JP2020010056A - Semiconductor light-emitting component - Google Patents

Semiconductor light-emitting component Download PDF

Info

Publication number
JP2020010056A
JP2020010056A JP2019165187A JP2019165187A JP2020010056A JP 2020010056 A JP2020010056 A JP 2020010056A JP 2019165187 A JP2019165187 A JP 2019165187A JP 2019165187 A JP2019165187 A JP 2019165187A JP 2020010056 A JP2020010056 A JP 2020010056A
Authority
JP
Japan
Prior art keywords
semiconductor
layer
semiconductor stack
emitting component
stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019165187A
Other languages
Japanese (ja)
Inventor
チィ チウ,シン
Hsin-Chih Chiu
チィ チウ,シン
アイ チェン,シィ
Shih-I Chen
アイ チェン,シィ
チアン ルー,チィ
Chih-Chiang Lu
チアン ルー,チィ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Epistar Corp
Original Assignee
Epistar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epistar Corp filed Critical Epistar Corp
Priority to JP2019165187A priority Critical patent/JP2020010056A/en
Publication of JP2020010056A publication Critical patent/JP2020010056A/en
Priority to JP2022192702A priority patent/JP2023014297A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

To provide a semiconductor light-emitting component.SOLUTION: A light-emitting component includes an epitaxy layer and a main emission layer. The epitaxy layer includes a first semiconductor layer, a second semiconductor layer, and an active layer located between the first and second semiconductor layers, and radiating a light beam. The main emission layer is located above the first semiconductor layer, and the light beam is transmitted through the main emission surface. The main emission surface has a first emission zone, a second emission zone, and a maximum near field light intensity. The near field light intensity in the first emission zone is between 70%-100% of the maximum near field light intensity, and the near field light intensity in the second emission zone is between 0%-70% of the maximum near field light intensity.SELECTED DRAWING: Figure 2A

Description

本発明は発光ダイオードの構造に関するものである。   The present invention relates to a structure of a light emitting diode.

図1を参照すると、これは従来の発光ダイオード100(Light Emitting Diode、LED)を示す図である。この発光ダイオード100は、基板5bと、エピタキシ構造1bと、2つの電極2及び9bとを含み、該エピタキシ構造1bは、第一半導体積層11bと、活性層10bと、第二半導体積層12bを含む。電極2は、エピタキシ構造1bの上表面に形成されかつ金属導線2bによって外部の電源に電気的に接続され、電極9bは基板5bの下方に形成される。電極2及び9bによって外部電源の電流が活性層10bで流れるとき、活性層10b中のホール(Electron hole)が互いに複合(recombination)し、所定の波長を有する光子が釈放されるので、発光ダイオード100が発光することができる。しかし、発光ダイオードの体積が小さくなればなるほど、エッチングによって結晶粒子の側壁に形成される結晶格子の欠陥により、非輻射複合効果(non−radiative recombination)に関する影響が激しくなり、発光効率が低下する欠点を有している。   FIG. 1 is a view showing a conventional light emitting diode (LED) 100. As shown in FIG. The light emitting diode 100 includes a substrate 5b, an epitaxy structure 1b, and two electrodes 2 and 9b, and the epitaxy structure 1b includes a first semiconductor stack 11b, an active layer 10b, and a second semiconductor stack 12b. . The electrode 2 is formed on the upper surface of the epitaxy structure 1b and is electrically connected to an external power supply by a metal conductor 2b, and the electrode 9b is formed below the substrate 5b. When a current of an external power supply flows through the active layer 10b by the electrodes 2 and 9b, holes (Electron holes) in the active layer 10b recombine with each other and photons having a predetermined wavelength are released. Can emit light. However, as the volume of the light emitting diode becomes smaller, the effect of non-radiative recombination becomes more severe due to defects in the crystal lattice formed on the sidewalls of the crystal grains by etching, and the luminous efficiency decreases. have.

本発明に係る発光部品はエピタキシ層と主出射面を含む。前記エピタキシ層は、第一半導体積層、第二半導体積層及び、第一半導体積層と第二半導体積層との間に位置しかつ光線を放射する活性層を含む。前記主出射面は前記第一半導体積層上に位置し、前記光線は該主出射面を透過する。前記主出射面は、第一出射区域、第二出射区域及び最大近接場光度を有する。前記第一出射区域内の近接場光度は最大近接場光度の70%〜100%の間に入り、前記第二出射区域内の近接場光度は最大近接場光度の0%〜70%の間に入る。   The light emitting component according to the present invention includes an epitaxy layer and a main emission surface. The epitaxy layer includes a first semiconductor stack, a second semiconductor stack, and an active layer located between the first semiconductor stack and the second semiconductor stack and emitting light. The main exit surface is located on the first semiconductor stack, and the light beam transmits through the main exit surface. The main exit surface has a first exit area, a second exit area, and a maximum near-field luminous intensity. The near-field luminosity in the first exit area falls between 70% and 100% of the maximum near-field luminosity, and the near-field luminosity in the second exit area falls between 0% and 70% of the maximum near-field luminosity. enter.

従来の半導体発光ダイオードを示す図である。FIG. 2 is a diagram illustrating a conventional semiconductor light emitting diode. 本発明の第一実施例に係る半導体発光部品を示す図である。FIG. 2 is a view showing a semiconductor light emitting component according to the first embodiment of the present invention. 本発明の第一実施例に係る半導体発光部品を示す図である。FIG. 2 is a view showing a semiconductor light emitting component according to the first embodiment of the present invention. 本実施例の第一実施例に係る半導体発光部品を示す平面図である。FIG. 2 is a plan view showing a semiconductor light emitting component according to a first embodiment of the present embodiment. 本発明の第二実施例に係る半導体発光部品を示す図である。FIG. 6 is a view illustrating a semiconductor light emitting component according to a second embodiment of the present invention. 本発明の第二実施例に係る半導体発光部品を示す図である。FIG. 6 is a view illustrating a semiconductor light emitting component according to a second embodiment of the present invention. 本発明の他の実施例に係る半導体発光部品を示す図である。FIG. 9 is a view illustrating a semiconductor light emitting component according to another embodiment of the present invention.

