JP2019521530A - MULTILAYER CARRIER FILM, METHOD OF TRANSFERRING DEVICE USING THE SAME, AND METHOD OF MANUFACTURING ELECTRONIC PRODUCT MANUFACTURING ELECTRONIC PRODUCT USING THE METHOD - Google Patents

MULTILAYER CARRIER FILM, METHOD OF TRANSFERRING DEVICE USING THE SAME, AND METHOD OF MANUFACTURING ELECTRONIC PRODUCT MANUFACTURING ELECTRONIC PRODUCT USING THE METHOD Download PDF

Info

Publication number
JP2019521530A
JP2019521530A JP2019517749A JP2019517749A JP2019521530A JP 2019521530 A JP2019521530 A JP 2019521530A JP 2019517749 A JP2019517749 A JP 2019517749A JP 2019517749 A JP2019517749 A JP 2019517749A JP 2019521530 A JP2019521530 A JP 2019521530A
Authority
JP
Japan
Prior art keywords
carrier film
hardness
deformation layer
multilayer carrier
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019517749A
Other languages
Japanese (ja)
Other versions
JP6807454B2 (en
Inventor
ジェ−ヒョン キム
ジェ−ヒョン キム
ユン ファンボ
ユン ファンボ
ボンキュン ジャン
ボンキュン ジャン
ワンソプ キム
ワンソプ キム
キュン−シク キム
キュン−シク キム
ハク ジョー リ
ハク ジョー リ
ビュン−イク チェ
ビュン−イク チェ
セウン−モ リ
セウン−モ リ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Institute of Machinery and Materials KIMM
Center for Advanced Meta Materials
Original Assignee
Korea Institute of Machinery and Materials KIMM
Center for Advanced Meta Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Institute of Machinery and Materials KIMM, Center for Advanced Meta Materials filed Critical Korea Institute of Machinery and Materials KIMM
Publication of JP2019521530A publication Critical patent/JP2019521530A/en
Application granted granted Critical
Publication of JP6807454B2 publication Critical patent/JP6807454B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/06Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of natural rubber or synthetic rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/08Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/043Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of natural rubber or synthetic rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4857Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/951Supplying the plurality of semiconductor or solid-state bodies
    • H01L2224/95115Supplying the plurality of semiconductor or solid-state bodies using a roll-to-roll transfer technique

Abstract

本発明の一実施形態による多層型キャリアフィルムは、ベースフィルムと、前記ベースフィルムの一面に一定の厚さに形成され、第1硬度を有しかつ、エネルギーによって前記第1硬度より高い第2硬度を有するように変化する変形層と、前記変形層の一面に一定の厚さに形成され、前記変形層の第1硬度より高い硬度で構成される硬質層とを含み、前記変形層の硬度に反比例する粘着力を有する。A multilayer carrier film according to an embodiment of the present invention has a base film and a second hardness which is formed on one surface of the base film with a constant thickness, has a first hardness, and is higher than the first hardness by energy. A deformable layer that changes so as to have a hard layer formed on one surface of the deformable layer with a constant thickness and having a hardness higher than a first hardness of the deformable layer, the hardness of the deformable layer Has an inversely proportional adhesive strength.

Description

本発明は、多層型キャリアフィルムおよびこれを用いた素子の転写方法とこの方法を用いて電子製品を製造する電子製品の製造方法に関し、より詳しくは、半導体、ディスプレイ、太陽電池、センサなどに装着される素子をソース基板からターゲット基板に転写するための多層型キャリアフィルムおよびこれを用いた素子の転写方法とこの方法を用いて電子製品を製造する電子製品の製造方法に関する。   The present invention relates to a multilayer carrier film, a method of transferring an element using the same, and a method of manufacturing an electronic product using the method to manufacture an electronic product, more specifically, to a semiconductor, a display, a solar cell, a sensor, etc. Multi-layered carrier film for transferring a device to be transferred from a source substrate to a target substrate, a method of transferring a device using the same, and a method of manufacturing an electronic product using this method.

電子部品は、印刷回路基板(PCB:Printed Circuit Board)に多様な回路素子を搭載する工程により製造される。例えば、コンピュータに用いられるメモリカードは、多数のメモリ素子を基板に実装する工程により製造され、最近、注目されているマイクロLEDを用いたディスプレイは、多数のLED素子をモジュール化された基板に配列した形態で製造されている。
従来は、素子を基板のソルダー上に転写するために、真空チャックを用いてバラ単位で転写する方法を使用した。この時、使用する装備はdie bonderあるいはflip
chip bonderといい、真空チャックを装着したヘッド1つが秒あたり1〜3個の素子を基板上に転写することができる。
Electronic components are manufactured by a process of mounting various circuit elements on a printed circuit board (PCB). For example, memory cards used in computers are manufactured by a process of mounting a large number of memory devices on a substrate, and a display using a micro LED, which has recently been attracting attention, is an array of a large number of LED devices on a modularized substrate. It is manufactured in the form of
Conventionally, in order to transfer the device onto the solder of the substrate, a method of transferring in bulk units using a vacuum chuck has been used. At this time, the equipment used is die bonder or flip
It is called a chip bonder, and one head equipped with a vacuum chuck can transfer 1 to 3 elements per second onto a substrate.

最近、ナノ技術が発展し、HD、UHD、SUHDなどの、画素数が非常に多いディスプレイパネルが求められるにつれ、マイクロLED素子の大きさはますます小さくなり、素子の個数は大きく増加している。したがって、より高い生産性のために、多数の微小素子を一度に基板に転写できる技術が求められるのである。
従来の真空チャックを用いた転写方法は、素子の幅が0.5mm未満か、素子の厚さが20μm未満の場合、真空チャックの設計的限界および真空吸着(suction)による素子損傷の問題によって素子を基板に円滑に転写しにくい問題点があった。
Recently, with the development of nano technology and the demand for display panels with a large number of pixels such as HD, UHD, SUHD, etc., the size of micro LED elements is becoming smaller and the number of elements is increasing significantly. . Therefore, there is a need for a technology that can transfer a large number of microelements to a substrate at one time for higher productivity.
The transfer method using the conventional vacuum chuck is based on the design limitations of the vacuum chuck and the problem of element damage due to vacuum suction when the element width is less than 0.5 mm or the element thickness is less than 20 μm. There was a problem that it was difficult to transfer the toner to the substrate smoothly.

本発明の一側面は、ソース基板にある素子を多層型キャリアフィルムに一次的に粘着させ、多層型キャリアフィルムの硬度変化により多層型キャリアフィルムと素子との間の粘着力を調節して、多層型キャリアフィルムに粘着された素子を印刷回路基板のようなターゲット基板に二次的に粘着させることによって、大きさの微小な素子を基板に転写させることができ、粘着力を容易に調節可能な多層型キャリアフィルムを提供しようとする。
また、本発明の他の側面は、前述した多層型キャリアフィルムを用いた素子の転写方法を提供しようとする。
According to one aspect of the present invention, a device in a source substrate is primarily adhered to a multilayer carrier film, and the adhesive force between the multilayer carrier film and the device is adjusted by changing the hardness of the multilayer carrier film. The minute element of size can be transferred to the substrate by making the element adhered to the target carrier film secondarily adhere to the target substrate such as a printed circuit board, and the adhesion can be easily adjusted. To provide a multilayer type carrier film.
Another aspect of the present invention is to provide a method of transferring a device using the multilayer carrier film described above.

また、本発明のさらに他の側面は、前述した素子の転写方法を用いて電子製品を製造する電子製品の製造方法を提供しようとする。   Still another aspect of the present invention is to provide a method of manufacturing an electronic product, which manufactures an electronic product using the above-described method of transferring a device.

