JP2019513900A - Three-dimensional printing of cermet or cemented carbide - Google Patents

Three-dimensional printing of cermet or cemented carbide Download PDF

Info

Publication number
JP2019513900A
JP2019513900A JP2018554108A JP2018554108A JP2019513900A JP 2019513900 A JP2019513900 A JP 2019513900A JP 2018554108 A JP2018554108 A JP 2018554108A JP 2018554108 A JP2018554108 A JP 2018554108A JP 2019513900 A JP2019513900 A JP 2019513900A
Authority
JP
Japan
Prior art keywords
cemented carbide
cermet
particles
powder mixture
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018554108A
Other languages
Japanese (ja)
Other versions
JP6933662B2 (en
Inventor
カール−ユーアン マデルード,
カール−ユーアン マデルード,
フロン, ジョン ドゥ
フロン, ジョン ドゥ
Original Assignee
サンドビック インテレクチュアル プロパティー アクティエボラーグ
サンドビック インテレクチュアル プロパティー アクティエボラーグ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55910733&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2019513900(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by サンドビック インテレクチュアル プロパティー アクティエボラーグ, サンドビック インテレクチュアル プロパティー アクティエボラーグ filed Critical サンドビック インテレクチュアル プロパティー アクティエボラーグ
Publication of JP2019513900A publication Critical patent/JP2019513900A/en
Application granted granted Critical
Publication of JP6933662B2 publication Critical patent/JP6933662B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/08Metallic powder characterised by particles having an amorphous microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/105Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing inorganic lubricating or binding agents, e.g. metal salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/14Formation of a green body by jetting of binder onto a bed of metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/008Abrasive bodies without external bonding agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/18Mining picks; Holders therefor
    • E21C35/183Mining picks; Holders therefor with inserts or layers of wear-resisting material
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/18Mining picks; Holders therefor
    • E21C35/183Mining picks; Holders therefor with inserts or layers of wear-resisting material
    • E21C35/1835Chemical composition or specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2207/00Aspects of the compositions, gradients
    • B22F2207/01Composition gradients
    • B22F2207/03Composition gradients of the metallic binder phase in cermets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/10Carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23B2222/16Cermet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23C2222/16Cermet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mining & Mineral Resources (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

本発明は、サーメット又は超硬合金物体の三次元印刷用の粉末混合物であって、65−85wt%のメジアン粒径(D50)10−35μmの多孔質超硬合金又はサーメット粒子、及び15−35wt%のメジアン粒径(D50)3−10μmの稠密超硬合金又はサーメット粒子を含む粉末混合物に関する。本発明はまた、サーメット又は超硬合金物体を製造する方法であって、前記粉末混合物を形成する工程、前記粉末混合物と印刷バインダーを用いて物体を3D印刷することにより、3D印刷されたサーメット又は超硬合金グリーン体を形成する工程、及び前記グリーン体を焼結することにより、サーメット又は超硬合金物体を形成する工程を含む方法に関する。【選択図】図1The present invention is a powder mixture for three-dimensional printing of cermets or cemented carbide objects, comprising a porous cemented carbide or cermet particles having a median particle size (D50) of 10-35 μm of 65-85 wt%, and 15-35 wt. The present invention relates to a powder mixture containing dense cemented carbide or cermet particles having a median particle size (D50) of 3-10 μm. The present invention is also a method of producing a cermet or cemented carbide object, wherein the step of forming the powder mixture, 3D printed cermet or 3D printing of the object by using the powder mixture and a printing binder The invention relates to a method comprising the steps of forming a cemented carbide green body and forming a cermet or cemented carbide body by sintering said green body. [Selected figure] Figure 1

Description

本発明は、サーメット又は超硬合金物体の三次元印刷方法に関する。本発明はまた、三次元印刷に使用すべき粉末混合物に関する。粉末混合物は、サーメット及び/又は超硬合金の稠密粉末と多孔質粉末との混合物を含む。   The present invention relates to a method of three-dimensional printing of cermets or cemented carbide objects. The invention also relates to powder mixtures to be used for three-dimensional printing. The powder mixture comprises a mixture of dense powder of cermet and / or cemented carbide and porous powder.

三次元(3D)印刷又は積層造形は、粉末から三次元物体を印刷することを可能にする有望な製造技術である。物体のモデルは、典型的にはコンピュータプログラムにおいて創出され、次いで、このモデルは三次元印刷機又は装置において印刷される。三次元印刷は、従来の製造プロセスでは達成できない複雑な構造物及び物体の製造を可能とするため、有望な製造技術である。   Three-dimensional (3D) printing or additive manufacturing is a promising manufacturing technology that makes it possible to print three-dimensional objects from powders. A model of the object is typically created in a computer program and this model is then printed on a three-dimensional printer or device. Three-dimensional printing is a promising manufacturing technology as it enables the production of complex structures and objects that can not be achieved with conventional manufacturing processes.

三次元印刷の1つのタイプは、バインダージェッティングに基づくものであり、インクジェットタイプのプリンタヘッドを使用してバインダーを粉末の薄層に噴霧し、これが、硬化されると、対象物の所定の層のための一体に接着された粉末のシートを形成する。バインダーが硬化された後、次の粉末の薄層が元の層の上に広げられ、バインダーの印刷噴射がその層のパターンで繰り返される。バインダーを用いて印刷されなかった粉末は、元の堆積させた場所に留まり、印刷された構造物の基礎及び支持体として機能する。対象物の印刷が完了すると、バインダーをより高い温度で硬化させ、続いてバインダーを用いて印刷されなかった粉末が、例えば気流又はブラッシングにより除去される。   One type of three-dimensional printing is based on binder jetting, where a binder is sprayed onto a thin layer of powder using an inkjet type printer head, which, when cured, causes a predetermined layer of the object to be printed. Form a sheet of powder bonded together. After the binder is cured, the next thin layer of powder is spread over the original layer and the printing jet of binder is repeated with the pattern of that layer. The powder not printed with the binder remains in the original deposited area and acts as a basis and support for the printed structure. When the printing of the object is complete, the binder is cured at a higher temperature and subsequently the powder not printed with the binder is removed, for example by air flow or brushing.

サーメット及び超硬合金材料は、例えばCoの金属結合相中の炭化物及び/又は窒化物の硬質成分、例えばWC又はTiCからなる。これらの材料は、高靱性と組み合わさったその高硬度及び高摩耗耐性から、要求の厳しい用途に有用である。適用分野の例は、金属切削用の切削工具、削岩用のドリルビット、及び摩耗部品である。   The cermets and cemented carbide materials consist, for example, of hard constituents of carbides and / or nitrides in the metallic binder phase of Co, for example WC or TiC. These materials are useful for demanding applications due to their high hardness and high wear resistance combined with high toughness. Examples of application areas are cutting tools for metal cutting, drill bits for rock drilling and wear parts.

サーメット及び超硬合金物体を首尾よく三次元印刷できる方法を見出す必要がある。困難の1つは、最終製品が、構造及び組成において非常に均質であることが求められる点である。もう1つの困難は、気孔の密度が非常に限定されている必要があることである。   There is a need to find a method that can successfully three-dimensionally print cermets and cemented carbide objects. One of the difficulties is that the final product is required to be very homogeneous in structure and composition. Another difficulty is that the pore density needs to be very limited.

Kernanらによる「Three dimensional printing of tungsten carbide-10 wt% cobalt using cobalt oxide precursor」、International Journal of Refractory Metals and Hard Materials 25(2007)、p.82−94は、焼結工程中にコバルト金属に還元される酸化コバルトを使用した、超硬合金インサートのスラリーベースの三次元印刷を開示する。   Kernan et al. "Three dimensional printing of tungsten carbide-10 wt% cobalt using cobalt oxide precursor", International Journal of Refractory Metals and Hard Materials 25 (2007), p. 82-94 disclose slurry-based three-dimensional printing of cemented carbide inserts using cobalt oxide which is reduced to cobalt metal during the sintering process.