(第一実施例)
図2Aは、本発明の第一実施例に係る半導体発光部品1Aを示す図である。半導体発光部品1Aはエピタキシ構造1(エピタキシ層とも言う)を含み、このエピタキシ構造1は第一半導体積層11、活性層10及び第二半導体積層12を含む。第一半導体積層11の上表面11aの中心位置には正面電極21が形成され、これは第一半導体積層11と電気接続する。第一半導体積層11の上表面11aにおいて、正面電極21に覆われていない部分が粗い表面であることにより、光取出し率を向上させることができる。第二半導体積層12の下表面12aの中心位置には第二抵抗接触構造22が形成され、この第二抵抗接触構造22は第二半導体積層12と電気接続する。第二半導体積層12の下表面12a上には反射積層3が形成され、この反射積層3は第二半導体積層12と第二抵抗接触構造22を覆う。反射積層3は、第二半導体積層12及び第二抵抗接触構造22を覆う透明導電層31と、透明導電層31を覆う金属反射層32と、金属反射層32を覆う遮断層33とを含む。反射積層3には粘着層4によって接着される導電基板5がある。反射積層3と対向する導電基板5の他側には背面電極9が設置される。正面電極21と背面電極9で電流が流れるとき、活性層10が発光し、活性層10の光線は第一半導体積層11と第二半導体積層12を透過することができる。第一半導体積層11及び第二半導体積層12のバンドギャップが活性層10のバンドギャップより大きいことにより、活性層10が放射する光線に対して第一半導体積層11及び第二半導体積層12の透明度は50%以上になる。この光線は、第一半導体積層11を直接透過してから上表面11a又はエピタキシ構造1の側面1Sから出射するか、或いは反射積層3に反射された後第一半導体積層11の上表面11a又はエピタキシ構造1の側面1Sから出射することができる。
(First embodiment)
FIG. 2A is a view showing a semiconductor light emitting component 1A according to the first embodiment of the present invention. The semiconductor light emitting component 1A includes an epitaxy structure 1 (also referred to as an epitaxy layer). The epitaxy structure 1 includes a first semiconductor stack 11, an active layer 10, and a second semiconductor stack 12. A front electrode 21 is formed at the center of the upper surface 11a of the first semiconductor stack 11, and is electrically connected to the first semiconductor stack 11. Since the portion of the upper surface 11a of the first semiconductor stack 11 that is not covered by the front electrode 21 is a rough surface, the light extraction rate can be improved. A second resistance contact structure 22 is formed at a center position of the lower surface 12 a of the second semiconductor stack 12, and the second resistance contact structure 22 is electrically connected to the second semiconductor stack 12. A reflective stack 3 is formed on the lower surface 12 a of the second semiconductor stack 12 and covers the second semiconductor stack 12 and the second resistance contact structure 22. The reflective laminate 3 includes a transparent conductive layer 31 covering the second semiconductor laminate 12 and the second resistance contact structure 22, a metal reflective layer 32 covering the transparent conductive layer 31, and a blocking layer 33 covering the metal reflective layer 32. The reflective laminate 3 has a conductive substrate 5 bonded by an adhesive layer 4. On the other side of the conductive substrate 5 facing the reflective laminate 3, a back electrode 9 is provided. When a current flows between the front electrode 21 and the back electrode 9, the active layer 10 emits light, and the light of the active layer 10 can pass through the first semiconductor stack 11 and the second semiconductor stack 12. Since the band gap of the first semiconductor stack 11 and the second semiconductor stack 12 is larger than the band gap of the active layer 10, the transparency of the first semiconductor stack 11 and the second semiconductor stack 12 with respect to the light emitted by the active layer 10 is increased. 50% or more. This light beam passes through the first semiconductor stack 11 directly and then exits from the upper surface 11a or the side surface 1S of the epitaxy structure 1, or is reflected by the reflective stack 3 and then is reflected from the upper surface 11a or the epitaxy The light can be emitted from the side surface 1S of the structure 1.

活性層10は多重量子井戸(Multiple Quantum Wells)構造を含む。第一半導体積層11は、第一電気制限層(confining layer)111、第一電気包装層(cladding layer)112、第一電気窓口層(window layer)113及び第一電気接触層(contact layer)114を含む。第二半導体積層12は、第二電気制限層121、第二電気包装層122、第二電気窓口層123及び第二電気接触層124を含む。第一電気包装層112及び第二電気包装層122がそれぞれ提供する電子、ホールは活性層10中で複合して発光し、第一電気包装層112及び第二電気包装層122は活性層10より大きいバンドギャップを有している。第一電気制限層111及び第一電気包装層112は、電子、ホールが活性層10中で複合する確率を向上させ、かつ活性層10より大きいバンドギャップを有している。第一電気窓口層113及び第二電気窓口層123が包装層より小さいシート抵抗(sheet resistance)を有していることにより、電流流れを分散させるとともに活性層10から出射する光線の取出し率を向上させることができる。第一電気接触層114及び第二電気接触層124は、正面電極21及び第二抵抗接触構造22に電気的に接続される。第一半導体積層11、活性層10及び第二半導体積層12の材料はIII−V族半導体材料、例えばAlxInyGa(1-x-y)N又はAlxInyGa(1-x-y)Pを含むことができ、1≦x、y≦1、(x+y)≦1である。第一電気性及び第二電気性は、異なる元素を入れることにより異なる電気性を有する。例えば、第一電気性はn型であり、第二電気性はP型であるか、或いは第一半導体積層11はn型半導体であり、第二半導体積層12はP型半導体であることができる。活性層10の材料によってエピタキシ構造1は、波長が610nm〜650nmである赤色光を放射するか、或いは波長が530nm〜570nmである緑色光を放射するか、或いは波長が440nm〜490nmである青色光を放射することができる。   The active layer 10 has a multiple quantum wells structure. The first semiconductor stack 11 includes a first electrical limiting layer 111, a first electrical packaging layer 112, a first electrical window layer 113, and a first electrical contact layer 114. including. The second semiconductor stack 12 includes a second electrical restriction layer 121, a second electrical packaging layer 122, a second electrical window layer 123, and a second electrical contact layer 124. Electrons and holes provided by the first and second electric wrapping layers 112 and 122, respectively, emit light in a combined manner in the active layer 10, and the first and second electric wrapping layers 112 and 122 are separated from the active layer 10. It has a large band gap. The first electric restriction layer 111 and the first electric packaging layer 112 improve the probability that electrons and holes are combined in the active layer 10 and have a band gap larger than that of the active layer 10. Since the first electrical window layer 113 and the second electrical window layer 123 have a sheet resistance smaller than that of the packaging layer, the current flow is dispersed and the light extraction efficiency of the light emitted from the active layer 10 is improved. Can be done. The first electrical contact layer 114 and the second electrical contact layer 124 are electrically connected to the front electrode 21 and the second resistance contact structure 22. The material of the first semiconductor stack 11, the active layer 10, and the second semiconductor stack 12 may include a III-V semiconductor material, for example, AlxInyGa (1-xy) N or AlxInyGa (1-xy) P, where 1 ≦ x , Y ≦ 1, (x + y) ≦ 1. The first electrical property and the second electrical property have different electrical properties by incorporating different elements. For example, the first electrical property may be n-type and the second electrical property may be p-type, or the first semiconductor stack 11 may be an n-type semiconductor and the second semiconductor stack 12 may be a p-type semiconductor. . Depending on the material of the active layer 10, the epitaxy structure 1 emits red light having a wavelength of 610 nm to 650 nm, emits green light having a wavelength of 530 nm to 570 nm, or blue light having a wavelength of 440 nm to 490 nm. Can be radiated.

