JP2019503325A - Flexible metal oxide nanofibers prepared by electrospinning, stable nanofiber fabrics produced thereby, and production methods - Google Patents

Flexible metal oxide nanofibers prepared by electrospinning, stable nanofiber fabrics produced thereby, and production methods Download PDF

Info

Publication number
JP2019503325A
JP2019503325A JP2018534601A JP2018534601A JP2019503325A JP 2019503325 A JP2019503325 A JP 2019503325A JP 2018534601 A JP2018534601 A JP 2018534601A JP 2018534601 A JP2018534601 A JP 2018534601A JP 2019503325 A JP2019503325 A JP 2019503325A
Authority
JP
Japan
Prior art keywords
nanofibers
stable
nanofiber
metal oxide
flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018534601A
Other languages
Japanese (ja)
Other versions
JP2019503325A5 (en
JP6669875B2 (en
Inventor
インタサンタ バロル
インタサンタ バロル
サブジャラーンディー ナカリン
サブジャラーンディー ナカリン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Science and Technology Development Agency
Original Assignee
National Science and Technology Development Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from TH1501007936A external-priority patent/TH176227A/en
Application filed by National Science and Technology Development Agency filed Critical National Science and Technology Development Agency
Publication of JP2019503325A publication Critical patent/JP2019503325A/en
Publication of JP2019503325A5 publication Critical patent/JP2019503325A5/ja
Application granted granted Critical
Publication of JP6669875B2 publication Critical patent/JP6669875B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/62259Fibres based on titanium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • B01J35/23
    • B01J35/39
    • B01J35/58
    • B01J35/59
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/345Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of ultraviolet wave energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62847Coating fibres with oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62847Coating fibres with oxide ceramics
    • C04B35/62855Refractory metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62876Coating fibres with metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62892Coating the powders or the macroscopic reinforcing agents with a coating layer consisting of particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62894Coating the powders or the macroscopic reinforcing agents with more than one coating layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/6325Organic additives based on organo-metallic compounds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • D01D5/0038Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion the fibre formed by solvent evaporation, i.e. dry electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/10Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material by decomposition of organic substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2086Activating the catalyst by light, photo-catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/02Types of fibres, filaments or particles, self-supporting or supported materials
    • B01D2239/025Types of fibres, filaments or particles, self-supporting or supported materials comprising nanofibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0631Electro-spun
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1233Fibre diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20792Zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

本発明は、安定で設計どおりの金属酸化物ナノ繊維及びそのナノ繊維から作成された可撓性で安定なナノ繊維布帛に関する。ナノ繊維の製造方法は、エレクトロスピニングでナノ繊維を製造してから、乾燥及び仮焼して金属酸化物を形成することを含む。ナノ繊維は主成分としてアナターゼ及びルチル型のチタン二酸化物及びタングステン酸化物からなる。ナノ繊維の表面は亜鉛タングステン酸化物(サンマルチナイト)ナノロッドを含む。さらに、ナノ繊維及び亜鉛タングステン酸化物ナノロッドの表面は単層の貴金属ナノ粒子によって修飾されている。光触媒物質は可視光、UV及び太陽光の下で作用し得る。ナノ寸法材料は微細孔と高い比表面積を有する。本発明はタングステン酸化物(WO3)ナノ繊維の脆さ及び不安定性の課題を解決できる。The present invention relates to stable and designed metal oxide nanofibers and flexible and stable nanofiber fabrics made from the nanofibers. The method for producing nanofibers includes producing nanofibers by electrospinning and then drying and calcining to form a metal oxide. Nanofibers are composed of anatase and rutile titanium dioxide and tungsten oxide as main components. The surface of the nanofiber includes zinc tungsten oxide (sun multinite) nanorods. Furthermore, the surfaces of the nanofibers and zinc tungsten oxide nanorods are modified with a single layer of noble metal nanoparticles. The photocatalytic material can work under visible light, UV and sunlight. Nano-dimensional materials have micropores and a high specific surface area. The present invention can solve the problems of brittleness and instability of tungsten oxide (WO3) nanofibers.

Description

化学は、可撓性、安定性及び製造可能性を有する金属酸化物ナノ繊維及びナノ繊維膜触媒に関する。   Chemistry relates to metal oxide nanofibers and nanofiber membrane catalysts having flexibility, stability and manufacturability.

揮発性有機化合物(VOC)による環境の大気汚染物質は主に乗り物のエンジン燃焼によって発生しているので、VOC削減の新しい技術開発が現在の状況における重要課題である。興味あるVOC削減技術の1つは、光を活性化エネルギー源として利用する光触媒である。一般的に、光触媒反応は、不特定の有機物分解に適した、有機分子の酸化還元反応に光を必要とする。   Since environmental air pollutants due to volatile organic compounds (VOC) are generated mainly by vehicle engine combustion, the development of new technology to reduce VOC is an important issue in the current situation. One interesting VOC reduction technique is a photocatalyst that utilizes light as an activation energy source. In general, photocatalytic reactions require light for redox reactions of organic molecules, which are suitable for unspecified organic matter decomposition.

光触媒反応は液相及び気相の両方で起きることが可能であるので、この技術は非常に多様性があり、広範囲の用途を有する。加えて、この技術の多くの利点は、例えば、自浄性、安価な材料、低い維持コストなど、産業規模の製造に高い可能性をもたらす。しかしながら、光触媒材料の殆どは、触媒が可視光では制御できない大きなバンドギャップを有しているので、主にUV光にある高い活性化エネルギーを必要とする。したがって、この欠点がこの技術を産業規模で利用することを制限している。さらに、光触媒反応は主に触媒の表面で起きるので、触媒の形状及び寸法が有機物分解効率に重要な役割を示す。このため、ナノ光触媒が高い比表面積を有するので最も適当な材料であってよい。しかしながら、ナノ光触媒は凝集性と再循環効率の問題がある。他方、フィルム光触媒は容易に再循環可能であるが、限られた比表面積を有しているので有機物分解効率が低い。ナノ繊維は、高い比表面積、再循環性及び非凝集性の材料であり、ナノ粒子及びフィルム材料の両方に固有の不利を克服することが可能である。   Since photocatalytic reactions can occur in both liquid and gas phases, this technique is very diverse and has a wide range of applications. In addition, the many advantages of this technology offer high potential for industrial scale manufacturing, for example, self-cleaning, inexpensive materials, and low maintenance costs. However, most photocatalytic materials require high activation energy, mainly in UV light, because the catalyst has a large band gap that cannot be controlled with visible light. This drawback therefore limits the use of this technology on an industrial scale. Furthermore, since the photocatalytic reaction occurs mainly on the surface of the catalyst, the shape and size of the catalyst play an important role in the organic matter decomposition efficiency. For this reason, since a nanophotocatalyst has a high specific surface area, it may be the most suitable material. However, nanophotocatalysts have problems of agglomeration and recycling efficiency. On the other hand, the film photocatalyst can be easily recycled, but has a limited specific surface area, so that the organic matter decomposition efficiency is low. Nanofibers are high specific surface area, recyclable and non-agglomerated materials, and can overcome the disadvantages inherent in both nanoparticles and film materials.

有機汚染物分解のほかに、光触媒は応用分野を広げるために耐微生物性を有していなければならない。水汚染物分解では、液相で光触媒を用いる重要な欠陥の1つは回収プロセスにある。回収プロセスの1つは遠心分離法である。この方法は実験室規模では非常に効率的であるが、産業的製造及び応用では非常にコストがかかる。結論として、ナノ材料の応用はろ過プロセスに問題がある一方、フィルム材料は低比表面積に問題がある。他方、ナノ繊維の光触媒材料は再循環性及び高比表面積に関する両方の問題を克服することが可能である。   Besides decomposing organic pollutants, the photocatalyst must be resistant to microorganisms in order to expand its application field. In water contaminant decomposition, one of the important deficiencies of using photocatalysts in the liquid phase is in the recovery process. One recovery process is centrifugation. While this method is very efficient on a laboratory scale, it is very costly for industrial manufacturing and application. In conclusion, application of nanomaterials has problems with the filtration process, while film materials have problems with low specific surface area. On the other hand, nanofiber photocatalytic materials can overcome both the problems of recyclability and high specific surface area.

通常、ナノ粒子合成方法は、高温又は真空装置など、高いコストと非環境フレンドリーなプロセスが必要である。その結果、製造コストと消費時間が増加しえる。   Typically, nanoparticle synthesis methods require high cost and non-environment friendly processes such as high temperature or vacuum equipment. As a result, manufacturing costs and consumption time can increase.

廃水処理は触媒を主成分として用いる適当な方法が必要である。光触媒は、その触媒化学組成物が低コストであり、反応を触媒するのに自然の太陽光を利用できるので、最も期待される方法の1つである。しかしながら、光触媒は、触媒光が制限された領域であること、高い脆性の2つの主な欠点がある。   Waste water treatment requires an appropriate method using a catalyst as a main component. Photocatalysts are one of the most promising methods because their catalytic chemical composition is low cost and natural sunlight can be used to catalyze the reaction. However, the photocatalyst has two main drawbacks, that is, a region where the catalyst light is limited and high brittleness.

本発明は、貴金属で修飾された二酸化チタン及び亜鉛タングステン酸化物ナノ繊維及びナノ繊維膜の製造に関する。開示されるナノ繊維及びナノ繊維膜は、安定で、可撓性で、容易に製造可能であり、可視光、UV及び自然太陽光で作用可能である。本発明は、他の製造方法とは化学組成、金属酸化物ナノ繊維膜の安定性が異なる特定の組み合わせによって製造される。   The present invention relates to the production of titanium dioxide and zinc tungsten oxide nanofibers and nanofiber membranes modified with noble metals. The disclosed nanofibers and nanofiber membranes are stable, flexible, easily manufacturable and can operate in visible light, UV and natural sunlight. The present invention is manufactured by a specific combination in which the chemical composition and the stability of the metal oxide nanofiber film are different from other manufacturing methods.

文献及び特許検索によれば、以下に示すように、本発明と類似するものは見つからなかった。   According to the literature and patent search, as shown below, nothing similar to the present invention was found.

非特許文献1:“Enhanced photocatalytic activity of palladium decorated TiO2 nanofibers containing anatase-rutile mixed phase”:この文献は、オートクレーブ及び仮焼によるパラジウム修飾された二酸化チタンナノ繊維の製造に関する。成果は、水素化及び有機染料分解反応用の触媒である。これは、金属酸化物材料の組成が本発明とは異なる。加えて、この文献は金属酸化物ナノ繊維膜の安定性の開発について記載がない。 Non-Patent Document 1: “Enhanced photocatalytic activity of palladium decorated TiO 2 nanofibers containing anatase-rutile mixed phase”: This document relates to the production of palladium-modified titanium dioxide nanofibers by autoclaving and calcination. The result is a catalyst for hydrogenation and organic dye decomposition reactions. This differs from the present invention in the composition of the metal oxide material. In addition, this document does not describe the development of the stability of metal oxide nanofiber membranes.

非特許文献2:“ZnWO4 photocatalyst with high activity for degradation of organic contaminants”:この文献は、熱水プロセス及びアニール処理による亜鉛タングステン酸化物の合成方法に関する。成果は、気相におけるホルムアルデヒド分解用触媒であり、これは本発明とは処理方法が異なり、金属酸化物組成が異なる。加えて、この文献は金属酸化物ナノ繊維膜の安定性開発について記載がない。 Non-patent document 2: “ZnWO 4 photocatalyst with high activity for degradation of organic contaminants”: This document relates to a method for synthesizing zinc tungsten oxide by a hydrothermal process and an annealing treatment. The result is a catalyst for formaldehyde decomposition in the gas phase, which differs from the present invention in the treatment method and in the metal oxide composition. In addition, this document does not describe the stability development of metal oxide nanofiber membranes.