本発明の一実施形態による多層型キャリアフィルムは、ベースフィルムと、前記ベースフィルムの一面に一定の厚さに形成され、第1硬度を有しかつ、エネルギーによって前記第1硬度より高い第2硬度を有するように変化する変形層と、前記変形層の一面に一定の厚さに形成され、前記変形層の第1硬度より高い硬度で構成される硬質層とを含み、前記変形層の硬度に反比例する粘着力を有する。   A multilayer carrier film according to an embodiment of the present invention may have a base film and a thickness on one surface of the base film, have a first hardness, and have a second hardness higher than the first hardness due to energy. And a hard layer formed on one surface of the deformation layer to have a certain thickness and having a hardness higher than the first hardness of the deformation layer, and the hardness of the deformation layer It has an adhesive power that is inversely proportional.

前記変形層の厚さが、前記硬質層の厚さより大きくてよい。
前記変形層は、アクリレート、シリコーンラバー、ニトリルブタジエンゴム(NBR)、ポリエステル、エポキシのうちのいずれか1つの材質で形成され、前記硬質層は、金属、セラミック、ポリマー、またはこれらの複合体のうちのいずれか1つの材質で形成される。
The thickness of the deformation layer may be greater than the thickness of the hard layer.
The deformation layer is formed of any one of acrylate, silicone rubber, nitrile butadiene rubber (NBR), polyester, epoxy, and the hard layer is made of metal, ceramic, polymer, or a composite thereof. It is formed of any one material.

本発明の一実施形態による素子の転写方法は、前記多層型キャリアフィルムを用い、前記変形層を前記第1硬度に維持しながら、前記多層型キャリアフィルムを多数の素子が配列されたソース基板側に密着して前記素子を前記多層型キャリアフィルムに粘着させるピッキング段階と、前記変形層を硬化させて、前記変形層の硬度を前記第1硬度から前記第2硬度に変形させる硬化段階と、前記変形層を前記第2硬度に維持しながら、前記多層型キャリアフィルムをターゲット基板側に密着して前記素子を前記ターゲット基板に粘着させるプレーシング段階とを含み、前記多層型キャリアフィルムと前記素子との間の粘着力は、前記変形層の硬度に反比例する。   The method for transferring a device according to an embodiment of the present invention uses the multilayer carrier film, and maintains the deformation layer at the first hardness while the multi-layer carrier film is arranged on the source substrate side where a large number of devices are arrayed. The adhesion of the element to the multi-layered carrier film and the step of curing the deformation layer to change the hardness of the deformation layer from the first hardness to the second hardness; Placing the multilayer carrier film in close contact with the target substrate side to adhere the device to the target substrate while maintaining the deformation layer at the second hardness, and the multilayer carrier film and the device The cohesion between the two is inversely proportional to the hardness of the deformation layer.

前記多層型キャリアフィルムと前記素子との粘着力は、前記多層型キャリアフィルムを前記ソース基板または前記ターゲット基板から離型させる離型速度に比例し、前記ピッキング段階で前記多層型キャリアフィルムを前記ソース基板から離型させる第1離型速度は、前記プレーシング段階で前記多層型キャリアフィルムを前記ターゲット基板から離型させる第2離型速度より大きくてよい。   The adhesion between the multilayer carrier film and the device is proportional to the mold release speed for releasing the multilayer carrier film from the source substrate or the target substrate, and the multilayer carrier film is used as the source film in the picking step. The first mold release speed for mold release from the substrate may be greater than the second mold release speed for mold release of the multilayer carrier film from the target substrate in the placing step.

前記変形層の厚さが、前記硬質層の厚さより大きくてよい。
本発明の一実施形態による電子製品の製造方法は、前記素子の転写方法を用いて多数の素子を平板上に転写して電子製品を製造する。
The thickness of the deformation layer may be greater than the thickness of the hard layer.
In the method of manufacturing an electronic product according to an embodiment of the present invention, a large number of elements are transferred onto a flat plate to manufacture an electronic product using the method for transferring an element.

本発明の一実施形態によれば、大きさの微小な素子を基板に容易かつ簡単に転写させることができる。
また、本発明の一実施形態によれば、ベースフィルムに硬度の異なる物質を順次に積層する構造として簡単に製作することができ、積層された物質の硬度変化により粘着力を容易に調節可能である。
According to one embodiment of the present invention, minute elements of a size can be easily and easily transferred to a substrate.
Further, according to one embodiment of the present invention, the base film can be easily manufactured as a structure in which substances having different hardnesses are sequentially laminated, and the adhesion can be easily adjusted by the change in hardness of the laminated substances. is there.

また、本発明の一実施形態によれば、変形層が硬化する過程で変形層と素子との接触面積が減少することによって、多層型キャリアフィルムに粘着された素子をターゲット基板により容易に転写させることができる。
また、本発明の一実施形態によれば、変形層の厚さを硬質層の厚さより大きく形成することによって、ソース基板に配列された素子を多層型キャリアフィルムに円滑に粘着させることができる。
Further, according to an embodiment of the present invention, the contact area between the deformation layer and the element is reduced in the process of curing the deformation layer, whereby the element adhered to the multilayer carrier film is easily transferred to the target substrate. be able to.
Further, according to an embodiment of the present invention, by forming the thickness of the deformation layer larger than the thickness of the hard layer, the elements arranged on the source substrate can be smoothly adhered to the multilayer carrier film.

また、本発明の一実施形態によれば、ピッキング段階での多層型キャリアフィルムの離型速度をプレーシング段階での多層型キャリアフィルムの離型速度より速くすることによって、素子を多層型キャリアフィルムからより安定的に粘着させたり、または引き離すことができる。   In addition, according to one embodiment of the present invention, a multilayer carrier film is obtained by increasing the mold release speed of the multilayer carrier film in the picking step more than the mold release speed of the multilayer carrier film in the tracing stage. Can be more stably stuck or pulled away.

本発明の一実施形態による多層型キャリアフィルムを概略的に示す断面図である。FIG. 1 is a cross-sectional view schematically illustrating a multilayer carrier film according to an embodiment of the present invention. 図1の多層型キャリアフィルムの粘着力が変形層の硬度に応じて変化することを示すグラフである。It is a graph which shows that the adhesive force of the multilayer type | mold carrier film of FIG. 1 changes according to the hardness of a deformation layer. 図1の多層型キャリアフィルムの粘着力が変形層の厚さに応じて差が生じることを示すグラフである。It is a graph which shows that the adhesive force of the multilayer type | mold carrier film of FIG. 1 produces a difference according to the thickness of a deformation | transformation layer. 本発明の一実施形態による多層型キャリアフィルムを用いた素子の転写方法の実行過程を概略的に示す図である。FIG. 7 schematically illustrates the process of transferring a device using a multilayer carrier film according to an embodiment of the present invention. 図4の多層型キャリアフィルムを用いた素子の転写方法の実行過程を示すブロック図である。It is a block diagram which shows the implementation process of the transfer method of the element using the multilayer type | mold carrier film of FIG. 図4の多層型キャリアフィルムを用いた素子の転写方法の実行過程で多層型キャリアフィルムと素子との間の粘着力が変形層の硬度に応じて変化することを示すグラフである。FIG. 5 is a graph showing that the adhesion between the multilayer carrier film and the device changes in accordance with the hardness of the deformation layer in the process of executing the method of transferring the device using the multilayer carrier film of FIG. 4. 本発明の一実施形態による多層型キャリアフィルムを用いた素子の転写方法を用いて電子製品が作られる過程を示す図である。FIG. 5 is a view showing a process of manufacturing an electronic product using a method of transferring a device using a multilayer carrier film according to an embodiment of the present invention.

以下、添付した図面を参照して、本発明の実施形態について、本発明の属する技術分野における通常の知識を有する者が容易に実施できるように詳しく説明する。本発明は種々の異なる形態で実現可能であり、ここで説明する実施形態に限定されない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art to which the present invention belongs can easily carry out the present invention. The invention can be implemented in a variety of different forms and is not limited to the embodiments described herein.