本発明の目的は、サーメット又は超硬合金物体の三次元印刷への使用に適する粉末混合物を提供することである。   The object of the present invention is to provide a powder mixture which is suitable for use in three-dimensional printing of cermets or cemented carbide objects.

本発明の更なる目的は、均質な組成及び最小限の気孔を有する、三次元(3D)印刷されたサーメット又は超硬合金を製造する方法を提供することである。   A further object of the present invention is to provide a method of producing a three dimensional (3D) printed cermet or cemented carbide with homogeneous composition and minimal porosity.

これらの目的のうちの少なくとも1つが、請求項1に記載の粉末混合物及び請求項9に記載の方法により達成される。好適な実施態様は、従属請求項に列挙される。   At least one of these objects is achieved by the powder mixture according to claim 1 and the method according to claim 9. Preferred embodiments are listed in the dependent claims.

本発明は、サーメット又は超硬合金物体の三次元印刷用の粉末混合物であって、
65−85wt%、好ましくは65−75wt%の、メジアン粒径(D50)が10−35μm、好ましくは10−25μm、より好ましくは15−20μmの多孔質超硬合金及び/又はサーメット粒子、並びに
15−35wt%、好ましくは25−35wt%の、メジアン粒径(D50)が3−10μm、好ましくは4−10μm、より好ましくは4−8μmの稠密超硬合金及び/又はサーメット粒子
を含む、粉末混合物に関する。
The present invention is a powder mixture for three-dimensional printing of cermets or cemented carbide objects,
Porous cemented carbide and / or cermet particles with a median particle size (D50) of 10-35 μm, preferably 10- 25 μm, more preferably 15-20 μm, and 65-85 wt%, preferably 65-75 wt%; Powder mixture comprising -35 wt%, preferably 25-35 wt%, of a dense cemented carbide and / or cermet particles having a median particle size (D50) of 3-10 m, preferably 4-10 m, more preferably 4-8 m. About.

本発明の粉末混合物は、気孔率及び/又は金属結合相富化領域に関して申し分のない特性を有するサーメット又は超硬合金の三次元物体を首尾よく印刷できるという点で利点を示している。稠密粒子及び多孔質粒子の含有率並びにそれらの粒径が、サーメット又は超硬合金物体の最終的な密度及び均質性にとって重要であることが見出されている。多孔質粒子は、十分な焼結活性を三次元印刷グリーン体に加えるために必要である。一般に、大きな粒子よりも小さな粒子の方が焼結活性に寄与することが公知である。現在、特定割合の多孔質粒子が十分な焼結活性を加え、3D印刷されたサーメット又は超硬合金物体を首尾よく達成できることが見出されている。   The powder mixtures according to the invention show an advantage in that they can successfully print three-dimensional objects of cermets or cemented carbides having satisfactory properties with regard to porosity and / or metal binder phase enriched zones. It has been found that the content of dense particles and porous particles as well as their particle size is important for the final density and homogeneity of the cermet or cemented carbide body. Porous particles are necessary to add sufficient sintering activity to the three-dimensional printed green body. In general, smaller particles are known to contribute to sintering activity than larger particles. It has now been found that a certain proportion of porous particles adds sufficient sintering activity and can successfully achieve a 3D printed cermet or cemented carbide body.

更に、粉末混合物が稠密サーメット又は超硬合金粒子を含む場合、印刷されたグリーン体のグリーン強度を十分なレベルにまで高められることが見出されている。粉末混合物が35wt%を超える稠密粒子を含む場合、印刷時の粉末混合物の流動性が不十分となる。稠密粒子の量が15wt%未満の場合、印刷されたグリーン体の生強度が不十分となる。稠密微粒子の添加も焼結活性に寄与し、それにより残留気孔率の低下に寄与する。稠密粒子は、印刷時に印刷バインダー(接着剤)による粉末混合物の固定を強化することに寄与し、従って生強度が十分となる。   Furthermore, it has been found that the green strength of the printed green body can be increased to a sufficient level when the powder mixture comprises dense cermet or cemented carbide particles. If the powder mixture contains more than 35 wt% dense particles, the flowability of the powder mixture during printing will be insufficient. If the amount of dense particles is less than 15 wt%, the green strength of the printed green body is insufficient. The addition of dense particles also contributes to the sintering activity, thereby contributing to the reduction of the residual porosity. The dense particles contribute to enhancing the fixing of the powder mixture by the printing binder (adhesive) at the time of printing, so that the green strength is sufficient.

本発明の粉末混合物は、稠密超硬合金又はサーメット粒子と、多孔質サーメット又は超硬合金多孔質粒子とを含む混合物である。粉末混合物は、一実施態様において、メジアン粒径(D50)が10μm未満、好ましくは2−10μm、より好ましくは2−8μm、最も好ましくは3−8μmの追加の粒子を更に含んでもよい。例えば、Coなどの金属結合相の粒子、炭素粒子、及び/又はWCなどの硬質成分を粉末混合物に添加することができる。   The powder mixture of the present invention is a mixture comprising a dense cemented carbide or cermet particles and porous cermet or cemented carbide porous particles. The powder mixture may, in one embodiment, further comprise additional particles having a median particle size (D50) of less than 10 μm, preferably 2-10 μm, more preferably 2-8 μm, most preferably 3-8 μm. For example, particles of a metal binder phase such as Co, carbon particles, and / or hard components such as WC can be added to the powder mixture.

サーメット又は超硬合金物体の三次元印刷は、その目的に適する任意の形状の物体をもたらすものであってもよい。サーメット及び超硬合金は何れも、金属結合相中に硬質成分を含む。超硬合金の場合、硬質成分の少なくとも一部がWCからなる。本発明の一実施態様において、三次元印刷され焼結されたサーメット又は超硬合金物体の気孔の数及びサイズは、ISO4505−1978に定義されるA06及び/又はB06未満であり、好ましくはA04及び/又はB04未満、より好ましくはA02及び/又はB02未満である。本発明の一実施態様において、三次元印刷され焼結されたサーメット又は超硬合金物体の気孔の数及びサイズは、A02B00C00、A00B02C00、又はA02B02C00未満である。本発明の一実施態様において、三次元印刷され焼結されたサーメット又は超硬合金物体に気孔は存在しない。   Three-dimensional printing of a cermet or cemented carbide object may result in an object of any shape suitable for that purpose. Both cermets and cemented carbides contain hard constituents in the metal binder phase. In the case of a cemented carbide, at least a portion of the hard component consists of WC. In one embodiment of the invention, the number and size of the pores of the three-dimensional printed and sintered cermet or cemented carbide body is less than A06 and / or B06 as defined in ISO 450 5-1978, preferably A04 and And / or less than B04, more preferably less than A02 and / or B02. In one embodiment of the present invention, the number and size of pores of the three-dimensional printed and sintered cermet or cemented carbide body is less than A02B00C00, A00B02C00, or A02B02C00. In one embodiment of the present invention, there are no pores in the three-dimensional printed and sintered cermet or cemented carbide body.

稠密粒子という用語は、本明細書において、気孔が1vol%未満の粒子を定義することを意図している。多孔質粒子という用語は、本明細書において、気孔が1vol%以上の粒子を定義することを意図している。   The term dense particle is intended herein to define a particle with less than 1 vol% porosity. The term porous particles, as used herein, is intended to define particles having pores of 1 vol% or more.