図3は、本実施例の半導体発光部品1Aを示す平面図である。半導体発光部品1Aが具備する辺縁8により上表面11aの形状が形成される。本実施例において、上表面11aの形状が円形であるが、他の実施例において、上表面11aの形状は、長方形、不等辺五角形、不等辺六角形などのような多辺形であるか、或いは正方形、正五角形、正六角形などのような正多辺形であることができる。正面電極21と第二抵抗接触構造22がそれぞれ上表面11aと下表面12aの中心に位置することにより、エピタキシ構造1の側面1Sで流れる電流の比率を低減することができる。本実施例において、正面電極21と第二抵抗接触構造22の面積は、第一半導体積層11の上表面11aと第二半導体積層12の下表面12aの面積の約1%〜10%を占める。したがって、正面電極21と第二抵抗接触構造22の面積が大きすぎることによって光線が遮光されることを避け、かつ正面電極21の面積が小さすぎることによって正方向スレッショルド電圧(forward threshold voltage)が非常に高くなりかつ発光効率が低下することを避けることができる。正面電極21と第二抵抗接触構造22の面積が上表面11aと下表面12aの面積の約2%を占めるとき、最高の発光効率を獲得することができる。本実施例において、第一半導体積層11の面積と第二半導体積層12の面積が同様であってもよい。   FIG. 3 is a plan view showing the semiconductor light emitting component 1A of the present embodiment. The shape of the upper surface 11a is formed by the edge 8 of the semiconductor light emitting component 1A. In this embodiment, the shape of the upper surface 11a is circular, but in other embodiments, the shape of the upper surface 11a is a polygon, such as a rectangle, a trapezoidal pentagon, a trapezoidal hexagon, or the like. Alternatively, it may be a regular polygon such as a square, a regular pentagon, a regular hexagon, or the like. Since the front electrode 21 and the second resistance contact structure 22 are located at the centers of the upper surface 11a and the lower surface 12a, respectively, the ratio of the current flowing on the side surface 1S of the epitaxy structure 1 can be reduced. In this embodiment, the area of the front electrode 21 and the second resistance contact structure 22 occupies about 1% to 10% of the area of the upper surface 11a of the first semiconductor stack 11 and the lower surface 12a of the second semiconductor stack 12. Therefore, it is possible to prevent light from being shielded by the area of the front electrode 21 and the second resistance contact structure 22 being too large, and the forward threshold voltage is extremely reduced by the area of the front electrode 21 being too small. And a decrease in luminous efficiency can be avoided. When the area of the front electrode 21 and the second resistance contact structure 22 occupies about 2% of the area of the upper surface 11a and the lower surface 12a, the highest luminous efficiency can be obtained. In this embodiment, the area of the first semiconductor stack 11 and the area of the second semiconductor stack 12 may be the same.

本実施例において、第一半導体積層11の上表面11aの面積が10000μmより小さいか、或いは上表面11aの周辺長さが400μmより小さい。正面電極21は上表面11aの中心に位置し、正面電極21と辺縁8との間の最小距離は50μmより小さい。エピタキシ構造1の厚さが10μmであるとき、エピタキシ構造1の厚さと上表面11aの周辺長さとの間の比率は少なくとも1%以上であるが、好ましくは2.5%以上である。これにより、電流流れがエピタキシ構造1内で容易に散布されることができ、半導体発光部品1Aのエピタキシ構造1の側面1Sで流れる電流の比率を増加させることができる。本実施例において、エピタキシ構造1の総厚さを3μm以下まで薄くするか或いは1μm〜3μmの範囲に入るようにすることができるが、好ましくは1μm〜2μmの範囲に入ることである。エピタキシ構造1の厚さと上表面11aの周辺長さとの間の比率が少なくとも0.75%以下になることにより、半導体発光部品1Aの非輻射複合問題を低減し、発光効率を向上させることができる。第一半導体積層11の総厚さは、活性層10の上方から上表面11aの下方までのエピタキシ構造の総厚さであり、第二半導体積層12の総厚さは、活性層10の下方から下表面12aの上方までのエピタキシ構造の総厚さである。本実施例において、第一半導体積層11の総厚さは、1μmより大きくないが、好ましくは1000Å〜5000Åの範囲に入る。第二半導体積層12の総厚さは1μmより大きくないが、好ましくは1000Å〜5000Åの範囲に入る。第一半導体積層11の第一電気制限層111、第一電気包装層112及び第一電気窓口層113において、各層の厚さは2000Åより大きくないが、好ましくは500Å〜1500Åの範囲に入る。第二半導体積層12の第二電気制限層121、第二電気包装層122及び第二電気窓口層123において、各層の厚さは2000Åより大きくないが、好ましくは500Å〜1500Åの範囲に入る。第一電気接触層114と第二電気接触層124の厚さは2000Åより大きくないが、好ましくは300Å〜1500Åの範囲に入る。第一半導体積層11の総厚さは1000Å〜5000Åの範囲に入る。第一半導体積層11の粗い表面はドライエッチング又はウエットエッチング方法で形成することができるが、エッチングの深さを精密に制御するため、誘導結合プラズマ(Inductively Coupled Plasma、ICP)エッチング方法を採用することができる。この場合、エッチングの深さを精密に制御できないことによって第一半導体積層11の構造を貫通し、漏電経路が形成される問題を避けることができる。第一半導体積層11の粗い表面上において、隣接する頂部と谷部との間の垂直方向の距離は500Å〜3000Åの範囲に入る。 In this embodiment, the area of the upper surface 11a of the first semiconductor stack 11 is smaller than 10000 μm 2 , or the peripheral length of the upper surface 11a is smaller than 400 μm. The front electrode 21 is located at the center of the upper surface 11a, and the minimum distance between the front electrode 21 and the edge 8 is smaller than 50 μm. When the thickness of the epitaxy structure 1 is 10 μm, the ratio between the thickness of the epitaxy structure 1 and the peripheral length of the upper surface 11a is at least 1% or more, preferably 2.5% or more. As a result, the current flow can be easily dispersed in the epitaxy structure 1, and the ratio of the current flowing on the side surface 1S of the epitaxy structure 1 of the semiconductor light emitting component 1A can be increased. In this embodiment, the total thickness of the epitaxy structure 1 can be reduced to 3 μm or less or within the range of 1 μm to 3 μm, but preferably within the range of 1 μm to 2 μm. When the ratio between the thickness of the epitaxy structure 1 and the peripheral length of the upper surface 11a is at least 0.75% or less, the combined non-radiative problem of the semiconductor light emitting component 1A can be reduced and the luminous efficiency can be improved. . The total thickness of the first semiconductor stack 11 is the total thickness of the epitaxy structure from above the active layer 10 to below the upper surface 11a, and the total thickness of the second semiconductor stack 12 is from below the active layer 10 The total thickness of the epitaxy structure up to above the lower surface 12a. In the present embodiment, the total thickness of the first semiconductor stack 11 is not larger than 1 μm, but preferably falls within a range of 1000 ° to 5000 °. The total thickness of the second semiconductor stack 12 is not greater than 1 μm, but preferably falls within the range of 1000-5000 °. In the first electrical limiting layer 111, the first electrical packaging layer 112, and the first electrical window layer 113 of the first semiconductor laminate 11, the thickness of each layer is not larger than 2000 °, but preferably falls within the range of 500 ° to 1500 °. In the second electric limiting layer 121, the second electric packaging layer 122, and the second electric window layer 123 of the second semiconductor laminate 12, the thickness of each layer is not larger than 2000 °, but preferably falls within the range of 500 ° to 1500 °. The thickness of first electrical contact layer 114 and second electrical contact layer 124 is not greater than 2000 °, but preferably falls within the range of 300 ° -1500 °. The total thickness of the first semiconductor stack 11 is in the range of 1000-5000 °. The rough surface of the first semiconductor laminate 11 can be formed by a dry etching or wet etching method, but in order to precisely control the etching depth, an inductively coupled plasma (ICP) etching method is used. Can be. In this case, it is possible to avoid a problem that the depth of the etching cannot be precisely controlled, thereby penetrating the structure of the first semiconductor stack 11 and forming a leakage path. On the rough surface of the first semiconductor stack 11, the vertical distance between adjacent peaks and valleys is in the range of 500-3000 °.