図面において、本発明を明確に説明するために説明上不必要な部分は省略し、明細書全体にわたって同一または類似の構成要素については同一の参照符号を付した。
また、図面に示された各構成の大きさおよび厚さは説明の便宜のために任意に示したので、本発明が必ずしも図示のところに限定されない。
In the drawings, portions that are unnecessary for description in order to clearly explain the present invention are omitted, and the same or similar components are given the same reference numerals throughout the specification.
Further, the size and thickness of each component shown in the drawings are arbitrarily shown for the convenience of description, so the present invention is not necessarily limited to the illustrated one.

明細書全体において、ある部分が他の部分に「連結」されているとする時、これは、「直接的に連結」されている場合のみならず、他の部材を挟んで「間接的に連結」されたものも含む。また、ある部分がある構成要素を「含む」とする時、これは、特に反対の記載がない限り、他の構成要素を除くのではなく、他の構成要素をさらに包含できることを意味する。   In the entire specification, when one part is "connected" to another part, this is not only "directly connected", but also "indirectly connected" with another member interposed. Including those that have been Also, when “one” includes a certain component, this means that the other component can be further included without excluding the other component unless specifically stated otherwise.

図1は、本発明の一実施形態による多層型キャリアフィルムを概略的に示す断面図である。
図1を参照すれば、本実施形態による多層型キャリアフィルム100は、半導体、ディスプレイ、太陽電池、センサなどに装着される素子Eをソース基板W1からターゲット基板W2(図4参照)に転写するために使用されるものであって、ベースフィルム110と、変形層120と、硬質層130とを含む。
FIG. 1 is a schematic cross-sectional view of a multilayer carrier film according to an embodiment of the present invention.
Referring to FIG. 1, the multilayer carrier film 100 according to the present embodiment is for transferring an element E mounted on a semiconductor, a display, a solar cell, a sensor or the like from a source substrate W1 to a target substrate W2 (see FIG. 4). The base film 110, the deformation layer 120, and the hard layer 130 are used.

素子の転写過程は、ソース基板からキャリアフィルムを用いて素子を引き離すピッキング(picking)工程と、キャリアフィルム上にある素子をターゲット基板に移すプレーシング(placing)工程とに分けられる。キャリアフィルムとターゲット基板が同一の場合には、これら2つの工程が一つに合わされて行われてもよい。
前記ベースフィルム110は、素子Eに密着する過程で変形しない十分な強度および弾性係数を有し、変形層120の形成過程で固有の物性が維持できるように、耐熱性および耐薬品性を有する材質で形成されることが好ましく、通常、PET(Polyethylene Terephthalate)フィルムやPI(polyimide)フィルムなどがベースフィルムの材質として主に使用されるが、その材質は特に限定されない。
ベースフィルム110は、図1に示されるように、平板状に製作してソース基板W1の一定領域に配列された素子Eを個別的に粘着してターゲット基板W2に転写させてもよく、図示しないが、円筒状に製作して一般的な転写用ロールに巻いてソース基板W1に配列された素子Eを連続的に粘着してターゲット基板W2に転写させてもよい。
ベースフィルムが平板状の場合、ベースフィルム110は、線形駆動手段(図示せず)に結合されて高さが調節可能であり、ソース基板W1の表面に沿って前後左右に移動可能である。ベースフィルム110が円筒状の場合、ベースフィルム110は、回転駆動手段(図示せず)に結合されて回転可能であり、前記回転駆動手段は、昇降手段(図示せず)に結合されて高さが調節可能である。
The transfer process of the device can be divided into a picking step of separating the device from the source substrate using the carrier film, and a placing step of transferring the device on the carrier film to the target substrate. When the carrier film and the target substrate are the same, these two steps may be performed together.
The base film 110 has sufficient strength and elastic modulus so as not to be deformed in the process of being in close contact with the element E, and is a material having heat resistance and chemical resistance so as to maintain specific properties in the process of forming the deformation layer 120. In general, a PET (Polyethylene Terephthalate) film or a PI (polyimide) film is mainly used as a material of the base film, but the material is not particularly limited.
As shown in FIG. 1, the base film 110 may be manufactured in a flat plate shape, and the elements E arranged in a certain region of the source substrate W1 may be separately adhered and transferred to the target substrate W2, not shown. However, the elements E manufactured in a cylindrical shape and wound around a general transfer roll may be continuously adhered and transferred to the target substrate W2.
When the base film is flat, the base film 110 is coupled to a linear driving means (not shown) to be adjustable in height, and can be moved back and forth and right and left along the surface of the source substrate W1. When the base film 110 is cylindrical, the base film 110 is coupled to a rotational drive means (not shown) and is rotatable, and the rotational drive means is coupled to an elevation means (not shown) to have a height. Is adjustable.

前記変形層120は、ベースフィルム110の一面に一定の厚さに形成され、硬度が変化する性質を有する。より詳しくは、転写しようとする素子Eのピッキング(picking)時には、第1硬度K1が維持され、転写しようとする素子Eのプレーシング(placing)時には、熱、UV、プラズマ、電場などのエネルギー源によって第1硬度K1より高い第2硬度K2に変化する。   The deformation layer 120 is formed to a predetermined thickness on one surface of the base film 110, and has a property of varying hardness. More specifically, the first hardness K1 is maintained during picking of the element E to be transferred, and the energy source such as heat, UV, plasma or electric field is maintained when placing the element E to be transferred Changes to a second hardness K2 higher than the first hardness K1.

図2は、図1の多層型キャリアフィルムの粘着力が変形層の硬度に応じて変化することを示すグラフである。図2を参照すれば、素子Eと多層型キャリアフィルム100との粘着力Fは、変形層120の硬度Kに反比例する。つまり、変形層120が硬いほど、粘着力は減少する。   FIG. 2 is a graph showing that the adhesion of the multilayer carrier film of FIG. 1 changes according to the hardness of the deformation layer. Referring to FIG. 2, the adhesive force F between the element E and the multilayer carrier film 100 is inversely proportional to the hardness K of the deformation layer 120. That is, as the deformation layer 120 is harder, the adhesion is reduced.

転写しようとする素子Eをソース基板W1からピッキングする時には、相対的に高い粘着力Faが要求されるので、変形層120の硬度Kをソース基板W1と素子Eとの粘着力Fsより大きい粘着力Faが形成される第1硬度K1に維持し、転写しようとする素子Eをターゲット基板W2にプレーシングする時には、相対的に低い粘着力Fbが要求されるので、変形層120の硬度Kをターゲット基板W2と素子Eとの粘着力Fpより小さい粘着力Fbが形成される第2硬度K2に維持する。   When picking up the element E to be transferred from the source substrate W1, a relatively high adhesive force Fa is required, so that the hardness K of the deformation layer 120 is larger than the adhesive force Fs between the source substrate W1 and the element E Since a relatively low adhesive force Fb is required when the element E to be transferred is placed on the target substrate W2 while maintaining the first hardness K1 at which Fa is formed, the hardness K of the deformation layer 120 is targeted The adhesive force Fb smaller than the adhesive force Fp between the substrate W2 and the element E is maintained at the second hardness K2 at which the adhesive force Fb is formed.

変形層120は、素子Eとの引力(電磁力またはファンデルワールス引力)が作用できる粘弾性物質で構成され、ローラに巻かれるようにフレキシブル(flexible)な物質で製作される。   The deformation layer 120 is made of a visco-elastic material capable of exerting an attractive force (electromagnetic force or van der Waals attraction) with the element E, and is made of a flexible material so as to be wound on a roller.