本発明の一実施態様において、多孔質粒子の平均気孔率は、10−40vol%、又は15−35vol%、又は17−30vol%若しくは18−30vol%である。多孔質粒子の気孔率は、印刷されたグリーン体の焼結時の焼結活性に寄与する。多孔質粒子の気孔率が低すぎると、焼結時のグリーン体における焼結活性が低下して焼結する工程の後に残留気孔率及び/又は開気孔率が出現し得る。多孔質粒子の気孔率が高すぎると、グリーン体は比較的脆弱となる。その理由はおそらく、毛細管力によって印刷バインダーが多孔質粒子の中に吸い上げられ、各多孔質粒子の表面により少ない印刷バインダーが残されることで、他の粒子との結びつきが弱まるためである。   In one embodiment of the present invention, the average porosity of the porous particles is 10-40 vol%, or 15-35 vol%, or 17-30 vol% or 18-30 vol%. The porosity of the porous particles contributes to the sintering activity during sintering of the printed green body. If the porosity of the porous particles is too low, residual porosity and / or open porosity may appear after the sintering step due to a decrease in sintering activity in the green body during sintering. When the porosity of the porous particles is too high, the green body becomes relatively fragile. The reason is probably that capillary force wicks the printing binder into the porous particles, leaving less printing binder on the surface of each porous particle, which weakens the binding with other particles.

本発明の一実施態様において、粉末混合物は、メジアン粒径(D50)が15−20μmの超硬合金又はサーメット多孔質粒子を含み、前記多孔質粒子の平均気孔率は、17vol%より高く、又は18vol%より高く、又は17−40vol%若しくは18−35vol%である。   In one embodiment of the present invention, the powder mixture comprises cemented carbide or cermet porous particles having a median particle size (D50) of 15-20 μm, and the average porosity of the porous particles is higher than 17 vol%, or More than 18 vol%, or 17-40 vol% or 18-35 vol%.

本発明の一実施態様において、多孔質粒子のD90は40μm未満、好ましくは、30μm未満である。これは、大きな多孔質粒子は、焼結されたサーメット又は超硬合金物体における金属結合相富化領域の形成の一因となる傾向があるため、有利である。焼結されたサーメット又は超硬合金物体は、金属結合相中のWCなどの硬質成分から構成される材料からなり、金属結合相は、物体内部に均一に分布し、金属結合相富化領域はあまり顕著ではなく、無視できる程度、或いは見出すことが困難でさえあることが理想である。   In one embodiment of the invention, the D90 of the porous particles is less than 40 μm, preferably less than 30 μm. This is advantageous because large porous particles tend to contribute to the formation of metallurgical phase rich regions in sintered cermets or cemented carbide bodies. The sintered cermet or cemented carbide body is made of a material composed of hard components such as WC in the metal bonding phase, the metal bonding phase is uniformly distributed inside the body, and the metal bonding phase enriched region is Ideally it is less pronounced, negligible or even difficult to find.

本発明の一実施態様において、稠密粒子のD90は、20μm未満、好ましくは、15μm未満である。   In one embodiment of the invention, the D90 of the dense particles is less than 20 μm, preferably less than 15 μm.

本発明の一実施態様において、粉末混合物は、球形の多孔質粒子を含む。球形粒子の方が良好な流動特性を有し、これは、印刷時及び印刷後の両方で、印刷された粉末、即ち、3D印刷されたサーメット又は超硬合金グリーン体から結合していない粉末を除去すべき場合の脱粉する工程において有利である。グリーン体が格子構造又は空洞を含む場合、脱粉する工程は、非常に要求が厳しいものとなる可能性があり、その場合、球形粒子を含む粉末混合物は有利である。   In one embodiment of the invention, the powder mixture comprises spherical porous particles. Spherical particles have better flow properties, which both at the time of printing and after printing printed powder, ie powder not bonded from 3D printed cermet or cemented carbide green body It is advantageous in the dedusting process when it should be removed. If the green body contains a lattice structure or cavities, the de-powdering process can be very demanding, in which case a powder mixture containing spherical particles is advantageous.

本発明の一実施態様において、先行する請求項では、粉末混合物は、破砕された稠密粒子又は不規則な形状の稠密粒子を含む。稠密粒子の不規則な外形は、印刷時に粉末床に安定性をもたらすという点で有利である。   In one embodiment of the invention, in the preceding claims, the powder mixture comprises crushed dense particles or irregularly shaped dense particles. The irregular contour of the dense particles is advantageous in that it provides stability to the powder bed during printing.

本発明の一実施態様において、サーメット及び/又は超硬合金粒子は金属結合相を含み、粉末混合物における金属結合相の平均含有率は、10wt%より高く、又は11wt%より高く、好ましくは11−13wt%である。この範囲内の金属結合相含有率は、焼結されたサーメット又は超硬合金物体における気孔の密度が非常に限定されたものとなり得るという点で有利である。   In one embodiment of the invention, the cermet and / or cemented carbide particles comprise a metallic binder phase, and the average content of metallic binder phase in the powder mixture is higher than 10 wt%, or higher than 11 wt%, preferably 11-. It is 13 wt%. A content of metal binder phase within this range is advantageous in that the density of pores in the sintered cermet or cemented carbide body can be very limited.

本発明の一実施態様において、サーメット及び/又は超硬合金粒子は金属結合相を含み、前記金属結合相はCoを含む。本発明の一実施態様において、金属結合相は、90wt%を超えるCoを含む。本発明の一実施態様において、金属結合相は、Coからなる。   In one embodiment of the present invention, the cermet and / or cemented carbide particles comprise a metallic bonding phase, said metallic bonding phase comprising Co. In one embodiment of the invention, the metal bonding phase comprises more than 90 wt% Co. In one embodiment of the invention, the metal bonding phase consists of Co.

本発明の一実施態様において、超硬合金粒子はWCを含み、平均WC粒度は0.5−10μm、好ましくは0.5−5μm又は0.5−2μmである。   In one embodiment of the invention, the cemented carbide particles comprise WC, and the average WC particle size is 0.5-10 μm, preferably 0.5-5 μm or 0.5-2 μm.

本発明はまた、サーメット又は超硬合金物体を製造する方法であって、
− メジアン粒径(D50)が5−35μmの多孔質サーメット及び/又は超硬合金粒子の粉末を、メジアン粒径(D50)が3−15μmの稠密サーメット及び/又は超硬合金粒子の粉末と混合することにより、65−85wt%、好ましくは65−75wt%の多孔質粒子と、15−35wt%、好ましくは25−35wt%の稠密粒子を含む粉末混合物を形成する工程、
− 前記粉末混合物と印刷バインダーを用いて物体を3D印刷することにより、3D印刷されたサーメット又は超硬合金グリーン体を形成する工程、
− 前記グリーン体を焼結することにより、サーメット又は超硬合金物体を形成する工程
を含む、方法に関する。
The invention also relates to a method of producing a cermet or cemented carbide body,
-A powder of porous cermet and / or cemented carbide particles having a median particle diameter (D50) of 5 to 35 μm mixed with a powder of a dense cermet and / or cemented carbide particles having a median particle diameter (D50) of 3 to 15 μm Forming a powder mixture comprising porous particles of 65-85 wt%, preferably 65-75 wt%, and dense particles of 15-35 wt%, preferably 25-35 wt%,
-Forming a 3D printed cermet or cemented carbide green body by 3D printing an object using the powder mixture and a printing binder,
-A method comprising the steps of forming a cermet or cemented carbide body by sintering said green body.

印刷バインダーは、印刷時に部分的に蒸発する溶媒を含む。印刷バインダーは、水ベースとすることができる。   The printing binder comprises a solvent which partially evaporates during printing. The printing binder can be water based.

硬化は通常、印刷する工程の一部として行われる。印刷バインダーが硬化され、それによってグリーン体は十分なグリーン強度を得る。硬化は、過剰な粉末を除去する前に、印刷されたグリーン体をより高い温度、例えば150−250℃に曝すことによって行うことができる。一実施態様において、硬化は、非酸化環境において、例えばAr中で行われる。   Curing is usually performed as part of the printing process. The printing binder is cured, whereby the green body obtains sufficient green strength. Curing can be carried out by exposing the printed green body to a higher temperature, for example 150-250 ° C., before removing the excess powder. In one embodiment, curing takes place in a non-oxidizing environment, for example in Ar.

一実施態様において、三次元印刷は、三次元印刷機、例えばバインダージェット三次元印刷機において行われる。   In one embodiment, three-dimensional printing is performed on a three-dimensional printer, for example a binder jet three-dimensional printer.