本実施例において、半導体発光部品1Aの上表面11aの形状が円形であり、エピタキシ構造1の側面1SをICPエッチングで形成することが好ましい。エピタキシ構造1の側面1Sが粗い面或いは凸凹な表面であるとき、半導体発光部品1Aのエピタキシ構造1の側面1Sで流れる電流流れの比率が増加し、非輻射複合効果による影響が激しくなることにより、発光効率が低下する。エピタキシ構造1の側面1Sの面積を低減するため、上表面11aの面積がいずれも10000μmである半導体発光部品1Aにおいて、上表面11aの形状が円形でありかつこの周辺長さが354μmであるものを採用することは、上表面11aの形状が正方形でありかつこの周辺長さが400μmであるものを採用することよりよい。すなわち、上表面11aの周辺長さが短ければ短いほど、エピタキシ構造1の側面1Sの面積が低下し、粗い側面1Sの非輻射複合効果を低減することができる。上表面11aの形状が円形であるとき、上表面11aの中心の正面電極21と辺縁8との間の距離が同様であるので、電流の伝播経路をエピタキシ構造1の内部区域に限定することができる。 In this embodiment, it is preferable that the shape of the upper surface 11a of the semiconductor light emitting component 1A is circular, and the side surface 1S of the epitaxy structure 1 is formed by ICP etching. When the side surface 1S of the epitaxy structure 1 is a rough surface or a rough surface, the ratio of the current flow flowing on the side surface 1S of the epitaxy structure 1 of the semiconductor light emitting component 1A increases, and the influence of the non-radiation combined effect becomes severe. The luminous efficiency decreases. In order to reduce the area of the side surface 1S of the epitaxy structure 1, in a semiconductor light emitting component 1A having an upper surface 11a of 10,000 μm 2 , the upper surface 11a has a circular shape and a peripheral length of 354 μm. Is better than that having a square upper surface 11a and a peripheral length of 400 μm. That is, as the peripheral length of the upper surface 11a is shorter, the area of the side surface 1S of the epitaxy structure 1 is reduced, and the non-radiation combined effect of the rough side surface 1S can be reduced. When the shape of the upper surface 11a is circular, the distance between the front electrode 21 at the center of the upper surface 11a and the edge 8 is the same, so that the current propagation path is limited to the inner area of the epitaxy structure 1. Can be.

図3に示されるとおり、半導体発光部品1Aの上表面11aは主出射面を含み、該主出射面は第一出射区域71と第二出射区域72を含む。第一出射区域71は上表面11aの中央部分に位置し、第二出射区域72は第一出射区域71と辺縁8との間に位置する。発光部品1Aを表示パネルなどの小電流の駆動装置、例えば駆動電流密度が0.1〜1A/cmの間にある駆動装置に応用するとき、上表面11aは近接場光度(near−field luminous intensity)分布Sを具備する。最大近接場光度100%は第一出射区域71内に位置し、第一出射区域71内の近接場光度はいずれも最大近接場光度の70%より大きく、第二出射区域72内の近接場光度は最大近接場光度の0%〜70%の間に入るが、好ましくは30%〜70%の間に入る。本実施例において、エピタキシ構造1の厚さが大幅に減少することにより、エピタキシ構造1を通過する電流の間の距離を低減し、電流流れがエピタキシ構造1の内部に集中しかつエピタキシ構造1の辺縁に拡散しないように制限することができる。また、正面電極21と第二抵抗接触構造22がそれぞれ上表面11aと下表面12aの中心に位置することにより、半導体発光部品1Aの上表面11aで流れる電流流れの比率を低減し、かつ非輻射複合効果による発光効率の損失を低減することができる。第一出射区域71の形状は上表面11aの形状と類似する円形であり、第一出射区域71と第二出射区域72の面積比は0.25〜0.45の間に入る。本実施例において、活性層10と主出射面との間には分布ブラッグ反射層(DBR)が設けられていない。 As shown in FIG. 3, the upper surface 11a of the semiconductor light emitting component 1A includes a main emission surface, and the main emission surface includes a first emission area 71 and a second emission area 72. The first emission area 71 is located at the center of the upper surface 11a, and the second emission area 72 is located between the first emission area 71 and the edge 8. When the light emitting component 1A is applied to a driving device of a small current such as a display panel, for example, a driving device having a driving current density of 0.1 to 1 A / cm 2 , the upper surface 11a has a near-field luminous intensity. intensity) distribution S. The maximum near-field intensity of 100% is located in the first exit area 71, the near-field intensity in the first exit area 71 is greater than 70% of the maximum near-field intensity, and the near-field intensity in the second exit area 72. Falls between 0% and 70% of the maximum near-field luminous intensity, but preferably falls between 30% and 70%. In this embodiment, the thickness of the epitaxy structure 1 is greatly reduced, so that the distance between the currents passing through the epitaxy structure 1 is reduced, the current flow is concentrated inside the epitaxy structure 1 and the epitaxy structure 1 It can be restricted so as not to diffuse to the periphery. Further, since the front electrode 21 and the second resistance contact structure 22 are located at the centers of the upper surface 11a and the lower surface 12a, respectively, the ratio of the current flowing on the upper surface 11a of the semiconductor light emitting component 1A is reduced, and The loss of luminous efficiency due to the combined effect can be reduced. The shape of the first emission area 71 is a circle similar to the shape of the upper surface 11a, and the area ratio between the first emission area 71 and the second emission area 72 falls between 0.25 and 0.45. In this embodiment, no distributed Bragg reflection layer (DBR) is provided between the active layer 10 and the main emission surface.