変形層120は、具体的には、アクリレート、シリコーンラバー、ニトリルブタジエンゴム(NBR)、ポリエステル、エポキシなどのような基礎材料に、少量の粒子や化学添加剤を入れて形成される。シリコーンラバーは、温度抵抗性に優れているので、広範囲な温度で使用することができ、シリコーン(樹脂)とラバー(ゴム)との比率を変更して所望の粘着力が得られるという利点がある。アクリレートは、シリコーンラバーより耐熱性および耐候性がさらに優れ、比較的安価に獲得できるという利点がある。ニトリルブタジエンゴムは、他の弾性素材と比較できない安定した化学構造を有することによって、腐食性がなく酸化しない化合物であって、耐熱、耐寒、電気絶縁、化学的安全性、耐摩耗性、光沢性、豊富な弾性などを有している。ポリエステルは、相対的に軽く、難燃性、耐薬品性、耐候性に優れているという利点がある。エポキシは、硬化後にねじれや変形がなく、耐熱性、耐薬品性、耐水性、耐摩耗性に優れ、長期間保管が可能であるという利点がある。   Specifically, the deformation layer 120 is formed by adding a small amount of particles and chemical additives to a base material such as acrylate, silicone rubber, nitrile butadiene rubber (NBR), polyester, epoxy and the like. Since silicone rubber is excellent in temperature resistance, it can be used in a wide range of temperatures, and has the advantage that the desired adhesion can be obtained by changing the ratio of silicone (resin) and rubber (rubber) . Acrylate has the advantages of being more excellent in heat resistance and weather resistance than silicone rubber and being able to be obtained relatively inexpensively. Nitrile butadiene rubber is a compound that is not corrosive and does not oxidize because it has a stable chemical structure that can not be compared with other elastic materials, and it is resistant to heat, cold, electrical insulation, chemical safety, abrasion resistance, and gloss. , Has abundant elasticity and so on. Polyester has the advantage of being relatively light and having excellent flame retardancy, chemical resistance and weather resistance. Epoxy has the advantage that there is no distortion or distortion after curing, it is excellent in heat resistance, chemical resistance, water resistance, abrasion resistance, and can be stored for a long time.

変形層120は、一定の規格で予め製作され、公知の接着剤を介在してベースフィルム110に付着させてもよく、液状の変形層120を熱または機械的な振動を利用して液滴形態で供給するインクジェットプリンティング方式、液状の変形層120を流出させるように押し出す電場を利用するE−jetプリンティング方式、液状の変形層120をロールやスロットダイ(slot die)などの工具で一定の厚さにベースフィルム上にコーティングする方式など多様な方式で形成されてもよい。   The deformation layer 120 may be previously manufactured to a certain standard, and may be attached to the base film 110 through a known adhesive, and the liquid deformation layer 120 may be in the form of droplets using heat or mechanical vibration. Ink jet printing system, E-jet printing system using an electric field to push out the liquid deformation layer 120, and the liquid deformation layer 120 with a tool such as a roll or slot die. It may be formed by various methods such as coating on a base film.

変形層120の厚さt1は、少なくとも硬質層130の厚さt2より大きく形成されることが好ましい。図3は、図1の多層型キャリアフィルムの粘着力が変形層の厚さに応じて差が生じることを示すグラフである。図3に示されるように、多層型キャリアフィルム100と素子Eとの粘着力Fは、多層型キャリアフィルムの離型速度vに比例して増加するが、変形層120の厚さt1が薄くなると、粘着力の離型速度への依存性が減少する。
つまり、図示のように、変形層120の厚さt1が硬質層130の厚さt2より大きい場合、素子Eをピッキングする時の粘着力Faがソース基板W1と素子Eとの粘着力Fsより大きく発生することによって、多層型キャリアフィルム100に素子Eを円滑に粘着させることができる。逆に、変形層120の厚さt1が硬質層130の厚さt2より小さい場合、素子Eをピッキングする時の粘着力Faがソース基板W1と素子Eとの粘着力Fsより小さく発生することによって、素子Eが多層型キャリアフィルム100に円滑に粘着されないことがある。
The thickness t1 of the deformation layer 120 is preferably formed to be at least greater than the thickness t2 of the hard layer 130. FIG. 3 is a graph showing that the adhesion of the multilayer carrier film of FIG. 1 varies depending on the thickness of the deformation layer. As shown in FIG. 3, the adhesive force F between the multilayer carrier film 100 and the element E increases in proportion to the mold release velocity v of the multilayer carrier film, but when the thickness t1 of the deformation layer 120 becomes thinner , The dependence of adhesion on demolding speed is reduced.
That is, as illustrated, when the thickness t1 of the deformation layer 120 is larger than the thickness t2 of the hard layer 130, the adhesion Fa at the time of picking the element E is larger than the adhesion Fs between the source substrate W1 and the element E By being generated, the element E can be smoothly attached to the multilayer carrier film 100. Conversely, when the thickness t1 of the deformation layer 120 is smaller than the thickness t2 of the hard layer 130, the adhesion Fa when picking up the element E is smaller than the adhesion Fs between the source substrate W1 and the element E The element E may not be smoothly adhered to the multilayer carrier film 100.

変形層120の厚さt1が必要以上に厚くても好ましくない。なぜならば、変形層120を形成する材料と、変形層120の硬度を変化させるためのエネルギーが過度に費やされかねないからである。   It is not preferable even if the thickness t1 of the deformation layer 120 is thicker than necessary. The reason is that the material forming the deformation layer 120 and the energy for changing the hardness of the deformation layer 120 may be excessively consumed.

変形層120に硬化に必要なエネルギーを供給するエネルギー源200(図4参照)は、通常のヒータ方式、レーザ方式、インダクション方式など多様な方式の加熱手段が適用可能であり、またはUV照射機、プラズマ装置、電場形成機などが適用可能であり、変形層120の硬度Kを高められれば十分である。   As the energy source 200 (see FIG. 4) for supplying the energy necessary for curing to the deformation layer 120, various heating methods such as a normal heater method, a laser method, and an induction method can be applied, or a UV irradiator, It is sufficient if the hardness K of the deformation layer 120 can be increased, as a plasma device, an electric field forming machine, or the like can be applied.

前記硬質層130は、変形層120の一面に一定の厚さに形成され、変形層120の第2硬度K2より高い硬度で構成される。硬質層130は、変形層120に比べて相対的に変形抵抗力が大きい物質で構成されるが、具体的には、金属、セラミック、弾性係数が非常に大きいポリマー、またはこれら材料の複合体のうちのいずれか1つの材質で形成される。   The hard layer 130 may be formed to a predetermined thickness on one surface of the deformation layer 120 and may have a hardness higher than the second hardness K2 of the deformation layer 120. The hard layer 130 is made of a material having a relatively high deformation resistance compared to the deformation layer 120. Specifically, the hard layer 130 is a metal, a ceramic, a polymer having a very large elastic modulus, or a composite of these materials. It is formed of any one of the materials.

硬質層130の形成方法は、変形層120の形成方法と同一にすることが製作設備の側面から有利であるが、硬質層の材料によって、真空蒸着方法(金属薄膜やシリコン酸化物/シリコン窒化物、アルミナなどのセラミック薄膜を化学気相蒸着法や、原子層蒸着法、スパッタリングのような物理的蒸着法)を用いて形成することもできる。   It is advantageous from the viewpoint of manufacturing equipment that the method of forming the hard layer 130 is the same as the method of forming the deformation layer 120, but depending on the material of the hard layer, a vacuum deposition method (metal thin film or silicon oxide / silicon nitride Alternatively, a ceramic thin film such as alumina can be formed by using a chemical vapor deposition method, an atomic layer deposition method, or a physical vapor deposition method such as sputtering.

