊防止の各処理、即ち、高清浄化処理を行う精錬工程として、脱ガス処理を用いる。
この高清浄化の手段としては、前記したRH真空脱ガス装置10を用いる。
具体的には、図1に示すように、溶鋼中の溶存酸素濃度を40ppm以下とした取鍋14内の溶鋼に、RH真空脱ガス装置10の浸漬管12、13を浸漬して、上昇側の浸漬管12から不活性ガスを吹き込み、真空槽11と取鍋14との間で溶鋼を環流させる真空脱ガス処理を行う。
この真空脱ガス処理は、以下のように、前半と後半に分けて行う。
A degassing process is used as a refining process for performing each of the processes of floating removal, aggregation and coalescence, and prevention of destruction of the inclusions generated by the addition of the metal aluminum, that is, a refining process of performing a high purification process.
The RH vacuum degassing device 10 described above is used as a means for high purification.
Specifically, as shown in FIG. 1, the immersion pipes 12 and 13 of the RH vacuum degassing apparatus 10 are immersed in molten steel in a ladle 14 in which the concentration of dissolved oxygen in the molten steel is set to 40 ppm or less. An inert gas is blown from the immersion pipe 12 to perform a vacuum degassing process for circulating molten steel between the vacuum chamber 11 and the ladle 14.
This vacuum degassing process is performed in the first half and the second half as follows.

まず、真空脱ガス処理の前半(以下、前半処理又は低圧真空処理とも記載)に、真空槽11内を1.3kPa(9.75Torr)以下の低圧真空雰囲気とした上で、15〜45分間の脱ガス処理を行う。
この脱ガス処理の第一目的は、溶鋼の炭素濃度の調整(脱炭)であるため、上記した条件を採用する必要がある。ここで、真空槽11内の圧力が1.3kPaを超える場合、脱炭反応が遅くなって処理時間が遅延するため、溶鋼の温度低下を招く。
なお、上記した真空槽11内の圧力であれば、15〜45分程度の時間で、脱ガス処理を完了させることができる。
First, in the first half of the vacuum degassing process (hereinafter, also referred to as the first half process or the low-pressure vacuum process), the inside of the vacuum chamber 11 is set to a low-pressure vacuum atmosphere of 1.3 kPa (9.75 Torr) or less, and then for 15 to 45 minutes. Degassing is performed.
Since the first purpose of this degassing treatment is to adjust the carbon concentration of the molten steel (decarburization), it is necessary to adopt the above conditions. Here, when the pressure in the vacuum chamber 11 exceeds 1.3 kPa, the decarburization reaction is delayed and the treatment time is delayed, so that the temperature of the molten steel decreases.
Note that the degassing process can be completed in about 15 to 45 minutes with the pressure in the vacuum chamber 11 described above.

上記した処理条件により、介在物の挙動が以下に示すようになることを、本発明者らは知見した。なお、介在物の挙動はその大きさに応じて特徴があるため、代表的な粒径を、70μm以上、30〜50μm、20μm以下、の3種類として記述した。   The present inventors have found that the behavior of the inclusions is as follows according to the above-described processing conditions. In addition, since the behavior of the inclusion has a characteristic according to the size, the representative particle size is described as three types of 70 μm or more, 30 to 50 μm, and 20 μm or less.

(70μm以上)
凝集合体により70μm以上となった介在物は、溶鋼中の流動において慣性力が高いものと推定され、真空11槽と取鍋14を循環する溶鋼流(環流)から外れ、取鍋内を浮上する傾向が強い。
従って、環流に残存することにより、剪断力を受けて破壊することが少ないものと推定される。
(70 μm or more)
Inclusions that have become 70 μm or more due to agglomeration and coalescence are presumed to have a high inertia force in the flow in the molten steel, and fall off from the molten steel flow (reflux) circulating in the vacuum 11 tank and the ladle 14 and float in the ladle. Strong tendency.
Therefore, it is presumed that it is less likely to be broken by receiving a shearing force by remaining in the reflux.

(30〜50μm)
凝集合体により30〜50μmとなった介在物は、粒径の増加(凝集合体)は果たせたものの、顕著な浮上除去は起こりにくく、環流中に残存する傾向が強いものと推定される。
このため、介在物は、剪断力を受けて破壊される傾向があるものと考えられた。
剪断力は、溶鋼流の存在に伴って不可避的に発生するものであり、その発生条件としては、脱ガス処理を長時間行う場合、溶鋼の搬送中に取鍋底からガスが吹き込まれる場合、取鍋からタンディッシュへ溶鋼を落下流で供給する場合、等があげられる。
(30-50 μm)
It is presumed that the inclusions having a particle size of 30 to 50 μm due to the cohesion and coalescence were able to increase the particle size (agglomeration and coalescence), but were not likely to remarkably float off and remain in the reflux.
For this reason, it was considered that the inclusions tended to be broken by the shearing force.
The shear force is inevitably generated with the presence of the molten steel flow. Conditions for the generation include a case where degassing is performed for a long time, a case where gas is blown from the bottom of the ladle during the transfer of the molten steel, and a case where the shear force is generated. For example, when molten steel is supplied from a pot to a tundish in a falling flow.

(20μm以下)
20μm以下の介在物は、凝集合体を経ても30〜50μmと同様に顕著な浮上除去は起こりにくく、環流中に残存する傾向が強いものと考えられる。また、30〜50μmの介在物と同様に、剪断力を受けて破壊される傾向があるものと考えられる。
(20 μm or less)
It is considered that inclusions having a size of 20 μm or less are hardly remarkably floated and removed as in the case of 30 to 50 μm even after agglomeration and coalescence, and have a strong tendency to remain in the reflux. In addition, it is considered that, similarly to the inclusion having a size of 30 to 50 μm, it tends to be broken by receiving a shearing force.

上記した前半処理に引き続き真空脱ガス処理の後半(以下、後半処理又は高圧真空処理とも記載)に、真空槽11内を20kPa(150Torr)以上40kPa(300Torr)以下の高圧真空雰囲気とした上で、5〜15分間の脱ガス処理を行う。これにより、介在物の凝集合体や強度向上(剪断力によって破壊しない程度の強度向上)の作用効果を狙う。
このような脱ガス処理を行うことで、溶鋼の高清浄化の効果が得られることについて、本発明者らは以下の機構が働いたものと考えた。
In the second half of the vacuum degassing treatment (hereinafter also referred to as the latter half treatment or high-pressure vacuum treatment) subsequent to the first half treatment described above, the inside of the vacuum chamber 11 is set to a high-pressure vacuum atmosphere of 20 kPa (150 Torr) or more and 40 kPa (300 Torr) or less. Degas for 5 to 15 minutes. This aims at the effect of coagulation and cohesion of inclusions and an improvement in strength (strength that is not broken by shearing force).
The present inventors considered that the following mechanism worked on the fact that the effect of high purification of molten steel was obtained by performing such a degassing treatment.