一実施態様において、焼結は、焼結炉において行われる。   In one embodiment, sintering is performed in a sintering furnace.

本発明の一実施態様において、方法は、焼結する工程に続いて、又は組み入れて、サーメット又は超硬合金物体をいわゆる焼結HIP又はGPS(ガス圧焼結)する工程を更に含む。焼結HIPは、1300−1500℃の温度で行ってもよい。焼結HIPは、20−100barの圧力で行ってもよい。例えば、通常の真空焼結に続き、より高い温度で圧力が加えられる。焼結HIPする工程の目的は、材料を圧縮することにより焼結後に残った気孔率を低下させることである。焼結された物体中の密閉気孔率は何れも密閉されており、加えられた圧力は低圧HIP処理(即ち、焼結HIP処理)を実現し、気孔率を低下させる。他方、開気孔率は、焼結HIPを用いて低下させることはできない。   In one embodiment of the invention, the method further comprises the step of so-called sintering HIP or GPS (gas pressure sintering) following or incorporating the step of sintering the cermet or cemented carbide body. Sintering HIP may be performed at a temperature of 1300-1500 ° C. Sintering HIP may be performed at a pressure of 20-100 bar. For example, following normal vacuum sintering, pressure is applied at higher temperatures. The purpose of the sintering HIP step is to reduce the porosity left after sintering by compressing the material. All closed porosity in the sintered body is closed and the applied pressure achieves low pressure HIPing (i.e. sintered HIPing) and reduces the porosity. On the other hand, the open porosity can not be reduced using sintered HIP.

本発明の一実施態様において、三次元印刷は、バインダージェッティングである。バインダージェッティングは、比較的安価な三次元印刷法であるという点で有利である。   In one embodiment of the invention, three-dimensional printing is binder jetting. Binder jetting is advantageous in that it is a relatively inexpensive three-dimensional printing method.

物体を研削又は研磨する工程を焼結する工程後の最終工程として追加することができる。   The step of grinding or polishing the object can be added as a final step after the step of sintering.

本発明はまた、インサート、ドリル若しくはエンドミルなどの金属切削用の切削工具、又はドリルビットなどの鉱業用途用の切削工具、又は摩耗部品の三次元印刷における前記粉末混合物の使用に関する。   The invention also relates to the use of said powder mixture in three-dimensional printing of inserts, cutting tools for metal cutting, such as drills or end mills, or mining applications, such as drill bits, or wear parts.

本発明はまた、メジアン粒径(D50)が10−35μmの多孔質超硬合金及び/又はサーメット粒子が65−85wt%、メジアン粒径(D50)が3−10μmの稠密超硬合金及び/又はサーメット粒子が15−35wt%であるサーメット及び/又は超硬合金粒子を含む、三次元印刷されたグリーン体に関する。   The present invention also relates to a dense cemented carbide alloy and / or a dense cemented carbide alloy having a median particle diameter (D50) of 10-35 μm and / or a cermet particle of 65-85 wt% and a median particle diameter (D50) of 3-10 μm. Three-dimensional printed green body comprising cermet and / or cemented carbide particles wherein the cermet particles are 15-35 wt%.

本発明はまた、分類A00B00C00の微細構造を有するサーメット又は超硬合金の三次元印刷された物体に関する。   The invention also relates to a three-dimensional printed object of cermet or cemented carbide having a microstructure of class A00B00C00.

一実施態様において、焼結されたサーメット又は超硬合金物体は、金属結合相含有率が11wt%を超えている。   In one embodiment, the sintered cermet or cemented carbide body has a metal binder phase content of greater than 11 wt%.

一実施態様において、焼結されたサーメット又は超硬合金物体は、金属切削用の切削工具である。   In one embodiment, the sintered cermet or cemented carbide body is a cutting tool for metal cutting.

本発明の更に他の目的及び特徴は、添付図面と合わせて検討される下記の詳細な説明から明らかとなる。   Other objects and features of the present invention will become apparent from the following detailed description considered in conjunction with the accompanying drawings.

試料Bの断面のLOM(光学顕微鏡)画像である。画像では気孔は視認できない。It is a LOM (optical microscope) image of the cross section of sample B. The pores are not visible in the image. 微細構造が視認できる、試料Bの断面のLOM画像である。WC結晶粒は色が灰色であり、Co金属結合相は白色である。It is a LOM image of the cross section of sample B in which the fine structure is visible. The WC grains are gray in color and the Co metal binder phase is white. PP1の多孔質粒子の断面のLOM画像である。It is a LOM image of the cross section of the porous particle of PP1. PP2の多孔質粒子の断面のLOM画像である。It is a LOM image of the cross section of the porous particle of PP2. DP2の稠密粒子の断面のSEM(走査型電子顕微鏡)画像である。It is a SEM (scanning electron microscope) image of the cross section of dense particles of DP2. DP3の稠密粒子の断面のSEM画像である。It is a SEM image of the cross section of dense particles of DP3. 試料Dの断面のLOM画像である。画像ではグラファイトが暗色域として視認できる。It is a LOM image of the cross section of sample D. In the image, graphite is visible as a dark area. 試料Eの断面のLOM画像である。画像では気孔が暗色域として視認できる。It is a LOM image of the cross section of sample E. In the image, the pores are visible as dark areas. 試料Fの断面のLOM画像である。画像では気孔が暗色域として視認できる。It is a LOM image of the cross section of the sample F. In the image, the pores are visible as dark areas. 試料Gの断面のLOM画像である。画像では気孔が暗色域として視認できる。It is a LOM image of the cross section of sample G. In the image, the pores are visible as dark areas. 3D印刷され焼結された超硬合金物体のLOM(光学顕微鏡)画像である。3 is a LOM (optical microscope) image of a 3D printed and sintered cemented carbide object. 3D印刷され焼結された超硬合金物体のLOM(光学顕微鏡)画像である。3 is a LOM (optical microscope) image of a 3D printed and sintered cemented carbide object.

定義
「サーメット」という用語は、本明細書において、金属結合相中に硬質成分を含む材料を意味することを意図しており、硬質成分は、Ta、Ti、Nb、Cr、Hf、V、Mo及びZrのうちの一又は複数の炭化物又は炭窒化物、例えばTiN、TiC及び/又はTiCNを含む。
Definitions The term "cermet" is intended herein to mean a material containing a hard component in the metal bonding phase, the hard component being Ta, Ti, Nb, Cr, Hf, V, Mo And Zr one or more carbides or carbonitrides, such as TiN, TiC and / or TiCN.

「超硬合金」という用語は、本明細書において、金属結合相中に硬質成分を含む材料を意味することを意図しており、硬質成分はWC結晶粒を含む。硬質成分は、Ta、Ti、Nb、Cr、Hf、V、Mo及びZrのうちの一又は複数の炭化物又は炭窒化物、例えばTiN、TiC及び/又はTiCNを更に含むこともできる。   The term "cemented carbide" is intended herein to mean a material comprising a hard component in the metal bonding phase, the hard component comprising WC grains. The hard component may also further comprise one or more carbides or carbonitrides of Ta, Ti, Nb, Cr, Hf, V, Mo and Zr, for example TiN, TiC and / or TiCN.

サーメット又は超硬合金における金属結合相は、金属又は金属合金であり、金属は、例えばCr、Mo、Fe、Co若しくはNiから単独で、又は任意の組み合わせで選択することができる。好ましくは、金属結合相は、Co、Ni及びFeの組み合わせ、CoとNiの組み合わせ、又はCoのみを含む。金属結合相は、当業者に公知の他の適切な金属を含むことができる。   The metal bonding phase in the cermet or cemented carbide is a metal or metal alloy, and the metal can be selected, for example, from Cr, Mo, Fe, Co or Ni alone or in any combination. Preferably, the metal bonding phase comprises Co, a combination of Ni and Fe, a combination of Co and Ni, or only Co. The metal bonding phase can comprise other suitable metals known to those skilled in the art.