本実施例において、半導体発光部品1Aの上表面11aの面積は10000μmより小さく、かつ上表面11aの形状が正方形であるとき、この周辺長さは400μmより小さく、上表面11aの形状が円形であるとき、この周辺長さは354μmより小さい。外部の電流を流入させるため、幅が約5〜10μmの金属導線で正面電極21を上表面11a上に電気接続させるとき、金属導線に遮蔽される部分が上表面11aの少なくとも2.5%以上を占めるので、正面出射面の面積が低下する。このため、図2Bに示すとおり、半導体発光部品1Aを応用するとき、背面電極9をサブ基板(sub-mount)6B上の電気回路構造、例えば導線構造に電気接続させることにより電気接続を形成し、かつ外部の透明電極6Aを半導体発光部品1Aの電極21に電気接続させることにより外部の電流を流入させることができる。透明電極6Aの材料は、導電性酸化物、例えば、酸化インジウム亜鉛、酸化インジウムスズ、IGZO(indium gallium zinc oxide)、酸化亜鉛又は酸化アルミニウム亜鉛を含む。他の実施例において、複数個の半導体発光部品1Aとサブ基板6B上の電気回路構造とを電気接続させ、かつ透明電極6Aで複数個の半導体発光部品1Aの電極を電気接続させることにより、並列接続、直列接続又はこれらの組合せを形成することができる。本実施例の第一半導体積層11は、例えばn型半導体であり、透明電極6Aと電極21は電気接続する。正面電極21は金属材料で構成され、この材料はゲルマニウム(Ge)、金(Au)、ニッケル(Ni)、ゲルマニウム金合金又はゲルマニウム金ニッケル合金を含む。第二抵抗接触構造22は、エピタキシ構造1の上表面11aと対向する下表面12a上に位置し、かつ第二半導体積層12と電気接続する。第二半導体積層12の第二電気接触層124の不純物濃度は約1*1019/cmであり、第二抵抗接触構造22の材料が透明酸化金属材料、例えば酸化インジウムスズであることにより、第二半導体積層12と電気接続し、かつ光線が第二半導体積層12の下表面12aを透過する比率を増加させることができる。第二抵抗接触構造22の透明導電層31の材料は、酸化インジウム亜鉛、IGZO(indium gallium zinc oxide)、酸化亜鉛又は酸化アルミニウム亜鉛を含むことができるが、これらに限定されるものではない。第二抵抗接触構造22の金属反射層32の材料は、銀(Ag)、アルミニウム(Al)又は金(Au)などの放射光線に対する反射率が95より大きい材料を含むことができる。透明導電層31は、金属反射層32と第二半導体積層12を隔離することにより両者が直接接触することを防止し、かつ半導体発光部品1Aを電流で長く駆動するとき、金属反射層32と第二半導体積層12との間に物理又は化学反応が発生することにより反射率又は導電率が低下することを防止することができる。透明導電層31は、電流を反射積層3に分散させることにより、熱が反射積層3の一部分の区域に集中することを避けることもできる。透明導電層31の屈折率が少なくとも第二半導体積層12の屈折率の0.1以上であるので、両者の間の屈折率の差によって全反射面が形成され、かつ活性層10が放射する一部分の光線を反射することができる。反射されていない他の光線は、透明導電層31を透過した後再び金属反射層32に反射される。金属反射層32上を覆う遮断層33の材料は、チタン(Ti)、プラチナ(Pt)、金(Au)、タングステン(W)、クラム(Cr)、これらの合金又はこれらの積層を含むことができる。遮断層33は、金属反射層32と粘着層4を隔離することにより、金属反射層32の安定性を維持し、金属反射層32と粘着層4との間に物理又は化学反応が発生することにより反射率又は導電率が低下することを防止する。粘着層4は、導電基板5と反射積層3を接合し、かつ電流が反射積層3と導電基板5との間で流れるようにする。粘着層4の材料は、インジウム(In)、チタン(Ti)、スズ(Sn)、金(Au)、これらの合金又はこれらの積層を含むことができる。導電基板5の材料は、シリコン(Si)、ヒ化ガリウム(GaAs)、銅タングステン合金(CuW)、銅(Cu)又はモリブデン(Mo)を含むが、本発明はこれらに限定されるものではない。反射積層3の反対側の導電基板5上に設けられる背面電極9は金(Au)を含み、外部電流を流入させることに用いられる。 In this embodiment, when the area of the upper surface 11a of the semiconductor light emitting component 1A is smaller than 10000 μm 2 and the shape of the upper surface 11a is square, the peripheral length is smaller than 400 μm and the shape of the upper surface 11a is circular. At times, this perimeter is less than 354 μm. When the front electrode 21 is electrically connected to the upper surface 11a with a metal wire having a width of about 5 to 10 μm so that an external current flows, a portion shielded by the metal wire is at least 2.5% of the upper surface 11a. Therefore, the area of the front emission surface decreases. For this reason, as shown in FIG. 2B, when the semiconductor light emitting component 1A is applied, an electric connection is formed by electrically connecting the back electrode 9 to an electric circuit structure on the sub-substrate (sub-mount) 6B, for example, a conductor structure. In addition, by electrically connecting the external transparent electrode 6A to the electrode 21 of the semiconductor light emitting component 1A, an external current can flow. The material of the transparent electrode 6A includes a conductive oxide, for example, indium zinc oxide, indium tin oxide, IGZO (indium gallium zinc oxide), zinc oxide, or aluminum zinc oxide. In another embodiment, the plurality of semiconductor light emitting components 1A and the electric circuit structure on the sub-substrate 6B are electrically connected, and the electrodes of the plurality of semiconductor light emitting components 1A are electrically connected by the transparent electrode 6A, so that the parallel connection is achieved. Connections, series connections, or combinations thereof can be formed. The first semiconductor stack 11 of this embodiment is, for example, an n-type semiconductor, and the transparent electrode 6A and the electrode 21 are electrically connected. The front electrode 21 is made of a metal material, and this material includes germanium (Ge), gold (Au), nickel (Ni), a germanium gold alloy, or a germanium gold nickel alloy. The second resistance contact structure 22 is located on the lower surface 12 a facing the upper surface 11 a of the epitaxy structure 1 and is electrically connected to the second semiconductor stack 12. The impurity concentration of the second electrical contact layer 124 of the second semiconductor stack 12 is about 1 * 10 19 / cm 3 , and the material of the second resistance contact structure 22 is a transparent metal oxide material, for example, indium tin oxide. It is possible to increase the ratio of light transmitted through the lower surface 12 a of the second semiconductor stack 12 while being electrically connected to the second semiconductor stack 12. The material of the transparent conductive layer 31 of the second resistance contact structure 22 may include, but is not limited to, indium zinc oxide, IGZO (indium gallium zinc oxide), zinc oxide, or aluminum zinc oxide. The material of the metal reflective layer 32 of the second resistive contact structure 22 may include a material having a reflectivity of more than 95 for the emitted light, such as silver (Ag), aluminum (Al), or gold (Au). The transparent conductive layer 31 separates the metal reflective layer 32 and the second semiconductor laminate 12 from each other to prevent direct contact therebetween, and when the semiconductor light emitting component 1A is driven for a long time by the current, the metal conductive layer 31 and the second semiconductor laminate 12 are separated from each other. It is possible to prevent a decrease in reflectance or conductivity due to a physical or chemical reaction occurring between the two semiconductor layers 12. The transparent conductive layer 31 can also prevent the heat from being concentrated on a partial area of the reflective stack 3 by dispersing the current to the reflective stack 3. Since the refractive index of the transparent conductive layer 31 is at least 0.1 or more than the refractive index of the second semiconductor laminate 12, the total reflection surface is formed by the difference in the refractive index between the two, and the active layer 10 emits a portion. Of light can be reflected. Other light beams that are not reflected are transmitted through the transparent conductive layer 31 and then reflected again by the metal reflection layer 32. The material of the blocking layer 33 covering the metal reflective layer 32 may include titanium (Ti), platinum (Pt), gold (Au), tungsten (W), crumb (Cr), an alloy thereof, or a laminate thereof. it can. The blocking layer 33 maintains the stability of the metal reflection layer 32 by isolating the metal reflection layer 32 and the adhesive layer 4, so that a physical or chemical reaction occurs between the metal reflection layer 32 and the adhesion layer 4. Prevents the reflectivity or conductivity from decreasing. The adhesive layer 4 joins the conductive substrate 5 and the reflective laminate 3 and allows a current to flow between the reflective laminate 3 and the conductive substrate 5. The material of the adhesive layer 4 can include indium (In), titanium (Ti), tin (Sn), gold (Au), an alloy thereof, or a laminate thereof. The material of the conductive substrate 5 includes silicon (Si), gallium arsenide (GaAs), copper-tungsten alloy (CuW), copper (Cu), or molybdenum (Mo), but the present invention is not limited thereto. . The back electrode 9 provided on the conductive substrate 5 on the opposite side of the reflective laminate 3 contains gold (Au) and is used to allow an external current to flow.