脱炭を主目的とする前半処理に比較して後半処理は、高圧真空(20kPa〜40kPa)としており、取鍋14の底面から真空槽11内の溶鋼湯面(溶鋼ヘッド)までの距離(湯面高さ、環流高さ)を短縮できる(取鍋14内の溶鋼に対する浸漬管12、13の浸漬深さは同じ)。これによって、真空槽11内と取鍋14内を循環し環流する溶鋼について、環流の循環高さ方向の距離を低減して位置エネルギーを低減することで、撹拌エネルギーを弱めることができる。
また、高圧真空とすることで、溶鋼の吸い上げ量が低減して環流速度を低減でき、撹拌エネルギーを弱めることもできる。
ここで、真空槽内の圧力が20kPa未満の低圧真空である場合、撹拌エネルギーが多く、凝集合体した介在物の顕著な破壊抑制効果が得られない。一方、真空槽内の圧力が40kPa超の場合、真空槽内に溶鋼を吸い上げること、即ち溶鋼の環流自体が困難となり、処理そのものができない場合がある。
Compared to the first half treatment mainly for decarburization, the latter half treatment uses a high-pressure vacuum (20 kPa to 40 kPa), and the distance from the bottom of the ladle 14 to the molten steel surface (the molten steel head) in the vacuum chamber 11 (Surface height, reflux height) can be shortened (the immersion depth of the immersion pipes 12 and 13 in the molten steel in the ladle 14 is the same). Thus, for molten steel circulating and circulating in the vacuum chamber 11 and the ladle 14, the stirring energy can be reduced by reducing the distance in the circulating height direction of the reflux to reduce the potential energy.
Further, by setting the high-pressure vacuum, the suction rate of the molten steel is reduced, the reflux speed can be reduced, and the stirring energy can be reduced.
Here, when the pressure in the vacuum chamber is a low-pressure vacuum of less than 20 kPa, the stirring energy is large, and a remarkable effect of suppressing the destruction of the aggregated and integrated inclusions cannot be obtained. On the other hand, when the pressure in the vacuum chamber is more than 40 kPa, it becomes difficult to suck up the molten steel into the vacuum chamber, that is, it is difficult to circulate the molten steel itself, so that the treatment itself may not be performed.

上記した真空槽11内の圧力により、凝集合体した介在物の崩壊防止と、環流を継続することによる緩やかな介在物の凝集合体の進行と、凝集合体させた介在物の強度の向上とが得られるが、そのためには、高圧真空下での処理時間を5〜15分とする必要がある。
具体的には、前記した低圧真空処理によって凝集合体した直後の介在物は強度が低く、溶鋼流の剪断力を受けて破壊する場合がある。このため、処理時間は15分以下とするとよい。一方、5分以上の処理であれば、凝集合体した介在物は強度を向上できる。
これにより、後述するタンディッシュでの処理まで介在物の破壊を抑制できる(タンディッシュでの浮上除去が可能となる)。
By the pressure in the vacuum chamber 11 described above, it is possible to prevent the collapse of the aggregated inclusions, to promote the gradual aggregation of the inclusions by continuing the reflux, and to improve the strength of the aggregated inclusions. However, for that purpose, the processing time under high pressure vacuum needs to be 5 to 15 minutes.
Specifically, the inclusion immediately after agglomeration and coalescence by the low-pressure vacuum treatment described above has low strength, and may be broken by the shearing force of the molten steel flow. Therefore, the processing time may be set to 15 minutes or less. On the other hand, if the treatment is performed for 5 minutes or more, the inclusions that have aggregated and coalesced can improve the strength.
Thereby, the destruction of the inclusions can be suppressed until the processing in the tundish described later (floating removal in the tundish becomes possible).

粒径に応じた介在物の挙動は以下の通りである。
(70μm以上)
低圧真空処理時(前半処理時)に概ね取鍋14内での浮上が終了しており、一部溶鋼中に残存したとしても、高圧真空処理時(後半処理時)にも取鍋14内で浮上するものと考えらえる。
(30〜50μm)
低圧真空処理時の凝集合体により30〜50μmとなった介在物は、環流中に残存する傾向が強いが、高圧真空処理時にも溶鋼の環流中に存在し、破壊を抑制しながら強度は向上するものと考えられた。
これによって、介在物は破壊が進行することなく、真空脱ガス処理以降の工程に搬送される溶鋼中に存在することとなるが、この介在物は、後述するタンディッシュでの浮上除去につなげることができる。
The behavior of inclusions according to the particle size is as follows.
(70 μm or more)
The levitation in the ladle 14 is almost completed during the low-pressure vacuum processing (first half processing), and even if a part of the levitation remains in the molten steel, the high-pressure vacuum processing (second-half processing) also stops in the ladle 14. It seems to be emerging.
(30-50 μm)
Inclusions that have become 30 to 50 μm due to agglomeration and coalescence during low-pressure vacuum processing have a strong tendency to remain in the reflux, but also exist in the reflux of molten steel during high-pressure vacuum processing, and the strength is improved while suppressing breakage. Was considered one.
As a result, the inclusions are present in the molten steel conveyed to the process after the vacuum degassing process without the destruction progressing, but these inclusions can be used for floating removal in a tundish described later. Can be.

(20μm以下)
低圧真空処理による凝集合体を経ても20μm以下の介在物は、高圧真空処理において破壊を防止しながら環流処理による凝集合体が緩やかに進み、強度も向上するものと考えられる。
従って、真空脱ガス処理以降に供給される溶鋼は、20μm以下の介在物が減少し、例えば、30〜50μm程度に凝集合体してその強度も向上しているものと考えられ、この介在物がタンディッシュで浮上除去される。
(20 μm or less)
It is considered that the inclusions having a size of 20 μm or less even after being subjected to agglomeration and coalescence by the low-pressure vacuum treatment, the agglomeration and coalescence by the reflux treatment slowly progress while preventing destruction in the high-pressure vacuum treatment, and the strength is improved.
Therefore, in the molten steel supplied after the vacuum degassing treatment, inclusions of 20 μm or less are reduced, and for example, it is considered that the strength is improved by aggregating and coalescing to about 30 to 50 μm, and the inclusions are considered to be increased. It is removed by floating with a tundish.