粒度分布は、本明細書において、D10、D50及びD90値により提示される。D50、即ち中央値、は、母集団の半分がこの値よりも小さなサイズを有する粒子径であると定義される。同様に、粒度分布の90パーセントはD90値よりも小さく、母集団の10パーセントはD10値よりも小さい。   The particle size distribution is presented herein by the D10, D50 and D90 values. D50, or median, is defined as the particle size at which half of the population has a size smaller than this value. Similarly, 90 percent of the particle size distribution is less than the D90 value, and 10 percent of the population is less than the D10 value.

本発明の実施態様を下記の実施例に関連してより詳細に開示する。実施例は、例示的であって実施態様を限定するものではないとみなすべきである。   Embodiments of the invention are disclosed in more detail in connection with the following examples. The examples should be considered as illustrative and not limiting on the embodiments.

稠密粉末DP1は、Tikomet Oyからの製品コードGrade F(微細)のリサイクルされたWC−Co粉末である。稠密粉末DP2も、Tikomet OyによりGrade Fとして製造されたリサイクルされたWC−Co粉末であるが、わずかにより微細な粒度に粉砕されている。粉末DP2の断面を図5に示す。   Dense powder DP1 is a recycled WC-Co powder with product code Grade F (fine) from Tikomet Oy. Dense powder DP2 is also a recycled WC-Co powder manufactured as Grade F by Tikomet Oy, but is ground to a slightly finer particle size. The cross section of powder DP2 is shown in FIG.

DP3は、WC、Co及びPEGの顆粒を噴霧乾燥し、噴霧乾燥した顆粒を焼結することにより製造した粉末である。焼結は、PEGを除去し、気孔率も除去するために行われ、これにより球形の超硬合金稠密粒子が得られる。DP3粉末を製造する方法は、国際公開第2015/162206号に更に詳細に開示されている。粉末DP3の断面を図6に示す。焼結する工程で気孔率を調節することができ、これに続く篩い分け工程又は空気分級機工程で粒度分布を適合させることができる。   DP3 is a powder produced by spray-drying WC, Co and PEG granules and sintering the spray-dried granules. Sintering is performed to remove PEG and also to remove porosity, which results in spherical cemented carbide dense particles. The method of producing DP3 powder is disclosed in more detail in WO 2015/162206. The cross section of powder DP3 is shown in FIG. The porosity can be controlled in the sintering step, and the particle size distribution can be adapted in the subsequent sieving or air classifier step.

DP4は、最終超硬合金物体のコバルト含有率を調節するために使用されるコバルト粉末である。DP4粉末は、Freeport Cobaltからの材料20060のR−125コバルト粉末d25/450である。   DP4 is a cobalt powder used to adjust the cobalt content of the final cemented carbide body. DP4 powder is R-125 cobalt powder d25 / 450 of material 20060 from Freeport Cobalt.

多孔質粉末PP1及びPP2は、H.C.Starckからのいわゆる「Amperit 519」WC−Co88/12である。PP1は、焼結した45/15μmのAmperit519.074を凝集させたものであり、PP2は、焼結した30/5μmのAmperit519.059を凝集させたものである。PP1及びPP2の断面をそれぞれ図3及び図4に示す。   The porous powders PP1 and PP2 are prepared according to H. C. So-called "Amperit 519" WC-Co 88/12 from Starck. PP1 is obtained by aggregating sintered 45/15 μm of Amperit 519.074, and PP2 is obtained by aggregating sintered 30/5 μm of Amperit 519.059. Cross sections of PP1 and PP2 are shown in FIGS. 3 and 4, respectively.

PP3は、WC、Co及びPEGの顆粒を噴霧乾燥し、噴霧乾燥した顆粒を部分焼結することにより製造した多孔質粉末である。部分焼結は、PEGを除去するために行われ、これにより球形の超硬合金多孔質粒子が得られる。   PP3 is a porous powder produced by spray drying granules of WC, Co and PEG and partially sintering the spray dried granules. Partial sintering is performed to remove PEG, thereby obtaining spherical cemented carbide porous particles.

気孔率の測定は、切削面を調査すること、及びImageJ.(オープンソースソフトウェアhttps://imagej.nih.gov/ij/index.html)を用いた画像分析により行った。   The measurement of porosity can be conducted by examining a cutting surface, and Image J. Image analysis was performed using (open source software https://imagej.nih.gov/ij/index.html).

粒子の形状は、SEM(走査型電子顕微鏡)及びLOM(光学顕微鏡)で調査した。粒度分布(D10、D50及びD90)は、レーザー回折とRHODOS乾燥分散システムを備えたSympatec HELOS/BR粒径分析を用いて分析した。各粉末においてほとんどの粒子が有する形状を表1に提示する。   The shape of the particles was investigated by SEM (scanning electron microscopy) and LOM (light microscopy). Particle size distribution (D10, D50 and D90) was analyzed using Sympatec HELOS / BR particle size analysis with laser diffraction and RHODOS dry dispersion system. The shape that most particles have in each powder is presented in Table 1.

Co含有率及びCr含有率は、ICP−MS又はXRFで調査した。結果を表1に提示する。超硬合金粉末は、表1のCo及び/又はCr値から合計で100%となる量のWCも含む。

Figure 2019513900
Co content and Cr content were investigated by ICP-MS or XRF. The results are presented in Table 1. The cemented carbide powder also contains WC in an amount to 100% in total from the Co and / or Cr values in Table 1.
Figure 2019513900

表2に示すように稠密粉末と多孔質粉末を混合して粉末混合物とすることにより、粉末混合物を製造した。   A powder mixture was produced by mixing dense powder and porous powder as shown in Table 2 to make a powder mixture.

バインダージェット印刷機「ExOne X1−lab」において、印刷時の層厚100μmで印刷を行った。印刷時の飽和度は、表2に示すように、80%と110%の間であった。印刷バインダーの飽和度は、特定の粉末充填密度(ここでは、粉末充填密度は60%に設定されている)のときに印刷バインダーで満たされる空隙の体積のパーセントとして定義される。多孔質粒子の割合が低い場合と比較して、高い割合の多孔質粒子を含む粉末混合物を用いて印刷を行う場合、より高い飽和度が必要である。水ベースの印刷用インクX1−Lab(商標)水性バインダー(7110001CL)を印刷バインダーとして使用した。印刷時、各層の配列は下記の通りであった:粉末混合物の層を床上に広げ、印刷バインダーをCADモデルにおいて定義されたパターンに広げた後、印刷バインダーを乾燥させて印刷バインダーの溶媒を除去した。これを、物体の全高が印刷されるまで繰り返した。その後、アルゴン雰囲気中195℃で8時間硬化を行った。脱粉を小型ブラシと加圧空気を用いて手作業で行った。   In a binder jet printer "ExOne X1-lab", printing was performed with a layer thickness of 100 μm at the time of printing. The degree of saturation when printing was between 80% and 110% as shown in Table 2. The degree of saturation of the printing binder is defined as the percentage of the volume of voids filled with the printing binder at a particular powder packing density (here, the powder packing density is set to 60%). A higher degree of saturation is required when printing with powder mixtures containing a high percentage of porous particles as compared to a low percentage of porous particles. A water based printing ink X1-LabTM aqueous binder (7110001CL) was used as the printing binder. At the time of printing, the arrangement of each layer was as follows: After spreading the layer of powder mixture on the floor and spreading the printing binder in the pattern defined in CAD model, the printing binder is dried to remove the solvent of the printing binder did. This was repeated until the full height of the object was printed. Thereafter, curing was performed at 195 ° C. for 8 hours in an argon atmosphere. De-powdering was done manually with a small brush and pressurized air.