非特許文献3:”ZnWO4-TiO2 composite nanofilms: Preparation, morphology, structure and photoluminescent enhancement”:この文献は、ガラス基材への浸漬堆積法による二酸化チタン及び亜鉛タングステン酸化物の合成に関する。加えて、この文献は、オートクレーブ法でナノスフェア形状のナノ繊維表面に金属をドーピングすることにも関し、これは本発明とは異なる合成方法である。加えて、この文献は金属酸化物ナノ繊維膜の安定性の開発について記載がない。 Non-Patent Document 3: “ZnWO 4 —TiO 2 composite nanofilms: Preparation, morphology, structure and photoluminescent enhancement”: This document relates to the synthesis of titanium dioxide and zinc tungsten oxide by immersion deposition on glass substrates. In addition, this document also relates to doping metal on the surface of nanospheres in the shape of nanospheres by an autoclave method, which is a synthesis method different from the present invention. In addition, this document does not describe the development of the stability of metal oxide nanofiber membranes.

特許文献1:”Nanoparticles containing titanium oxide”:この特許文献は、直径200nm未満のアナターゼ結晶構造の二酸化チタンナノ粒子に合成に関する。加えて、この文献はオートクレーブ法でナノ繊維表面へナノスフェアの形で金属ドーピングすることにも関するが、本発明とは合成方法及び組成が異なる。加えて、この文献は金属酸化物ナノ繊維膜の安定性の開発について記載がない。   Patent Document 1: “Nanoparticles containing titanium oxide”: This patent document relates to synthesis of anatase crystal structure titanium dioxide nanoparticles with a diameter of less than 200 nm. In addition, this document also relates to metal doping in the form of nanospheres on the nanofiber surface by the autoclave method, but the synthesis method and composition differ from the present invention. In addition, this document does not describe the development of the stability of metal oxide nanofiber membranes.

特許文献2:”Metal or metal oxide deposited fibrous materials”: この特許文献は、静電噴射法による多孔質基材上への金属酸化物及び金属ナノ粒子の埋め込みに関し、本発明とは合成方法及び組成が異なる。加えて、この文献は金属酸化物ナノ繊維膜の安定性の開発について記載がない。
特許文献3:”Nanofiber and preparation method thereof”:この特許文献はエレクトロスピニングによるナノ繊維の製造方法に関する。エレクトロスピニング溶液は、ポリマーと金属複酸化物の混合物である。成果は、耐熱性で安定なナノ繊維であり、これは本発明とは安定な金属酸化物ナノ繊維膜の製造及び化学組成に関して異なる。
Patent Document 2: “Metal or metal oxide deposited fibrous materials”: This patent document relates to embedding metal oxides and metal nanoparticles on a porous substrate by electrostatic spraying. Is different. In addition, this document does not describe the development of the stability of metal oxide nanofiber membranes.
Patent Document 3: “Nanofiber and preparation method thereof”: This patent document relates to a method for producing nanofibers by electrospinning. The electrospinning solution is a mixture of polymer and metal double oxide. The result is a heat-resistant and stable nanofiber, which differs from the present invention with respect to the production and chemical composition of a stable metal oxide nanofiber film.

US20070202334A1US20070202334A1 US20110192789A1US20110192789A1 US20110151255A1US20110151255A1

International Journal of Hydrogen Energy, Volume:40, Pages:4558-4566International Journal of Hydrogen Energy, Volume: 40, Pages: 4558-4566 Journal of Alloys and Compounds, Volume:432, Pages:269-276Journal of Alloys and Compounds, Volume: 432, Pages: 269-276 Materials Letters, Volume:61, Pages:1793-1797Materials Letters, Volume: 61, Pages: 1793-1797

上記の結論として、本発明と同じ材料プロセス又は化学組成を示す非特許文献又は特許文献はない。本発明は、貴金属で修飾された二酸化チタン及び亜鉛タングステン酸化物ナノ繊維及びナノ繊維膜の製造に関する。開示されるナノ繊維及びナノ繊維膜は、可撓性で、安定で、容易に製造でき、可視光、UV及び太陽光で作用する。本発明は、化学組成及び金属酸化物ナノ繊維膜の安定性において他の製造方法と異なる特定の組成物から製造される。   In conclusion, there is no non-patent or patent document showing the same material process or chemical composition as the present invention. The present invention relates to the production of titanium dioxide and zinc tungsten oxide nanofibers and nanofiber membranes modified with noble metals. The disclosed nanofibers and nanofiber membranes are flexible, stable, easily manufacturable and operate in visible light, UV and sunlight. The present invention is manufactured from a specific composition that differs from other manufacturing methods in chemical composition and stability of the metal oxide nanofiber membrane.

本発明は、可撓性で、安定で、容易に製造でき、かつ可視光、UV及び太陽光で活性である、貴金属で修飾された二酸化チタン及び亜鉛タングステン酸化物ナノ繊維(nanofibers)及びナノ繊維膜(nanofibrous membranes)の開発にある。開示されるナノ繊維及びナノ繊維膜は他のナノ繊維及びナノ繊維膜とは光触媒組成、多機能性、高強度及び可撓性において異なる。開示される高い比表面積及び多孔性のナノ繊維は、ニードル式エレクトロスピニング、ナノスパイダーエレクトロスピニング及び強制/遠心スピニングのそれぞれからの溶液式方法によって製造することができる。   The present invention relates to noble metal modified titanium dioxide and zinc tungsten oxide nanofibers and nanofibers that are flexible, stable, easily manufactured and active in visible light, UV and sunlight. In development of nanofibrous membranes. The disclosed nanofibers and nanofiber membranes differ from other nanofibers and nanofiber membranes in photocatalytic composition, multifunctionality, high strength and flexibility. The disclosed high specific surface area and porous nanofibers can be produced by solution methods from needle electrospinning, nanospider electrospinning and forced / centrifugal spinning, respectively.

図1は、仮焼の前後のナノ繊維の化学的及び物理的特性を示す写真である、ここで a)メタタングステン酸アンモニウム水和物及び酢酸亜鉛水和物の水及びエタノール溶液から製造後のナノ繊維の物理的特性。 b)メタタングステン酸アンモニウム水和物、酢酸亜鉛水和物及び二酸化チタンナノ粒子(P−25)の水及びエタノール溶液から製造後のナノ繊維の物理的特性。 c)b)のナノ繊維の仮焼後に得られる不均一なナノ繊維の物理的特性。 d)c)のナノ繊維において粒子の凝集を示す領域。 e)メタタングステン酸アンモニウム水和物、酢酸亜鉛水和物及びチタンイソプロポキシドの水及びエタノール溶液から製造後のナノ繊維の物理的特性。 f)e)のナノ繊維e)の500℃仮焼後のナノ繊維の物理的特性。FIG. 1 is a photograph showing the chemical and physical properties of nanofibers before and after calcining, where: a) after production of ammonium metatungstate hydrate and zinc acetate hydrate from water and ethanol solutions Physical properties of nanofibers. b) Physical properties of nanofibers after production from water and ethanol solutions of ammonium metatungstate hydrate, zinc acetate hydrate and titanium dioxide nanoparticles (P-25). c) Physical properties of non-uniform nanofibers obtained after calcination of the nanofibers of b). d) Region showing aggregation of particles in the nanofiber of c). e) Physical properties of nanofibers made from ammonium metatungstate hydrate, zinc acetate hydrate and titanium isopropoxide in water and ethanol solutions. f) Physical properties of nanofibers after calcination of e) nanofibers e) at 500 ° C.

図2は、メタタングステン酸アンモニウム水和物、酢酸亜鉛及びチタンイソプロポキシドのジメチルホルムアミド溶液から得られ、500℃で仮焼する前後のナノ繊維の写真である、ここで a)メタタングステン酸アンモニウム水和物、酢酸亜鉛及びチタンイソプロポキシドのDMF溶液から製造後のナノ繊維の物理的特性。 b)a)のナノ繊維を500℃で仮焼後のナノ繊維の物理的特性。 c)EDXスペクトルはナノ繊維のタングステン、亜鉛及びチタン組成物を示す。 d)XRDスペクトルはナノ繊維のタングステン、亜鉛及びチタンの結晶性を示す。FIG. 2 is a photograph of nanofibers obtained from a dimethylformamide solution of ammonium metatungstate hydrate, zinc acetate and titanium isopropoxide, before and after calcining at 500 ° C., where a) ammonium metatungstate Physical properties of nanofibers after production from DMF solution of hydrate, zinc acetate and titanium isopropoxide. b) Physical properties of the nanofiber after calcining the nanofiber of a) at 500 ° C. c) The EDX spectrum shows nanofiber tungsten, zinc and titanium compositions. d) The XRD spectrum shows the crystallinity of the nanofibers tungsten, zinc and titanium.

図3は、メタタングステン酸アンモニウム水和物、酢酸亜鉛及びチタンイソプロポキシドのジメチルホルムアミド溶液から得られ、600℃及び700℃で仮焼する前後のナノ繊維の写真である、ここで a)メタタングステン酸アンモニウム水和物、酢酸亜鉛水和物及びチタンイソプロポキシドのDMF溶液から製造し、600℃で仮焼した後のナノ繊維の物理的特性。 b)メタタングステン酸アンモニウム水和物、酢酸亜鉛水和物及びチタンイソプロポキシドのDMF溶液から製造し、700℃で仮焼した後のナノ繊維の物理的特性。 c)亜鉛タングステン酸化物ナノロッドの寸法。 d)c)の亜鉛タングステン酸化物ナノロッドのD−間隔。 e)EDXスペクトルはナノ繊維のタングステン、亜鉛及びチタン組成物を示す。 f)XRDスペクトルはナノ繊維のタングステン、亜鉛及びチタンの結晶性を示し、亜鉛及びタングステン錯体は亜鉛タングステン酸化物(ZnWO)の形態である。FIG. 3 is a photograph of nanofibers obtained before and after calcining at 600 ° C. and 700 ° C. obtained from a dimethylformamide solution of ammonium metatungstate hydrate, zinc acetate and titanium isopropoxide, where a) meta Physical properties of nanofibers prepared from DMF solution of ammonium tungstate hydrate, zinc acetate hydrate and titanium isopropoxide and calcined at 600 ° C. b) Physical properties of nanofibers prepared from a DMF solution of ammonium metatungstate hydrate, zinc acetate hydrate and titanium isopropoxide and calcined at 700 ° C. c) Dimensions of zinc tungsten oxide nanorods. d) D-spacing of the zinc tungsten oxide nanorods of c). e) The EDX spectrum shows nanofiber tungsten, zinc and titanium compositions. f) The XRD spectrum shows the crystallinity of the nanofibers tungsten, zinc and titanium, the zinc and tungsten complex being in the form of zinc tungsten oxide (ZnWO 4 ).