上記した高圧真空処理を経た溶鋼からは、70μm以上の介在物が浮上除去されている。
また、30〜50μm程度の介在物は、上記した脱ガス処理により従来技術に比べて破壊が発生しなくなったため、その存在割合を高位に維持でき、更に強度も向上させているため、存在割合が高位の状態で、溶鋼をタンディッシュまで搬送できる。
更に、20μm以下の介在物は、上記した精錬処理(一次精錬〜真空脱ガス処理)を経て、破壊を抑制した凝集合体(例えば、30μm以上に凝集合体)が起こり、従来の技術に比べて存在割合を低減させた(あるいは20μm以下の介在物の増加を抑制した)状態で、溶鋼をタンディッシュまで搬送できる。
Inclusions of 70 μm or more are floated and removed from the molten steel that has been subjected to the high-pressure vacuum treatment described above.
In addition, since the inclusions of about 30 to 50 μm do not cause destruction as compared with the prior art due to the above-described degassing treatment, the abundance ratio can be maintained at a high level, and the strength is further improved. In a high state, molten steel can be transported to the tundish.
Further, the inclusions having a size of 20 μm or less are subjected to the above-described refining treatment (primary refining to vacuum degassing treatment) to cause agglomeration and coalescence (for example, agglomeration and coalescence of 30 μm or more) with suppressed destruction. The molten steel can be transported to the tundish with the ratio reduced (or the increase in inclusions of 20 μm or less is suppressed).

続いて、真空脱ガス処理した溶鋼を、取鍋14(溶鋼鍋)から、ロングノズル16を介してタンディッシュ15に注湯する(図2参照)。
タンディッシュ15には、その内部を、取鍋14からロングノズル16を介して溶鋼を受け入れる受湯部17と、溶鋼を連続鋳造する鋳型18に注入する排湯部19とに仕切る堰(下堰)20が設けられている。なお、排湯部19の底部には浸漬ノズル21が設けられ、排湯部19内の溶鋼を浸漬ノズル21を介して鋳型18に注入している。
堰20は、タンディッシュ15の底面22から浴面(湯面)に向かうように(底部から上方へ向けて突出させた状態で)立設されたものであり、その高さを、溶鋼深さ(浴深)H(m)の0.3倍(0.3×H)以上0.8倍(0.8×H)以下にしたものである。なお、溶鋼深さH(m)とは、堰20を配置した部分のタンディッシュ15の底面22から浴面までの距離を意味する。
Subsequently, the molten steel subjected to the vacuum degassing process is poured from a ladle 14 (a molten steel ladle) into a tundish 15 via a long nozzle 16 (see FIG. 2).
The tundish 15 has a weir (lower weir) that divides the inside of the tundish 15 into a hot water receiving portion 17 that receives molten steel from a ladle 14 via a long nozzle 16 and a hot water discharging portion 19 that injects molten steel into a mold 18 for continuous casting. ) 20 are provided. In addition, an immersion nozzle 21 is provided at the bottom of the drainage section 19, and molten steel in the drainage section 19 is injected into the mold 18 via the immersion nozzle 21.
The weir 20 is erected from the bottom surface 22 of the tundish 15 toward the bath surface (water surface) (in a state protruding upward from the bottom), and the height thereof is set to the molten steel depth. (Bath depth) It is 0.3 times (0.3 × H) or more and 0.8 times (0.8 × H) or less of H (m). The molten steel depth H (m) means the distance from the bottom surface 22 of the tundish 15 where the weir 20 is arranged to the bath surface.

前記したように、タンディッシュ内で溶鋼の上昇流を有効に作用させるには、堰の高さを、溶鋼深さの0.3倍以上にする必要がある。一方、堰の高さが溶鋼深さの0.8倍を超える場合、上昇流がタンディッシュ内の湯面スラグを撹拌する可能性があり好ましくない。
従って、堰20の高さを、溶鋼深さH(m)の0.3倍(好ましくは、0.4倍)以上0.8倍(好ましくは、0.7倍)以下にした。
なお、堰は、タンディッシュ内の溶鋼の流れ方向に、間隔を有して複数設置することもできる。この場合、溶鋼の流れ方向に隣り合う堰の間に、溶鋼に下降流を形成するための上堰を設置して、溶鋼の流れを側面視して上下方向にジグザグ状にし、タンディッシュ内での溶鋼の滞留時間を長くすることもできる。
なお、前記した本発明の脱ガス処理に従えば、30〜50μm程度の介在物の強度は向上しているため、堰を複数設置しても従来に比べると介在物の浮上除去を促進できるが、複数の堰を用いる際には下堰を必須とし、上堰の数を抑制すると良い。これは、同じ数の堰を設置する場合であっても、上堰の数が増えるに従って介在物の破壊が進むものと考えられるためである。
As described above, the height of the weir must be 0.3 times or more the depth of the molten steel in order for the upward flow of the molten steel to effectively act in the tundish. On the other hand, when the height of the weir exceeds 0.8 times the molten steel depth, the rising flow may agitate the molten metal slag in the tundish, which is not preferable.
Therefore, the height of the weir 20 is set to 0.3 times (preferably 0.4 times) or more and 0.8 times (preferably 0.7 times) or less of the molten steel depth H (m).
In addition, a plurality of weirs can be installed at intervals in the flow direction of the molten steel in the tundish. In this case, between the weirs adjacent to the flow direction of the molten steel, an upper weir to form a downward flow in the molten steel is installed, and the flow of the molten steel is zigzag in a vertical direction when viewed from the side, and in a tundish. The residence time of the molten steel can be extended.
According to the above-described degassing treatment of the present invention, since the strength of the inclusions of about 30 to 50 μm is improved, even if a plurality of weirs are provided, the floating removal of the inclusions can be promoted as compared with the related art. When using a plurality of weirs, the lower weir is essential and the number of upper weirs should be reduced. This is because even if the same number of weirs are installed, it is considered that the destruction of the inclusion proceeds as the number of upper weirs increases.