続いて、印刷され硬化させたグリーン体を焼結し、焼結された超硬合金物体を得た。焼結は、DMK80焼結炉においてYでコーティングしたグラファイトトレーで行った。第1の焼結プロセスにおいて、500l/時間のHが流れる焼結チャンバにおいて温度を室温から480℃まで上昇させた脱バインダー工程を物体に施した。この後、温度を480℃から1380℃に上昇させ、30分間保持した真空工程を行った。その後、温度を1410℃に上昇させ、1時間保持した。その後、チャンバを冷却し、焼結体をチャンバから取り出した。 Subsequently, the printed and cured green body was sintered to obtain a sintered cemented carbide body. Sintering was performed on Y coated graphite trays in a DMK 80 sintering furnace. In the first sintering process, the body was subjected to a debinder step in which the temperature was increased from room temperature to 480 ° C. in a sintering chamber in which 500 l / h of H 2 flowed. After this, the temperature was raised from 480 ° C. to 1380 ° C., and a vacuum step was carried out for 30 minutes. The temperature was then raised to 1410 ° C. and held for 1 hour. Thereafter, the chamber was cooled and the sintered body was removed from the chamber.

次いで、焼結体(試料A−F、試料Gは除く)に、温度を1410℃に30分間保持する工程と、その後のチャンバに圧力が55barに到達するまでArを約13分間導入し、その後この圧力を15分間保持する加圧工程とを含むHIP焼結プロセスを施した。その後チャンバを冷却し、焼結されHIP焼結された物体をチャンバから取り出した。   Then, the sintered body (samples A-F, excluding sample G) is maintained at a temperature of 1410 ° C. for 30 minutes, and then Ar is introduced into the chamber for about 13 minutes until the pressure reaches 55 bar, and then The HIP sintering process was applied including a pressing step of holding this pressure for 15 minutes. The chamber was then cooled and the sintered and HIP-sintered body was removed from the chamber.

各試料の線収縮は、グリーン体から焼結されHIP焼結された物体までで、約25−30%であった。焼結されHIP焼結された各試料の断面を調査し、注釈を表2に記載した。気孔率は、ISO4505−1978による超硬合金のABC判定及びImageJを用いた画像分析の両方で調べた。

Figure 2019513900
The linear shrinkage of each sample was about 25-30% from the green body to the sintered and HIP-sintered body. The cross section of each sintered and HIP-sintered sample was examined and the annotations are listed in Table 2. The porosity was investigated by both ABC determination of cemented carbide according to ISO 450 5-1978 and image analysis using ImageJ.
Figure 2019513900

三次元印刷された超硬合金物体の例を図11及び図12に示す。   Examples of three-dimensional printed cemented carbide objects are shown in FIGS.

本発明を様々な例示の実施態様に関連して記載したが、当然ながら本発明は開示された例示の実施態様に限定されるものではなく、それどころか、添付の請求項の範囲内の様々な変形例及び等価配置を包含することを意図している。   While the present invention has been described in connection with various exemplary embodiments, it is to be understood that the present invention is not limited to the disclosed exemplary embodiments, but rather that various modifications within the scope of the appended claims. It is intended to encompass examples and equivalent arrangements.

Claims (16)

サーメット又は超硬合金物体の三次元印刷用の粉末混合物であって、
− 65−85wt%の、メジアン粒径(D50)が10−35μmの多孔質超硬合金及び/又はサーメット粒子、並びに
− 15−35wt%の、メジアン粒径(D50)が3−10μmの稠密超硬合金及び/又はサーメット粒子を含む、粉末混合物。
A powder mixture for three-dimensional printing of cermets or cemented carbide objects, comprising
-65-85 wt% porous cemented carbide and / or cermet particles with a median particle size (D50) of 10-35 μm, and-15-35 wt% dense over 3-10 μm with a median particle size (D 50) Powdered mixture comprising hard metal and / or cermet particles.
多孔質粒子の平均気孔率が10−40vol%である、請求項1に記載の粉末混合物。   The powder mixture according to claim 1, wherein the average porosity of the porous particles is 10-40 vol%. 粉末混合物が、メジアン粒径(D50)が15−20μmの多孔質超硬合金又はサーメット粒子を含み、前記多孔質粒子の平均気孔率が18−40vol%である、請求項1又は2に記載の粉末混合物。   The powder mixture according to claim 1 or 2, wherein the powder mixture comprises porous cemented carbide or cermet particles having a median particle size (D50) of 15-20 μm, and the average porosity of the porous particles is 18-40 vol%. Powder mixture. 多孔質粒子のD90が40μm未満である、請求項1から3の何れか一項に記載の粉末混合物。   The powder mixture according to any one of claims 1 to 3, wherein D90 of the porous particles is less than 40 m. 粉末混合物が、球形の多孔質粒子を含む、請求項1から4の何れか一項に記載の粉末混合物。   5. A powder mixture according to any one of the preceding claims, wherein the powder mixture comprises spherical porous particles. 粉末混合物が、破砕された稠密粒子を含む、請求項1から5の何れか一項に記載の粉末混合物。   6. A powder mixture according to any one of the preceding claims, wherein the powder mixture comprises crushed dense particles. 前記サーメット及び/又は超硬合金粒子が金属結合相を含み、粉末混合物における金属結合相の平均含有量が11wt%超えている、請求項1から6の何れか一項に記載の粉末混合物。   7. The powder mixture according to any one of the preceding claims, wherein the cermet and / or cemented carbide particles comprise a metallic binder phase, and the average content of metallic binder phase in the powder mixture exceeds 11 wt%. 前記サーメット及び/又は超硬合金粒子が金属結合相を含み、前記金属結合相がCoを含む、請求項1から7の何れか一項に記載の粉末混合物。   The powder mixture according to any one of the preceding claims, wherein the cermet and / or cemented carbide particles comprise a metallic binder phase and the metallic binder phase comprises Co. サーメット又は超硬合金物体を製造する方法であって、
− メジアン粒径(D50)が5−35μmの多孔質サーメット及び/又は超硬合金粒子の粉末を、メジアン粒径(D50)が3−15μmの稠密サーメット及び/又は超硬合金粒子の粉末と混合することにより、65−85wt%の多孔質粒子と15−35wt%の稠密粒子を含む粉末混合物を形成する工程、
− 前記粉末混合物と印刷バインダーを用いて物体を3D印刷することにより、3D印刷されたサーメット又は超硬合金グリーン体を形成する工程、
− 前記グリーン体を焼結することにより、サーメット又は超硬合金物体を形成する工程
を含む、方法。
A method of producing a cermet or cemented carbide body, comprising
-A powder of porous cermet and / or cemented carbide particles having a median particle diameter (D50) of 5 to 35 μm mixed with a powder of a dense cermet and / or cemented carbide particles having a median particle diameter (D50) of 3 to 15 μm Forming a powder mixture comprising 65-85 wt% porous particles and 15-35 wt% dense particles by
-Forming a 3D printed cermet or cemented carbide green body by 3D printing an object using the powder mixture and a printing binder,
-A method comprising forming a cermet or cemented carbide body by sintering said green body.
焼結する工程に続いて又は組み入れて、サーメット又は超硬合金物体を焼結HIPする工程を更に含む、請求項9に記載の方法。   10. The method of claim 9, further comprising the step of sintering HIP a cermet or cemented carbide body following or incorporating the step of sintering. 三次元印刷がバインダージェッティングである、請求項9又は10に記載の方法。   The method according to claim 9 or 10, wherein the three-dimensional printing is binder jetting. 物体が金属切削用の切削工具、又は鉱業用途用の切削工具、又は摩耗部品である、請求項9から11の何れか一項に記載の方法。   The method according to any one of claims 9 to 11, wherein the object is a cutting tool for metal cutting, or a cutting tool for mining applications, or a wear part. 65−85wt%がメジアン粒径(D50)10−35μmの多孔質超硬合金及び/又はサーメット粒子であり、15−35wt%がメジアン粒径(D50)3−10μmの稠密超硬合金及び/又はサーメット粒子であるサーメット及び/又は超硬合金粒子を含む、三次元印刷されたグリーン体。   Dense cemented carbide and / or cemented carbide and / or cermet particles of 65-85 wt% median particle diameter (D50) of 10-35 μm and 15-35 wt% of 3-10 μm median particle diameter (D50) of Three-dimensional printed green body comprising cermet particles which are cermet particles and / or cemented carbide particles. 分類A00B00C00の微細構造を有するサーメット又は超硬合金の三次元印刷された物体。   Cermet or cemented carbide three-dimensional printed object having a microstructure of class A00B00C00. 金属結合相含有率が11wt%を超えている、請求項14に記載の物体。   The object according to claim 14, wherein the metal binder phase content exceeds 11 wt%. 金属切削用の切削工具である、請求項14又は15に記載の物体。   The object according to claim 14 or 15, which is a cutting tool for metal cutting.
JP2018554108A 2016-04-15 2017-04-06 Three-dimensional printing of cermet or cemented carbide Active JP6933662B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP16165640.0 2016-04-15
EP16165640 2016-04-15
PCT/EP2017/058210 WO2017178319A1 (en) 2016-04-15 2017-04-06 Three dimensional printing of cermet or cemented carbide