(第二実施例)
図4Aと図4Bは、本発明の第二実施例に係る半導体発光部品1Bと1Cを示す図である。第二実施例と第一実施例の相違点は、第二実施例のエピタキシ構造1が制御層13をことにある。図4Aに示す半導体発光部品1Bにおいて、制御層13は第一半導体積層11中に設けられ、図4Bに示す半導体発光部品1Cにおいて、制御層13は第二半導体積層12中に設けられる。制御層13は、導電区域13bと酸化区域13aを含み、酸化区域13aは、導電区域13bを包囲するとともにエピタキシ構造1の側面1Sを露出させる。導電区域13bの材料は、導電性の(AlxGa1-x)Asであり、0.9<x≦1であることができる。酸化区域13aの材料は、電気絶縁性のAlyOであり、0<y≦1であることができる。導電区域13bと正面電極21及び第二抵抗接触構造22とが垂直方向に重なることにより、電流がエピタキシ構造1の一部分の場所で流れるようにする。図4Cは、本発明の他の実施例に係る半導体発光部品1Dを示す図である。この実施例において、第二抵抗接触構造22は第二半導体積層12の下表面12a全面を覆う。第二抵抗接触構造22は、横方向へ電流を拡散させること以外、第二抵抗接触構造22と金属反射層32を接合することができる。本実施例の第二抵抗接触構造22、透明導電層31及び金属反射層32の材料として、第一実施例と同様な材料を採用することができる。
(Second embodiment)
4A and 4B are views showing semiconductor light emitting components 1B and 1C according to a second embodiment of the present invention. The difference between the second embodiment and the first embodiment is that the epitaxy structure 1 of the second embodiment has a control layer 13. In the semiconductor light emitting component 1B shown in FIG. 4A, the control layer 13 is provided in the first semiconductor stack 11, and in the semiconductor light emitting component 1C shown in FIG. 4B, the control layer 13 is provided in the second semiconductor stack 12. The control layer 13 includes a conductive area 13b and an oxidized area 13a. The oxidized area 13a surrounds the conductive area 13b and exposes the side surface 1S of the epitaxy structure 1. The material of the conductive area 13b is conductive (Al x Ga 1 -x ) As, and 0.9 <x ≦ 1. The material of the oxidized area 13a is electrically insulating Al y O, and 0 <y ≦ 1. The vertical overlap of the conductive area 13b with the front electrode 21 and the second resistive contact structure 22 allows current to flow at a portion of the epitaxy structure 1. FIG. 4C is a view showing a semiconductor light emitting component 1D according to another embodiment of the present invention. In this embodiment, the second resistance contact structure 22 covers the entire lower surface 12 a of the second semiconductor stack 12. The second resistance contact structure 22 can join the second resistance contact structure 22 and the metal reflection layer 32, other than spreading the current in the lateral direction. As the material of the second resistance contact structure 22, the transparent conductive layer 31, and the metal reflection layer 32 of the present embodiment, the same material as that of the first embodiment can be adopted.

以上、これらの発明の実施例を図面により詳述してきたが、実施例はこの発明の例示にしか過ぎないものであるため、この発明は実施例の構成にのみ限定されるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があってもこの発明に含まれることは勿論である。   As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, since the embodiments are merely examples of the present invention, the present invention is not limited only to the configurations of the embodiments. Of course, even if there is a change in the design within a range not departing from the gist of the invention, it is included in the present invention.

1A、1B、1C、1D 半導体発光部品
1 エピタキシ構造
1S 側面
10 活性層
11 第一半導体積層
111 第一電気制限層
112 第一電気包装層
113 第一電気窓口層
114 第一電気接触層
11a 上表面
12 第二半導体積層
121 第二電気制限層
122 第二電気包装層
123 第二電気窓口層
124 第二電気接触層
12a 下表面
13 制御層
13a 酸化区域
13b 導電区域
21 正面電極
22 第二抵抗接触構造
3 反射積層
31 透明導電層
32 金属反射層
33 遮断層
4 粘着層
5 導電基板
6A 透明電極
6B サブ基板
71 第一出射区域
72 第二出射区域
8 辺縁
9 背面電極
S 近接場光度分布
Reference Signs List 1A, 1B, 1C, 1D Semiconductor light emitting component 1 Epitaxy structure 1S Side surface 10 Active layer 11 First semiconductor lamination 111 First electric limiting layer 112 First electric packaging layer 113 First electric window layer 114 First electric contact layer 11a Upper surface DESCRIPTION OF SYMBOLS 12 2nd semiconductor lamination 121 2nd electric restriction layer 122 2nd electric packaging layer 123 2nd electric contact layer 124 2nd electric contact layer 12a Lower surface 13 Control layer 13a Oxidation area 13b Conduction area 21 Front electrode 22 Second resistance contact structure Reference Signs List 3 reflective laminate 31 transparent conductive layer 32 metal reflective layer 33 blocking layer 4 adhesive layer 5 conductive substrate 6A transparent electrode 6B sub-substrate 71 first emission area 72 second emission area 8 edge 9 back electrode S near-field luminous intensity distribution

Claims (10)