また、堰20の底部近傍には、使用後のタンディッシュ15内の残湯の排出を容易にするため、一般に貫通孔23を設けている(図3参照)。この貫通孔23の形状は、正面視して四角形であり、浴面の幅をWとすると、高さ方向の内幅W1が1/5×W、幅方向の内幅W2が1/5×Wである。なお、貫通孔の構成は、残湯の排出を容易にできる構成であれば、特に限定されるものではなく、例えば、高さ方向の内幅W1を1/5×W以下の範囲で、また、幅方向の内幅W2を1/5×W以下の範囲で、それぞれ調整できる。
この貫通孔23は、堰20に2個(1個又は複数個でもよい)形成されているが、この程度の貫通孔23であれば、前記した溶鋼に上昇流を発生させる作用効果は得られる。また、上記した貫通孔と開口面積が同等か、それ以下の貫通孔であれば、タンディッシュ内の溶鋼に上昇流を発生させることが可能であり、本発明の作用効果は得られるものと考えられる。
In addition, a through hole 23 is generally provided near the bottom of the weir 20 in order to easily discharge the remaining hot water in the tundish 15 after use (see FIG. 3). The shape of the through-hole 23 is a square when viewed from the front, and when the width of the bath surface is W, the inner width W1 in the height direction is 5 × W, and the inner width W2 in the width direction is 5 × W. W. The configuration of the through hole is not particularly limited as long as the configuration is such that the remaining hot water can be easily discharged. For example, the inner width W1 in the height direction is set to 1 / × W or less. , The width W2 in the width direction can be adjusted within a range of ×× W or less.
Although two (one or a plurality of) through holes 23 are formed in the weir 20, the effect of generating the upward flow in the molten steel can be obtained with such a through hole 23. . Also, if the opening area is equal to or smaller than the above-mentioned through hole, it is possible to generate an upward flow in the molten steel in the tundish, and it is considered that the operation and effect of the present invention can be obtained. Can be

これにより、タンディッシュ15内の溶鋼に上昇流を発生させ、凝集合体した30〜50μm程度の粒子径を有するアルミナ介在物を浮上させて、これを湯面上のスラグに捕捉させる効果が得られる。
従って、得られた溶鋼を連続鋳造することで、従来よりもアルミナ介在物の個数を低減でき、特に粒径が20μm以下クラスのアルミナ介在物の個数を低減した鋼材(成品)を製造できる。特に、この鋼材は、介在物の含有量規制に対して最も要求の厳しい高炭素系の高清浄鋼を用いた製品においても、介在物に起因する製品不合(製品不良)を著しく低減できることが可能となる。なお、高炭素系の高清浄鋼とは、例えば、炭素含有量が0.1質量%以上の鋼材であり、上限については、高炭素系の高清浄鋼であれば特に限定されるものではないが、常用される鋼材であれば1.5質量%程度である。
As a result, an upward flow is generated in the molten steel in the tundish 15, and the effect of causing the alumina inclusions having a particle diameter of about 30 to 50 μm which have aggregated and coalesced to float and trapping them in the slag on the surface of the molten metal is obtained. .
Therefore, by continuously casting the obtained molten steel, the number of alumina inclusions can be reduced as compared with the conventional method, and in particular, a steel material (finished product) in which the number of alumina inclusions having a particle size of 20 μm or less is reduced can be manufactured. In particular, this steel material can significantly reduce product mismatch (product failure) caused by inclusions even in products using high-carbon high-purity steel, which is the most demanding for inclusion content regulations. Becomes The high-carbon high-purity steel is, for example, a steel material having a carbon content of 0.1% by mass or more, and the upper limit is not particularly limited as long as it is a high-carbon high-purity steel. However, if it is a commonly used steel material, it is about 1.5% by mass.

次に、本発明の作用効果を確認するために行った実施例について説明する。
ここでは、以下の方法を基本として実機水準にて各条件を変更し、鋳造後の定常部鋳片の清浄性の評価を行った。ここで、定常部鋳片とは、鋳造するチャージの連続鋳造長さの概ね中央部分(品質が安定した部分)を意味する。なお、評価対象の鋼種は、高清浄性が求められる棒線材の鋼種(歯車用鋼)とした。
Next, an example performed to confirm the operation and effect of the present invention will be described.
Here, based on the following method, each condition was changed at the actual machine level, and the cleanliness of the slab of the stationary part after casting was evaluated. Here, the slab of the steady portion means a substantially central portion (a portion where the quality is stable) of the continuous casting length of the charge to be cast. The steel type to be evaluated was a steel type (steel for gears) of a rod and wire material requiring high cleanliness.

90トンの転炉にて一次精錬を行った後、取鍋内に出鋼した溶鋼(炭素濃度:0.20〜0.22質量%、溶鋼中溶存酸素濃度:質量割合で100〜300ppm、程度で一定)を、取鍋精錬設備(LF)に移動して取鍋精錬処理を行った。その際、取鍋内の溶鋼に金属アルミニウムを、出鋼時と合計で溶鋼1トンあたり3.0〜9.0kg添加し、脱酸処理とスラグ精錬を行い溶鋼中のT.[O]濃度を30〜40ppmの概ね一定に調整した。
その後、更に取鍋を移動し、RH真空脱ガス装置による真空脱ガス処理を実施した。このとき、RH真空脱ガス装置の浸漬管の溶鋼に対する浸漬深さは、処理の開始から終了まで変更することなく、取鍋に対して一定の高さ位置に保持した。
そして、この取鍋内の溶鋼をタンディッシュに注湯して、連続鋳造を実施した。
試験条件とその結果及び評価を、表1に示す。
Molten steel (carbon concentration: 0.20 to 0.22% by mass, dissolved oxygen concentration in molten steel: 100 to 300 ppm by mass ratio), which was subjected to primary refining in a 90-ton converter and then poured into a ladle. Was moved to a ladle refining facility (LF) to perform a ladle refining process. At that time, a total of 3.0 to 9.0 kg of metallic aluminum per ton of molten steel was added to the molten steel in the ladle at the time of tapping, and deoxidation treatment and slag refining were performed. The [O] concentration was adjusted to be approximately constant at 30 to 40 ppm.
Thereafter, the ladle was further moved, and a vacuum degassing process was performed by the RH vacuum degassing device. At this time, the immersion depth of the immersion pipe of the RH vacuum degassing apparatus with respect to the molten steel was maintained at a constant height relative to the ladle without changing from the start to the end of the treatment.
Then, the molten steel in the ladle was poured into a tundish to perform continuous casting.
Table 1 shows the test conditions, results and evaluation.

Figure 2020012157
Figure 2020012157

表1には、RH真空脱ガス装置による真空脱ガス処理の前半(「脱ガス処理前半」)と後半(「脱ガス処理後半」)の各処理条件(「時間」と「真空槽内圧力」)を記載している。
ここで、実施例1〜7と比較例1〜6には上記した各処理条件を記載しているが、従来法については、真空脱ガス処理の後半の高圧真空処理を行わず、処理終了まで低圧真空雰囲気下(1.3kPa以下)で脱ガス処理を行っているため、真空脱ガス処理の後半については「(処理なし)」と記載している。なお、従来法の真空脱ガス処理後に行う後述するタンディッシュの鋳造条件は実施例1と同一である。
Table 1 shows each processing condition (“time” and “pressure in the vacuum chamber”) of the first half (“first half of degassing”) and the second half (“second half of degassing”) of the vacuum degassing by the RH vacuum degassing apparatus. ).
Here, the processing conditions described above are described in Examples 1 to 7 and Comparative Examples 1 to 6. However, in the conventional method, high-pressure vacuum processing is not performed in the latter half of the vacuum degassing processing, and until the processing is completed. Since the degassing process is performed in a low-pressure vacuum atmosphere (1.3 kPa or less), “(no treatment)” is described in the latter half of the vacuum degassing process. Note that the tundish casting conditions described below, which are performed after the conventional vacuum degassing process, are the same as in Example 1.