硬質層130の厚さt2は、少なくとも変形層120の厚さt1より薄く形成されるが、多層型キャリアフィルム100と素子Eとの粘着力Fに影響を与えない一方で、素子Eと対向する変形層120の表面に十分な強度を提供できる厚さに形成されることが好ましい。例えば、金属薄膜の場合、5〜20nm程度の厚さであれば十分である。
もし、硬質層130の厚さt2が必要以上に厚ければ、変形層120と素子Eとの間の距離が遠くなって、変形層120で形成される粘着力が素子Eにうまく伝達されないことがあり、硬質層130の厚さt2が薄すぎると、変形層120の表面強度が低くなるため、多層型キャリアフィルム100をソース基板W1に加圧する過程で素子Eと密着する硬質層130の一部分が本来の形状を維持できず、変形層120側に凹みながら素子Eが変形層120に打ち込まれて束縛されることがある。
The thickness t2 of the hard layer 130 is at least thinner than the thickness t1 of the deformation layer 120, but does not affect the adhesion F between the multilayer carrier film 100 and the element E while facing the element E The thickness is preferably such that it can provide sufficient strength to the surface of the deformation layer 120. For example, in the case of a metal thin film, a thickness of about 5 to 20 nm is sufficient.
If the thickness t2 of the hard layer 130 is thicker than necessary, the distance between the deformation layer 120 and the element E is increased, and the adhesion formed by the deformation layer 120 is not well transmitted to the element E When the thickness t2 of the hard layer 130 is too thin, the surface strength of the deformation layer 120 is lowered, so that the portion of the hard layer 130 in close contact with the element E in the process of pressing the multilayer carrier film 100 against the source substrate W1. However, the element E may be driven into and restrained by the deformation layer 120 while being recessed toward the deformation layer 120 side.

このように構成される多層型キャリアフィルム100は、ベースフィルム110上に硬度の異なる物質を順次に積層する構造であって、変形層120の硬度変化により粘着力を容易に調節可能であり、製作も容易であるという利点がある。   The multilayer carrier film 100 thus configured has a structure in which substances having different hardnesses are sequentially laminated on the base film 110, and the adhesive force can be easily adjusted by the change in the hardness of the deformation layer 120, and thus manufactured. Also has the advantage of being easy.

以下、前記のように構成された多層型キャリアフィルム100を用いた素子の転写方法を詳しく説明する。図4は、本発明の一実施形態による多層型キャリアフィルムを用いた素子の転写方法の実行過程を概略的に示す図であり、図5は、図4の多層型キャリアフィルムを用いた素子の転写方法の実行過程を示すブロック図である。図4および図5を参照すれば、本発明による多層型キャリアフィルム100を用いた素子の転写方法は、ピッキング段階S1と、硬化段階S2と、プレーシング段階S3とを含む。   Hereinafter, a method of transferring an element using the multilayer carrier film 100 configured as described above will be described in detail. FIG. 4 is a view schematically showing the process of transferring a device using a multilayer carrier film according to an embodiment of the present invention, and FIG. 5 is a diagram showing the device using the multilayer carrier film of FIG. It is a block diagram which shows the implementation process of the transcription | transfer method. Referring to FIGS. 4 and 5, the method of transferring a device using the multilayer carrier film 100 according to the present invention includes a picking step S1, a curing step S2, and a tracing step S3.

前記ピッキング段階S1は、変形層120を第1硬度K1に維持しながら、多層型キャリアフィルム100を多数の素子Eが配列されたソース基板W1側に密着してソース基板W1にある素子Eを多層型キャリアフィルム100に粘着させる段階である。
この時、変形層120の厚さt1は、硬質層130の厚さt2より大きく、具体的には、変形層120の厚さt1をソース基板W1と素子Eとの粘着力Fsに対応する基準厚さtoより大きくして素子Eを多層型キャリアフィルム100に円滑に粘着させることが好ましい。
In the picking step S1, the multi-layered carrier film 100 is closely attached to the side of the source substrate W1 on which the plurality of elements E are arrayed while maintaining the deformation layer 120 at the first hardness K1, and the elements E in the source substrate W1 are multi-layered. At this stage, the mold carrier film 100 is adhered.
At this time, the thickness t1 of the deformation layer 120 is larger than the thickness t2 of the hard layer 130, and specifically, a reference corresponding to the adhesive force Fs between the source substrate W1 and the element E for the thickness t1 of the deformation layer 120. It is preferable to make the element E adhere to the multilayer carrier film 100 smoothly by making the thickness larger than to.

図6は、図4の多層型キャリアフィルムを用いた素子の転写方法の実行過程で多層型キャリアフィルムと素子との間の粘着力が変形層の硬度に応じて変化することを示すグラフである。図6を参照すれば、多層型キャリアフィルム100と素子Eとの間の粘着力Fは、多層型キャリアフィルム100を前記ソース基板W1から離型させる離型速度にも比例する。そのため、ピッキング段階S1で多層型キャリアフィルム100をソース基板W1から離型させる第1離型速度v1は、少なくともプレーシング段階S3で多層型キャリアフィルム100をターゲット基板W2から離型させる第2離型速度v2より大きくすることが好ましい。   FIG. 6 is a graph showing that the adhesion between the multilayer carrier film and the device changes in accordance with the hardness of the deformation layer during the process of transferring the device using the multilayer carrier film of FIG. . Referring to FIG. 6, the adhesion F between the multilayer carrier film 100 and the element E is also proportional to the mold release speed at which the multilayer carrier film 100 is released from the source substrate W1. Therefore, the first mold release speed v1 for releasing the multilayer carrier film 100 from the source substrate W1 in the picking step S1 is a second mold release for releasing the multilayer carrier film 100 from the target substrate W2 at least in the tracing step S3. It is preferable to make it larger than the velocity v2.

正確には、多層型キャリアフィルム100の第1離型速度v1を相対的に速くして、ピッキング段階での多層型キャリアフィルム100と素子Eとの粘着力Faを、ソース基板W1と素子Eとの粘着力Fsより大きくしなければならない。   To be precise, the first mold release velocity v1 of the multilayer carrier film 100 is made relatively fast, and the adhesion Fa between the multilayer carrier film 100 and the device E in the picking step, the source substrate W1 and the device E It should be greater than the adhesive force Fs.

このように、多層型キャリアフィルム100を素子Eにしばらく付着後引き離す過程で、ソース基板W1に配列された素子Eが多層型キャリアフィルム100に粘着されるので、素子Eの幅または厚さにかかわらず素子Eを容易かつ簡単にピッキングすることができる。   As described above, in the process of adhering the multilayer carrier film 100 to the device E for a while and then separating it, the device E arrayed on the source substrate W1 is adhered to the multilayer carrier film 100, so the width or thickness of the device E is different. The element E can be picked easily and easily.

前記硬化段階S2は、変形層120に熱、プラズマなどのようなエネルギーを加えて変形層120を硬化させて、変形層120の硬度Kを第1硬度K1から第2硬度K2に変形させる段階である。   In the curing step S2, energy such as heat or plasma is applied to the deformation layer 120 to harden the deformation layer 120, thereby deforming the hardness K of the deformation layer 120 from the first hardness K1 to the second hardness K2 is there.

硬化段階S2は、上述したエネルギー源200を利用して変形層120に直接硬化に必要なエネルギーを供給してもよく、ベースフィルム110または硬質層130を介して間接的にエネルギーを伝達してもよい。   The curing step S2 may supply the energy required for curing directly to the deformation layer 120 using the energy source 200 described above, or may transfer energy indirectly via the base film 110 or the hard layer 130. Good.

変形層120が硬化すれにつれ、多層型キャリアフィルム100と素子Eとの間の粘着力Fは、変形層120の硬度Kに反比例して低くなる。   As the deformation layer 120 cures, the adhesion F between the multilayer carrier film 100 and the element E decreases in inverse proportion to the hardness K of the deformation layer 120.