半導体発光部品であって、
上表面を有し、かつ、第一半導体積層、第二半導体積層、及び前記第一半導体積層と前記第二半導体積層との間に位置して光線を生成する活性層を含みエピタキシ層と、
前記第一半導体積層の上に位置する正面電極と、
前記エピタキシ層の下に位置する背面電極と、
前記正面電極と前記背面電極との間に位置する接触構造とを含み、
前記正面電極、前記背面電極及び前記接触構造が垂直方向に重なる、半導体発光部品。
A semiconductor light emitting component,
Having an upper surface, and a first semiconductor stack, a second semiconductor stack, and an epitaxy layer including an active layer that generates a light beam located between the first semiconductor stack and the second semiconductor stack,
A front electrode located on the first semiconductor stack,
A back electrode located below the epitaxy layer;
Including a contact structure located between the front electrode and the back electrode,
A semiconductor light emitting component, wherein the front electrode, the back electrode, and the contact structure vertically overlap.
半導体発光部品であって、
上表面を有し、かつ、第一半導体積層、第二半導体積層、及び前記第一半導体積層と前記第二半導体積層との間に位置して光線を生成する活性層を含みエピタキシ層と、
前記エピタキシ層の中に位置し、かつ、導電区域及び前記導電区域を囲む電気絶縁区域を含む制御層と、
前記第一半導体積層の上に位置する正面電極と、
前記エピタキシ層の下に位置する背面電極と、
前記正面電極と前記背面電極との間に位置する接触構造とを含み、
前記導電区域、前記正面電極、前記背面電極及び前記接触構造が垂直方向に重なる、半導体発光部品。
A semiconductor light emitting component,
Having an upper surface, and a first semiconductor stack, a second semiconductor stack, and an epitaxy layer including an active layer that generates a light beam located between the first semiconductor stack and the second semiconductor stack,
A control layer located in the epitaxy layer and including a conductive area and an electrically insulating area surrounding the conductive area;
A front electrode located on the first semiconductor stack,
A back electrode located below the epitaxy layer;
Including a contact structure located between the front electrode and the back electrode,
A semiconductor light emitting component wherein the conductive area, the front electrode, the back electrode, and the contact structure vertically overlap.
半導体発光部品であって、
基板と、
前記基板の上に位置し、かつ上表面を有し、かつ、第一半導体積層、第二半導体積層、及び前記第一半導体積層と前記第二半導体積層との間に位置して光線を生成する活性層を含みエピタキシ層と、
前記第一半導体積層の上に位置する正面電極と、
前記エピタキシ層の下に位置する背面電極と、
前記正面電極と前記背面電極との間に位置する接触構造と、
前記第二半導体積層及び前記接触構造を覆う反射積層とを含み、
前記正面電極、前記背面電極及び前記接触構造が垂直方向に重なる、半導体発光部品。
A semiconductor light emitting component,
Board and
It is located on the substrate and has an upper surface, and generates a light beam located between the first semiconductor stack, the second semiconductor stack, and the second semiconductor stack, and the first semiconductor stack. An epitaxy layer including an active layer;
A front electrode located on the first semiconductor stack,
A back electrode located below the epitaxy layer;
A contact structure located between the front electrode and the back electrode,
Including the second semiconductor stack and a reflective stack that covers the contact structure,
A semiconductor light emitting component, wherein the front electrode, the back electrode, and the contact structure vertically overlap.
前記導電区域の材料は(AlGa1−x)Asであり、かつ0.9<x≦1であり、
前記電気絶縁区域の材料はAlOであり、0<y<1である、請求項2に記載の半導体発光部品。
The material of the conductive area is (Al x Ga 1-x ) As, and 0.9 <x ≦ 1;
The semiconductor light-emitting component according to claim 2, wherein a material of the electrically insulating area is Al y O, and 0 <y <1.
前記接触構造は透明導電材料を含む、請求項1〜4のいずれか一項に記載の半導体発光部品。   The semiconductor light-emitting component according to claim 1, wherein the contact structure includes a transparent conductive material. 前記正面電極は前記上表面の面積の1%〜10%を占める、請求項1〜5のいずれか一項に記載の半導体発光部品。   The semiconductor light-emitting component according to claim 1, wherein the front electrode occupies 1% to 10% of the area of the upper surface. 半導体発光部品であって、
基板と、
前記基板の上に位置し、かつ第一厚さ及び上表面を有するエピタキシ層と
反射積層とを含み、
前記エピタキシ層は、
第一半導体積層と、
前記第一半導体積層の上に位置して光線を生成する活性層と、
前記活性層の上に位置し、かつ第二厚さを有する第二半導体積層とを含み、
前記反射積層は前記第二半導体積層を覆い、
前記上表面は第一周長を有し、かつ前記第一厚さと前記第一周長の比は0.75%以下であり、かつ、第二厚さは1μm以下である、半導体発光部品。
A semiconductor light emitting component,
Board and
An epitaxy layer located on the substrate and having a first thickness and an upper surface, and a reflective stack,
The epitaxy layer,
A first semiconductor stack;
An active layer for generating a light beam located on the first semiconductor stack;
A second semiconductor stack located on the active layer, and having a second thickness,
The reflective stack covers the second semiconductor stack;
The semiconductor light emitting component, wherein the upper surface has a first peripheral length, a ratio of the first thickness to the first peripheral length is 0.75% or less, and a second thickness is 1 μm or less.
半導体発光部品であって、
基板と、
前記基板の上に位置し、かつ第一厚さ及び上表面を有するエピタキシ層と
前記エピタキシ層の中に位置し、かつ、導電区域及び前記導電区域を囲む電気絶縁区域を含む制御層と、
反射積層とを含み、
前記エピタキシ層は、
第一半導体積層と、
前記第一半導体積層の上に位置して光線を生成する活性層と、
前記活性層の上に位置し、かつ第二厚さを有する第二半導体積層とを含み、
前記反射積層は前記第二半導体積層を覆い、
前記第一厚さは3μmより小さく、かつ、第二厚さは1μm以下である、半導体発光部品。
A semiconductor light emitting component,
Board and
An epitaxy layer located on the substrate and having a first thickness and an upper surface; and a control layer located in the epitaxy layer and including a conductive area and an electrically insulating area surrounding the conductive area;
Including a reflective laminate,
The epitaxy layer,
A first semiconductor stack;
An active layer for generating a light beam located on the first semiconductor stack;
A second semiconductor stack located on the active layer, and having a second thickness,
The reflective stack covers the second semiconductor stack;
The semiconductor light emitting component, wherein the first thickness is less than 3 μm and the second thickness is 1 μm or less.
前記反射積層は、
前記第二半導体積層を覆う透明導電層と、
前記透明導電層を覆う金属反射層と、
前記金属反射層を覆う遮断層とを含む、請求項7または8に記載の半導体発光部品。
The reflective laminate,
A transparent conductive layer covering the second semiconductor stack,
A metal reflective layer covering the transparent conductive layer,
The semiconductor light-emitting component according to claim 7, further comprising: a blocking layer that covers the metal reflective layer.
前記活性層が生成する光線は前記上表面を透過し、
前記上表面は、第一出射区域、第二出射区域及び最大近接場光度を有し、
前記第一出射区域内の近接場光度は最大近接場光度の70%〜100%の間にあり、前記第二出射区域内の近接場光度は最大近接場光度の0%〜70%の間にあり、前記第一出射区域の面積と前記第二出射区域の面積の比は0.25〜0.45の間にある、請求項1〜9のいずれか一項に記載の半導体発光部品。
Light rays generated by the active layer are transmitted through the upper surface,
The upper surface has a first exit area, a second exit area, and a maximum near-field luminosity,
The near-field light intensity in the first exit area is between 70% and 100% of the maximum near-field intensity, and the near-field intensity in the second exit area is between 0% and 70% of the maximum near-field intensity. The semiconductor light emitting component according to any one of claims 1 to 9, wherein a ratio of an area of the first emission area to an area of the second emission area is between 0.25 and 0.45.
JP2019165187A 2019-09-11 2019-09-11 Semiconductor light-emitting component Pending JP2020010056A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019165187A JP2020010056A (en) 2019-09-11 2019-09-11 Semiconductor light-emitting component
JP2022192702A JP2023014297A (en) 2019-09-11 2022-12-01 Semiconductor light-emitting component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019165187A JP2020010056A (en) 2019-09-11 2019-09-11 Semiconductor light-emitting component