「タンディッシュ」の欄には、「堰の形状」と「下堰高さ」を記載している。
ここで、「堰の形状」とは、タンディッシュ内に配置される堰の構造であり、「A」はタンディッシュ内を受湯部と排湯部に仕切る下堰の構造(図2参照)を、「B」は図4に示すタンディッシュ30に設置された上堰31の構造を、それぞれ指している。
上記した下堰は、タンディッシュの底部に立設され、その高さを溶深H(m)に対して0.2×H〜0.9×Hの範囲で設定した堰である。なお、下堰の底部近傍には、使用後のタンディッシュ内の残湯の排出を容易にするため貫通孔を設けている(図3参照)。この貫通孔は、浴面の幅をWとして、高さ方向の内幅W1が1/5×W(0.19m)であり、幅方向の内幅W2が1/5×W(0.19m)である。
また、上堰31は、受湯部32側の溶鋼深さをH(m)とすると、深さ方向の上部部分(湯面部分)「0.3×H(Hの0.3倍)」のみを、受湯部32側と排湯部33側とに区切る堰である。この場合、溶鋼の深さ方向の上部分を流れる溶鋼流は、上堰31に沿って上堰31の下側に回り込む強制的な流れが発生(強制的な下降流が生成した後、上堰31の下側を通過して、強制的な上昇流が生成)する。
In the column “Tundish”, “Shape of weir” and “height of lower weir” are described.
Here, the “shape of the weir” is the structure of a weir arranged in the tundish, and “A” is the structure of a lower weir that partitions the inside of the tundish into a hot water receiving part and a hot water discharging part (see FIG. 2). "B" indicates the structure of the upper weir 31 installed in the tundish 30 shown in FIG.
The lower weir described above is an upright that is set up on the bottom of the tundish and whose height is set in the range of 0.2 × H to 0.9 × H with respect to the melt depth H (m). A through hole is provided in the vicinity of the bottom of the lower weir to facilitate discharge of residual hot water from the used tundish (see FIG. 3). The through-hole has an inner width W1 in the height direction of 5 × W (0.19 m) and an inner width W2 in the width direction of 浴 × W (0.19 m), where W is the width of the bath surface. ).
Further, assuming that the molten steel depth on the side of the hot water receiving portion 32 is H (m), the upper weir 31 has an upper part (a molten metal part) in the depth direction “0.3 × H (0.3 times H)”. This is a weir that separates only the hot water receiving part 32 side and the hot water discharging part 33 side. In this case, the molten steel flow flowing in the upper part of the molten steel in the depth direction generates a forced flow that flows to the lower side of the upper weir 31 along the upper weir 31 (after a forced downward flow is generated, 31, a forced upward flow is generated).

「鋳片の清浄度」の欄には、「20μm以上の介在物検出個数の評価」と「T.[O]」を記載している。
「20μm以上の介在物検出個数の評価」には、定常部鋳片の代表位置から切り出したサンプル(一辺が概ね30mmの矩形)を鏡面研磨後に光学顕微鏡にて調査した、長径が20μm以上のアルミナ介在物個数(単位面積当たりのアルミナ介在物の検出個数に換算)を用いて行った。なお、表1では、従来法の試験条件下で得られた長径20μm以上の介在物検出個数を「1.00」として、他の試験条件で得られた介在物検出個数を指数化し、この指数が1.00以上を「不合格」とし、1.00未満を「合格」として、評価した。
「T.[O]」の欄には、定常部鋳片の代表位置のトータル酸素濃度(全酸素量)を測定し、従来法で得られた20ppm(×評価)を基準として、この基準より高い値となった場合を×評価(不合格)とし、低い値となった場合を○評価(合格)として、それぞれ示した。
In the column of "cleanness of slab", "Evaluation of the number of detected inclusions of 20 μm or more" and "T. [O]" are described.
“Evaluation of the number of detected inclusions of 20 μm or more” includes samples cut from a representative position of a slab of a stationary part (a rectangle with a side of approximately 30 mm) which were mirror-polished and examined by an optical microscope. The number of inclusions (converted to the number of detected alumina inclusions per unit area) was used. In Table 1, the number of detected inclusions having a major axis of 20 μm or more obtained under the test conditions of the conventional method was set to “1.00”, and the number of detected inclusions obtained under other test conditions was converted into an index. Was evaluated as "Fail" when 1.00 or more and "Pass" when less than 1.00.
In the column of “T. [O]”, the total oxygen concentration (total oxygen amount) at a representative position of the slab of the stationary part was measured, and based on 20 ppm (× evaluation) obtained by the conventional method as a standard, The case where the value was high was evaluated as x evaluation (fail), and the case where the value was low was evaluated as o evaluation (pass).

「総合評価」は、「20μm以上の介在物検出個数の評価」の欄が合格評価かつ「T.[O]」の欄が○評価の場合を○評価(合格)、これ以外の評価の組み合わせを×評価(不合格)と判断した。   “Comprehensive evaluation” means “evaluation of the number of detected inclusions of 20 μm or more” in the column of “pass” and “T. [O]” in the column of “○”. Was evaluated as x evaluation (fail).

表1中の実施例1〜7は、RH真空脱ガス装置10を用いて、真空脱ガス処理の前半に低圧真空雰囲気で脱ガス処理(真空槽内圧力:1.3kPa以下、処理時間:15〜45分間)を行い、引き続き、真空脱ガス処理の後半に高圧真空雰囲気で脱ガス処理(真空槽内圧力:20〜40kPa、処理時間:5〜15分間)を行った後、適正範囲の高さ(0.3×H〜0.8×Hの範囲)の下堰を有するタンディッシュへ注湯して、連続鋳造した結果である。
この場合、真空脱ガス処理(低圧真空雰囲気と高圧真空雰囲気での脱ガス処理)による介在物の凝集の促進効果と凝集合体した介在物の強度の向上効果、及び、タンディッシュによる凝集合体したアルミナ介在物の浮上除去効果が得られた。
その結果、表1に示すように、「20μm以上の介在物検出個数の評価」と「T.[O]」は共に良好であり、鋳片の清浄性を良好にできた(総合評価:○)。
In Examples 1 to 7 in Table 1, degassing was performed in a low-pressure vacuum atmosphere in the first half of the vacuum degassing using the RH vacuum degassing apparatus 10 (pressure in the vacuum chamber: 1.3 kPa or less, processing time: 15 After performing a degassing process (pressure in the vacuum chamber: 20 to 40 kPa, processing time: 5 to 15 minutes) in a high-pressure vacuum atmosphere in the latter half of the vacuum degassing process, This is a result of pouring into a tundish having a lower weir (range of 0.3 × H to 0.8 × H) and continuously casting.
In this case, the effect of accelerating the coagulation of inclusions and the effect of improving the strength of the coagulated inclusions by vacuum degassing (degassing treatment in low-pressure vacuum atmosphere and high-pressure vacuum atmosphere), and the coagulation and coagulation of alumina by tundish The floating removal effect of inclusions was obtained.
As a result, as shown in Table 1, both “Evaluation of the number of detected inclusions of 20 μm or more” and “T. [O]” were good, and the cleanliness of the slab was good (overall evaluation: ○). ).