Publications (2)

Publication Number Publication Date
JP2019513900A true JP2019513900A (en) 2019-05-30
JP6933662B2 JP6933662B2 (en) 2021-09-08

Family

ID=55910733

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018554115A Active JP6861728B2 (en) 2016-04-15 2016-11-30 Three-dimensional printing of cermet or cemented carbide
JP2018554108A Active JP6933662B2 (en) 2016-04-15 2017-04-06 Three-dimensional printing of cermet or cemented carbide

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018554115A Active JP6861728B2 (en) 2016-04-15 2016-11-30 Three-dimensional printing of cermet or cemented carbide

Country Status (7)

Country Link
US (2) US11085106B2 (en)
EP (2) EP3442728B1 (en)
JP (2) JP6861728B2 (en)
KR (2) KR102514163B1 (en)
CN (2) CN108883467B (en)
IL (2) IL262284B2 (en)
WO (2) WO2017178084A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112207288A (en) * 2020-09-16 2021-01-12 山东工业陶瓷研究设计院有限公司 Metal ceramic composite part and preparation method thereof
JP2022553392A (en) * 2019-10-25 2022-12-22 グーリング ケージー Manufacturing method and cutting tool for indexable inserts

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017101050A1 (en) * 2017-01-20 2018-07-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. METHOD FOR PRODUCING HARD-METAL BODIES BY 3D PRINTING
DE102017125734A1 (en) 2017-11-03 2019-05-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Sintered cemented carbide granulate and its use
US11364557B2 (en) * 2017-12-26 2022-06-21 Moldino Tool Engineering, Ltd. Drill
US20200324338A1 (en) * 2018-01-02 2020-10-15 Hewlett-Packard Development Company, L.P. Powder bed materials
CN111448015A (en) * 2018-02-09 2020-07-24 惠普发展公司,有限责任合伙企业 Material group
WO2019231467A1 (en) * 2018-06-01 2019-12-05 Hewlett-Packard Development Company, L.P. Material sets
WO2020067138A1 (en) 2018-09-28 2020-04-02 三菱マテリアル株式会社 Surface coated tin-based cermet cutting tool having hard coating layer exhibiting excellent chipping resistance
CN111216740A (en) 2018-11-08 2020-06-02 株式会社万都 Driver assistance apparatus, control method thereof, and driver assistance system
US20220250149A1 (en) 2018-11-12 2022-08-11 Desktop Metal, Inc. Techniques for controlling build material flow characteristics in additive manufacturing and related systems and methods
JP7201401B2 (en) * 2018-11-12 2023-01-10 株式会社フジミインコーポレーテッド Powder material for use in powder additive manufacturing, powder additive manufacturing method using the same, and modeled object
CN109692967B (en) * 2019-02-15 2022-06-17 中圣德投资(深圳)有限公司 Bulk powder for 3D printing and preparation method and printing method thereof
WO2020190276A1 (en) * 2019-03-18 2020-09-24 Hewlett-Packard Development Company, L.P. Three-dimensional metal object formation
EP3715017A1 (en) 2019-03-25 2020-09-30 Hilti Aktiengesellschaft Additive manufacturing powder for a hard metal part and method for making the powder
EP3715016A1 (en) 2019-03-25 2020-09-30 Hilti Aktiengesellschaft Additive manufacturing of a hard metal part
EP3715015A1 (en) 2019-03-25 2020-09-30 Hilti Aktiengesellschaft Manufacturing method of a hard metal part
CN113573828B (en) 2019-03-25 2024-03-01 肯纳金属公司 Additive manufacturing technology and application thereof
CN112571800A (en) * 2019-04-16 2021-03-30 朱丽红 Preparation facilities of wax matrix in 3D prints
US20200346365A1 (en) * 2019-05-03 2020-11-05 Kennametal Inc. Cemented carbide powders for additive manufacturing
US20200353537A1 (en) * 2019-05-06 2020-11-12 Kennametal Inc. Sintered alloy articles and methods of making the same
EP3993924A1 (en) 2019-07-05 2022-05-11 Sandvik Machining Solutions AB Three dimensional printing of cermet or cemented carbide
EP4069451A1 (en) * 2019-12-04 2022-10-12 Grundfos Holding A/S Method of manufacturing of a powder-metallurgical component, including drying with gas flow before sintering
CN111663067A (en) * 2020-06-04 2020-09-15 杭州科技职业技术学院 Hard alloy material for 3D printing and preparation process thereof
CN111761059A (en) * 2020-06-04 2020-10-13 杭州科技职业技术学院 Process for preparing PDC drill bit through 3D printing
CN112692300A (en) * 2020-12-14 2021-04-23 合肥新杉宇航三维科技有限公司 3D printing method of metal ceramic composite material
CN113600830B (en) * 2021-08-30 2022-06-21 北京工业大学 Method for hard alloy photoprinting using responsive polymer matrix
CN114570939A (en) * 2022-03-09 2022-06-03 广东金瓷三维技术有限公司 Hard alloy material system for 3D printing and 3D printing method
CN115026301B (en) * 2022-04-18 2024-04-16 合肥工业大学 Method for preparing WC-Co hard alloy by binder jetting 3D printing
CN114713827B (en) * 2022-04-20 2024-01-30 赣南师范大学 Cemented carbide/metal ceramic powder for 3D printing and preparation method thereof
CN114985748A (en) * 2022-06-15 2022-09-02 西安铂力特增材技术股份有限公司 Forming method of hard alloy complex component
WO2024089236A1 (en) 2022-10-28 2024-05-02 H. C. Starck Tungsten GmbH Granular mixture for additive manufacturing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01319601A (en) * 1988-06-20 1989-12-25 Tokin Corp Production of sintering metal
JP2005533177A (en) * 2002-07-12 2005-11-04 エクス ワン コーポレーション Solid-ultra-solid liquid phase sintering of mixed powder
JP2012144804A (en) * 2010-12-17 2012-08-02 Sandvik Intellectual Property Ab Cermet body and method of manufacturing the same
JP2016535169A (en) * 2013-08-20 2016-11-10 ザ・トラスティーズ・オブ・プリンストン・ユニバーシティThe Trustees Of Princeton University Density enhancement method and composition
JP2017503868A (en) * 2013-10-17 2017-02-02 エックスジェット・リミテッドXjet Ltd. Tungsten-carbide / cobalt ink composition for 3D inkjet printing