図4は、仮焼後の各種ナノ繊維膜の写真である、ここで a)例4bにおける溶液で製造後(仮焼前)のナノ繊維。 b)例4bにおける溶液で製造後(仮焼後)のナノ繊維。 c)例4bにおける溶液で製造後(仮焼前)のナノ繊維。 d)例4bにおける溶液で製造後(100℃アニール及び600℃仮焼後)のナノ繊維。 e)例4bにおける溶液で製造後(仮焼前)のナノ繊維。 f)例4bにおける溶液で製造後(200℃アニール及び600℃仮焼後)のナノ繊維。 g)例4bにおける溶液で製造後(仮焼前)のナノ繊維。 h)例4bにおける溶液で製造後(繊維ガラスサンドイッチで100℃アニール及び600℃仮焼後)のナノ繊維。 i)例4bにおける溶液で製造後(仮焼前)のナノ繊維。 j)例4bにおける溶液で製造後(繊維ガラスサンドイッチで200℃アニール及び600℃仮焼後)のナノ繊維。 k)例4bにおける溶液で製造後(ビーカ内繊維ガラス拘束仮焼前)のナノ繊維。 l)例4bにおける溶液で製造後(ビーカ内繊維ガラス拘束で200℃アニール及び600℃仮焼後)のナノ繊維。 m)例4bにおける溶液で製造後(プリーツ形状繊維ガラス拘束での600℃仮焼前)のナノ繊維。 n)例4bにおける溶液で製造後(プリーツ形状繊維ガラス拘束で200℃アニール及び600℃仮焼後)のナノ繊維。FIG. 4 is a photograph of various nanofiber membranes after calcination, where a) nanofibers after being manufactured with the solution in Example 4b (before calcination). b) Nanofibers after production (after calcination) with the solution in Example 4b. c) Nanofibers after production (before calcination) with the solution in Example 4b. d) Nanofibers after production with the solution in Example 4b (after 100 ° C. anneal and 600 ° C. calcination). e) Nanofibers after production (before calcination) with the solution in Example 4b. f) Nanofibers after production with the solution in Example 4b (after 200 ° C. anneal and 600 ° C. calcination). g) Nanofibers after production (before calcination) with the solution in Example 4b. h) Nanofibers after production with the solution in Example 4b (after 100 ° C annealing and 600 ° C calcination with fiberglass sandwich). i) Nanofibers after production (before calcination) with the solution in Example 4b. j) Nanofibers after production with the solution in Example 4b (after annealing at 200 ° C. and calcining at 600 ° C. with fiber glass sandwich). k) Nanofibers after production with the solution in Example 4b (before fiberglass restraint calcining in beaker). l) Nanofibers after manufacture with the solution in Example 4b (after annealing at 200 ° C. and calcining at 600 ° C. with fiber glass restraint in the beaker). m) Nanofibers after production with the solution in Example 4b (before calcination at 600 ° C. with pleated fiberglass restraint). n) Nanofibers after production with the solution in Example 4b (after 200 ° C. annealing and 600 ° C. calcination with pleated fiberglass restraint).

図5は、仮焼後のナノ繊維膜のSEM及びTEM写真である、ここで a)繊維ガラス拘束法による仮焼後のナノ繊維膜は、自由に織られたナノ繊維(freely weaving nanofibers)を示す。 b)ガラススライド拘束法による仮焼後のナノ繊維膜(図4l)は、織られた(weaving)ナノ繊維を示す。 c)図5aの高倍率写真は自由に織られたナノ繊維を示し、これは安定で可撓性のナノ繊維をもたらす。 d)図5bの高倍率写真は拘束されたナノ繊維を示し、これは高い脆性のナノ繊維膜をもたらす。Fig. 5 is a SEM and TEM photograph of the nanofiber membrane after calcination, where a) the nanofiber membrane after calcination by the fiber glass restraint method is free weaving nanofibers. Show. b) Nanofiber membrane after calcining by the glass slide restraint method (Fig. 4l) shows weaving nanofibers. c) The high magnification photograph of FIG. 5a shows freely woven nanofibers, which result in stable and flexible nanofibers. d) The high magnification photograph of FIG. 5b shows constrained nanofibers, which results in a highly brittle nanofiber membrane.

図6は、金属堆積プロセス後の金属酸化物ナノ繊維の写真である、ここで a)UV光での光還元後のナノ繊維の物理的特性。 b)可視光での光還元後のナノ繊維の物理的特性。 c)自然太陽光での光還元後のナノ繊維の物理的特性。 d)EDXスペクトルはUV光での光還元反応後のナノ繊維のパラジウム及び白金含分を示す。 e)ZnWOナノロッドに付着したナノ粒子のTEM画像。 f)ZnWOナノロッド上の白金ナノ粒子のTEM画像。 g)ZnWOナノロッドに付着したナノ粒子のTEM画像。 h)ZnWOナノロッド上の白金ナノ粒子のTEM画像。FIG. 6 is a photograph of the metal oxide nanofibers after the metal deposition process, where a) the physical properties of the nanofibers after photoreduction with UV light. b) Physical properties of nanofibers after photoreduction with visible light. c) Physical properties of nanofibers after photoreduction with natural sunlight. d) The EDX spectrum shows the palladium and platinum content of the nanofibers after the photoreduction reaction with UV light. e) TEM image of nanoparticles attached to ZnWO 4 nanorods. f) TEM image of platinum nanoparticles on ZnWO 4 nanorods. g) TEM image of nanoparticles attached to ZnWO 4 nanorods. h) TEM image of platinum nanoparticles on ZnWO 4 nanorods.

図7は、自然太陽光の下でメチレンブルー濃度に対するナノ繊維の光触媒活性のグラフである、ここで ―■―は、金属堆積後のナノ繊維膜である。 ―◆―は、金属堆積前のナノ繊維膜である。 ―▲―は、WOナノ繊維(対照)である。FIG. 7 is a graph of nanofiber photocatalytic activity against methylene blue concentration under natural sunlight, where — ■ — is the nanofiber film after metal deposition. ― ◆ ― is a nanofiber film before metal deposition. -▲-is a WO 3 nanofiber (control).

図8は、ベンゼン/メタノール分解反応の写真である、ここで a)可視光下でのベンゼン/メタノール分解反応(左から右へ) 最初の瓶は500ppmベンゼン(対照)。 第2の瓶は500ppmベンゼンとWOナノ繊維。 第3の瓶は500ppmベンゼンとTiO−ZnWOナノ繊維。 第4の瓶は500ppmベンゼンとPd/Pt−TiO−ZnWO。 b)TiO−ZnWOナノ繊維によるベンゼン分解効率のHPLCスペクトル。 c)貴金属修飾されたTiO−ZnWOナノ繊維によるベンゼン分解効率のHPLCスペクトルは6.442におけるエタノール酸化ピークの証拠を示した。Figure 8 is a photograph of the benzene / methanol decomposition reaction, where a) benzene / methanol decomposition reaction under visible light (from left to right) The first bottle is 500 ppm benzene (control). The second bottle is 500 ppm benzene and WO 3 nanofibers. The third bottle is 500 ppm benzene and TiO 2 —ZnWO 4 nanofibers. The fourth bottle is 500 ppm benzene and Pd / Pt—TiO 2 —ZnWO 4 . b) HPLC spectrum of benzene decomposition efficiency with TiO 2 —ZnWO 4 nanofibers. c) HPLC spectrum of benzene decomposition efficiency with noble metal modified TiO 2 —ZnWO 4 nanofibers showed evidence of ethanol oxidation peak at 6.442.

本発明は、二酸化チタン及び亜鉛タングステン酸化物をナノ繊維の主成分とし、ナノ繊維表面に亜鉛タングステン酸化物ナノロッドを有する、安定で設計どおりの金属酸化物光触媒ナノ繊維の開発に関する。加えて、ナノ繊維及び亜鉛タングステン酸化物ナノロッドの表面は単層堆積物の形の貴金属ナノ粒子で修飾されている。   The present invention relates to the development of stable and designed metal oxide photocatalyst nanofibers having titanium dioxide and zinc tungsten oxide as the main components of nanofibers and having zinc tungsten oxide nanorods on the nanofiber surface. In addition, the surfaces of the nanofibers and zinc tungsten oxide nanorods are modified with noble metal nanoparticles in the form of monolayer deposits.

光触媒ナノ繊維は、2種の主金属酸化物成分(二酸化チタン及び亜鉛タングステン酸化物)からなり、平均直径100〜200ナノメートルである。二酸化チタンの結晶性はアナターゼ形とルチル形の2種混合相からなる。仮焼プロセス中に、アナターゼ形の比がルチル形に関して好ましく創出された。文献によれば、アナターゼ結晶はルチル結晶と比べてUV光下でより良好な光触媒活性を示すと報告されている。他方、亜鉛タングステン酸化物はサンマルチナイト(sanmatinite)であった。主金属酸化物成分とは別に、亜鉛タングステン酸化物ナノロッド(30〜50ナノメートル)がナノ繊維の表面に見出された。   The photocatalytic nanofiber consists of two main metal oxide components (titanium dioxide and zinc tungsten oxide) and has an average diameter of 100 to 200 nanometers. The crystallinity of titanium dioxide consists of two mixed phases, anatase and rutile. During the calcining process, a ratio of the anatase form was preferably created for the rutile form. According to the literature, anatase crystals are reported to show better photocatalytic activity under UV light than rutile crystals. On the other hand, the zinc tungsten oxide was sanmatinite. Apart from the main metal oxide component, zinc tungsten oxide nanorods (30-50 nanometers) were found on the surface of the nanofibers.

本発明のナノ繊維は、UV,可視光又は自然太陽光活性化下での光堆積法により貴金属ナノ粒子で修飾されており、この方法は容易であり、コスト効果性、高効率である。光堆積プロセス後、ナノ繊維表面上の貴金属ナノ粒子は1〜15ナノメートルの直径を有した。本発明の貴金属ナノ粒子はパラジウム、白金、銀、金、ロジウム、エルビウム(eridium)、ルテニウム、オスミウム、タンタル、チタン又はこれらの金属の混合物から選択できる。   The nanofibers of the present invention are modified with noble metal nanoparticles by a photodeposition method under UV, visible light or natural sunlight activation, which is easy, cost effective and highly efficient. After the photodeposition process, the noble metal nanoparticles on the nanofiber surface had a diameter of 1-15 nanometers. The noble metal nanoparticles of the present invention can be selected from palladium, platinum, silver, gold, rhodium, eridium, ruthenium, osmium, tantalum, titanium or mixtures of these metals.

本発明のナノ繊維は、高い耐熱性を有するナノ繊維を容易に可撓性で安定なナノ繊維膜に製造できたので、広範囲の用途に適用できる。この膜の可撓性に関する特性は折られまたは曲げられた形状(bending shape)に従う能力であった。その可撓性とは別に、この膜は500〜900℃の範囲の高温に耐えることができた。金属酸化物ナノ繊維及びナノ繊維膜のこれらの特性から、この膜の用途としてベンゼン、トルエン又は亜酸化窒素などの燃焼副生ガスを浄化する乗物の触媒コンバータが期待される。空気清浄化用途のほかに、ナノ繊維及びナノ繊維膜は廃水浄化にも応用できるであろう。   The nanofibers of the present invention can be applied to a wide range of applications because nanofibers having high heat resistance can be easily produced into a flexible and stable nanofiber membrane. The flexibility property of this membrane was its ability to follow a bent or bent shape. Apart from its flexibility, the membrane was able to withstand high temperatures in the range of 500-900 ° C. From these properties of metal oxide nanofibers and nanofiber membranes, vehicle catalytic converters that purify combustion by-product gases such as benzene, toluene or nitrous oxide are expected as applications for this membrane. Besides air purification applications, nanofibers and nanofiber membranes could also be applied to wastewater purification.

本発明の金属酸化物ナノ繊維を慣用の金属酸化物ナノ繊維と比べたとき、WOナノ繊維はナノ繊維に高い多孔性を有し、それが高い脆性の主な原因となることが不可避である。しかしながら、本発明のTiO−ZnWOナノ繊維は他の金属酸化物と比べて高い可撓性と安定な物理的特性を有する。その結果、TiO−ZnWOナノ繊維は金属酸化物ナノ繊維の固有の欠点を克服でき、安定な金属酸化物膜を製造できた。 When the metal oxide nanofibers of the present invention are compared with conventional metal oxide nanofibers, the WO 3 nanofibers have high porosity in the nanofibers, which is inevitably the main cause of high brittleness. is there. However, the TiO 2 —ZnWO 4 nanofibers of the present invention have high flexibility and stable physical properties compared to other metal oxides. As a result, TiO 2 —ZnWO 4 nanofibers were able to overcome the inherent disadvantages of metal oxide nanofibers and to produce stable metal oxide films.