一方、比較例1は、実施例1の条件に対し、脱ガス処理後半の時間の条件を適正範囲の上限値超(20分)とした場合の結果であり、表1に示すように、鋳片中に存在するアルミナ介在物の個数が多くなり、鋳片の清浄性が悪くなった(総合評価:×)。
これは、脱ガス処理後半での処理時間が長くなり過ぎ、凝集した介在物の破壊を招くため、タンディッシュでの介在物の浮上除去が不足したことによるものと考えられる。
On the other hand, Comparative Example 1 is a result when the condition of the second half of the degassing process is set to be more than the upper limit of the appropriate range (20 minutes) with respect to the condition of Example 1, and as shown in Table 1, The number of alumina inclusions present in the piece increased, and the cleanliness of the cast piece deteriorated (overall evaluation: ×).
This is considered to be due to the fact that the treatment time in the latter half of the degassing treatment was too long, and the aggregated inclusions were destroyed, so that the floating removal of the inclusions in the tundish was insufficient.

比較例2は、実施例4の条件に対し、脱ガス処理後半の時間の条件を適正範囲の下限値未満(1分)とした場合の結果であり、表1に示すように、鋳片中に存在するアルミナ介在物の個数が多くなり、鋳片の清浄性が悪くなった(総合評価:×)。
これは、脱ガス処理後半での処理時間が不足し、凝集した介在物の強度向上が不足したため、真空脱ガス処理以降から鋳造までにおいて、凝集した介在物の破壊を招き、タンディッシュでの浮上除去が不足したことによるものと考えられる。
Comparative Example 2 is a result when the condition of the second half of the degassing process was set to be less than the lower limit of the appropriate range (1 minute) with respect to the condition of Example 4, and as shown in Table 1, The number of the alumina inclusions present in the sample increased, and the cleanliness of the cast slab deteriorated (comprehensive evaluation: ×).
This is because the treatment time in the latter half of the degassing process is insufficient, and the strength of the aggregated inclusions is insufficient, so that from the vacuum degassing process to the casting, the aggregated inclusions are destroyed and the tundish rises. It is considered that the removal was insufficient.

比較例3は、実施例1の条件に対し、脱ガス処理後半の真空槽内圧力の条件を適正範囲の下限値未満(10kPa)とした場合の結果であり、表1に示すように、鋳片中に存在するアルミナ介在物の個数が多くなり、鋳片の清浄性が悪くなった(総合評価:×)。
これは、真空槽内の圧力が低くなり過ぎ、脱ガス処理前半に対する、取鍋の底面から真空槽内の溶鋼湯面までの距離の短縮が不足する結果となり、撹拌エネルギーの低減が不足して凝集合体した介在物の破壊を招き、タンディッシュでの浮上除去が不足したことによるものと考えられる。
この比較例3は、前記した特許文献1の条件(真空槽内の低圧真空状態を変更せずに浸漬管の浸漬深さを浅くする条件)に近い条件である。従って、特許文献1の方法では、凝集合体した介在物の破壊を招き、タンディッシュでの浮上除去が不足するものと推察される。
なお、実施例5の条件に対し、脱ガス処理後半の真空槽内圧力の条件を適正範囲の上限値(40kPa)超とすることは、前記したように、真空槽内に溶鋼を吸い上げることが困難となり、処理そのものができない場合があることから、記載していない。
Comparative Example 3 is a result when the condition of the vacuum chamber pressure in the latter half of the degassing process was set to be less than the lower limit of the appropriate range (10 kPa) with respect to the condition of Example 1, and as shown in Table 1, The number of alumina inclusions present in the piece increased, and the cleanliness of the cast piece deteriorated (overall evaluation: ×).
This means that the pressure in the vacuum chamber is too low, and the distance from the bottom of the ladle to the molten steel surface in the vacuum chamber is insufficient for the first half of the degassing process. This is considered to be due to the destruction of the agglomerates and inclusions, resulting in insufficient floating removal in the tundish.
Comparative Example 3 is a condition close to the condition of Patent Document 1 described above (a condition in which the immersion depth of the immersion tube is reduced without changing the low-pressure vacuum state in the vacuum chamber). Therefore, it is presumed that the method of Patent Literature 1 causes the destruction of the inclusions that have aggregated and coalesced, resulting in insufficient floating removal in a tundish.
The condition of the pressure in the vacuum chamber in the latter half of the degassing process that exceeds the upper limit of the appropriate range (40 kPa) with respect to the condition of Example 5 means that molten steel is sucked into the vacuum chamber as described above. It is not described because it becomes difficult and processing itself may not be possible.

比較例4は、実施例6の条件に対し、下堰の高さ位置を適正範囲の下限値未満(0.2×H)にした場合の結果であり、表1に示すように、鋳片中に存在するアルミナ介在物の個数が多くなり、鋳片の清浄性が悪くなった(総合評価:×)。
これは、下堰の高さが低くなり過ぎて、本発明の真空脱ガス処理条件に従う処理を実施しても、タンディッシュでの介在物の浮上除去の際に、上昇流の発生が不足したことによる。
Comparative Example 4 is a result when the height position of the lower weir is set to be less than the lower limit of the appropriate range (0.2 × H) with respect to the conditions of Example 6, and as shown in Table 1, The number of alumina inclusions present therein increased, and the cleanliness of the slab deteriorated (overall rating: ×).
This is because the height of the lower weir becomes too low, and even when the processing according to the vacuum degassing processing conditions of the present invention is performed, the generation of the upward flow is insufficient during the floating removal of the inclusions in the tundish. It depends.