この時、変形層120の内部組織が一定比率で収縮しながら、変形層120上にある硬質層130の表面にシワが発生する。このようにシワが発生すると、硬質層130と素子Eとの間の接触面積が減少するにつれ、多層型キャリアフィルム100と素子Eとの粘着力Fも減少する。したがって、後述するプレーシング段階S3で多層型キャリアフィルム100に粘着された素子Eがターゲット基板W2により容易に転写可能になる。   At this time, while the internal structure of the deformation layer 120 shrinks at a constant ratio, wrinkles are generated on the surface of the hard layer 130 on the deformation layer 120. When wrinkles occur in this manner, as the contact area between the hard layer 130 and the element E decreases, the adhesion F between the multilayer carrier film 100 and the element E also decreases. Therefore, the element E adhered to the multilayer carrier film 100 in the tracing step S3 described later can be easily transferred to the target substrate W2.

前記プレーシング段階S3は、変形層120を第2硬度K2に維持しながら、多層型キャリアフィルム100をターゲット基板W2側に密着して多層型キャリアフィルム100に粘着された素子Eをターゲット基板W2に粘着させる段階である。   In the tracing step S3, while maintaining the deformation layer 120 at the second hardness K2, the element E adhered to the multilayer carrier film 100 in close contact with the multilayer carrier film 100 on the target substrate W2 side is used as the target substrate W2. It is the stage to make it stick.

変形層120が硬化して第2硬度K2を維持することによって、多層型キャリアフィルム100をターゲット基板W2に密着する過程で素子Eと金属電極Y(図4参照)との間に十分な加圧力が形成される。   The pressure applied between the element E and the metal electrode Y (see FIG. 4) is sufficient in the process of adhering the multilayer carrier film 100 to the target substrate W2 by curing the deformation layer 120 and maintaining the second hardness K2. Is formed.

多層型キャリアフィルム100をターゲット基板W2から離型させる第2離型速度v2は、少なくとも第1離型速度v1より遅くすることが好ましい。正確には、多層型キャリアフィルム100の第2離型速度v2を相対的に遅くして、プレーシング段階S3での多層型キャリアフィルム100と素子Eとの粘着力Fを、ターゲット基板(ここでは、金属電極Yに塗布されたソルダーD)と素子Eとの粘着力Fpより小さくしなければならない。   The second mold release speed v2 for releasing the multilayer carrier film 100 from the target substrate W2 is preferably at least slower than the first mold release speed v1. To be precise, the second mold release velocity v2 of the multilayer carrier film 100 is relatively decreased to make the adhesive force F between the multilayer carrier film 100 and the element E in the tracing step S3 a target substrate (here, The adhesive force Fp between the solder D) applied to the metal electrode Y and the element E should be smaller.

もし、変形層120の硬化が十分に進んだ場合には、多層型キャリアフィルム100と素子Eとの粘着力Fが第2離型速度v2に依存する特性が弱くなったり、無くなる場合がよく発生し、この場合には、生産性向上のために第2離型速度v2を遅くする必要はない。   If curing of the deformation layer 120 proceeds sufficiently, the adhesive force F between the multilayer carrier film 100 and the element E often weakens or disappears depending on the second mold release velocity v2 In this case, it is not necessary to reduce the second mold release speed v2 to improve productivity.

このように、ソース基板W1にある素子Eを多層型キャリアフィルム100に一次的に粘着させ、変形層120の硬度Kを第1硬度K1から第2硬度K2に変化させて多層型キャリアフィルム100と素子Eとの粘着力Fを低くすることによって、多層型キャリアフィルム100に粘着された素子Eをターゲット基板W2に粘着させることができる。
この後、多層型キャリアフィルム100をターゲット基板W2から離隔させて、第1硬度K1の変形層120を有する新しい多層型キャリアフィルム100に切り替えて転写工程に使用する。
As described above, the element E on the source substrate W1 is primarily adhered to the multilayer carrier film 100, and the hardness K of the deformation layer 120 is changed from the first hardness K1 to the second hardness K2 to form the multilayer carrier film 100. By reducing the adhesive force F with the element E, the element E adhered to the multilayer carrier film 100 can be adhered to the target substrate W2.
Thereafter, the multilayer carrier film 100 is separated from the target substrate W2 and switched to a new multilayer carrier film 100 having the deformation layer 120 of the first hardness K1 and used in the transfer step.

以下、多層型キャリアフィルムを用いた素子の転写方法を用いて多数の素子を平板上に転写して電子製品を製造する電子製品の製造方法について詳しく説明する。図7は、本発明の一実施形態による多層型キャリアフィルムを用いた素子の転写方法を用いて電子製品が作られる過程を示す図である。   Hereinafter, a method of manufacturing an electronic product in which a large number of elements are transferred onto a flat plate using an element transfer method using a multilayer carrier film to manufacture an electronic product will be described in detail. FIG. 7 is a view showing a process of manufacturing an electronic product using a method of transferring a device using a multilayer carrier film according to an embodiment of the present invention.

ここで、電子製品は、具体的には、回路基板のような部品型電子製品であるか、またはこの回路基板が内蔵される完成型電子製品であってもよい。回路基板としては、印刷回路基板、液晶回路基板、ディスプレイパネル回路基板、半導体チップ内の回路基板などの公知の多様な回路基板がこれに相当し、印刷回路基板としては、公知の軟性、硬性、または軟硬性回路基板がすべて含まれる。   Here, specifically, the electronic product may be a component-type electronic product such as a circuit board, or may be a complete electronic product in which the circuit board is incorporated. As the circuit board, various known circuit boards such as a printed circuit board, a liquid crystal circuit board, a display panel circuit board, a circuit board in a semiconductor chip, etc. correspond to this, and as the printed circuit board, known softness, hardness, Or all soft and hard circuit boards are included.

本実施形態では、多層型キャリアフィルムを用いた素子の転写方法を用いてディスプレイ用LEDパネルを製作することを例に挙げて説明するが、素子の転写方法を用いた電子製品の製造方法は本実施形態に限定されない。   In the present embodiment, an example of manufacturing an LED panel for display using a method of transferring an element using a multilayer carrier film is described as an example, but the method of manufacturing an electronic product using the method of transferring an element is the present embodiment. It is not limited to the embodiment.

図7を参照すれば、本実施形態において、素子Eは、具体的には、RGB(R:赤色、G:緑色、B:青色)発光ダイオード素子であり、基板Wは、配線層Waおよび絶縁層Wbを含む平板状の印刷回路基板(PCB)であり、多層型キャリアフィルム100がロールRに巻かれて一定速度で回転しながら、素子Eを基板Wに連続的に転写させる。転写される過程中に、基板W上にある電気的連結素材(例えば、ソルダーペーストやACFなど)と素子Eとが接触し、基板Wと素子Eとが後のリフロー工程や熱加圧工程により相互電気的に連結されながら接合される。   Referring to FIG. 7, in the present embodiment, the element E is specifically an RGB (R: red, G: green, B: blue) light emitting diode element, and the substrate W is a wiring layer Wa and an insulation It is a flat printed circuit board (PCB) including the layer Wb, and the element E is continuously transferred to the substrate W while the multilayer carrier film 100 is wound around the roll R and rotated at a constant speed. During the process of transfer, the electrical connection material (for example, solder paste, ACF, etc.) on the substrate W comes in contact with the element E, and the substrate W and the element E are subjected to the later reflow process or heat pressure process. They are joined while being mutually electrically connected.