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015020230A Division JP2016143825A (en) 2015-02-04 2015-02-04 Semiconductor light-emitting component

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022192702A Division JP2023014297A (en) 2019-09-11 2022-12-01 Semiconductor light-emitting component

Publications (1)

Publication Number Publication Date
JP2020010056A true JP2020010056A (en) 2020-01-16

Family

ID=69152444

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019165187A Pending JP2020010056A (en) 2019-09-11 2019-09-11 Semiconductor light-emitting component
JP2022192702A Pending JP2023014297A (en) 2019-09-11 2022-12-01 Semiconductor light-emitting component

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022192702A Pending JP2023014297A (en) 2019-09-11 2022-12-01 Semiconductor light-emitting component

Country Status (1)

Country Link
JP (2) JP2020010056A (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05267715A (en) * 1992-03-24 1993-10-15 Toshiba Corp Semiconductor light-emitting device
JPH08167738A (en) * 1994-12-14 1996-06-25 Sanken Electric Co Ltd Semiconductor light emitting element
JP2003532298A (en) * 2000-04-26 2003-10-28 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Light emitting semiconductor device
JP2007173530A (en) * 2005-12-22 2007-07-05 Hitachi Cable Ltd Semiconductor light-emitting device
US20100208763A1 (en) * 2007-05-04 2010-08-19 Karl Engl Semiconductor Chip and Method for Manufacturing a Semiconductor Chip
JP2011233881A (en) * 2010-04-23 2011-11-17 Lg Innotek Co Ltd Light-emitting device
JP2012028779A (en) * 2010-07-23 2012-02-09 Lg Innotek Co Ltd Light emitting device, light emitting device package comprising the same, and lighting system
JP2012138479A (en) * 2010-12-27 2012-07-19 Toshiba Corp Light-emitting device and method of manufacturing the same
JP2013041861A (en) * 2011-08-11 2013-02-28 Showa Denko Kk Light-emitting diode and method of manufacturing the same
JP2013051255A (en) * 2011-08-30 2013-03-14 Fuji Xerox Co Ltd Light emitting element, light emitting element array, optical writing head and image forming apparatus
JP2013110374A (en) * 2011-10-26 2013-06-06 Sony Corp Light emitting element, method of manufacturing the same, and light emitting device
JP2014239171A (en) * 2013-06-10 2014-12-18 ソニー株式会社 Light-emitting element wafer, light-emitting element, electronic apparatus, and method of manufacturing light-emitting element wafer

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05267715A (en) * 1992-03-24 1993-10-15 Toshiba Corp Semiconductor light-emitting device
JPH08167738A (en) * 1994-12-14 1996-06-25 Sanken Electric Co Ltd Semiconductor light emitting element
JP2003532298A (en) * 2000-04-26 2003-10-28 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Light emitting semiconductor device
JP2007173530A (en) * 2005-12-22 2007-07-05 Hitachi Cable Ltd Semiconductor light-emitting device
US20100208763A1 (en) * 2007-05-04 2010-08-19 Karl Engl Semiconductor Chip and Method for Manufacturing a Semiconductor Chip
JP2011233881A (en) * 2010-04-23 2011-11-17 Lg Innotek Co Ltd Light-emitting device
JP2012028779A (en) * 2010-07-23 2012-02-09 Lg Innotek Co Ltd Light emitting device, light emitting device package comprising the same, and lighting system
JP2012138479A (en) * 2010-12-27 2012-07-19 Toshiba Corp Light-emitting device and method of manufacturing the same
JP2013041861A (en) * 2011-08-11 2013-02-28 Showa Denko Kk Light-emitting diode and method of manufacturing the same
JP2013051255A (en) * 2011-08-30 2013-03-14 Fuji Xerox Co Ltd Light emitting element, light emitting element array, optical writing head and image forming apparatus
JP2013110374A (en) * 2011-10-26 2013-06-06 Sony Corp Light emitting element, method of manufacturing the same, and light emitting device
JP2014239171A (en) * 2013-06-10 2014-12-18 ソニー株式会社 Light-emitting element wafer, light-emitting element, electronic apparatus, and method of manufacturing light-emitting element wafer

Also Published As

Publication number Publication date
JP2023014297A (en) 2023-01-26

Similar Documents

Publication Publication Date Title
JP3821128B2 (en) Semiconductor element
TWI794849B (en) Light-emitting device
US20170200862A1 (en) Small-sized light-emitting diode chiplets and method of fabrication thereof
US10566498B2 (en) Semiconductor light-emitting device
US8847241B2 (en) Surface-emitting semiconductor light-emitting diode
JP2012138479A (en) Light-emitting device and method of manufacturing the same
JP7436611B2 (en) Light emitting device and its manufacturing method
JP2014216470A (en) Semiconductor light-emitting element
TW201836120A (en) Light-emitting device
JP3979378B2 (en) Semiconductor light emitting device
TWI637533B (en) Semiconductor light-emitting device
TWI699906B (en) Semiconductor light-emitting device
WO2020105411A1 (en) Light emitting device and light emitting apparatus
JP2020010056A (en) Semiconductor light-emitting component
KR102211179B1 (en) Semiconductor light-emitting device
JP4255710B2 (en) Semiconductor light emitting device
KR101974584B1 (en) Semiconductor light-emitting device
JP2016143825A (en) Semiconductor light-emitting component
JP2004363572A (en) Semiconductor light emitting device and light emitting diode
CN110379896B (en) Semiconductor light emitting element
WO2010092741A1 (en) Light-emitting diode, and light-emitting diode lamp
JP2013179227A (en) Semiconductor light emitting element
CN113193093B (en) Micro light-emitting element
JP2000174329A (en) Vertical micro resonator light-emitting diode
US20220158413A1 (en) Semiconductor laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220802