比較例5は、実施例7の条件に対し、下堰の高さ位置を適正範囲の上限値超(0.9×H)にした場合の結果であり、表1に示すように、鋳片中に存在するアルミナ介在物の個数が多くなり、鋳片の清浄性が悪くなった(総合評価:×)。
これは、下堰の高さが高くなり過ぎて、上昇流がタンディッシュ内の湯面スラグを撹拌し、浮上した介在物が再度溶鋼中へ巻き込まれたことによるものと考えられる。
Comparative Example 5 is a result when the height position of the lower weir is set to exceed the upper limit of the appropriate range (0.9 × H) with respect to the conditions of Example 7, and as shown in Table 1, The number of alumina inclusions present therein increased, and the cleanliness of the slab deteriorated (overall rating: ×).
This is considered to be because the height of the lower weir became too high, the rising flow stirred the molten metal slag in the tundish, and the floating inclusions were caught in the molten steel again.

比較例6は、実施例1の条件に対し、タンディッシュの堰の構造が異なる(図4に示す上堰を採用)場合の結果である。
比較例6は従来法に比べて、介在物検出個数は増加し、トータル酸素濃度(T.[O]ppm)も増加する結果が得られている(総合評価:×)。
比較例6では、溶鋼深さ方向の上部分を流れる溶鋼流が、上堰に沿って上堰の下側を回り込む強制的な流れが発生(強制的な下降流が生成した後、上堰の下側を通過して、強制的な上昇流が生成)するため、溶鋼に与える剪断力が実施例1や従来法に比べて大きいものと推察され、凝集した介在物の破壊を招き、タンディッシュでの介在物の浮上除去が不足したものと推察された。
なお、定常部鋳片における20μm以上の介在物検出個数の評価は、実施例1よりも比較例6の方が多い結果が得られているが、タンディッシュで浮上除去しにくい20μm程度の介在物個数も比較例6の方が多い傾向にあった。このため、比較例6の条件である上堰は、介在物を崩壊させる剪断力が実施例1に比べて大きいものと推定された。
Comparative Example 6 is a result in the case where the structure of the tundish weir is different from the condition of Example 1 (the upper weir shown in FIG. 4 is employed).
In Comparative Example 6, the result that the number of detected inclusions increased and the total oxygen concentration (T. [O] ppm) increased compared to the conventional method was obtained (overall evaluation: ×).
In Comparative Example 6, the molten steel flow flowing in the upper portion in the depth direction of the molten steel caused a forced flow to flow around the lower side of the upper weir along the upper weir (after a forced downward flow was generated, As a result, a forced upward flow is generated after passing through the lower side), so that the shearing force applied to the molten steel is presumed to be greater than that in Example 1 or the conventional method. It was presumed that the removal of inclusions at the site was insufficient.
In addition, in the evaluation of the number of detected inclusions of 20 μm or more in the slab of the stationary part, the results of Comparative Example 6 were larger than those of Example 1, but the inclusions of about 20 μm which were difficult to float and remove with a tundish were obtained. Comparative Example 6 also tended to have a larger number. For this reason, it was presumed that the upper weir, which is the condition of Comparative Example 6, had a greater shear force for collapsing the inclusions than that of Example 1.

従来法は、前記したように、実施例1の条件に対し、真空脱ガス処理の後半処理を実施することなく、連続鋳造前に溶鋼を貯蔵した取鍋を連続鋳造機のそば(近傍)で10分間静置する時間を取った後、連続鋳造を実施した場合の結果であり、表1に示すように、鋳片中に存在するアルミナ介在物の個数が多くなり、鋳片の清浄性が悪くなった(総合評価:×)。
これは、凝集合体した介在物の強度向上の効果や、凝集した介在物の崩壊を防ぎながら更に凝集合体を促進する効果が不足し、タンディッシュでの浮上除去が不足したことによるものと考えられる。
In the conventional method, as described above, the ladle storing the molten steel before the continuous casting is placed near (in the vicinity of) the continuous casting machine without performing the second half process of the vacuum degassing process with respect to the conditions of the first embodiment. This is a result of a case where continuous casting was performed after a period of standing for 10 minutes, and as shown in Table 1, the number of alumina inclusions present in the slab increased, and the cleanliness of the slab was reduced. It became worse (overall rating: ×).
This is considered to be due to the lack of the effect of improving the strength of the aggregated inclusions and the effect of further promoting the aggregations while preventing the collapse of the aggregated inclusions, and the insufficient floating removal in the tundish. .

従って、本発明の高清浄鋼の溶製方法を用いることで、従来の技術よりもアルミナ介在物を低減した高清浄鋼を製造でき、特に粒径が20μmクラスのアルミナ介在物の個数を低減し、全酸素量(T.[O]値)が概ね15ppm程度又はそれ以下の極めて高度な清浄性の鋼を安定して鋳造できることを確認できた。   Therefore, by using the method for melting high clean steel of the present invention, it is possible to manufacture high clean steel in which alumina inclusions are reduced as compared with the prior art, and in particular, it is possible to reduce the number of alumina inclusions having a particle size of 20 μm class. It was confirmed that an extremely high cleanliness steel having a total oxygen content (T. [O] value) of about 15 ppm or less can be stably cast.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の高清浄鋼の溶製方法を構成する場合も本発明の権利範囲に含まれる。   As described above, the present invention has been described with reference to the embodiments. However, the present invention is not limited to the configurations described in the above-described embodiments, but includes the matters described in the claims. Other embodiments and modifications that can be considered within the scope are also included. For example, a case where the method for melting high-purity steel of the present invention is configured by combining some or all of the above-described embodiments and modified examples is also included in the scope of the present invention.

10:RH真空脱ガス装置、11:真空槽、12、13:浸漬管、14:取鍋、15:タンディッシュ、16:ロングノズル、17:受湯部、18:鋳型、19:排湯部、20:堰、21:浸漬ノズル、22:底面、23:貫通孔、30:タンディッシュ、31:上堰、32:受湯部、33:排湯部 10: RH vacuum degassing device, 11: vacuum tank, 12, 13: immersion tube, 14: ladle, 15: tundish, 16: long nozzle, 17: hot water receiving part, 18: mold, 19: hot water discharging part , 20: weir, 21: immersion nozzle, 22: bottom surface, 23: through hole, 30: tundish, 31: upper weir, 32: hot water receiving part, 33: hot water discharging part

Claims (1)