このように製作されたLEDパネルを冷却装置あるいは駆動IC素子が備えられた函体(図示せず)の一面に露出するように設け、露出した函体の一面を透明ガラスあるいは透明保護フィルムで遮蔽することによって、ディスプレイ用LEDパネルが製作される。
上述のように構成された本発明の多層型キャリアフィルムおよびこれを用いた素子の転写方法は、多層型キャリアフィルムを素子にしばらく付着後引き離す方式で転写させることによって、大きさの微小な素子を基板に容易かつ簡単に転写させることができる効果が得られる。
The LED panel thus manufactured is provided so as to be exposed on one surface of a box (not shown) provided with a cooling device or a drive IC element, and one surface of the exposed box is shielded by a transparent glass or a transparent protective film. By doing this, a display LED panel is manufactured.
According to the multilayer carrier film of the present invention configured as described above and the transfer method of the device using the same, the micro carrier of small size can be obtained by transferring the multilayer carrier film to the device for a while and then transferring it by separation. The effect of being easily and easily transferred to the substrate is obtained.

また、上述のように構成された本発明の多層型キャリアフィルムおよびこれを用いた素子の転写方法は、ベースフィルムに硬度の異なる物質を順次に積層する構造であって、硬度変化により粘着力を容易に調節可能であり、簡単に製作できる効果が得られる。
また、上述のように構成された本発明の多層型キャリアフィルムおよびこれを用いた素子の転写方法は、変形層が硬化する過程で変形層と素子との接触面積が減少するにつれ、多層型キャリアフィルムと素子との粘着力も減少することによって、多層型キャリアフィルムに粘着された素子をターゲット基板により容易に転写させることができる効果が得られる。
Further, the multilayer carrier film of the present invention configured as described above and the transfer method of the element using the same have a structure in which substances having different hardness are sequentially laminated on the base film, and the adhesive force is changed by the hardness change. It can be easily adjusted and can be easily manufactured.
In the multilayer carrier film of the present invention configured as described above and the transfer method of the device using the same, as the contact area between the deformation layer and the device decreases in the process of curing the deformation layer, the multilayer carrier film The adhesion between the film and the element is also reduced, so that the element adhered to the multilayer carrier film can be easily transferred to the target substrate.

また、上述のように構成された本発明の多層型キャリアフィルムおよびこれを用いた素子の転写方法は、変形層の厚さを硬質層の厚さより大きく形成することによって、ソース基板に配列された素子を多層型キャリアフィルムに円滑に粘着させることができる効果が得られる。   Further, the multilayer carrier film of the present invention configured as described above and the transfer method of the device using the same are arranged on the source substrate by forming the thickness of the deformation layer larger than the thickness of the hard layer. The effect of being able to cause the element to adhere smoothly to the multilayer carrier film is obtained.

また、上述のように構成された本発明の多層型キャリアフィルムおよびこれを用いた素子の転写方法は、ピッキング段階での多層型キャリアフィルムの離型速度をプレーシング段階での多層型キャリアフィルムの離型速度より速くすることによって、素子を多層型キャリアフィルムからより安定的に粘着させたり、または引き離すことができる効果が得られる。   Further, the multilayer carrier film of the present invention configured as described above and the transfer method of the element using the same are the same as those of the multilayer carrier film in the step of tracing the mold release speed of the multilayer carrier film in the picking step. By making it faster than the release rate, an effect is obtained that the element can be more stably adhered to or separated from the multilayer carrier film.

本発明の権利範囲は、上述した実施形態および変形例に限定されるものではなく、添付した特許請求の範囲内で多様な形態の実施例で実現可能である。特許請求の範囲で請求する本発明の要旨を逸脱することなく当該発明の属する技術分野における通常の知識を有する者であれば誰でも変形可能な多様な範囲まで本発明の請求範囲に記載の範囲内にあると見なされる。   The scope of the present invention is not limited to the above-described embodiment and modifications, and can be realized in various embodiments within the scope of the appended claims. The scope of the claims of the present invention is to the extent that various persons having ordinary knowledge in the technical field to which the present invention belongs can be modified without departing from the scope of the present invention claimed in the claims. It is considered to be within.

100:多層型キャリアフィルム
110:ベースフィルム
120:変形層
130:硬質層
200:エネルギー源
D:ソルダー
E:素子
Y:金属電極
W1:ソース基板
W2:ターゲット基板
100: multilayer type carrier film 110: base film 120: deformation layer 130: hard layer 200: energy source D: solder E: element Y: metal electrode W1: source substrate W2: target substrate

Claims (7)

ベースフィルムと、
前記ベースフィルムの一面に一定の厚さに形成され、第1硬度を有しかつ、エネルギーによって前記第1硬度より高い第2硬度を有するように変化する変形層と、
前記変形層の一面に一定の厚さに形成され、前記変形層の第1硬度より高い硬度で構成される硬質層とを含み、
前記変形層の硬度に反比例する粘着力を有する多層型キャリアフィルム。
Base film,
A deformation layer formed on one surface of the base film to have a constant thickness, having a first hardness, and changing to have a second hardness higher than the first hardness by energy;
And a hard layer formed on one surface of the deformation layer to have a certain thickness and having a hardness higher than the first hardness of the deformation layer,
A multilayer carrier film having an adhesive strength which is in inverse proportion to the hardness of the deformation layer.
前記変形層の厚さが、前記硬質層の厚さより大きい、請求項1に記載の多層型キャリアフィルム。   The multilayer carrier film according to claim 1, wherein the thickness of the deformation layer is larger than the thickness of the hard layer. 前記変形層は、アクリレート、シリコーンラバー、ニトリルブタジエンゴム(NBR)、ポリエステル、エポキシのうちのいずれか1つの材質で形成され、
前記硬質層は、金属、セラミック、ポリマー、またはこれらの複合体のうちのいずれか1つの材質で形成される、請求項1に記載の多層型キャリアフィルム。
The deformation layer is formed of any one of acrylate, silicone rubber, nitrile butadiene rubber (NBR), polyester and epoxy.
The multilayer carrier film according to claim 1, wherein the hard layer is formed of a material of metal, ceramic, polymer, or any one of composites thereof.
請求項1に記載の多層型キャリアフィルムを用い、
前記変形層を前記第1硬度に維持しながら、前記多層型キャリアフィルムを多数の素子が配列されたソース基板側に密着して前記素子を前記多層型キャリアフィルムに粘着させるピッキング段階と、
前記変形層を硬化させて、前記変形層の硬度を前記第1硬度から前記第2硬度に変形させる硬化段階と、
前記変形層を前記第2硬度に維持しながら、前記多層型キャリアフィルムをターゲット基板側に密着して前記素子を前記ターゲット基板に粘着させるプレーシング段階とを含み、
前記多層型キャリアフィルムと前記素子との間の粘着力は、前記変形層の硬度に反比例する多層型キャリアフィルムを用いた素子の転写方法。
A multilayer type carrier film according to claim 1 is used.
Picking the multi-layer carrier film in close contact with the side of the source substrate on which the plurality of elements are arranged to adhere the elements to the multi-layer carrier film while maintaining the deformation layer at the first hardness;
Curing the deformation layer to change the hardness of the deformation layer from the first hardness to the second hardness;
Placing the multi-layered carrier film in close contact with the target substrate side to adhere the device to the target substrate while maintaining the deformation layer at the second hardness;
A method of transferring a device using a multilayer carrier film in which the adhesion between the multilayer carrier film and the device is inversely proportional to the hardness of the deformation layer.
前記多層型キャリアフィルムと前記素子との粘着力は、前記多層型キャリアフィルムを前記ソース基板または前記ターゲット基板から離型させる離型速度に比例し、
前記ピッキング段階で前記多層型キャリアフィルムを前記ソース基板から離型させる第1離型速度は、前記プレーシング段階で前記多層型キャリアフィルムを前記ターゲット基板から離型させる第2離型速度より大きい、請求項4に記載の多層型キャリアフィルムを用いた素子の転写方法。
The adhesion between the multilayer carrier film and the element is proportional to the mold release speed at which the multilayer carrier film is released from the source substrate or the target substrate,
The first mold release speed for releasing the multilayer carrier film from the source substrate in the picking step is greater than the second mold release speed for releasing the multilayer carrier film from the target substrate in the placing process. The transfer method of the element using the multilayer type | mold carrier film of Claim 4.
前記変形層の厚さが、前記硬質層の厚さより大きい、請求項4に記載の多層型キャリアフィルムを用いた素子の転写方法。   The method according to claim 4, wherein a thickness of the deformation layer is larger than a thickness of the hard layer. 請求項4に記載の多層型キャリアフィルムを用いた素子の転写方法を用いて多数の素子を平板上に転写して電子製品を製造する電子製品の製造方法。

A method for producing an electronic product, comprising transferring a large number of elements onto a flat plate using the method for transferring elements using the multilayer carrier film according to claim 4 to produce an electronic product.