本発明による、二酸化チタン、亜鉛タングステン酸化物、及び亜鉛タングステン酸化物ナノロッドを含み、貴金属で修飾されたナノ繊維及びナノ繊維膜の製造方法は、下記を含む。
a)最初に官能性ポリマーをエタノールに0.1〜40:0.1〜40の比で、室温30分間で溶解して、官能性ポリマー溶液を配合した。官能性ポリマーは、炭化水素骨格に沿って水酸基、アミン基又はカルボン酸基などの官能基を有し、代表的にはポリアクリロニトリル、ポリビニルピロリドン、ポリビニルアルコール、ポリヒドロキシプロピルメタクリレート、ポリヒドロキシエチルメタクリレート、ポリグリセロールメタクリレート、又はこれらの官能性ポリマーの混合物であるポリマーから選択できた。次いで、官能性ポリマー溶液を、チタン、タングステン及び亜鉛の錯体など、少なくとも3種の金属錯体(metal complexes)の有機溶剤溶液と混合した。この金属錯体溶液は、各金属錯体を溶剤に0.1〜40:0.1〜40の比で室温10分間溶解して調製できた。混合プロセスは、最初にタングステン錯体溶液を官能性ポリマー溶液に添加してから、その混合物に亜鉛及びチタン錯体溶液のそれぞれを磁気攪拌しながら30分間添加した。金属錯体溶液の金属成分は、チタン、パラジウム、白金、銀、金、亜鉛、銅、鉄、タングステン、又はこれらの元素の混合物から選択できた。
A method for producing nanofibers and nanofiber membranes comprising titanium dioxide, zinc tungsten oxide, and zinc tungsten oxide nanorods and modified with a noble metal according to the present invention includes the following.
a) First, the functional polymer was dissolved in ethanol at a ratio of 0.1-40: 0.1-40 at room temperature for 30 minutes to formulate a functional polymer solution. The functional polymer has a functional group such as a hydroxyl group, an amine group, or a carboxylic acid group along the hydrocarbon skeleton, and is typically polyacrylonitrile, polyvinyl pyrrolidone, polyvinyl alcohol, polyhydroxypropyl methacrylate, polyhydroxyethyl methacrylate, The polymer could be selected from polyglycerol methacrylate, or a polymer that is a mixture of these functional polymers. The functional polymer solution was then mixed with an organic solvent solution of at least three metal complexes such as titanium, tungsten and zinc complexes. This metal complex solution was prepared by dissolving each metal complex in a solvent at a ratio of 0.1-40: 0.1-40 for 10 minutes at room temperature. In the mixing process, the tungsten complex solution was first added to the functional polymer solution, and then each of the zinc and titanium complex solutions was added to the mixture for 30 minutes with magnetic stirring. The metal component of the metal complex solution could be selected from titanium, palladium, platinum, silver, gold, zinc, copper, iron, tungsten, or a mixture of these elements.

b)a)の溶液を、酢酸、硫酸、塩酸又はこれらの酸の混合物から選ばれた濃酸と0.1〜30:0.1〜30の重量比で混合した。
c)b)の溶液から、ニードル式エレクトロスピニング、ナノスパイダーエレクトロスピニング又は強制/遠心スピニングにより、ナノ繊維を製造した。
d)c)のナノ繊維膜を、非拘束、繊維ガラス拘束又はガラススライド拘束して、アニール及び仮焼プロセス(ACプロセス)で、金属酸化物ナノ繊維膜に処理した。仮焼温度は1〜24時間100〜900℃から選択できた。
e)c)のナノ繊維又はd)の金属酸化物ナノ繊維を、可視光、UV又は太陽光の下1〜24時間の光堆積法で、貴金属ナノ粒子で修飾した。
f)e)のナノ繊維又はナノ繊維膜を洗浄及び乾燥した。
b) The solution of a) was mixed with a concentrated acid selected from acetic acid, sulfuric acid, hydrochloric acid or a mixture of these acids in a weight ratio of 0.1-30: 0.1-30.
c) Nanofibers were produced from the solution of b) by needle electrospinning, nanospider electrospinning or forced / centrifugal spinning.
d) The nanofiber membrane of c) was processed into a metal oxide nanofiber membrane by an annealing and calcining process (AC process) with unconstrained, fiberglass restraint or glass slide restraint. The calcining temperature could be selected from 100 to 900 ° C. for 1 to 24 hours.
e) Nanofibers from c) or metal oxide nanofibers from d) were modified with noble metal nanoparticles by photodeposition for 1-24 hours under visible light, UV or sunlight.
f) The nanofiber or nanofiber membrane of e) was washed and dried.

a)の有機溶剤はメチルアルコール、エチルアルコール、ジクロロメタン、ジメチルホルムアミド、ジメチルスルホキシド、クロロホルム又はトルエンから選ばれることができた。しかしながら、最も適当な溶剤はジメチルホルムアミドであった。   The organic solvent of a) could be selected from methyl alcohol, ethyl alcohol, dichloromethane, dimethylformamide, dimethyl sulfoxide, chloroform or toluene. However, the most suitable solvent was dimethylformamide.

次のセクションで本発明を説明するが、その実施例には限定されない。   The following section describes the invention, but is not limited to the examples.

ナノ繊維製造のためのエレクトロスピニング溶液の適当な組成物の開発
このセクションにおいては、所望の金属錯体溶液を混合して溶液の適当な組成物の開発を検討してから、混合後の安定性を検討した(例1〜4)。
Development of a suitable composition of electrospinning solution for nanofiber production In this section, the development of a suitable composition of solution by mixing the desired metal complex solution is considered, and then the stability after mixing is examined. It examined (Examples 1-4).

例1:
タングステン及び亜鉛錯体の水及びエタノール混合溶液からのナノ繊維の製造
二酸化チタンナノ粒子(P−25)は水又はエタノールに可溶であるから、最初にメタタングステン酸アンモニウム水和物と酢酸亜鉛水和物を含むナノ繊維製造の検討を行ってから、P−25を溶液混合物に添加した。
Example 1:
Preparation of nanofibers from a mixed solution of tungsten and zinc complexes in water and ethanol Since titanium dioxide nanoparticles (P-25) are soluble in water or ethanol, first ammonium metatungstate hydrate and zinc acetate hydrate After studying the production of nanofibers containing P-25, P-25 was added to the solution mixture.

前駆体溶液調整及びナノ繊維製造:
a)ポリビニルピロリドン(PVP)溶液(PVP:エタノールの重量比1:10)にメタタングステン酸アンモニウム水和物(AMT)錯体溶液(AMT:水の重量比1:10)及び酢酸亜鉛水和物(ZAH)錯体溶液(ZAH:水の重量比1:10)を混合した。
b)a)の溶液から、ナノスパイダー機を用い、電極グラウンド間距離18cm、電圧40kV,電極回転速度8rpmで、ナノ繊維膜を製造した。
c)b)のナノ繊維膜を特性評価した。
Preparation of precursor solution and nanofiber production:
a) Polyvinylpyrrolidone (PVP) solution (PVP: ethanol weight ratio 1:10) to ammonium metatungstate hydrate (AMT) complex solution (AMT: water weight ratio 1:10) and zinc acetate hydrate ( ZAH) complex solution (ZAH: water weight ratio 1:10) was mixed.
b) A nanofiber membrane was produced from the solution a) using a nanospider machine at an electrode ground distance of 18 cm, a voltage of 40 kV, and an electrode rotation speed of 8 rpm.
c) The nanofiber membrane of b) was characterized.

結果:AMT及びZAH錯体溶液を含む溶液混合物は安定であり、均一なナノ繊維を製造できた(図1a)。   Results: The solution mixture containing the AMT and ZAH complex solutions was stable and could produce uniform nanofibers (FIG. 1a).

例2:
タングステン錯体、亜鉛錯体及び二酸化チタンナノ粒子の水及びエタノール混合物溶液からのナノ繊維の製造
この例は、AMT及びZAH錯体溶液に二酸化チタンナノ粒子を混合後のナノ繊維の安定性及び物理的特性を調べるための実験であった。
Example 2:
Preparation of Nanofibers from Tungsten Complex, Zinc Complex and Titanium Dioxide Nanoparticles in Water and Ethanol Mixture Solution This example is to investigate the stability and physical properties of nanofibers after mixing titanium dioxide nanoparticles in AMT and ZAH complex solutions It was an experiment.

前駆体溶液調整及びナノ繊維製造:
a)ポリビニルピロリドン(PVP)溶液(PVP:エタノールの重量比1:10)に、磁気攪拌しながら30〜60分間でメタタングステン酸アンモニウム水和物(AMT)錯体溶液(AMT:水の重量比1:10)、酢酸亜鉛水和物(ZAH)錯体溶液(ZAH:水の重量比1:10)及び二酸化チタンナノ粒子(P−25:PVP溶液の重量比1:10)を混合した。
b)a)の溶液から、ナノスパイダー機を用い、電極グラウンド間距離18cm、電圧40kV,電極回転速度8rpmで、ナノ繊維膜を製造した。
c)b)のナノ繊維膜を、ナノ繊維内の炭素含分を分解するために大気圧、500℃で、4時間仮焼した後、得られた金属酸化物ナノ繊維の安定性及び物理的特性を評価した。
Preparation of precursor solution and nanofiber production:
a) A solution of ammonium metatungstate hydrate (AMT) in a polyvinyl pyrrolidone (PVP) solution (PVP: ethanol weight ratio 1:10) with magnetic stirring for 30 to 60 minutes (AMT: water weight ratio 1) : 10), zinc acetate hydrate (ZAH) complex solution (ZAH: water weight ratio 1:10) and titanium dioxide nanoparticles (P-25: PVP solution weight ratio 1:10) were mixed.
b) A nanofiber membrane was produced from the solution a) using a nanospider machine at an electrode ground distance of 18 cm, a voltage of 40 kV, and an electrode rotation speed of 8 rpm.
c) Stability and physical properties of the metal oxide nanofibers obtained after calcining the nanofiber membrane of b) for 4 hours at 500 ° C. under atmospheric pressure to decompose the carbon content in the nanofibers. Characteristics were evaluated.

結果:ナノ繊維の表面は粗に見えたが(図1b)、多分、P−25の溶解性が低いので、AMT及びZAHナノ繊維に沿って粒子凝集したためである。   Result: The surface of the nanofibers appeared rough (FIG. 1b), but probably because of the low solubility of P-25, the particles aggregated along the AMT and ZAH nanofibers.

仮焼後、ナノ繊維は、高い脆性を示し(図1c)、その一部はP−25の凝集物を含むので不均一な繊維構造を有する。   After calcination, the nanofibers are highly brittle (FIG. 1c) and have a non-uniform fiber structure because some of them contain P-25 aggregates.

この例から、P−25を溶液混合物に添加すると、溶液安定性を阻害し、仮焼中のナノ繊維の形成に悪影響があり、得られる材料はさらに使用するには不適当になると結論され得た。   From this example, it can be concluded that the addition of P-25 to the solution mixture inhibits solution stability, adversely affects the formation of nanofibers during calcination, and the resulting material is unsuitable for further use. It was.

例3:
タングステン錯体、亜鉛錯体及びチタンイソプロポキシド溶液の水及びエタノール混合溶液からのナノ繊維の製造
この例は、P−25の代わりにチタンイソプロポキシドを用いた後のナノ繊維の安定性及び物理的特性を調べるための実験であった。
Example 3:
Preparation of nanofibers from a mixed solution of tungsten and zinc complexes and titanium isopropoxide in water and ethanol This example illustrates the stability and physical properties of nanofibers after using titanium isopropoxide instead of P-25 It was an experiment to investigate the characteristics.