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116492B2 (en) * 1991-12-27 1995-12-13 株式会社神戸製鋼所 Abrasion resistant carbide end mill
US5775402A (en) * 1995-10-31 1998-07-07 Massachusetts Institute Of Technology Enhancement of thermal properties of tooling made by solid free form fabrication techniques
DE69433214T2 (en) 1993-02-05 2004-08-26 Sumitomo Electric Industries, Ltd. Hard sintered alloy containing nitrogen
JP4996016B2 (en) 2001-06-01 2012-08-08 三井金属鉱業株式会社 Niobium oxide slurry, niobium oxide powder and production method thereof
SE526601C2 (en) * 2003-12-15 2005-10-18 Sandvik Intellectual Property Cemented carbide tool for metal cutting or metal forming, has main body with surface portion having smaller Wc grain size than interior portion and lower binder phase content than interior portion
DE102006045481B3 (en) * 2006-09-22 2008-03-06 H.C. Starck Gmbh metal powder
CN101646527B (en) 2007-01-26 2012-08-08 戴蒙得创新股份有限公司 Graded drilling cutters
KR101001903B1 (en) * 2008-03-31 2010-12-17 한국기계연구원 Manufacturing method of high-density WC hardmetal
EP2184122A1 (en) * 2008-11-11 2010-05-12 Sandvik Intellectual Property AB Cemented carbide body and method
CN102223971A (en) * 2008-11-21 2011-10-19 山高刀具公司 Method for producing cemented carbide or cermet products
US9187810B2 (en) * 2008-12-16 2015-11-17 Sandvik Intellectual Property Ab Cermet body and a method of making a cermet body
JP5309394B2 (en) * 2009-04-14 2013-10-09 住友電工ハードメタル株式会社 Cemented carbide
PL2425028T3 (en) 2009-04-27 2018-02-28 Sandvik Intellectual Property Ab Cemented carbide tools
US8945720B2 (en) 2009-08-06 2015-02-03 National Oilwell Varco, L.P. Hard composite with deformable constituent and method of applying to earth-engaging tool
US20120040183A1 (en) 2010-08-11 2012-02-16 Kennametal, Inc. Cemented Carbide Compositions Having Cobalt-Silicon Alloy Binder
JP5531179B2 (en) 2011-03-24 2014-06-25 日本碍子株式会社 Cu sheet processing method
KR20130076451A (en) * 2011-12-28 2013-07-08 한국생산기술연구원 Method for producing high strength and high toughness cemented carbide material
WO2013176058A1 (en) 2012-05-21 2013-11-28 株式会社 フジミインコーポレーテッド Cermet powder
PT2900404T (en) * 2012-09-27 2021-11-16 Allomet Corp Methods of forming a metallic or ceramic article having a novel composition of functionally graded material and articles containing the same
EP2821165A1 (en) * 2013-07-03 2015-01-07 Sandvik Intellectual Property AB A sintered cermet or cemented carbide body and method of producing it
US9475945B2 (en) * 2013-10-03 2016-10-25 Kennametal Inc. Aqueous slurry for making a powder of hard material
BR112016024706A2 (en) 2014-04-24 2017-08-15 Sandvik Intellectual Property Cermet or carbide powder manufacturing method
US20170189960A1 (en) * 2014-06-20 2017-07-06 Fujimi Incorporated Powder material for powder additive manufacturing and powder additive manufacturing method using same
CN104210172B (en) * 2014-08-19 2016-08-31 天津市华辉超硬耐磨技术有限公司 A kind of hard alloy of drilling tool
CN104451321B (en) * 2014-12-08 2016-05-04 长沙伟徽高科技新材料股份有限公司 A kind of tungsten carbide niobium zirconium solid solution powder and preparation method thereof
US10144065B2 (en) * 2015-01-07 2018-12-04 Kennametal Inc. Methods of making sintered articles
CN104862571B (en) * 2015-06-16 2017-12-29 武汉理工大学 Multiple dimensioned micro nano structure WC CoCr metal-ceramic composite powders end
GB201522503D0 (en) * 2015-12-21 2016-02-03 Element Six Gmbh Method of manufacturing a cemented carbide material
US20210276083A1 (en) * 2017-02-21 2021-09-09 Desktop Metal, Inc. Nanoparticles in binder jetting fabrication of metal objects
US20200346365A1 (en) * 2019-05-03 2020-11-05 Kennametal Inc. Cemented carbide powders for additive manufacturing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01319601A (en) * 1988-06-20 1989-12-25 Tokin Corp Production of sintering metal
JP2005533177A (en) * 2002-07-12 2005-11-04 エクス ワン コーポレーション Solid-ultra-solid liquid phase sintering of mixed powder
JP2012144804A (en) * 2010-12-17 2012-08-02 Sandvik Intellectual Property Ab Cermet body and method of manufacturing the same
JP2016535169A (en) * 2013-08-20 2016-11-10 ザ・トラスティーズ・オブ・プリンストン・ユニバーシティThe Trustees Of Princeton University Density enhancement method and composition
JP2017503868A (en) * 2013-10-17 2017-02-02 エックスジェット・リミテッドXjet Ltd. Tungsten-carbide / cobalt ink composition for 3D inkjet printing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022553392A (en) * 2019-10-25 2022-12-22 グーリング ケージー Manufacturing method and cutting tool for indexable inserts
JP2022554124A (en) * 2019-10-25 2022-12-28 グーリング ケージー Manufacturing method for cutting tool having recessed portion
CN112207288A (en) * 2020-09-16 2021-01-12 山东工业陶瓷研究设计院有限公司 Metal ceramic composite part and preparation method thereof

Also Published As

Publication number Publication date
JP6933662B2 (en) 2021-09-08
WO2017178319A1 (en) 2017-10-19
IL262285B2 (en) 2024-01-01
KR102514163B1 (en) 2023-03-24
KR20180136465A (en) 2018-12-24
CN109311091A (en) 2019-02-05
IL262284A (en) 2018-11-29
EP3442728B1 (en) 2021-05-19
KR20180136466A (en) 2018-12-24
JP6861728B2 (en) 2021-04-21
CN109311091B (en) 2021-01-29
IL262285B1 (en) 2023-09-01
IL262284B2 (en) 2023-10-01
CN108883467B (en) 2021-02-02
US20190211424A1 (en) 2019-07-11
EP3442728A1 (en) 2019-02-20
US20190161837A1 (en) 2019-05-30
WO2017178084A1 (en) 2017-10-19
US11085106B2 (en) 2021-08-10
IL262284B (en) 2022-12-01
JP2019513901A (en) 2019-05-30
EP3442729B1 (en) 2022-02-23
CN108883467A (en) 2018-11-23
EP3442729A1 (en) 2019-02-20
IL262285A (en) 2018-11-29
KR102269976B1 (en) 2021-06-25
US11104979B2 (en) 2021-08-31

Similar Documents

Publication Publication Date Title
CN109311091B (en) Three-dimensional printing of cermets or cemented carbides
WO2021004776A1 (en) Three dimensional printing of cermet or cemented carbide
JP6796266B2 (en) Cemented carbide and cutting tools
CN106573298A (en) A method of making cermet or cemented carbide powder
KR20080046597A (en) Method of making a sintered body, a powder mixture and a sintered body
CN111876642A (en) Hard carbide powder for additive manufacturing
US20240093336A1 (en) Printable and sinterable cemented carbide and cermet powders for powder bed-based additive manufacturing
DE102018122536B4 (en) THIN-WALLED EARTH DRILLING TOOLS AND METHOD FOR THEIR PRODUCTION
JP6756994B1 (en) Manufacturing method of powder for additive manufacturing, manufacturing method of additive manufacturing, and manufacturing method of sintered body of additive manufacturing
JP2023507718A (en) Use of thermosetting binders for 3D printing of cemented carbide or cermet bodies
EP4112206A1 (en) Method of making a powder for additive manufacturing
JP2010500477A (en) Mixed powder containing solid solution powder and sintered body using the same, mixed cermet powder containing solid solution powder, cermet using the same, and method for producing them
JP5057751B2 (en) Cemented carbide and method for producing the same
US20240181526A1 (en) Method of making a powder for additive manufacturing
JP2004059295A (en) Suction pad, suction jig, and porous sintered compact
JP4334683B2 (en) Cermet, method for producing the cermet, and method for using the cermet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210819

R150 Certificate of patent or registration of utility model

Ref document number: 6933662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150