大気圧下で吹酸脱炭する一次精錬を行った溶鋼に金属アルミニウムを添加して、溶鋼中の溶存酸素濃度を40ppm以下とした取鍋内の溶鋼に、RH真空脱ガス装置の浸漬管を浸漬して、該浸漬管の上昇管から不活性ガスを吹き込み、前記RH真空脱ガス装置の真空槽と前記取鍋との間で溶鋼を環流させる真空脱ガス処理を行う際に、
前記真空脱ガス処理の前半に、前記真空槽内を1.3kPa以下の低圧真空雰囲気とした上で、15〜45分間の脱ガス処理を行い、
前記真空脱ガス処理の後半に、前記真空槽内を20〜40kPaの高圧真空雰囲気とした上で、5〜15分間の脱ガス処理を行った後、
溶鋼を受け入れる受湯部と、該溶鋼を連続鋳造する鋳型に注入する排湯部とに仕切る堰が内部に、底部から上方に向けて突出させた状態で設けられ、該堰の高さを溶鋼深さの0.3倍以上0.8倍以下としたタンディッシュに、前記真空脱ガス処理した溶鋼を注湯することを特徴とする高清浄鋼の溶製方法。
Metal aluminum is added to molten steel that has been subjected to primary refining in which blowing oxygen is decarburized under atmospheric pressure, and the immersion pipe of the RH vacuum degassing device is placed on molten steel in a ladle that has a dissolved oxygen concentration of 40 ppm or less in molten steel. When immersing, blowing an inert gas from the rising pipe of the immersion pipe, and performing vacuum degassing processing for circulating molten steel between the vacuum tank and the ladle of the RH vacuum degassing apparatus,
In the first half of the vacuum degassing process, the inside of the vacuum chamber was set to a low-pressure vacuum atmosphere of 1.3 kPa or less, and then subjected to a degassing process for 15 to 45 minutes.
In the latter half of the vacuum degassing process, after performing a degassing process for 5 to 15 minutes after setting the inside of the vacuum chamber to a high-pressure vacuum atmosphere of 20 to 40 kPa,
A weir for partitioning the molten steel into a receiving part for receiving molten steel and a drainage part for pouring the molten steel into a mold for continuous casting is provided in a state protruding upward from the bottom, and the height of the weir is set to A method for producing high-purity steel, comprising: pouring the molten steel subjected to the vacuum degassing treatment into a tundish having a depth of 0.3 to 0.8 times the depth.
JP2018134994A 2018-07-18 2018-07-18 Melting method of high-clean steel Active JP7035872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018134994A JP7035872B2 (en) 2018-07-18 2018-07-18 Melting method of high-clean steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018134994A JP7035872B2 (en) 2018-07-18 2018-07-18 Melting method of high-clean steel

Publications (2)

Publication Number Publication Date
JP2020012157A true JP2020012157A (en) 2020-01-23
JP7035872B2 JP7035872B2 (en) 2022-03-15

Family

ID=69170415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018134994A Active JP7035872B2 (en) 2018-07-18 2018-07-18 Melting method of high-clean steel

Country Status (1)

Country Link
JP (1) JP7035872B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109913739A (en) * 2019-03-19 2019-06-21 江阴华西钢铁有限公司 The production technology of the high-quality Q195 continuous casting square billet of aircraft industry fastener
CN113584259A (en) * 2021-08-03 2021-11-02 攀钢集团西昌钢钒有限公司 Method for washing RH furnace
CN114734031A (en) * 2022-04-11 2022-07-12 成都先进金属材料产业技术研究院股份有限公司 Pouring chute of vacuum induction furnace and pouring method of vacuum induction smelting
DE112020006632T5 (en) 2020-01-29 2022-11-17 Denso Corporation heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08291319A (en) * 1995-04-20 1996-11-05 Nippon Steel Corp Method for smelting dead-soft steel
JP2013216927A (en) * 2012-04-05 2013-10-24 Nippon Steel & Sumitomo Metal Corp Method for producing high purity steel material
JP2017166026A (en) * 2016-03-16 2017-09-21 新日鐵住金株式会社 Manufacturing method of high cleanliness steel
JP2018066031A (en) * 2016-10-17 2018-04-26 新日鐵住金株式会社 Manufacturing method of high cleanliness steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08291319A (en) * 1995-04-20 1996-11-05 Nippon Steel Corp Method for smelting dead-soft steel
JP2013216927A (en) * 2012-04-05 2013-10-24 Nippon Steel & Sumitomo Metal Corp Method for producing high purity steel material
JP2017166026A (en) * 2016-03-16 2017-09-21 新日鐵住金株式会社 Manufacturing method of high cleanliness steel
JP2018066031A (en) * 2016-10-17 2018-04-26 新日鐵住金株式会社 Manufacturing method of high cleanliness steel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109913739A (en) * 2019-03-19 2019-06-21 江阴华西钢铁有限公司 The production technology of the high-quality Q195 continuous casting square billet of aircraft industry fastener
DE112020006632T5 (en) 2020-01-29 2022-11-17 Denso Corporation heat exchanger
CN113584259A (en) * 2021-08-03 2021-11-02 攀钢集团西昌钢钒有限公司 Method for washing RH furnace
CN114734031A (en) * 2022-04-11 2022-07-12 成都先进金属材料产业技术研究院股份有限公司 Pouring chute of vacuum induction furnace and pouring method of vacuum induction smelting
CN114734031B (en) * 2022-04-11 2023-12-15 成都先进金属材料产业技术研究院股份有限公司 Pouring launder of vacuum induction furnace and pouring method of vacuum induction smelting

Also Published As

Publication number Publication date
JP7035872B2 (en) 2022-03-15

Similar Documents

Publication Publication Date Title
JP2020012157A (en) Method of smelling steel into high cleaned steel
JP6686837B2 (en) Highly clean steel manufacturing method
JP6428307B2 (en) Manufacturing method of high clean steel
JP6593233B2 (en) Manufacturing method of high clean steel
JP6443200B2 (en) Manufacturing method of high clean steel
JP7035873B2 (en) Melting method of high-clean steel
JP6686838B2 (en) Highly clean steel manufacturing method
KR100723376B1 (en) Vaccum degassing apparatus
JP2005131661A (en) Method and equipment for continuously casting high cleanness steel by tundish
JP7035870B2 (en) Melting method of high-clean steel
JP7238275B2 (en) Continuous casting method
JP7035871B2 (en) Melting method of high-clean steel
JP2017128751A (en) Manufacturing method of high cleanliness steel
JP2017171983A (en) Method for reducing coarse inclusion by lf treatment
JP6911590B2 (en) Steel melting method
JP5096779B2 (en) Method of adding rare earth elements to molten steel
JP7234837B2 (en) Continuous casting method
KR20190061157A (en) Apparatus and method for treating molten steel and method for molten steel treatment
JP2018127683A (en) Method for removing nonmetallic inclusions in molten steel
JPH09122846A (en) Production device for fine gas bubble
JPH09241720A (en) Ladle refining apparatus
KR200278673Y1 (en) Sedimentation pipe for improving refining capacity
JP6897363B2 (en) Steel melting method
JPH07224317A (en) Production of high cleanliness steel
JP2005074460A (en) Continuous casting method of slab of extremely low carbon steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220214

R151 Written notification of patent or utility model registration

Ref document number: 7035872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151