ナノ繊維の製造プロセスは下記を含んだ。
a)ポリビニルピロリドン(PVP)溶液(PVP:エタノールの重量比1:10)に、メタタングステン酸アンモニウム水和物(AMT)錯体溶液(AMT:水の重量比1:10)、酢酸亜鉛水和物(ZAH)錯体溶液(ZAH:水の重量比1:10)及びチタンイソプロポキシド(TIP)溶液(TIP:PVP溶液の比1:5)をそれぞれ混合した。
b)a)の溶液から、ナノスパイダー機を用い、電極グラウンド間距離18cm、電圧40kV,電極回転速度8rpmで、ナノ繊維膜を製造した。
c)b)のナノ繊維を、ナノ繊維内の炭素含分を分解するために大気圧、500℃で、4時間仮焼した後、得られた金属酸化物ナノ繊維の安定性及び物理的特性を評価した。
The nanofiber manufacturing process included:
a) Polyvinylpyrrolidone (PVP) solution (PVP: ethanol weight ratio 1:10), ammonium metatungstate hydrate (AMT) complex solution (AMT: water weight ratio 1:10), zinc acetate hydrate (ZAH) complex solution (ZAH: water weight ratio 1:10) and titanium isopropoxide (TIP) solution (TIP: PVP solution ratio 1: 5) were mixed respectively.
b) A nanofiber membrane was produced from the solution a) using a nanospider machine at an electrode ground distance of 18 cm, a voltage of 40 kV, and an electrode rotation speed of 8 rpm.
c) Stability and physical properties of the resulting metal oxide nanofibers after calcining the nanofibers of b) for 4 hours at 500 ° C. at atmospheric pressure to decompose the carbon content in the nanofibers Evaluated.

結果:TIP溶液をAMT及びZAH錯体溶液に添加後、TIPが白色固体粒子に凝集して、溶液を不均一にした。   Results: After adding the TIP solution to the AMT and ZAH complex solutions, the TIP aggregated into white solid particles, making the solution non-uniform.

製造後、ナノ繊維は、使用に適さず、溶液中の固体部分がエレクトロスピニングプロセスを阻害するので、膜に製造できなかった(図1e)。その後、仮焼プロセス後に粗な凝集粒子が見られ、ナノ繊維は見られなかった(図1f)。   After manufacture, nanofibers were not suitable for use and could not be made into membranes because the solid portion in solution hindered the electrospinning process (Figure 1e). Thereafter, coarse aggregated particles were seen after the calcination process, and no nanofibers were seen (FIG. 1f).

例4:
タングステン錯体、亜鉛錯体及びチタンイソプロポキシドのジメチルホルムアミド溶液からのナノ繊維の製造
この例は、AMT,ZAH及びTIP溶液を溶解可能であるジメチルホルムアミド(DMF)を溶液として用いた後のナノ繊維の安定性及び物理的特性を調べるための実験であった。最初に、TIP凝集を誘導する可能性があるので、系から水を除去した。しかしながら、エタノール溶剤だけでは酢酸亜鉛を溶解するには不十分であった。追加の溶剤が必要であったので、DMFを選択した。
Example 4:
Preparation of nanofibers from a dimethylformamide solution of tungsten complex, zinc complex and titanium isopropoxide This example shows the nanofibers after using dimethylformamide (DMF) as a solution, which can dissolve AMT, ZAH and TIP solutions. It was an experiment to investigate the stability and physical properties. Initially, water was removed from the system as it may induce TIP aggregation. However, ethanol solvent alone is insufficient to dissolve zinc acetate. Since additional solvent was required, DMF was selected.

ナノ繊維製造は下記を含んだ。
a)ポリビニルピロリドン(PVP)溶液(PVP:エタノールの重量比1:10)に、メタタングステン酸アンモニウム水和物(AMT)錯体溶液(AMT:DMFの重量比1:10)、酢酸亜鉛水和物(ZAH)錯体溶液(ZAH:DMFの重量比1:10)及びチタンイソプロポキシド(TIP)溶液(TIP:DMF溶液の比1:5)をそれぞれ混合した。
b)a)の溶液に濃酢酸を1:5の比で添加した。
c)b)の溶液から、ナノスパイダー機を用い、電極グラウンド間距離18cm、電圧40kV,電極回転速度8rpmで、ナノ繊維膜を製造した。
d)c)のナノ繊維を、大気圧、指定の温度で、4時間仮焼した。
500℃(例4a)
600℃(例4b)
700℃(例4c)
e)例4a、4b及び4cで指定される金属酸化物ナノ繊維膜を評価した。
Nanofiber manufacturing included:
a) Polyvinylpyrrolidone (PVP) solution (PVP: ethanol weight ratio 1:10), ammonium metatungstate hydrate (AMT) complex solution (AMT: DMF weight ratio 1:10), zinc acetate hydrate (ZAH) complex solution (ZAH: DMF weight ratio 1:10) and titanium isopropoxide (TIP) solution (TIP: DMF solution ratio 1: 5) were mixed, respectively.
b) Concentrated acetic acid was added to the solution of a) in a ratio of 1: 5.
c) A nanofiber membrane was produced from the solution of b) using a nanospider machine at an electrode ground distance of 18 cm, a voltage of 40 kV, and an electrode rotation speed of 8 rpm.
d) The nanofibers of c) were calcined at atmospheric pressure and a specified temperature for 4 hours.
500 ° C (Example 4a)
600 ° C. (Example 4b)
700 ° C (Example 4c)
e) The metal oxide nanofiber membranes specified in Examples 4a, 4b and 4c were evaluated.

結果:3つの化学組成物AMT,ZAH及びTIPのすべてが、エタノール及びDMF混合物に、一緒に溶解可能であった。製造後にナノ繊維の特性は均一であることが示された(図2a)。   Results: All three chemical compositions AMT, ZAH and TIP were soluble together in the ethanol and DMF mixture. The properties of the nanofibers were shown to be uniform after production (FIG. 2a).

例4a:
500℃仮焼後に、ナノ繊維の特性は仮焼前のそれと類似することが示された(図2b)。EDX分析により、ナノ繊維内にタングステン、亜鉛及びチタンが存在することが証明された(図2c)。X線回析メータ(XRD)分析によれば、チタン結晶構造の大部分はアナターゼ形であり、小部分がルチル形であった。加えて、タングステン及び亜鉛の元素を表す信号は有意ではなかった(図2d)。
Example 4a:
After calcination at 500 ° C., the nanofiber properties were shown to be similar to that before calcination (FIG. 2b). EDX analysis demonstrated the presence of tungsten, zinc and titanium in the nanofiber (FIG. 2c). According to X-ray diffraction meter (XRD) analysis, the majority of the titanium crystal structure was anatase and the minor was rutile. In addition, the signals representing the elements of tungsten and zinc were not significant (FIG. 2d).

例4b:
仮焼温度を600℃に上げ、例4aと同じ溶液を使用すると、ナノ繊維表面からロッド様構造物が突出した(図3a)。透過型電子顕微鏡(TEM)で粒子観察すると(図3c)、d間隔値はロッド様構造物が亜鉛タングステン酸化物であろうことを示唆した(図3d)。加えて、EDX分析により、500℃仮焼の試料から予想されるものと同様のすべての元素の存在が確認された(図3e)。
Example 4b:
When the calcining temperature was raised to 600 ° C. and the same solution as in Example 4a was used, a rod-like structure protruded from the nanofiber surface (FIG. 3a). When particles were observed with a transmission electron microscope (TEM) (FIG. 3c), the d-spacing value suggested that the rod-like structure would be zinc tungsten oxide (FIG. 3d). In addition, EDX analysis confirmed the presence of all elements similar to those expected from a 500 ° C. calcined sample (FIG. 3e).

XRDから、チタン結晶の大部分はアナターゼ形であり、小部分がルチル形であった。加えて、タングステン及び亜鉛成分の証左は例4aのそれらと比べて高い強度を示した。信号をデータベースの情報と比較して、ZnWOの存在が確認された(図3f)。 From XRD, the majority of the titanium crystals were anatase and the minor was rutile. In addition, the evidence of tungsten and zinc components showed higher strength than those of Example 4a. The presence of ZnWO 4 was confirmed by comparing the signal with the information in the database (FIG. 3f).

例4c:
700℃仮焼後に、ナノ繊維の物理的及び化学的特性は例4bのそれと同様であることが示された(図3b)。しかしながら、試料ではアナターゼ結晶の量がルチル形の量より少なかった。
Example 4c:
After calcination at 700 ° C., the physical and chemical properties of the nanofibers were shown to be similar to that of Example 4b (FIG. 3b). However, in the sample, the amount of anatase crystals was less than the amount of rutile form.

例2〜4のうち、例4(4a〜4c)が最も均一で物理的に安定なナノ繊維であった。さらに、3つの例のうち、例4bを、優れた光触媒活性を有するアナターゼ結晶構造の量が大きいので、後の貴金属堆積プロセスのために選択した。   Of Examples 2-4, Example 4 (4a-4c) was the most uniform and physically stable nanofiber. Furthermore, of the three examples, Example 4b was chosen for a subsequent noble metal deposition process because of the large amount of anatase crystal structure with excellent photocatalytic activity.

結論として、例4bを次の例の貴金属堆積プロセス及びナノ繊維安定性増加のために選択した。   In conclusion, Example 4b was chosen for the following example noble metal deposition process and increased nanofiber stability.

産業的規模の適用のためのナノ繊維膜の安定性向上法
このセクションは、金属酸化物ナノ繊維の脆性が産業的製造及び更なる開発の妨げになっている事実に鑑みて、ナノ繊維膜の安定性及び可撓性の開発を検討した。なお、例4bの600℃仮焼後に、得られた金属酸化物ナノ繊維膜(MONM)は、仮焼前のナノ繊維膜(図4a)とは大きく異なり、激しく変形し、破砕されていた(図4b)。この観察から、仮焼プロセスにおけるポリマーの急激な分解が不安定な金属酸化物膜の主な原因であると仮定できた。
Methods for improving the stability of nanofibrous membranes for industrial scale applications This section is based on the fact that the brittleness of metal oxide nanofibres has hindered industrial manufacturing and further development. The development of stability and flexibility was studied. In addition, after the 600 degreeC calcining of Example 4b, the obtained metal oxide nanofiber film (MONM) was greatly different from the nanofiber film before calcining (FIG. 4a), and was deformed severely and was crushed ( FIG. 4b). From this observation, it can be assumed that the rapid decomposition of the polymer in the calcination process is the main cause of the unstable metal oxide film.

以下の検討の焦点は、例4bが最も安定な金属酸化物ナノ繊維を製造する最も適当な試料であるので、仮焼における例4bの構造的安定性の開発にある。この開発の焦点は、ナノ繊維を完全な金属酸化物に完全に変換する仮焼プロセスにある。   The focus of the following discussion is on developing the structural stability of Example 4b in calcining because Example 4b is the most suitable sample for producing the most stable metal oxide nanofibers. The focus of this development is on the calcining process that completely converts the nanofibers into complete metal oxides.

例5:
タングステン錯体、亜鉛錯体及びチタンイソプロポキシドのジメチルホルムアミド溶液の仮焼前の多段アニール工程によるナノ繊維膜の製造
この製造方法は、例4bのそれと同様であるが、600℃4時間の仮焼前に、含まれるポリマーのTgより低い温度(100℃)、又はポリマーのTgより高い温度で(200℃)で、1時間アニール工程を有した。ここで、
Example 5:
Production of nanofibrous film by multi-stage annealing step before calcination of dimethylformamide solution of tungsten complex, zinc complex and titanium isopropoxide This production method is similar to that of Example 4b, but before calcination at 600 ° C. for 4 hours And an annealing step for 1 hour at a temperature lower than the Tg of the included polymer (100 ° C.) or higher than the Tg of the polymer (200 ° C.). here,

例5a:
100℃及び600℃でのアニール及び仮焼プロセス(ACプロセス)の間、非拘束のナノ繊維膜。
例5b:
200℃及び600℃でのアニール及び仮焼プロセス(ACプロセス)の間、非拘束のナノ繊維膜。
例5c:
100℃及び600℃でのアニール及び仮焼プロセス(ACプロセス)の間、繊維ガラスで平坦にサンドイッチ拘束したナノ繊維膜。
例5d:
200℃及び600℃でのアニール及び仮焼プロセス(ACプロセス)の間、繊維ガラスで平坦にサンドイッチ拘束したナノ繊維膜。
例5e:
200℃及び600℃でのアニール及び仮焼プロセス(ACプロセス)の間、ガラススライドで平坦にサンドイッチ拘束したナノ繊維膜。
例5f:
折った又は曲げた形状(bending shape)に繊維ガラスで拘束したナノ繊維膜。
例5g:
湾曲形状(curvy shape)に繊維ガラスで拘束したナノ繊維膜。
Example 5a:
Nanofiber membranes unconstrained during 100 ° C. and 600 ° C. annealing and calcining processes (AC process).
Example 5b:
Nanofiber membranes unconstrained during annealing and calcining processes (AC process) at 200 ° C. and 600 ° C.
Example 5c:
Nanofiber membrane flat sandwich sandwiched with fiberglass during 100 ° C and 600 ° C annealing and calcining processes (AC process).
Example 5d:
Nanofiber membrane flat sandwich sandwiched with fiberglass during 200 ° C and 600 ° C annealing and calcining processes (AC process).
Example 5e:
Nanofiber membrane flat sandwich sandwiched with glass slide during annealing and calcining process (AC process) at 200 ° C and 600 ° C.
Example 5f:
A nanofiber membrane constrained with fiberglass in a bent or bent shape.
Example 5g:
A nanofiber membrane constrained by fiberglass in a curvy shape.