JP2019517749A 2016-10-12 2017-10-12 Multilayer carrier film and device transfer method using the same, and electronic product manufacturing method for manufacturing electronic products using this method. Active JP6807454B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020160132250A KR101866901B1 (en) 2016-10-12 2016-10-12 Multi-layered carrier film and the transfer method using the device and electronics manufacturing method using the same method
KR10-2016-0132250 2016-10-12
PCT/KR2017/011242 WO2018070801A2 (en) 2016-10-12 2017-10-12 Multilayered carrier film, element transfer method using same, and electronic product manufacturing method for manufacturing electronic product by using same element transfer method

Publications (2)

Publication Number Publication Date
JP2019521530A true JP2019521530A (en) 2019-07-25
JP6807454B2 JP6807454B2 (en) 2021-01-06

Family

ID=61906388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019517749A Active JP6807454B2 (en) 2016-10-12 2017-10-12 Multilayer carrier film and device transfer method using the same, and electronic product manufacturing method for manufacturing electronic products using this method.

Country Status (3)

Country Link
JP (1) JP6807454B2 (en)
KR (1) KR101866901B1 (en)
WO (1) WO2018070801A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7011745B1 (en) 2021-04-20 2022-02-10 ナカンテクノ株式会社 Device mounting device and device mounting method using it
WO2022196161A1 (en) * 2021-03-18 2022-09-22 株式会社写真化学 Transfer mechanism and transfer method for device chip

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117004335A (en) * 2018-12-07 2023-11-07 昆山摩建电子科技有限公司 Foam rubber component for electronic component assembly
KR102385376B1 (en) * 2019-07-05 2022-05-11 한국과학기술원 Layout structure between substrate, micro LED array and micro vacuum module for micro LED array transfer using micro vacuum module and Method for manufacturing micro LED display using the same
KR102283056B1 (en) * 2019-10-11 2021-07-29 숭실대학교 산학협력단 Adhesion and desorption transfer device for transferring by changing the arrangement of the target elements
KR102279643B1 (en) * 2019-11-15 2021-07-20 한국기계연구원 Carrier substrate and method of transferring device using the same
KR102334577B1 (en) 2019-11-22 2021-12-03 한국기계연구원 Method of transferring device and method of manufacturing electric panel using the same
KR102409849B1 (en) * 2020-04-29 2022-06-16 최지훈 Micro led manufacturing system and micro led manufacturing method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012673A (en) * 1996-06-27 1998-01-16 Japan Synthetic Rubber Co Ltd Sheet for mounting semiconductor element and semiconductor device
JP3617504B2 (en) * 1996-10-08 2005-02-09 日立化成工業株式会社 Adhesive film for mounting semiconductor elements
JP3707516B2 (en) * 1997-09-17 2005-10-19 富士通株式会社 Semiconductor element mounting method and element mounting sheet used therefor
JP3932689B2 (en) * 1998-09-11 2007-06-20 凸版印刷株式会社 TAB film carrier tape
JP2005248088A (en) * 2004-03-05 2005-09-15 Jsr Corp Film for part mounting and mounting substrate using the same
JP4618723B2 (en) * 2005-05-24 2011-01-26 セイコーインスツル株式会社 Pressurized adhesive sheet, adhesive sheet manufacturing system, and adhesive sheet manufacturing method
JPWO2008149772A1 (en) * 2007-06-08 2010-08-26 三井金属鉱業株式会社 Laminated film for mounting electronic parts, film carrier tape for mounting electronic parts, and semiconductor device
JP5466852B2 (en) * 2008-12-01 2014-04-09 出光ユニテック株式会社 Surface protection film
JP4971529B2 (en) * 2010-09-06 2012-07-11 三菱樹脂株式会社 Manufacturing method of laminated body for constituting image display apparatus, and image display apparatus using this laminated body
KR101673580B1 (en) 2014-12-29 2016-11-07 광주과학기술원 Transferring apparatus and transferringmethod for a micro-device, and fabricating method for the transferring apparatue

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196161A1 (en) * 2021-03-18 2022-09-22 株式会社写真化学 Transfer mechanism and transfer method for device chip
JP7011745B1 (en) 2021-04-20 2022-02-10 ナカンテクノ株式会社 Device mounting device and device mounting method using it
JP2022165725A (en) * 2021-04-20 2022-11-01 ナカンテクノ株式会社 Device mounting apparatus and device mounting method using the same

Also Published As

Publication number Publication date
JP6807454B2 (en) 2021-01-06
WO2018070801A3 (en) 2018-08-09
KR101866901B1 (en) 2018-06-14
WO2018070801A2 (en) 2018-04-19
KR20180040770A (en) 2018-04-23

Similar Documents

Publication Publication Date Title
JP6807454B2 (en) Multilayer carrier film and device transfer method using the same, and electronic product manufacturing method for manufacturing electronic products using this method.
WO2014176828A1 (en) Flexible substrate, display device, and method for bonding electronic device onto flexible substrate
KR101303595B1 (en) A heat radiating printed circuit board, method of manufacturing the heat radiating printed circuit board, backlight unit including the heat radiating printed circuit board and liquid crystal display including the same
TW201921621A (en) Chip on film type semiconductor package with laminated graphite having improved visibility and workability, and display apparatus thereof
CN101296562A (en) Copper foil substrates and method for making flexible printed circuit board of the same
TWI736695B (en) Electronic device and manufacturing method thereof
US20140120291A1 (en) Laminated base material, substrate using laminated base material, and method of manufacturing substrate
US20140097417A1 (en) Flexible display and method for manufacturing the same
KR100528531B1 (en) Heat conductive rubber member
JP2007190802A (en) Composite sheet
CN212783419U (en) Thin film flip chip packaging structure and display device
US10573597B1 (en) Electronic device and manufacturing method thereof
KR200419708Y1 (en) The Protection sheet for semiconductor chip adhesion
JP4626139B2 (en) Circuit board manufacturing method
TW201235991A (en) Display apparatus
JP2017193730A (en) Carrier-fitted copper foil having sputtering type inorganic composite film, and method for creating the same
TWI793861B (en) Electronic device and manufacturing method thereof
TW201635600A (en) Led element substrate, led-mounted module and led display device using these
TWI748740B (en) Heat-dissipating conductive soft board
KR200466515Y1 (en) One layered composite cushion sheet for heat-pressing process of LCD drive IC package (TCP) attachment by Anisotropic Conductive Film
JP2015037184A (en) Core substrate and manufacturing method of the same
KR200382573Y1 (en) Release sheet used in OLB and TAB process
KR101338320B1 (en) Method for manafacturing metal-copper clad laminated substrate
KR101229084B1 (en) Heat-radiating sheet and method for manufacturing the same
KR101156647B1 (en) Method for fabricating a Multi-layer MCCL PCB

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201207

R150 Certificate of patent or registration of utility model

Ref document number: 6807454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250