結果:
例5a:
仮焼後のMONMは膜の端部に少しそり(deflection)があり(図4d)、仮焼前のナノ繊維膜と比較できた(図4c)。
例5b:
仮焼後のMONM表面は膜の端部のそり観察に関して例5a(100℃アニール)と同様であり(図4f)、仮焼前のナノ繊維膜と比較できた(図4e)。
例5a及び5bでは、追加のアニールプロセスでMONMのそりの程度は減少できるが、膜の物理的不安定性を完全には克服できなかった。
result:
Example 5a:
The MONM after calcination had a slight deflection at the end of the film (FIG. 4d), which was comparable to the nanofiber film before calcination (FIG. 4c).
Example 5b:
The MONM surface after calcination was similar to Example 5a (100 ° C. anneal) with respect to warping of the edge of the film (FIG. 4f) and could be compared with the nanofiber film before calcination (FIG. 4e).
In Examples 5a and 5b, the additional annealing process could reduce the degree of MONM warpage, but could not completely overcome the physical instability of the film.

例5c:
仮焼後のMONM表面では、破片は観察されず平坦に見えた(図4h)。加えて、膜の寸法は仮焼前に対して71.43%減少した(図4g)。
例5d:
仮焼後のMONMは例5cと同様であるが、膜の表面は平坦(図4j)から粗な構造(図4i)に変化した。膜の寸法は68.83%減少し、例5dより物理的に安定であることを示唆した。
例5c及び5dでは、ACプロセスと繊維ガラスによる構造拘束の組み合わせにより安定性が増加したMONMが得られた(図5a及び5c)。
Example 5c:
On the surface of the MONM after calcination, no debris was observed and it appeared flat (FIG. 4h). In addition, the dimensions of the film decreased by 71.43% compared to that before calcination (FIG. 4g).
Example 5d:
The MONM after calcination was the same as in Example 5c, but the film surface changed from flat (FIG. 4j) to a rough structure (FIG. 4i). The membrane size was reduced by 68.83%, suggesting that it was physically more stable than Example 5d.
Examples 5c and 5d resulted in MONMs with increased stability due to the combination of the AC process and fiberglass structural constraints (FIGS. 5a and 5c).

例5e:
ナノ繊維膜は仮焼前(図4k)及び仮焼後(図4l)の両方で平滑な表面を有した。しかしながら、仮焼後の膜は脆くて、破断されて全ピース(a whole piece)として拾えた。
例5eから、繊維ガラスを拘束に用いるとガラススライドより良好であると結論された(図5b及び5d)。
例5f:
一対の繊維ガラスで膜をビーカの内部に沿って湾曲して拘束して、仮焼後のナノ繊維膜の可撓性を調べた(図4m)。このプロセスではMONMの形状を望むように維持できることが見出された(図4n)。
例5g:
例5fと同じ条件で仮焼前にナノ繊維膜を繊維ガラスの積層中にラップして、仮焼後のナノ繊維膜の可撓性を調べた(図4о)。仮焼後に膜は非常に安定であり、低角度で折りまたは曲げても(bending)亀裂は観察されなかった(図4p)。
Example 5e:
The nanofiber membrane had a smooth surface both before calcination (FIG. 4k) and after calcination (FIG. 4l). However, the calcined film was brittle and was broken and picked up as a whole piece.
From Example 5e it was concluded that fiberglass was better than a glass slide when used for restraint (FIGS. 5b and 5d).
Example 5f:
The membrane was bent and restrained along the inside of the beaker with a pair of fiber glasses, and the flexibility of the nanofiber membrane after calcination was examined (FIG. 4m). It has been found that this process can maintain the MONM shape as desired (FIG. 4n).
Example 5g:
Under the same conditions as in Example 5f, the nanofiber membrane was wrapped in a fiberglass laminate before calcination, and the flexibility of the nanofiber membrane after calcination was examined (FIG. 4о). After calcination, the film was very stable and no cracks were observed when bent or bent at low angles (FIG. 4p).

金属酸化物ナノ繊維膜への貴金属の光堆積
この検討の目的は、可視光及び太陽光による活性化に関して、金属酸化物ナノ繊維の光触媒の活性を改良することであった。貴金属で修飾された金属酸化物ナノ繊維の開発は、表面にパラジウム及び白金などの貴金属をドープして行うことができた。
UV,可視光及び自然太陽光での光堆積法によるこの貴金属ドープのために、例4bを選択した。
Photodeposition of noble metals on metal oxide nanofiber films The purpose of this study was to improve the photocatalytic activity of metal oxide nanofibers with respect to activation by visible light and sunlight. Development of metal oxide nanofibers modified with noble metals could be achieved by doping the surface with noble metals such as palladium and platinum.
Example 4b was chosen for this noble metal doping by photodeposition with UV, visible light and natural sunlight.

例6:
UV,可視光及び自然太陽光でのナノ繊維への貴金属修飾
ナノ繊維への貴金属修飾は下記のように処理した。
a)硝酸パラジウム(II)水和物及び水素ヘキサクロロ白金酸(IV)金属錯体溶液の調製方法:
第1のビーカで、水に硝酸パラジウム(II)水和物を磁気攪拌しながら10分間0.00167:10の比(重量%)で添加した。
第2のビーカで、水に水素ヘキサクロロ白金酸(IV)を磁気攪拌しながら10分間0.005:10の比(重量%)で添加した。
b)a)の2つの混合物を混合してから、例5dのナノ繊維を添加して1時間各種の光源で照射した。ここで、
UV光(例6a)
可視光(例6b)
太陽光(例6c)
c)例6a〜6cのナノ繊維を洗浄及び乾燥した。
d)c)のナノ繊維及び堆積した貴金属ナノ粒子を評価した。
Example 6:
Modification of noble metal to nanofibers with UV, visible light and natural sunlight was performed as follows.
a) Preparation method of palladium (II) nitrate hydrate and hydrogen hexachloroplatinic acid (IV) metal complex solution:
In a first beaker, palladium (II) nitrate hydrate was added to water at a ratio (wt%) of 0.00167: 10 for 10 minutes with magnetic stirring.
In a second beaker, hydrogen hexachloroplatinic acid (IV) was added to water at a ratio (wt%) of 0.005: 10 for 10 minutes with magnetic stirring.
b) After mixing the two mixtures of a), the nanofibers of Example 5d were added and irradiated with various light sources for 1 hour. here,
UV light (Example 6a)
Visible light (Example 6b)
Sunlight (Example 6c)
c) The nanofibers of Examples 6a-6c were washed and dried.
d) The nanofibers and deposited noble metal nanoparticles of c) were evaluated.

結果:
例6a:
UV光によるパラジウム及び白金イオンの還元及び金属酸化物ナノ繊維へのそれぞれの貴金属の核形成は、光源と溶液との距離で制御した。反応後、得られたナノ繊維の特性は反応前のナノ繊維のそれと同様であった。しかしながら、ナノ繊維の平均直径は増加した(図6a)。EDXから、ナノ繊維の表面にパラジウムと白金の両方の元素が確認された(図6d)。
result:
Example 6a:
The reduction of palladium and platinum ions by UV light and the nucleation of each noble metal on the metal oxide nanofibers were controlled by the distance between the light source and the solution. After the reaction, the properties of the obtained nanofibers were similar to those of the nanofibers before the reaction. However, the average diameter of the nanofibers increased (Figure 6a). EDX confirmed both palladium and platinum elements on the surface of the nanofiber (FIG. 6d).

例6b:
可視光で同様の光還元反応を実施した。反応後に、ナノ繊維の特性は例6aのそれと同様であった(図6b)。加えて、EDX分析からナノ繊維の表面にパラジウムと白金の両方の元素が同様に確認された。
Example 6b:
A similar photoreduction reaction was carried out with visible light. After the reaction, the nanofiber properties were similar to those of Example 6a (FIG. 6b). In addition, EDX analysis confirmed both palladium and platinum elements on the nanofiber surface as well.

例6c:
実験中光強度を記録しながら自然太陽光で光還元反応を実施した。反応後にナノ繊維の平均直径は増大し、EDX分析により表面に例6a及び6bの場合より多くの金属元素が観察された(図6c)。
Example 6c:
The photoreduction reaction was carried out with natural sunlight while recording the light intensity during the experiment. The average diameter of the nanofibers increased after the reaction, and more metal elements were observed on the surface than in Examples 6a and 6b by EDX analysis (FIG. 6c).

次に金属酸化物ナノ繊維上に堆積した金属ナノ粒子をTEMで評価できた。二酸化チタン及び亜鉛タングステン酸化物上に金属ナノ粒子が均一に分散していた(図6e)。粒子のd間隔の分析によりパラジウムナノ粒子の寸法は1〜15ナノメートルの間であると報告された(図6f)。亜鉛タングステン酸化物上の白金ナノ粒子(図6g)はTEMにより3ナノメートル未満であると観察された(図6h)。   Next, the metal nanoparticles deposited on the metal oxide nanofibers could be evaluated by TEM. Metal nanoparticles were uniformly dispersed on titanium dioxide and zinc tungsten oxide (FIG. 6e). Analysis of the d spacing of the particles reported that the size of the palladium nanoparticles was between 1 and 15 nanometers (FIG. 6f). Platinum nanoparticles on zinc tungsten oxide (FIG. 6g) were observed by TEM to be less than 3 nanometers (FIG. 6h).

例6の結果から、可視光、UV及び太陽光で有効な光還元反応が行われたことが分かる。結論として、最適な例及び将来の規模拡大のために最も適当なプロセスは、それぞれの光還元が太陽光で成功裏に実施されたこと(自由エネルギー)、例6a及び6bより容易に実施できることから、例6cであった。   From the results of Example 6, it can be seen that an effective photoreduction reaction was performed with visible light, UV, and sunlight. In conclusion, the best example and the most appropriate process for future scale-up is that each photoreduction was successfully carried out with sunlight (free energy), which is easier to implement than Examples 6a and 6b. Example 6c.

ナノ繊維膜によるモデル汚染物の光触媒分解
汚染物分解効率を、モデル汚染物としてのメチレンブルー(MB)の光触媒分解により測定した。最初に、10mgのナノ繊維を自然太陽光下で500ppmMB溶液に懸濁した(図7)。
Photocatalytic degradation of model contaminants by nanofiber membranes The degradation efficiency of contaminants was measured by photocatalytic degradation of methylene blue (MB) as a model contaminant. First, 10 mg of nanofibers were suspended in a 500 ppm MB solution under natural sunlight (FIG. 7).

実験では、2種のナノ繊維:TiO−ZnWO及びPd/Pt−TiO−ZnWOを、それぞれ別に、光触媒効率の比較のために用いた。また、触媒なしのMB溶液を対照として用いた。 In the experiment, two types of nanofibers: TiO 2 —ZnWO 4 and Pd / Pt—TiO 2 —ZnWO 4 were used separately for comparison of photocatalytic efficiency. An MB solution without catalyst was used as a control.

結果:
両方のナノ繊維が高いMB分解効率を示した。Pd/Pt−TiO―ZnWO及びTiO−ZnWOのナノ繊維では、最も高いMB分解効率は最初の2時間においてみられた(図7)。
result:
Both nanofibers showed high MB degradation efficiency. For Pd / Pt—TiO 2 —ZnWO 4 and TiO 2 —ZnWO 4 nanofibers, the highest MB degradation efficiency was seen in the first 2 hours (FIG. 7).

ナノ繊維膜の触媒活性を、気相500ppmベンゼン(揮発性有機化合物、VOC)に関して評価した。実験は、0.1gのナノ繊維を用いて、4時間、可視光下で、500ppmのベンゼンを処理して実施した(懸濁液と電球の距離を10cmに固定)(図8a)。反応後、分解したベンゼンの濃度をガスクロマトグラフィ(GC)で評価した。   The catalytic activity of the nanofiber membrane was evaluated with respect to gas phase 500 ppm benzene (volatile organic compound, VOC). The experiment was carried out using 0.1 g of nanofibers and treating 500 ppm of benzene under visible light for 4 hours (distance between suspension and bulb fixed at 10 cm) (FIG. 8a). After the reaction, the concentration of decomposed benzene was evaluated by gas chromatography (GC).

結果:
ベンゼン濃度分析は、対照ガスと比較して分解したベンゼンのピーク領域を計算することで行った。分析により、対照触媒として用いたWOナノ繊維はベンゼン分解効率を全く示さなかったが、TiO−ZnWOナノ繊維は37%のベンゼン分解効率であった(表1)。
result:
The benzene concentration analysis was performed by calculating the peak area of decomposed benzene compared to the control gas. Analysis showed that the WO 3 nanofibers used as the control catalyst did not show any benzene decomposition efficiency, whereas the TiO 2 —ZnWO 4 nanofibers had a benzene decomposition efficiency of 37% (Table 1).

ベンゼン分解反応とは別に、Pd/Pt−TiO―ZnWOナノ繊維をさらにメタノールのギ酸メチルへの酸化転移のために用いた。反応後、6.442にGCピークが見られ、GCデータベースで参照するとギ酸メチルのものであることが確認された(図8b及び8c)。 Apart from the benzene decomposition reaction, Pd / Pt—TiO 2 —ZnWO 4 nanofibers were further used for the oxidative transfer of methanol to methyl formate. After the reaction, a GC peak was observed at 6.442, which was confirmed to be that of methyl formate when referenced in the GC database (FIGS. 8b and 8c).

Claims (17)

アナターゼ及びルチル結晶の二酸化チタン及び酸化タングステンを主成分としてなる、安定で設計どおりの金属酸化物ナノ繊維及び可撓性で安定なナノ繊維膜。ナノ繊維の表面はサンマルチナイト(sanmatinite)結晶を有する亜鉛タングステン酸化物ナノロッドを含む。さらに、ナノ繊維及び亜鉛タングステン酸化物ナノロッドの表面は単層の貴金属ナノ粒子によって修飾されている。   Stable and designed metal oxide nanofibers and flexible and stable nanofiber membranes based on anatase and rutile crystalline titanium dioxide and tungsten oxide. The surface of the nanofiber comprises zinc tungsten oxide nanorods with sanmatinite crystals. Furthermore, the surfaces of the nanofibers and zinc tungsten oxide nanorods are modified with a single layer of noble metal nanoparticles. ナノ繊維は100〜200nmの範囲の直径を有する、請求項1に記載の安定で設計どおりの金属酸化物ナノ繊維及び可撓性で安定なナノ繊維膜。   The stable and designed metal oxide nanofiber and flexible and stable nanofiber membrane according to claim 1, wherein the nanofiber has a diameter in the range of 100-200 nm. 二酸化チタンのアナターゼ結晶構造の量がルチル結晶構造の量より多い、請求項1又は2に記載の安定で設計どおりの金属酸化物ナノ繊維及び可撓性で安定なナノ繊維膜。   3. The stable and designed metal oxide nanofiber and flexible and stable nanofiber membrane according to claim 1 or 2, wherein the amount of anatase crystal structure of titanium dioxide is greater than the amount of rutile crystal structure. 亜鉛タングステン酸化物のサンマルチナイト結晶構造が30〜50nmの範囲の寸法のナノロッドを表す、請求項1〜3のいずれか一項に記載の安定で設計どおりの金属酸化物ナノ繊維及び可撓性で安定なナノ繊維膜。   Stable and designed metal oxide nanofibers and flexibility according to any one of claims 1 to 3, wherein the sun multinite crystal structure of zinc tungsten oxide represents nanorods with dimensions in the range of 30 to 50 nm. And stable nanofiber membrane. ナノ繊維表面上の貴金属ナノ粒子が1〜15nmの範囲の寸法を有する、請求項1〜4のいずれか一項に記載の安定で設計どおりの金属酸化物ナノ繊維及び可撓性で安定なナノ繊維膜。   The stable and designed metal oxide nanofiber and flexible and stable nanoparticle according to any one of claims 1 to 4, wherein the noble metal nanoparticles on the nanofiber surface have dimensions in the range of 1 to 15 nm. Fiber membrane. 貴金属ナノ粒子はパラジウム、白金、銀、金、ロジウム、エルビウム(eridium)、ルテニウム、オスミウム、タンタル、チタン又はそれらの混合物から選ばれることができる、請求項1〜5のいずれか一項に記載の安定で設計どおりの金属酸化物ナノ繊維及び可撓性で安定なナノ繊維膜。   The precious metal nanoparticles can be selected from palladium, platinum, silver, gold, rhodium, erdium, ruthenium, osmium, tantalum, titanium or mixtures thereof. Stable and designed metal oxide nanofibers and flexible and stable nanofiber membranes. 最も適切な貴金属ナノ粒子はパラジウムであった、請求項6に記載の安定で設計どおりの金属酸化物ナノ繊維及び可撓性で安定なナノ繊維膜。   7. The stable and designed metal oxide nanofiber and flexible and stable nanofiber membrane according to claim 6, wherein the most suitable noble metal nanoparticles were palladium. 最も適切な貴金属ナノ粒子は白金であった、請求項6に記載の安定で設計どおりの金属酸化物ナノ繊維及び可撓性で安定なナノ繊維膜。   7. The stable and designed metal oxide nanofiber and flexible and stable nanofiber membrane according to claim 6, wherein the most suitable noble metal nanoparticles were platinum. ナノ繊維がその軸に沿って自由に延びる突起を有する、請求項1〜8のいずれか一項に記載のナノ繊維から製造された可撓性で安定なナノ繊維膜。   A flexible and stable nanofiber membrane made from nanofibers according to any one of claims 1 to 8, wherein the nanofibers have protrusions extending freely along their axes. 500〜900℃間の範囲の温度に耐えることが可能である、請求項1〜9のいずれか一項に記載のナノ繊維から製造された可撓性で安定なナノ繊維膜。   A flexible and stable nanofiber membrane made from nanofibers according to any one of claims 1 to 9, capable of withstanding temperatures in the range between 500-900 ° C. 請求項1〜10のいずれか一項に記載の安定で設計どおりの金属酸化物ナノ繊維及び可撓性で安定なナノ繊維膜の製造方法であって、
a)官能性ポリマー溶液を、チタン、タングステン及び亜鉛錯体を含む少なくとも3種の金属前駆体の有機溶剤溶液と混合する。その混合プロセスは、初めにタングステン錯体溶液を官能性ポリマー溶液に加えてから、亜鉛及びチタン錯体溶液を磁気攪拌しながら30分間加える。
b)a)で得られる溶液を、濃酸に0.1〜30:0.1〜30の重量比で混合する。
c)b)で得られる溶液から、ニードル式エレクトロスピニング、ナノスパイダーエレクトロスピニング又は強制/遠心スピニングによって、ナノ繊維を製造する。
d)c)で得られるナノ繊維膜を、非拘束、繊維ガラス拘束又はガラススライド拘束で、アニール及び仮焼(AC法)する処理をして、金属酸化物ナノ繊維膜にする。仮焼温度は1〜24時間で100〜900℃から選択できる。
e)c)で得られるナノ繊維、又はd)で得られる金属酸化物ナノ繊維を、可視光、UV又は太陽光の下1〜24時間の光堆積法により、貴金属ナノ粒子で修飾する。
f)e)で得られるナノ繊維又はナノ繊維膜を洗浄及び乾燥する。
A method for producing a stable and designed metal oxide nanofiber and a flexible and stable nanofiber membrane according to any one of claims 1 to 10,
a) The functional polymer solution is mixed with an organic solvent solution of at least three metal precursors including titanium, tungsten and zinc complexes. The mixing process first adds the tungsten complex solution to the functional polymer solution, and then adds the zinc and titanium complex solution for 30 minutes with magnetic stirring.
b) The solution obtained in a) is mixed with concentrated acid in a weight ratio of 0.1-30: 0.1-30.
c) Nanofibers are produced from the solution obtained in b) by needle electrospinning, nanospider electrospinning or forced / centrifugal spinning.
d) The nanofiber film obtained in c) is subjected to a treatment of annealing and calcination (AC method) in a non-constraint, fiberglass restraint or glass slide restraint to form a metal oxide nanofiber film. The calcination temperature can be selected from 100 to 900 ° C. in 1 to 24 hours.
e) The nanofibers obtained in c) or the metal oxide nanofibers obtained in d) are modified with noble metal nanoparticles by a photodeposition method under visible light, UV or sunlight for 1-24 hours.
f) The nanofiber or nanofiber membrane obtained in e) is washed and dried.
官能性ポリマー溶液は、官能性ポリマーとエタノールを0.1〜40:0.1〜40の重量比で、室温30分間で混合して調製することができる、請求項11に記載の安定で設計どおりの金属酸化物ナノ繊維及び可撓性で安定なナノ繊維膜の製造方法。   The stable and designed of claim 11, wherein the functional polymer solution can be prepared by mixing the functional polymer and ethanol in a weight ratio of 0.1-40: 0.1-40 at room temperature for 30 minutes. Metal oxide nanofibers and a method for producing flexible and stable nanofiber membranes. 各錯体溶液は、金属錯体と溶剤を0.1〜40:0.1〜40の重量比で、室温10分間で混合して調製することができる、請求項11又は12に記載の安定で設計どおりの金属酸化物ナノ繊維及び可撓性で安定なナノ繊維膜の製造方法。   Each stable solution according to claim 11 or 12, wherein each complex solution can be prepared by mixing a metal complex and a solvent in a weight ratio of 0.1-40: 0.1-40 at room temperature for 10 minutes. Metal oxide nanofibers and a method for producing flexible and stable nanofiber membranes. 有機溶剤はメチルアルコール、エチルアルコール、ジクロロメタン、ジメチルホルムアミド、ジメチルスルホキシド、クロロホルム、トルエンから選ぶことができる、請求項13に記載の安定で設計どおりの金属酸化物ナノ繊維及び可撓性で安定なナノ繊維膜の製造方法。適当な有機溶剤はジメチルホルムアミドである。   14. The stable and designed metal oxide nanofibers and flexible and stable nanofibers according to claim 13, wherein the organic solvent can be selected from methyl alcohol, ethyl alcohol, dichloromethane, dimethylformamide, dimethyl sulfoxide, chloroform, toluene. Manufacturing method of fiber membrane. A suitable organic solvent is dimethylformamide. 官能性ポリマーは、炭化水素鎖に沿って水酸基、アミン基又はカルボン酸基などの官能基を有する、請求項11〜14のいずれか一項に記載の安定で設計どおりの金属酸化物ナノ繊維及び可撓性で安定なナノ繊維膜の製造方法。官能性ポリマーは、ポリアクリロニトリル、ポリビニルピロリドン、ポリビニルアルコール、ポリヒドロキシプロピルメタクリレート、ポリヒドロキシエチルメタクリレート、ポリグリセロールメアクリレート、又はこれらの官能性ポリマーの混合物から選ぶことができる。   The stable and designed metal oxide nanofiber according to any one of claims 11 to 14, wherein the functional polymer has a functional group such as a hydroxyl group, an amine group or a carboxylic acid group along the hydrocarbon chain. A method for producing a flexible and stable nanofiber membrane. The functional polymer can be selected from polyacrylonitrile, polyvinyl pyrrolidone, polyvinyl alcohol, polyhydroxypropyl methacrylate, polyhydroxyethyl methacrylate, polyglycerol methacrylate, or a mixture of these functional polymers. 金属錯体は、チタン、パラジウム、白金、銀、金、銅、鉄、タングステン又はそれらの混合物から選ぶことができる、請求項11〜15のいずれか一項に記載の安定で設計どおりの金属酸化物ナノ繊維及び可撓性で安定なナノ繊維膜の製造方法。   The stable and designed metal oxide according to any one of claims 11 to 15, wherein the metal complex can be selected from titanium, palladium, platinum, silver, gold, copper, iron, tungsten or mixtures thereof. Nanofiber and method for producing flexible and stable nanofiber membrane. 濃酸は、酢酸、硫酸、塩酸又はそれらの混合物から選ぶことができる、請求項11〜16のいずれか一項に記載の安定で設計どおりの金属酸化物ナノ繊維及び可撓性で安定なナノ繊維膜の製造方法。   Concentrated acid can be selected from acetic acid, sulfuric acid, hydrochloric acid or mixtures thereof, stable and designed metal oxide nanofibers and flexible and stable nanofibers according to any one of claims 11-16. Manufacturing method of fiber membrane.
JP2018534601A 2015-12-29 2016-12-28 Flexible metal oxide nanofibers prepared by electrospinning and stable nanofiber fabrics made therefrom and method of making Expired - Fee Related JP6669875B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
TH1501007936A TH176227A (en) 2015-12-29 "Stable metal oxide nanophotocatalyst fibers can be molded. And flexible nano fiber membrane And stable which is formed from such fibers Including the fabrication of the fibers and the nanofiber membrane.
TH1501007936 2015-12-29
PCT/TH2016/000106 WO2017116316A1 (en) 2015-12-29 2016-12-28 Flexible metal oxide nanofibers prepared by electrospinning and stable nanofibrous fabric made thereof and preparation process

Publications (3)

Publication Number Publication Date
JP2019503325A true JP2019503325A (en) 2019-02-07
JP2019503325A5 JP2019503325A5 (en) 2020-02-06
JP6669875B2 JP6669875B2 (en) 2020-03-18

Family

ID=58261697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018534601A Expired - Fee Related JP6669875B2 (en) 2015-12-29 2016-12-28 Flexible metal oxide nanofibers prepared by electrospinning and stable nanofiber fabrics made therefrom and method of making

Country Status (3)

Country Link
JP (1) JP6669875B2 (en)
CN (1) CN108778499B (en)
WO (1) WO2017116316A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021261531A1 (en) * 2020-06-23 2021-12-30 国立大学法人弘前大学 Catalyst for fuel cells, electrode catalyst layer, membrane electrode joined body, solid polymer type fuel cell, method for producing titanium oxide for catalyst carriers, and method for producing catalyst for fuel cells

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10456776B1 (en) 2019-02-21 2019-10-29 King Saud University Method of fabricating a photocatalyst for water splitting
CN110745934A (en) * 2019-10-22 2020-02-04 庆泓技术(上海)有限公司 Modified high-activity inorganic fiber composite material and preparation and regeneration method thereof
CN110894677B (en) * 2019-11-08 2022-03-04 东华大学 Conductive nanofiber membrane and preparation method thereof
CN111215059B (en) * 2020-01-06 2022-08-30 湖北大学 Titanium dioxide (B) nanosheet catalyst modified by gold nanoparticles and preparation method and application thereof
CN111282580B (en) * 2020-03-23 2022-06-17 齐鲁工业大学 Silver-modified cobalt tungstate/cadmium tungstate nanofiber photocatalytic material and preparation method and application thereof
CN111569644A (en) * 2020-04-29 2020-08-25 江苏卓高环保科技有限公司 Catalytic decomposition formaldehyde ammonia material and formaldehyde-removing deodorizing purifier prepared from same
CN111530452A (en) * 2020-04-29 2020-08-14 江苏卓高环保科技有限公司 Composite microsphere for catalytically decomposing formaldehyde and releasing negative ions and purifier prepared from composite microsphere
CN111911924B (en) * 2020-07-29 2021-12-24 西安菲尔特金属过滤材料股份有限公司 Preparation method of flat plate type iron-chromium-aluminum fiber combustion head
CN114164511B (en) * 2021-03-23 2024-02-09 耐酷时(北京)科技有限公司 Preparation method of porous titanium dioxide mixed polyacrylonitrile fiber
CN113106590B (en) * 2021-04-15 2022-07-12 苏州大学 Anti-pilling antibacterial wool yarn and preparation method thereof
CN113426492A (en) * 2021-06-29 2021-09-24 东华大学 Amorphous porous ceramic nanofiber membrane and preparation method and application thereof
CN113926455B (en) * 2021-09-14 2024-01-23 河南科技大学 Preparation method of bimetallic nanoparticle fiber catalyst
WO2023154872A2 (en) * 2022-02-11 2023-08-17 Drexel University Nanomaterial-based processing of dyes and organic compounds
CN115449957A (en) * 2022-10-01 2022-12-09 刘玉文 Household textile fabric and preparation method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041092A1 (en) * 2004-10-15 2006-04-20 Bridgestone Corporation Dye sensitized metal oxide semiconductor electrode and method for manufacturing the same, and dye sensitized solar cell
KR100921476B1 (en) * 2007-08-29 2009-10-13 한국과학기술연구원 Dye-sensitized solar cell with metal oxide layer composed of metal oxide nanoparticles by electrospinning and the fabrication method thereof
KR100945035B1 (en) * 2008-01-29 2010-03-05 재단법인서울대학교산학협력재단 Tungstates based visible-light induced oxides photocatalysts and synthesis methods thereof
US8535632B2 (en) * 2008-03-20 2013-09-17 The University Of Akron Ceramic nanofibers containing nanosize metal catalyst particles and medium thereof
CN101623630B (en) * 2009-07-24 2012-01-25 中国科学院上海硅酸盐研究所 Bi2WO6/oxide fiber cloth with multistage heterogeneous structure, method and application
KR20110034146A (en) * 2009-09-28 2011-04-05 재단법인대구경북과학기술원 Polycrystalline titanium dioxide nanorod and method of manufacturing the same
EP2614177A4 (en) * 2010-09-10 2014-09-10 Ozin Geoffrey A Photoactive material comprising nanoparticles of at least two photoactive constiuents
CN103623803A (en) * 2012-08-30 2014-03-12 上海纳晶科技有限公司 Visible light photocatalyst and preparation method therefor
CN103806127A (en) * 2012-11-15 2014-05-21 大连捌伍捌创新工场科技服务有限公司 Photocatalysis fiber
JP6342225B2 (en) * 2014-06-09 2018-06-13 国立研究開発法人物質・材料研究機構 Photocatalyst composite material and method for producing the same
CN105107519A (en) * 2015-09-11 2015-12-02 辽宁石油化工大学 Method for synthetizing tungstate/tungsten oxide heterojunction photocatalyst in situ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021261531A1 (en) * 2020-06-23 2021-12-30 国立大学法人弘前大学 Catalyst for fuel cells, electrode catalyst layer, membrane electrode joined body, solid polymer type fuel cell, method for producing titanium oxide for catalyst carriers, and method for producing catalyst for fuel cells
JP2022003634A (en) * 2020-06-23 2022-01-11 国立大学法人弘前大学 Fuel cell catalyst, electrode catalyst layer, membrane electrode assembly, polymer electrolyte fuel cell, and manufacturing method of fuel cell catalyst

Also Published As

Publication number Publication date
CN108778499B (en) 2022-08-12
CN108778499A (en) 2018-11-09
WO2017116316A1 (en) 2017-07-06
JP6669875B2 (en) 2020-03-18

Similar Documents

Publication Publication Date Title
JP6669875B2 (en) Flexible metal oxide nanofibers prepared by electrospinning and stable nanofiber fabrics made therefrom and method of making
El-Naggar et al. Recent advances in polymer/metal/metal oxide hybrid nanostructures for catalytic applications: A review
Pi et al. Encapsulated MWCNT@ MOF-derived In2S3 tubular heterostructures for boosted visible-light-driven degradation of tetracycline
Zhang et al. Advanced fabrication of chemically bonded graphene/TiO2 continuous fibers with enhanced broadband photocatalytic properties and involved mechanisms exploration
Tian et al. Synergetic effect of titanium dioxide ultralong nanofibers and activated carbon fibers on adsorption and photodegradation of toluene
Zhu et al. Enhanced photodegradation of sulfamethoxazole by a novel WO3-CNT composite under visible light irradiation
Bai et al. Photocatalytic activity enhanced via g-C3N4 nanoplates to nanorods
Yang et al. Preparation of Pt/TiO2 hollow nanofibers with highly visible light photocatalytic activity
Liu et al. MoO3-nanowire membrane and Bi2Mo3O12/MoO3 nano-heterostructural photocatalyst for wastewater treatment
Adhikari et al. Electrospinning directly synthesized porous TiO2 nanofibers modified by graphitic carbon nitride sheets for enhanced photocatalytic degradation activity under solar light irradiation
Tan et al. Visible-light-activated oxygen-rich TiO2 as next generation photocatalyst: Importance of annealing temperature on the photoactivity toward reduction of carbon dioxide
Ong et al. Hybrid organic PVDF–inorganic M–rGO–TiO 2 (M= Ag, Pt) nanocomposites for multifunctional volatile organic compound sensing and photocatalytic degradation–H 2 production
Kong et al. Carbon nitride polymer sensitization and nitrogen doping of SrTiO3/TiO2 nanotube heterostructure toward high visible light photocatalytic performance
Zhang et al. Fabrication of TiO2 nanofiber membranes by a simple dip-coating technique for water treatment
Lin et al. Rapid atmospheric plasma spray coating preparation and photocatalytic activity of macroporous titania nanocrystalline membranes
Zhang et al. Facet engineered TiO2 hollow sphere for the visible-light-mediated degradation of antibiotics via ligand-to-metal charge transfer
KR101437442B1 (en) Method of graphene-cnt complex structure for water treatment and membrane using the same
Li et al. Synthesis and photocatalytic performance of reduced graphene oxide–TiO 2 nanocomposites for orange II degradation under UV light irradiation
Xu et al. Template directed preparation of TiO2 nanomaterials with tunable morphologies and their photocatalytic activity research
Ren et al. Carbon Quantum Dots-TiO 2 Nanocomposites with Enhanced Catalytic Activities for Selective Liquid Phase Oxidation of Alcohols
Padmaja et al. Fabrication of hetero-structured mesoporours TiO2-SrTiO3 nanocomposite in presence of Gemini surfactant: characterization and application in catalytic degradation of Acid Orange
Cao et al. ZnO/ZnFe2O4/Ag hollow nanofibers with multicomponent heterojunctions for highly efficient photocatalytic water pollutants removal
Fua et al. Photocatalytic ultrafiltration membranes based on visible light responsive photocatalyst: A review
Yousef et al. Cu0-decorated, carbon-doped rutile TiO2 nanofibers via one step electrospinning: Effective photocatalyst for azo dyes degradation under solar light
Norouzi et al. Photocatalytic degradation of phenol under visible light using electrospun Ag/TiO2 as a 2D nano-powder: Optimizing calcination temperature and promoter content

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20191219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200227

R150 Certificate of patent or registration of utility model

Ref document number: 6669875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees