JP2019218541A - Epoxy resin composition, prepreg, and fiber reinforced composite material - Google Patents

Epoxy resin composition, prepreg, and fiber reinforced composite material Download PDF

Info

Publication number
JP2019218541A
JP2019218541A JP2019111723A JP2019111723A JP2019218541A JP 2019218541 A JP2019218541 A JP 2019218541A JP 2019111723 A JP2019111723 A JP 2019111723A JP 2019111723 A JP2019111723 A JP 2019111723A JP 2019218541 A JP2019218541 A JP 2019218541A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
mass
cured
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019111723A
Other languages
Japanese (ja)
Inventor
大典 小西
Daisuke Konishi
大典 小西
雄一 山北
Yuichi Yamakita
雄一 山北
啓之 平野
Hiroyuki Hirano
啓之 平野
英喜 高橋
Hideki Takahashi
英喜 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2019218541A publication Critical patent/JP2019218541A/en
Pending legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

To provide an epoxy resin composition having both excellent flexure modulus and flexure strain, a prepreg using the epoxy resin composition, and a fiber reinforced composite material.SOLUTION: The epoxy resin composition includes the following constituents (A), (B), and (C), and satisfies the following conditions (a), and (b). The constituent (A) is a 3-functional amine-type epoxy resin. The constituent (B) is a bisphenol F-type epoxy resin which is solid at 25°C. The constituent (C) is an aromatic amine compound. The condition (a) is such that the average epoxy equivalent of the constituent (B) is 600-1,000 g/eq. The condition (b) is such that a storage modulus Y (MPa) in a rubber state by dynamic viscoelasticity measurement of a cured resin product obtained by reacting the epoxy resin composition at 180°C for 120 min., and an active group mole number (Ma) of 100 pts.mass of the total epoxy resin satisfy the following formula (1): 1100≤Y/Ma≤2000 (1).SELECTED DRAWING: None

Description

本発明は、スポーツ用途、一般産業用途、および航空宇宙用途に適した繊維強化複合材料のマトリックス樹脂として好ましく用いられるエポキシ樹脂組成物、ならびに、これをマトリックス樹脂としたプリプレグおよび繊維強化複合材料に関するものである。   The present invention relates to an epoxy resin composition preferably used as a matrix resin of a fiber-reinforced composite material suitable for sports use, general industrial use, and aerospace use, and a prepreg and a fiber-reinforced composite material using the same as a matrix resin. It is.

繊維強化プラスチックの製造には、強化繊維に熱硬化性樹脂を含浸したシート状の中間基材(プリプレグ)が汎用される。プリプレグを積層、加熱して熱硬化性樹脂を硬化する方法で成形体が得られ、航空機やスポーツなど、様々な分野へ適用されている。プリプレグのマトリックス樹脂として用いられる熱硬化性樹脂としては、耐熱性、接着性、機械強度に優れることから、エポキシ樹脂が汎用される。近年、構造部材への繊維強化複合材料の適用が拡大するにつれて、部材のさらなる軽量化の要求が高まり、プリプレグに用いられるエポキシ樹脂の高性能化が望まれている。具体的には、繊維強化複合材料の破壊強度を高めることで、軽量かつ高性能な部材の設計が可能となる。また、繊維強化複合材料を複雑な構造部材に適用にするにあたり、プリプレグ層間の剥離を抑制する必要がある。   In the production of fiber reinforced plastics, a sheet-like intermediate base material (prepreg) in which a reinforced fiber is impregnated with a thermosetting resin is widely used. A molded article is obtained by a method of laminating and heating a prepreg to cure a thermosetting resin, and is applied to various fields such as aircraft and sports. As a thermosetting resin used as a matrix resin of a prepreg, an epoxy resin is widely used because of its excellent heat resistance, adhesiveness, and mechanical strength. In recent years, as the application of fiber-reinforced composite materials to structural members has expanded, the need for further weight reduction of members has increased, and there has been a demand for higher performance epoxy resins used in prepregs. Specifically, by increasing the breaking strength of the fiber-reinforced composite material, a lightweight and high-performance member can be designed. Further, in applying the fiber reinforced composite material to a complicated structural member, it is necessary to suppress peeling between prepreg layers.

一般に、繊維強化複合材料の破壊強度を高めるためには、エポキシ樹脂硬化物の弾性率と変形能力を両立する手法が知られているが、一般に弾性率を高めると変形能力が不足する。加えて、プリプレグの積層形態が複雑化するにつれ、繊維強化複合材料の層間剥離がしばしば問題となる。そこで、弾性率と変形能力を両立し、かつ、層間の破壊靱性を高める技術が要求されている。   In general, in order to increase the breaking strength of a fiber-reinforced composite material, a technique for achieving both the elastic modulus and the deformability of a cured epoxy resin is known. However, when the elastic modulus is increased, the deformability is generally insufficient. In addition, delamination of the fiber-reinforced composite material often poses a problem as the prepreg lamination form becomes more complicated. Therefore, there is a demand for a technique that achieves both an elastic modulus and a deformability and enhances the fracture toughness between layers.

特許文献1には、多官能ビスフェノール型エポキシ樹脂とアミン型エポキシ樹脂を併用することにより、エポキシ樹脂硬化物の曲げ弾性率と破壊強度を両立する技術が開示されている。   Patent Literature 1 discloses a technique in which a polyfunctional bisphenol-type epoxy resin and an amine-type epoxy resin are used in combination to achieve both flexural modulus and fracture strength of a cured epoxy resin.

特許文献2には、3官能型以上のアミン型エポキシ樹脂と、高分子量のビスフェノールF型エポキシ樹脂を用いることにより、エポキシ樹脂硬化物の弾性率と耐衝撃性を高める技術が開示されている。   Patent Literature 2 discloses a technique for improving the elastic modulus and impact resistance of a cured epoxy resin by using a trifunctional or higher amine type epoxy resin and a high molecular weight bisphenol F type epoxy resin.

特許文献3には、分子内にオキサゾリドン環型構造を有するエポキシ樹脂とトリブロック共重合体を併用することで、繊維強化複合材料の耐熱性と破壊靱性を高める技術が開示されている。   Patent Document 3 discloses a technique for improving the heat resistance and fracture toughness of a fiber-reinforced composite material by using an epoxy resin having an oxazolidone ring structure in a molecule and a triblock copolymer in combination.

特開2017−226745号公報JP 2017-226745 A 特開2012−197413号公報JP 2012-197413 A 国際公開第2014/030638号International Publication No. WO2014 / 030638

特許文献1に記載のエポキシ樹脂組成物は、樹脂硬化物の曲げ弾性率が不足しており、繊維強化複合材料の0°方向の曲げ強度が十分とはいえなかった。また、破壊靱性に関する言及がない。   The epoxy resin composition described in Patent Literature 1 has insufficient flexural modulus of the cured resin, and the fiber reinforced composite material has insufficient flexural strength in the 0 ° direction. There is no mention of fracture toughness.

特許文献2に記載のエポキシ樹脂組成物は、樹脂硬化物が比較的高い曲げ弾性率を示すものの、変形量が不足するため、繊維強化複合材料の90°方向の曲げ強度が不十分なものであった。   The epoxy resin composition described in Patent Literature 2 has a relatively high flexural modulus of a cured resin, but lacks an amount of deformation, so that the fiber-reinforced composite material has insufficient bending strength in a 90 ° direction. there were.

特許文献3に開示されているエポキシ樹脂組成物は、樹脂硬化物の変形量は高いが、曲げ弾性率が不足しているため、繊維強化複合材料の0°方向の曲げ強度が低いものであった。   The epoxy resin composition disclosed in Patent Document 3 has a high degree of deformation of the cured resin, but has a low flexural modulus, and therefore has a low bending strength in the 0 ° direction of the fiber-reinforced composite material. Was.

本発明は、かかる従来技術の欠点を改良し、曲げ弾性率と曲げひずみを高いレベルで両立できるエポキシ樹脂組成物、および、該エポキシ樹脂組成物からなるプリプレグ、ならびに該プリプレグを硬化させてなる、とくに0°および90°曲げ強度と層間靱性に優れる繊維強化複合材料を提供することを目的とする。   The present invention improves the drawbacks of the prior art, an epoxy resin composition capable of achieving a high level of flexural modulus and bending strain, and a prepreg made of the epoxy resin composition, and the prepreg cured. In particular, an object of the present invention is to provide a fiber-reinforced composite material having excellent 0 ° and 90 ° bending strength and interlayer toughness.

本発明者らは、前記課題を解決すべく鋭意検討した結果、下記構成からなるエポキシ樹脂組成物を見出し、本発明を完成させるに至った。すなわち、本発明のエポキシ樹脂組成物は、以下の構成からなる。   The present inventors have conducted intensive studies to solve the above problems, and as a result, have found an epoxy resin composition having the following constitution, and have completed the present invention. That is, the epoxy resin composition of the present invention has the following constitution.

次の成分[A]、[B]、[C]を含み、下記条件[a]および[b]を満たすエポキシ樹脂組成物。
[A]:3官能のアミン型エポキシ樹脂
[B]:25℃において固形のビスフェノールF型エポキシ樹脂
[C]:芳香族アミン化合物
[a]:成分[B]の平均エポキシ当量が600〜1000g/eq
[b]:エポキシ樹脂組成物を180℃で120分反応させて得られる樹脂硬化物の、動的粘弾性測定より得られるゴム状態の貯蔵弾性率Y(MPa)と、全エポキシ樹脂100質量部の活性基モル数(Ma)が、下式(1)を満たす
1100≦Y/Ma≦2000 ・・・(1)。
An epoxy resin composition containing the following components [A], [B], and [C], and satisfies the following conditions [a] and [b].
[A]: trifunctional amine type epoxy resin [B]: bisphenol F type epoxy resin solid at 25 ° C. [C]: aromatic amine compound [a]: average epoxy equivalent of component [B] is 600 to 1000 g / eq
[B]: Storage elastic modulus Y (MPa) of a cured resin obtained by reacting the epoxy resin composition at 180 ° C. for 120 minutes in a rubber state obtained by dynamic viscoelasticity measurement, and 100 parts by mass of all epoxy resins 1100 ≦ Y / Ma ≦ 2000 (1) in which the number of moles of the active group (Ma) satisfies the following formula (1).

また、本発明のプリプレグは、前記エポキシ樹脂組成物と強化繊維からなるプリプレグである。   The prepreg of the present invention is a prepreg comprising the epoxy resin composition and reinforcing fibers.

また、本発明の繊維強化複合材料は、前記プリプレグを硬化させてなる繊維強化複合材料である。   Further, the fiber reinforced composite material of the present invention is a fiber reinforced composite material obtained by curing the prepreg.

本発明によれば、曲げ弾性率と曲げひずみを高いレベルで両立する樹脂硬化物を与え、本発明のエポキシ樹脂組成物をマトリックス樹脂とした繊維強化複合材料は、優れた0°方向と90°方向の曲げ強度を両立し、層間靱性にも優れる。   According to the present invention, a resin cured product that achieves a high level of bending elastic modulus and bending strain is provided, and a fiber-reinforced composite material using the epoxy resin composition of the present invention as a matrix resin has excellent 0 ° direction and 90 °. Direction bending strength and excellent interlayer toughness.

本発明のエポキシ樹脂組成物は、[A]3官能のアミン型エポキシ樹脂、[B]25℃において固形のビスフェノールF型エポキシ樹脂、[C]芳香族アミン化合物を必須成分として含む。まず、これらの構成要素について説明する。   The epoxy resin composition of the present invention contains, as essential components, [A] a trifunctional amine type epoxy resin, [B] a bisphenol F type epoxy resin solid at 25 ° C., and [C] an aromatic amine compound. First, these components will be described.

(成分[A])
本発明における成分[A]は3官能のアミン型エポキシ樹脂である。
(Component [A])
The component [A] in the present invention is a trifunctional amine type epoxy resin.

かかる成分[A]としては、トリグリシジルアミノフェノール型エポキシ樹脂、トリグリシジルアミノクレゾール型エポキシ樹脂などが挙げられる。   Examples of the component [A] include a triglycidylaminophenol type epoxy resin and a triglycidylaminocresol type epoxy resin.

前記トリグリシジルアミノフェノール型エポキシ樹脂としては、“スミエポキシ(登録商標)”ELM100、ELM120(住友化学工業(株)製)、“アラルダイト(登録商標)”MY0500、MY0510、MY0600(以上、ハンツマン・アドバンスト・マテリアルズ社製)などが挙げられる。   Examples of the triglycidyl aminophenol type epoxy resin include "Sumiepoxy (registered trademark)" ELM100 and ELM120 (manufactured by Sumitomo Chemical Co., Ltd.), "Araldite (registered trademark)" MY0500, MY0510, and MY0600 (Huntsman Advanced. Materials Co., Ltd.).

成分[A]としては、アミノフェノール型エポキシ樹脂を使用することが好ましい。アミノフェノール型エポキシ樹脂を使用した場合、樹脂硬化物の曲げ弾性率が高くなり、高い0°曲げ強度を有する繊維強化複合材料が得られる。   It is preferable to use an aminophenol-type epoxy resin as the component [A]. When an aminophenol-type epoxy resin is used, the flexural modulus of the cured resin becomes high, and a fiber-reinforced composite material having high 0 ° bending strength can be obtained.

さらに、エポキシ樹脂硬化物の曲げ弾性率を高めるためには、成分[A]を、全エポキシ100質量部のうち50〜80質量部含むことが好ましく、さらに好ましくは、55〜65質量部の範囲である。上記範囲を満たすことで、曲げ弾性率とひずみ量のバランスが良いエポキシ樹脂硬化物を得られる。   Further, in order to increase the flexural modulus of the cured epoxy resin, the component [A] preferably contains 50 to 80 parts by mass, more preferably 55 to 65 parts by mass, of 100 parts by mass of the total epoxy. It is. By satisfying the above range, a cured epoxy resin having a good balance between the flexural modulus and the strain can be obtained.

(成分[B])
本発明における成分[B]は、25℃において固形のビスフェノールF型エポキシ樹脂である。
(Component [B])
The component [B] in the present invention is a bisphenol F type epoxy resin which is solid at 25 ° C.

前記ビスフェノールF型エポキシ樹脂としては、“jER(登録商標)”4004P、4005P、4010P(以上、三菱ケミカル(株)製)、“エポトート(登録商標)”YDF−2004、YDF−2001、YDF−2005RD(以上、東都化成(株)製)などが挙げられる。   Examples of the bisphenol F epoxy resin include “jER (registered trademark)” 4004P, 4005P, and 4010P (all manufactured by Mitsubishi Chemical Corporation) and “Epototo (registered trademark)” YDF-2004, YDF-2001, and YDF-2005RD. (Above, manufactured by Toto Kasei Co., Ltd.).

ここで、成分[B]の平均エポキシ当量(以下、EEW)は600〜1000g/eqの範囲である(条件[a])。成分[B]のEEWが600g/eqよりも小さい場合、曲げ弾性率が不足する。成分[B]のEEWが1000g/eqよりも大きい場合、曲げ弾性率とひずみ量が低下する。   Here, the average epoxy equivalent (hereinafter, EEW) of the component [B] is in the range of 600 to 1000 g / eq (condition [a]). When the EEW of the component [B] is smaller than 600 g / eq, the flexural modulus is insufficient. When the EEW of the component [B] is more than 1000 g / eq, the flexural modulus and the amount of strain decrease.

成分[B]の平均エポキシ当量は、例えば、JIS K7236(2001)に従って電位差滴定を実施することにより、評価することができる。ここで、ビスフェノールF型エポキシ樹脂は、全エポキシ100質量部のうち20〜40質量部含むことが好ましい。上記範囲を満たすことで、樹脂硬化物の曲げ弾性率を損なう事なく、ひずみ量を高めることができる。   The average epoxy equivalent of the component [B] can be evaluated, for example, by performing a potentiometric titration according to JIS K7236 (2001). Here, the bisphenol F type epoxy resin preferably contains 20 to 40 parts by mass of 100 parts by mass of the total epoxy. By satisfying the above range, the amount of strain can be increased without impairing the flexural modulus of the cured resin.

ここで、本発明の樹脂硬化物の曲げ弾性率、ひずみ量、および強度は、例えば、JIS K7171(1994)に従って3点曲げ試験を実施することにより、評価することができる。ここで、本発明における曲げひずみ量は、3点曲げ試験において最大の荷重を示した際の変位量から計算することができる。   Here, the flexural modulus, strain amount, and strength of the cured resin product of the present invention can be evaluated, for example, by performing a three-point bending test according to JIS K7171 (1994). Here, the bending strain amount in the present invention can be calculated from the displacement amount when the maximum load is shown in the three-point bending test.

本発明のエポキシ樹脂組成物は、180℃で120分硬化させて得られる樹脂硬化物について、動的粘弾性測定より得たゴム状態の貯蔵弾性率Y(MPa)と、全エポキシ樹脂100質量部中の活性エポキシ基モル数(Ma)が、下式を満たす(条件[b])。
1100≦Y/Ma≦2000 ・・・(1)
Y/Maの値が1100よりも小さい場合、エポキシ樹脂硬化物の曲げ強度が不足するため、繊維強化複合材料の90°曲げ強度および層間靱性が不十分なものとなる。Y/Maが2000を超える場合、樹脂硬化物の曲げ強度に加えて弾性率も不足するため、繊維強化複合材料の曲げ強度が不十分なものとなる。
The epoxy resin composition of the present invention is obtained by curing a resin obtained by curing at 180 ° C. for 120 minutes, a storage elastic modulus Y (MPa) in a rubber state obtained by dynamic viscoelasticity measurement, and 100 parts by mass of all epoxy resins. The number of active epoxy group moles (Ma) in the above satisfies the following formula (condition [b]).
1100 ≦ Y / Ma ≦ 2000 (1)
When the value of Y / Ma is smaller than 1100, the flexural strength of the cured epoxy resin is insufficient, so that the 90 ° flexural strength and interlayer toughness of the fiber-reinforced composite material are insufficient. When Y / Ma exceeds 2000, the flexural strength of the fiber-reinforced composite material becomes insufficient because the elastic modulus is insufficient in addition to the flexural strength of the cured resin.

本発明のエポキシ樹脂組成物は、ゴム状態の貯蔵弾性率と全エポキシ樹脂100質量部中の活性エポキシ基モル数が、上記範囲を満たすことで、より高いレベルで曲げ弾性率と曲げ強度を両立することができる。その理由は定かではないが、Y/Maが特定の範囲にあることで、硬化反応にともなうエポキシ基の消費が効率的に進行するためと推測している。該エポキシ樹脂組成物を硬化して得られる樹脂硬化物は、未反応のエポキシ樹脂の残存量が少なく、均質な架橋状態を示す、すなわち、変形時に発生する応力を分散できるためと考えている。   The epoxy resin composition of the present invention, the storage elastic modulus in the rubber state and the number of moles of active epoxy groups in 100 parts by mass of the total epoxy resin satisfy the above range, thereby achieving both higher flexural modulus and flexural strength at a higher level. can do. Although the reason is not clear, it is speculated that when the Y / Ma is in a specific range, the consumption of the epoxy group accompanying the curing reaction proceeds efficiently. It is considered that the cured resin obtained by curing the epoxy resin composition has a small amount of unreacted epoxy resin remaining and shows a homogeneous crosslinked state, that is, it can disperse the stress generated at the time of deformation.

ここで、本発明の樹脂硬化物のゴム状態の貯蔵弾性率は、DMA測定(動的粘弾性測定)の昇温測定を実施して得られる、貯蔵弾性率と温度の散布図から算出することができる。ゴム状態の貯蔵弾性率は、ガラス転移温度を50℃上回る温度における貯蔵弾性率である。この際、ガラス転移温度は、上記散布図において、ガラス領域に引いた接線と、ガラス転移領域に引いた接線との交点における温度である。   Here, the storage elastic modulus in the rubber state of the resin cured product of the present invention is calculated from a scatter diagram of the storage elastic modulus and the temperature obtained by performing a temperature rise measurement in a DMA measurement (dynamic viscoelasticity measurement). Can be. The storage modulus in the rubber state is the storage modulus at a temperature 50 ° C. above the glass transition temperature. At this time, the glass transition temperature is the temperature at the intersection of the tangent drawn in the glass region and the tangent drawn in the glass transition region in the scatter diagram.

なお、全エポキシ樹脂100質量部中の活性エポキシ基モル数(Ma)とは、各エポキシ樹脂活性基のモル数の和のことであり、下式で表される。
Ma=(エポキシ樹脂Aの質量/エポキシ樹脂Aのエポキシ当量)+(エポキシ樹脂Bの質量/エポキシ樹脂Bのエポキシ当量)+・・・・+(エポキシ樹脂Wの質量/エポキシ樹脂Wのエポキシ当量)。
The number of moles of active epoxy groups (Ma) in 100 parts by mass of all epoxy resins is the sum of the number of moles of each epoxy resin active group, and is represented by the following formula.
Ma = (mass of epoxy resin A / epoxy equivalent of epoxy resin A) + (mass of epoxy resin B / epoxy equivalent of epoxy resin B) + .... + (mass of epoxy resin W / epoxy equivalent of epoxy resin W) ).

(成分[C])
本発明における成分[C]は芳香族アミン化合物である。
(Component [C])
Component [C] in the present invention is an aromatic amine compound.

かかる成分[C]としては、アニリン、ジエチルトルエンジアミン、4,4’−メチレン−ビス(2−イソプロピル−6−メチルアニリン)、ジアミノジフェニルスルホンなどが挙げられる。   Examples of the component [C] include aniline, diethyltoluenediamine, 4,4'-methylene-bis (2-isopropyl-6-methylaniline), diaminodiphenylsulfone, and the like.

本発明における、成分[C]の活性水素モル数(Mc)と全エポキシ樹脂100質量部中の活性エポキシ基モル数(Ma)の関係は、下式(2)に示す範囲となることが好ましい。
0.95≦Ma/Mc≦1.05 ・・・(2)
かかる範囲とすることで、エポキシ樹脂と硬化剤の反応が、より効率的に起きるため、樹脂硬化物の曲げ強度が高いものとなり、高い90°曲げ強度、および、層間靱性を有する繊維強化複合材料が得られる。
In the present invention, the relationship between the number of moles of active hydrogen (Mc) of the component [C] and the number of moles of active epoxy groups (Ma) in 100 parts by mass of the total epoxy resin is preferably in the range represented by the following formula (2). .
0.95 ≦ Ma / Mc ≦ 1.05 (2)
By setting the content in such a range, the reaction between the epoxy resin and the curing agent occurs more efficiently, so that the flexural strength of the cured resin becomes high, and the fiber reinforced composite material has high 90 ° flexural strength and interlayer toughness. Is obtained.

また、成分[C]の活性水素モル数(Mc)は、芳香族アミン化合物の質量を芳香族アミン化合物の活性水素当量で除することにより求められ、下式で表される。
Mc=芳香族アミン化合物の質量/芳香族アミン化合物の活性水素当量。
The number of moles of active hydrogen (Mc) of the component [C] is obtained by dividing the mass of the aromatic amine compound by the active hydrogen equivalent of the aromatic amine compound, and is represented by the following formula.
Mc = mass of aromatic amine compound / active hydrogen equivalent of aromatic amine compound.

前記ジエチルトルエンジアミンとしては、“jERキュア(登録商標)”W(三菱ケミカル社製)などを使用することができる。4,4’−メチレン−ビス(2−イソプロピル−6−メチルアニリン)としては、“Lonzacure(登録商標)”M−MIPA(Lonza社製)などを使用することができる。ジアミノジフェニルスルホンとしては、“セイカキュア(登録商標)”−S(セイカ(株)製)、3,3’−DAS(三井化学ファイン(株)製)などが挙げられる。   As the diethyltoluenediamine, “jER Cure (registered trademark)” W (manufactured by Mitsubishi Chemical Corporation) or the like can be used. As the 4,4′-methylene-bis (2-isopropyl-6-methylaniline), “Lonzacure (registered trademark)” M-MIPA (manufactured by Lonza) or the like can be used. Examples of diaminodiphenyl sulfone include "Seika Cure (registered trademark)"-S (manufactured by Seika Co., Ltd.) and 3,3'-DAS (manufactured by Mitsui Chemicals Fine Co., Ltd.).

成分[C]としては、ジアミノジフェニルスルホンを使用することが好ましく、さらに好ましくは、3,3’−ジアミノジフェニルスルホンである。ジアミノジフェニルスルホンを用いた場合、樹脂硬化物の曲げ弾性率が高くなり、さらに高い0°曲げ強度を有する繊維強化複合材料が得られる。   As the component [C], diaminodiphenylsulfone is preferably used, and more preferably 3,3'-diaminodiphenylsulfone. When diaminodiphenyl sulfone is used, the flexural modulus of the cured resin becomes high, and a fiber-reinforced composite material having a higher 0 ° flexural strength can be obtained.

本発明のエポキシ樹脂組成物は、該エポキシ樹脂組成物を180℃で120分硬化させてなる樹脂硬化物の曲げ弾性率が4.6GPa以上、かつ、曲げひずみ量が6%以上であることが好ましい。樹脂硬化物の曲げ弾性率と曲げひずみ量が、かかる範囲となることで、曲げ強度が優れたものとなるため、該エポキシ樹脂組成物からなる繊維強化複合材料は、高い曲げ強度と層間靱性を併せ持つ。   In the epoxy resin composition of the present invention, the cured resin obtained by curing the epoxy resin composition at 180 ° C. for 120 minutes has a flexural modulus of 4.6 GPa or more and a bending strain of 6% or more. preferable. Since the flexural modulus and the amount of flexural strain of the cured resin are within such ranges, the flexural strength becomes excellent.Therefore, the fiber reinforced composite material comprising the epoxy resin composition has high flexural strength and interlayer toughness. Have both.

本発明に用いられるエポキシ樹脂組成物は、本発明の効果を失わない範囲において、成分[D]として、成分[A]、[B]とは異なるエポキシ樹脂を用いても良い。   In the epoxy resin composition used in the present invention, an epoxy resin different from the components [A] and [B] may be used as the component [D] as long as the effects of the present invention are not lost.

かかるエポキシ樹脂としては、例えば、アニリン型エポキシ樹脂、イソシアヌル酸型エポキシ樹脂、ジアミノジフェニルメタン型エポキシ樹脂、ジアミノジフェニルスルホン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、25℃において液状のビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂などが挙げられる。これらを単独で用いても、複数種を組み合わせてもよい。   Examples of such epoxy resin include aniline type epoxy resin, isocyanuric acid type epoxy resin, diaminodiphenylmethane type epoxy resin, diaminodiphenyl sulfone type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin which is liquid at 25 ° C., phenol Novolak type epoxy resin, dicyclopentadiene type epoxy resin and the like can be mentioned. These may be used alone or in combination of two or more.

前記アニリン型エポキシ樹脂の市販品としては、GAN(N,N−ジグリシジルアニリン)、GOT(N,N−ジグリシジル−o−トルイジン)(以上、日本化薬(株)製)などが挙げられる。   Commercially available aniline-type epoxy resins include GAN (N, N-diglycidylaniline) and GOT (N, N-diglycidyl-o-toluidine) (all manufactured by Nippon Kayaku Co., Ltd.).

前記イソシアヌル酸型エポキシ樹脂の市販品としては、“TEPIC(登録商標)”−S(日産化学工業(株)製)、G(日産化学工業(株)製)、アラルダイト(登録商標)”PT9810(ハンツマン・アドバンスト・マテリアルズ社製)などが挙げられる。   Commercial products of the isocyanuric acid type epoxy resin include "TEPIC (registered trademark)"-S (manufactured by Nissan Chemical Industries, Ltd.), G (manufactured by Nissan Chemical Industries, Ltd.), and Araldite (registered trademark) "PT9810 ( Huntsman Advanced Materials Co., Ltd.).

前記ジアミノジフェニルメタン型エポキシ樹脂の市販品としては、“スミエポキシ(登録商標)”ELM434(住友化学工業(株)製)、YH434L(新日鉄住金化学(株)製)、“jER(登録商標)”604(三菱ケミカル(株)製)、“アラルダイト(登録商標)”MY720、MY721(以上、ハンツマン・アドバンスト・マテリアルズ社製)などが挙げられる。   Commercial products of the diaminodiphenylmethane type epoxy resin include “Sumiepoxy (registered trademark)” ELM434 (manufactured by Sumitomo Chemical Co., Ltd.), YH434L (manufactured by Nippon Steel & Sumitomo Chemical Co., Ltd.), and “jER (registered trademark)” 604 ( Mitsubishi Chemical Corporation), "Araldite (registered trademark)" MY720, MY721 (all manufactured by Huntsman Advanced Materials Co., Ltd.) and the like.

前記ジアミノジフェニルスルホン型エポキシの市販品としては、TG3DAS(小西化学工業(株)製)などが挙げられる。   Commercial products of the diaminodiphenyl sulfone type epoxy include TG3DAS (manufactured by Konishi Chemical Industry Co., Ltd.).

前記ビスフェノールA型エポキシ樹脂の市販品としては、“jER(登録商標)”828、1001、1007(以上、三菱ケミカル(株)製)などが挙げられる。   Commercially available bisphenol A type epoxy resins include "jER (registered trademark)" 828, 1001, 1007 (all manufactured by Mitsubishi Chemical Corporation) and the like.

前記25℃において液状のビスフェノールF型エポキシ樹脂の市販品としては、“EPICLON(登録商標)”830、807(以上、大日本インキ化学工業(株)製)などが挙げられる。   Commercial products of the bisphenol F type epoxy resin liquid at 25 ° C. include “EPICLON (registered trademark)” 830 and 807 (all manufactured by Dainippon Ink and Chemicals, Inc.).

前記フェノールノボラック型エポキシ樹脂の市販品としては、jER(登録商標)”152、154、180S(以上、三菱ケミカル(株)製)などが挙げられる。   Commercial products of the phenol novolak type epoxy resin include jER (registered trademark) "152, 154, 180S (all manufactured by Mitsubishi Chemical Corporation) and the like.

前記ジシクロペンタジエン型エポキシ樹脂の市販品としては、HP7200L,HP7200,HP7200H,HP7200HH,HP7200HHH(以上、DIC(株)製)などが挙げられる。   Commercial products of the dicyclopentadiene type epoxy resin include HP7200L, HP7200, HP7200H, HP7200HH, and HP7200HHH (all manufactured by DIC Corporation).

本発明のエポキシ樹脂組成物は、粘弾性を調整し、プリプレグのタッグやドレープ特性を改良する目的や、樹脂組成物の機械特性や靭性を高めるなどの目的で、成分[E]として熱可塑性樹脂を用いることができる。かかる熱可塑性樹脂としては、ポリビニルホルマールやポリビニルブチラールなどのポリビニルアセタール樹脂、ポリビニルアルコール、フェノキシ樹脂、ポリアミド、ポリイミド、ポリビニルピロリドン、ポリスルホンなどが挙げられる。   The epoxy resin composition of the present invention is a thermoplastic resin as a component [E] for the purpose of adjusting viscoelasticity, improving tag and drape properties of a prepreg, and enhancing mechanical properties and toughness of the resin composition. Can be used. Examples of such a thermoplastic resin include polyvinyl acetal resin such as polyvinyl formal and polyvinyl butyral, polyvinyl alcohol, phenoxy resin, polyamide, polyimide, polyvinyl pyrrolidone, and polysulfone.

次に、本発明の繊維強化複合材料について説明する。具体的には、本発明のエポキシ樹脂組成物からなるプリプレグを積層した後、加熱し硬化させることにより、本発明のエポキシ樹脂組成物の樹脂硬化物をマトリックス樹脂として含む繊維強化複合材料を得ることができる。以下に、具体的に説明する。   Next, the fiber reinforced composite material of the present invention will be described. Specifically, after laminating a prepreg made of the epoxy resin composition of the present invention, by heating and curing, to obtain a fiber-reinforced composite material containing a resin cured product of the epoxy resin composition of the present invention as a matrix resin. Can be. The details will be described below.

本発明のエポキシ樹脂組成物の調製には、例えばニーダー、プラネタリーミキサー、3本ロールおよび2軸押出機といった機械を用いて混練しても良いし、均一な混練が可能であれば、ビーカーとスパチュラなどを用い、手で混ぜても良い。   For the preparation of the epoxy resin composition of the present invention, kneading may be performed using a machine such as a kneader, a planetary mixer, a three-roll extruder, and a twin-screw extruder. It may be mixed by hand using a spatula or the like.

本発明のプリプレグは、前記の方法にて調製したエポキシ樹脂組成物を、強化繊維基材に含浸させて得ることができる。含浸させる方法としては、ホットメルト法(ドライ法)などを挙げることができる。ホットメルト法は、加熱により低粘度化した熱硬化性樹脂組成物を直接強化繊維に含浸させる方法、または離型紙などの上にエポキシ樹脂組成物をコーティングしたフィルムを作製しておき、次いで強化繊維の両側または片側からこのフィルムを重ね、加圧加熱することにより強化繊維に樹脂を含浸させる方法である。この際、離型紙に塗布する樹脂の量を変えることで、プリプレグの繊維質量含有率を調整することができる。   The prepreg of the present invention can be obtained by impregnating a reinforcing fiber base with the epoxy resin composition prepared by the above method. Examples of the method of impregnation include a hot melt method (dry method) and the like. The hot melt method is a method of directly impregnating a reinforcing fiber with a thermosetting resin composition whose viscosity has been reduced by heating, or preparing a film in which an epoxy resin composition is coated on release paper or the like, and then reinforcing fibers. This method is a method of impregnating the reinforcing fibers with a resin by laminating this film from both sides or one side of the film and heating under pressure. At this time, the fiber mass content of the prepreg can be adjusted by changing the amount of the resin applied to the release paper.

本発明に用いられる強化繊維は特に限定されるものではなく、ガラス繊維、炭素繊維、アラミド繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維などが使用できる。これらの繊維を2種以上混合して用いても構わない。軽量かつ高剛性な繊維強化複合材料が得られる観点から、炭素繊維を用いることが好ましい。   The reinforcing fibers used in the present invention are not particularly limited, and glass fibers, carbon fibers, aramid fibers, boron fibers, alumina fibers, silicon carbide fibers and the like can be used. These fibers may be used as a mixture of two or more kinds. From the viewpoint of obtaining a lightweight and highly rigid fiber reinforced composite material, it is preferable to use carbon fibers.

プリプレグ積層成形法において、熱および圧力を付与する方法としては、プレス成形法、オートクレーブ成形法、バッギング成形法、ラッピングテープ法、内圧成形法などを適宜使用することができる。   In the prepreg lamination molding method, as a method for applying heat and pressure, a press molding method, an autoclave molding method, a bagging molding method, a wrapping tape method, an internal pressure molding method, or the like can be appropriately used.

本発明のエポキシ樹脂組成物の樹脂硬化物と、強化繊維を含む繊維強化複合材料は、スポーツ用途、航空宇宙用途および一般産業用途に好ましく用いられる。より具体的には、スポーツ用途では、ゴルフシャフト、釣り竿、テニスやバドミントンのラケットなどに好ましく用いられる。また、航空宇宙用途では、主翼、尾翼およびフロアビーム等の航空機一次構造材用途、および内装材等の二次構造材用途に好ましく用いられる。さらに一般産業用途では、自動車、自転車、船舶および鉄道車両などの構造材に好ましく用いられる。なかでも、高い0°および90°方向の曲げ強度を有し、かつ、層間靱性に優れる繊維強化複合材料が得られるという特徴を活かし、複雑な構造を有する構造体に、好適に用いられる。   The cured resin of the epoxy resin composition of the present invention and a fiber-reinforced composite material containing reinforcing fibers are preferably used for sports applications, aerospace applications, and general industrial applications. More specifically, in sports applications, it is preferably used for golf shafts, fishing rods, rackets for tennis and badminton, and the like. In aerospace applications, it is preferably used for primary structural materials such as main wings, tail fins and floor beams, and secondary structural materials such as interior materials. Further, in general industrial applications, it is preferably used for structural materials such as automobiles, bicycles, ships, and railway vehicles. Among them, it is suitably used for a structure having a complicated structure by utilizing a feature that a fiber-reinforced composite material having high bending strength in 0 ° and 90 ° directions and excellent in interlayer toughness is obtained.

以下に実施例を示し、本発明をさらに具体的に説明するが、本発明はこれら実施例の記載に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

本実施例で用いる構成要素は以下の通りである。   The components used in this embodiment are as follows.

<使用した材料>
・成分[A]:3官能のアミン型エポキシ樹脂
[A]−1 “アラルダイト(登録商標)”MY0500(アミノフェノール型エポキシ樹脂、ハンツマン・アドバンスト・マテリアルズ社製)、
[A]−2 “アラルダイト(登録商標)”MY0600(アミノフェノール型エポキシ樹脂、ハンツマン・アドバンスト・マテリアルズ社製)。
<Material used>
-Component [A]: trifunctional amine type epoxy resin [A] -1 "Araldite (registered trademark)" MY0500 (aminophenol type epoxy resin, manufactured by Huntsman Advanced Materials)
[A] -2 "Araldite (registered trademark)" MY0600 (aminophenol type epoxy resin, manufactured by Huntsman Advanced Materials).

・成分[B]:25℃において固形のビスフェノールF型エポキシ樹脂
[B]−1 “エポトート(登録商標)”YDF−2001(東都化成(株)製)、
[B]−2 “jER(登録商標)”4004P(三菱ケミカル(株)製)、
[B]−3 “エポトート(登録商標)”YDF−2004(東都化成(株)製)、
[B]−4 “エポトート(登録商標)”YDF−2005RD(東都化成(株)製)、
[B]−5 “jER(登録商標)”4007P(三菱ケミカル(株)製)、
[B]−6 “jER(登録商標)”4010P(三菱ケミカル(株)製)。
Component [B]: a bisphenol F type epoxy resin [B] -1 “Epototo (registered trademark)” YDF-2001 (manufactured by Toto Kasei Co., Ltd.) which is solid at 25 ° C.
[B] -2 “jER (registered trademark)” 4004P (manufactured by Mitsubishi Chemical Corporation),
[B] -3 “Epototo (registered trademark)” YDF-2004 (manufactured by Toto Kasei Co., Ltd.),
[B] -4 “Epototo (registered trademark)” YDF-2005RD (manufactured by Toto Kasei Co., Ltd.),
[B] -5 “jER (registered trademark)” 4007P (manufactured by Mitsubishi Chemical Corporation),
[B] -6 “jER (registered trademark)” 4010P (manufactured by Mitsubishi Chemical Corporation).

・成分[C]:芳香族アミン化合物
[C]−1 セイカキュア―S(4,4’−ジアミノジフェニルスルホン、セイカ(株)製)、
[C]−2 3,3’DAS(3、3’−ジアミノジフェニルスルホン、三井化学ファイン(株)製)、
[C]−3 “Lonzacure(登録商標)”M−MIPA(4,4’−メチレン−ビス(2−イソプロピル−6−メチルアニリン)、Lonza社製)、
[C]−4 “jERキュア(登録商標)”W(ジエチルトルエンジアミン、三菱ケミカル(株)製)。
-Component [C]: aromatic amine compound [C] -1 Seika Cure-S (4,4'-diaminodiphenyl sulfone, manufactured by Seika Co., Ltd.),
[C] -2 3,3 'DAS (3,3'-diaminodiphenyl sulfone, manufactured by Mitsui Chemicals Fine Co., Ltd.),
[C] -3 "Lonzacure (registered trademark)" M-MIPA (4,4'-methylene-bis (2-isopropyl-6-methylaniline), manufactured by Lonza),
[C] -4 “jER Cure (registered trademark)” W (diethyltoluenediamine, manufactured by Mitsubishi Chemical Corporation).

・成分[D]:その他のエポキシ樹脂
[D]−1 GAN(ジグリシジルアニリン型エポキシ樹脂、日本化薬(株)製)、
[D]−2 “TEPIC(登録商標)”−S(イソシアヌル酸型エポキシ樹脂、日産化学工業(株)製)、
[D]−3 “スミエポキシ(登録商標)”ELM434(ジアミノジフェニルメタン型エポキシ樹脂、住友化学工業(株)製)、
[D]−4 TG3DAS(ジアミノジフェニルスルホン型エポキシ樹脂、小西化学工業(株)製)、
[D]−5 “jER(登録商標)”828(ビスフェノールA型エポキシ樹脂、三菱ケミカル(株)製)、
[D]−6 “jER(登録商標)”1001(ビスフェノールA型エポキシ樹脂、三菱ケミカル(株)製)、
[D]−7 “jER(登録商標)”1004(ビスフェノールA型エポキシ樹脂、三菱ケミカル(株)製)、
[D]−8 “EPICLON(登録商標)”830(ビスフェノールF型エポキシ樹脂、大日本インキ化学工業(株)製)、
[D]−9 “EPICLON(登録商標)”807(ビスフェノールF型エポキシ樹脂、大日本インキ化学工業(株)製)、
[D]−10 NER−7604(多官能ビスフェノールF型エポキシ樹脂、日本化薬(株)製)、
[D]−11 EHPE−3150(固形脂環式エポキシ樹脂、ダイセル(株)製)、
[D]−12 AER−4152(オキサゾリドン環型エポキシ樹脂、旭化成イーマテイリアルズ(株)製)。
-Component [D]: Other epoxy resin [D] -1 GAN (diglycidylaniline type epoxy resin, manufactured by Nippon Kayaku Co., Ltd.),
[D] -2 “TEPIC (registered trademark)”-S (isocyanuric acid type epoxy resin, manufactured by Nissan Chemical Industries, Ltd.),
[D] -3 "Sumiepoxy (registered trademark)" ELM434 (diaminodiphenylmethane type epoxy resin, manufactured by Sumitomo Chemical Co., Ltd.),
[D] -4 TG3DAS (diaminodiphenyl sulfone type epoxy resin, manufactured by Konishi Chemical Industry Co., Ltd.),
[D] -5 “jER (registered trademark)” 828 (bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation),
[D] -6 “jER (registered trademark)” 1001 (bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation),
[D] -7 “jER (registered trademark)” 1004 (bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation),
[D] -8 “EPICLON (registered trademark)” 830 (bisphenol F type epoxy resin, manufactured by Dainippon Ink and Chemicals, Inc.),
[D] -9 "EPICLON (registered trademark)" 807 (bisphenol F type epoxy resin, manufactured by Dainippon Ink and Chemicals, Inc.),
[D] -10 NER-7604 (polyfunctional bisphenol F type epoxy resin, manufactured by Nippon Kayaku Co., Ltd.),
[D] -11 EHPE-3150 (solid alicyclic epoxy resin, manufactured by Daicel Corporation),
[D] -12 AER-4152 (oxazolidone ring type epoxy resin, manufactured by Asahi Kasei Imaterials Co., Ltd.).

・成分[E]:熱可塑性樹脂
[E]−1 “ビニレック(登録商標)”K(ポリビニルホルマール、JNC(株)製)、
[E]−2 “ビニレック(登録商標)”E(ポリビニルホルマール、JNC(株)製)、
[E]−3 “スミカエクセル(登録商標)”PES5003P(ポリエーテルスルホン、住友化学(株)製)、
[E]−4 “Virantage(登録商標)”VW−10700RFP(ポリエーテルスルホン、Solvay社製)。
-Component [E]: thermoplastic resin [E] -1 "Vinilec (registered trademark)" K (polyvinyl formal, manufactured by JNC),
[E] -2 "Vinilec (registered trademark)" E (polyvinyl formal, manufactured by JNC),
[E] -3 “Sumika Excel (registered trademark)” PES5003P (polyether sulfone, manufactured by Sumitomo Chemical Co., Ltd.),
[E] -4 "Virantage (registered trademark)" VW-10700RFP (polyether sulfone, manufactured by Solvay).

・成分[F]:その他の硬化剤
[F]−1 DICY7(ジシアンジアミド、三菱ケミカル(株)製)、
[F]−2 DCMU99(3−(3,4−ジクロロフェニル)−1,1−ジメチルウレア、保土ヶ谷化学工業(株)製)。
Component [F]: Other curing agent [F] -1 DICY7 (dicyandiamide, manufactured by Mitsubishi Chemical Corporation),
[F] -2 DCMU99 (3- (3,4-dichlorophenyl) -1,1-dimethylurea, manufactured by Hodogaya Chemical Industry Co., Ltd.).

<エポキシ樹脂の平均エポキシ当量の測定方法>
ガラスビーカーに、成分[B]を約300mgとなるように秤量、投入し、さらに10mLのクロロホルムを添加した。秤量した成分がクロロホルムに溶解するまで、マグネティックスターラを用いて撹拌した。前記溶液に対し、酢酸を20mL添加し、つづいて臭化テトラエチルアンモニウム酢酸溶液(0.4g/mL酢酸)を10mL添加し、撹拌した。前記溶液に電極を浸漬し、過塩素酸−酢酸標準液(0.1mol/L)にて電位差滴定を実施し、JIS K7236(2001)に従って、成分[B]の平均エポキシ当量を算出した。平均エポキシ当量は、表1〜4に示した通りである。
<Method of measuring average epoxy equivalent of epoxy resin>
The component [B] was weighed and put into a glass beaker so as to be about 300 mg, and 10 mL of chloroform was further added. The mixture was stirred with a magnetic stirrer until the weighed components were dissolved in chloroform. 20 mL of acetic acid was added to the solution, followed by 10 mL of tetraethylammonium bromide acetic acid solution (0.4 g / mL acetic acid), followed by stirring. The electrode was immersed in the solution, and potentiometric titration was performed with a perchloric acid-acetic acid standard solution (0.1 mol / L), and the average epoxy equivalent of the component [B] was calculated according to JIS K7236 (2001). The average epoxy equivalent is as shown in Tables 1-4.

<エポキシ樹脂組成物の調製方法>
ニーダーに、[C]芳香族アミン化合物および[F]その他の硬化剤以外の成分を所定量入れ、60〜150℃まで昇温し、各成分が相溶するまで適宜混練した。すなわち、実施例、比較例中のそれぞれの組成に応じて各成分が相溶可能な温度まで昇温したところ、いずれの組成においても60〜150℃の範囲のいずれかの温度で、各成分を相溶させることができた。60℃まで降温させた後、[C]または[F]を添加し、60℃において30分間混練することにより、エポキシ樹脂組成物を得た。エポキシ樹脂組成は、表1〜4に示した通りである。
<Preparation method of epoxy resin composition>
A predetermined amount of components other than the aromatic amine compound [C] and the curing agent [F] was added to the kneader, the temperature was raised to 60 to 150 ° C., and the mixture was kneaded as appropriate until the components were compatible. That is, when the temperature was raised to a temperature at which the respective components were compatible according to the respective compositions in Examples and Comparative Examples, the respective components were heated at any temperature in the range of 60 to 150 ° C. in any of the compositions. Compatible. After the temperature was lowered to 60 ° C., [C] or [F] was added and kneaded at 60 ° C. for 30 minutes to obtain an epoxy resin composition. The epoxy resin composition is as shown in Tables 1-4.

<エポキシ樹脂硬化物の曲げ特性の評価方法>
未硬化の樹脂組成物を真空中で脱泡した後、2mm厚の“テフロン(登録商標)”製スペーサーにより厚み2mmになるように設定したモールド中で、硬化剤の種類に応じて180℃または130℃の温度で2時間硬化させ、厚さ2mmの板状の樹脂硬化物を得た。この樹脂硬化物から、幅10mm、長さ60mmの試験片を切り出し、インストロン万能試験機(インストロン社製)を用い、スパンを32mm、クロスヘッドスピードを10mm/分とし、JIS K7171(1994)に従って3点曲げを実施し、曲げ弾性率および曲げ強度を測定した。この際、サンプル数n=6で測定した値を曲げ弾性率および曲げ強度の値として採用した。
<Evaluation method of bending properties of cured epoxy resin>
After defoaming the uncured resin composition in a vacuum, in a mold set to have a thickness of 2 mm with a 2 mm thick “Teflon (registered trademark)” spacer, 180 ° C. or The resin was cured at a temperature of 130 ° C. for 2 hours to obtain a plate-shaped cured resin having a thickness of 2 mm. From the cured resin, a test piece having a width of 10 mm and a length of 60 mm was cut out, and using an Instron universal testing machine (manufactured by Instron), the span was 32 mm, the crosshead speed was 10 mm / min, and JIS K7171 (1994). And the flexural modulus and flexural strength were measured. At this time, the values measured with the number of samples n = 6 were adopted as the values of the flexural modulus and the flexural strength.

<エポキシ樹脂硬化物の貯蔵弾性率の評価方法>
未硬化の樹脂組成物を真空中で脱泡した後、2mm厚の“テフロン(登録商標)”製スペーサーにより厚み2mmになるように設定したモールド中で、硬化剤の種類に応じて180℃または130℃の温度で2時間硬化させ、厚さ2mmの板状の樹脂硬化物を得た。この樹脂硬化物から、幅12.7mm、長さ45mmの試験片を切り出し、動的粘弾性測定装置(ARES W/FCO:TAインスツルメント社製)を用い、固体ねじり治具に試験片をセットし、昇温速度5℃/min、周波数1Hz、ひずみ量0.08%にて、40〜260℃の温度範囲について測定を行った。この際、ガラス転移温度は、得られた貯蔵弾性率と温度のグラフにおいて、ガラス状態に引いた接線と、ガラス転移温度領域に引いた接線との交点における温度とした。ゴム状態の貯蔵弾性率は、得られた貯蔵弾性率と温度のグラフにおいて、ガラス転移温度を50℃上回る温度における貯蔵弾性率とした。
<Evaluation method of storage elastic modulus of cured epoxy resin>
After defoaming the uncured resin composition in a vacuum, in a mold set to have a thickness of 2 mm with a 2 mm thick “Teflon (registered trademark)” spacer, 180 ° C. or The resin was cured at a temperature of 130 ° C. for 2 hours to obtain a plate-shaped cured resin having a thickness of 2 mm. From the cured resin, a test piece having a width of 12.7 mm and a length of 45 mm was cut out, and the test piece was placed on a solid torsion jig using a dynamic viscoelasticity measuring device (ARES W / FCO: manufactured by TA Instruments). The temperature was set at a temperature rising rate of 5 ° C./min, a frequency of 1 Hz and a strain of 0.08%, and the temperature was measured in a temperature range of 40 to 260 ° C. At this time, the glass transition temperature was the temperature at the intersection of the tangent drawn in the glass state and the tangent drawn in the glass transition temperature region in the obtained graph of storage modulus and temperature. The storage elastic modulus in the rubber state was defined as the storage elastic modulus at a temperature 50 ° C. higher than the glass transition temperature in the obtained graph of the storage elastic modulus and the temperature.

<プリプレグの作製方法>
前記<エポキシ樹脂組成物の調製方法>に準じて得られたエポキシ樹脂組成物を、ナイフコーターを用いて離型紙上に塗布し、所定の目付の樹脂フィルムを2枚作製した。樹脂フィルムの目付は、39g/mとなるように調整した。次に、シート状に一方向に配列させた炭素繊維トレカ“(登録商標)”T700S−12K−60E(東レ(株)製、目付150g/m)に、得られた樹脂フィルム2枚を炭素繊維の両面から重ね、温度110℃、圧力2MPaの条件で加圧加熱してエポキシ樹脂組成物を含浸させ、一方向プリプレグを得た。得られたプリプレグの繊維質量含有率は、67%であった。
<Preparation method of prepreg>
The epoxy resin composition obtained according to the above <Preparation method of epoxy resin composition> was applied on release paper using a knife coater to prepare two resin films having a predetermined basis weight. The basis weight of the resin film was adjusted to be 39 g / m 2 . Next, two obtained resin films were placed on a carbon fiber trading card “(registered trademark)” T700S-12K-60E (manufactured by Toray Industries, Inc., weight: 150 g / m 2 ) arranged in one direction in a sheet shape. The fibers were overlaid on both sides and heated under pressure at a temperature of 110 ° C. and a pressure of 2 MPa to impregnate the epoxy resin composition to obtain a unidirectional prepreg. The fiber mass content of the obtained prepreg was 67%.

<コンポジットの曲げ特性の測定方法>
(1)CFRPの0°曲げ強度
上記<プリプレグの作製方法>により作製した一方向プリプレグの繊維方向を揃え、13プライ積層し、オートクレーブにて、180℃または130℃の温度で2時間、0.6MPaの圧力下、昇温速度1.7℃/分で成形して、厚み2mmの一方向材のCFRPを作製した。この積層板から、幅15mm、長さ100mmとなるように切り出し、インストロン万能試験機(インストロン社製)を用い、JIS K7017(1988)に従って3点曲げを実施した。クロスヘッド速度5.0mm/分、スパン80mm、厚子径10mm、支点径4mmで測定を行い、曲げ強度を測定した。かかる0°曲げ強度は、6個の試料について測定し、繊維質量含有率を60質量%とした換算値を算出して、その平均を0°曲げ強度として求めた。
<Measurement method of bending properties of composite>
(1) 0 ° bending strength of CFRP The unidirectional prepreg prepared according to the above <Preparation method of prepreg> is aligned in the fiber direction, 13 plies are laminated, and is autoclaved at 180 ° C. or 130 ° C. for 2 hours at 0 ° C. for 2 hours. Under a pressure of 6 MPa, molding was performed at a temperature increasing rate of 1.7 ° C./min to produce a 2-mm-thick unidirectional CFRP. The laminate was cut out to have a width of 15 mm and a length of 100 mm, and was subjected to three-point bending using an Instron universal testing machine (manufactured by Instron) in accordance with JIS K7017 (1988). The measurement was performed at a crosshead speed of 5.0 mm / min, a span of 80 mm, a thickness of 10 mm, and a fulcrum diameter of 4 mm, and the bending strength was measured. The 0 ° bending strength was measured for six samples, calculated as a conversion value when the fiber mass content was 60% by mass, and the average was determined as the 0 ° bending strength.

(2)CFRPの90°曲げ強度
上記(1)と同様の方法で、一方向材のCFRPを作製した。得られた厚み2mmの一方向積層板を、幅15mm、長さ60mmとなるように切り出し、インストロン万能試験機(インストロン社製)を用いJIS K7017(1988)に従って3点曲げを実施した。クロスヘッド速度1.0mm/分、スパン40mm、厚子径10mm、支点径4mmで測定を行い、曲げ強度を測定した。かかる90°曲げ強度は、6個の試料について測定し、繊維質量含有率を60質量%とした換算値を算出して、その平均を90°曲げ強度として求めた。
(2) 90 ° bending strength of CFRP A unidirectional CFRP was produced in the same manner as in the above (1). The obtained unidirectional laminated board having a thickness of 2 mm was cut out to have a width of 15 mm and a length of 60 mm, and was subjected to three-point bending using an Instron universal testing machine (manufactured by Instron) in accordance with JIS K7017 (1988). The measurement was performed at a crosshead speed of 1.0 mm / min, a span of 40 mm, a thickness of 10 mm, and a fulcrum diameter of 4 mm to measure the bending strength. The 90 ° bending strength was measured for six samples, calculated as a conversion value when the fiber mass content was 60% by mass, and the average was determined as the 90 ° bending strength.

<コンポジットの層間靱性値の測定方法>
(1)G1cの評価方法
上記<プリプレグの作製方法>により作製した一方向プリプレグの繊維方向を揃え、13プライ積層し、2対の積層体を作製した。前記積層体の間に“トヨフロン(登録商標)”E(東レ(株)製)を、端部から40mm、繊維方向に沿って挟み、オートクレーブにて、180℃または130℃の温度で2時間、0.6MPaの圧力下、昇温速度1.7℃/分で成形して、厚み3mmの一方向材のCFRPを作製した。この積層板から、幅20mm、長さ200mmとなるように切り出し、フィルムを挿入した端部に、繊維方向と垂直になるようにアルミブロックを接着し、インストロン万能試験機(インストロン社製)を用い、JIS K7086(1993)に従って、双片持ちはり試験を実施した。クロスヘッド速度1.0mm/分で測定を行い、破壊靱性値を測定した。かかる破壊靱性値は、6個の試料について測定し、その平均値をG1cとして求めた。
<Method of measuring interlayer toughness value of composite>
(1) Evaluation method of G 1c The fiber directions of the unidirectional prepreg prepared by the above <Preparation method of prepreg> were aligned, 13 plies were laminated, and two pairs of laminates were prepared. “Toyflon (registered trademark)” E (manufactured by Toray Industries, Inc.) was sandwiched between the laminates along the fiber direction at a distance of 40 mm from the end and in an autoclave at a temperature of 180 ° C. or 130 ° C. for 2 hours. It was molded under a pressure of 0.6 MPa at a heating rate of 1.7 ° C./min to produce a unidirectional CFRP having a thickness of 3 mm. The laminated board was cut out so as to have a width of 20 mm and a length of 200 mm, and an aluminum block was adhered to the end where the film was inserted so as to be perpendicular to the fiber direction, and an Instron universal testing machine (manufactured by Instron) A double cantilever beam test was performed according to JIS K7086 (1993). The measurement was performed at a crosshead speed of 1.0 mm / min, and the fracture toughness value was measured. Such fracture toughness values were measured on six samples, the average value was calculated as G 1c.

(2)G2cの評価方法
上記(1)G1cの評価方法、に記載の方法と同様の方法でCFRPを作製した。この積層板から、幅20mm、長さ400mmとなるように切り出し、インストロン万能試験機(インストロン社製)を用い、JIS K7086(1993)に従って、3点曲げにて端面切欠き曲げ試験を実施した。クロスヘッド速度0.5mm/分、スパン100mm、厚子径10mm、支点径4mmで測定を行い、破壊靱性値を測定した。かかる破壊靱性値は、6個の試料について測定し、その平均をG2cとして求めた。
(2) Evaluation method of G 2c CFRP was produced in the same manner as described in (1) Evaluation method of G 1c above. The laminated board is cut out to have a width of 20 mm and a length of 400 mm, and an end face notch bending test is performed by three-point bending using an Instron universal testing machine (manufactured by Instron) in accordance with JIS K7086 (1993). did. The measurement was performed at a crosshead speed of 0.5 mm / min, a span of 100 mm, a thicker diameter of 10 mm, and a fulcrum diameter of 4 mm, and the fracture toughness value was measured. Such fracture toughness values were measured for 6 samples was determined and the average as the G 2c.

(実施例1)
エポキシ樹脂として“アラルダイト(登録商標)”MY0500を15質量部、“アラルダイト(登録商標)”MY0600を30質量部、“jER(登録商標)”4004Pを18質量部、GANを8質量部、“EPICLON(商標登録)”830を29質量部、芳香族アミン化合物としてセイカキュア−Sを37質量部、熱可塑性樹脂として“ビニレック(登録商標)”Kを7.0質量部用い、上記<エポキシ樹脂組成物の調製方法>に従ってエポキシ樹脂組成物を調製した。
(Example 1)
15 parts by mass of "Araldite (registered trademark)" MY0500, 30 parts by mass of "Araldite (registered trademark)" MY0600, 18 parts by mass of "jER (registered trademark)" 4004P, 8 parts by mass of GAN, and "EPICLON" as epoxy resin. (Registered trademark) "830 parts by mass of 830, 37 parts by mass of Seika Cure-S as an aromatic amine compound, and 7.0 parts by mass of" Vinylec (registered trademark) "K as a thermoplastic resin. Preparation Method of Epoxy Resin>.

<エポキシ樹脂の平均エポキシ当量の測定方法>に従って、成分[B]の平均エポキシ当量を測定したところ、850g/eqであった。   The average epoxy equivalent of the component [B] was measured according to <Method for measuring average epoxy equivalent of epoxy resin>, and was 850 g / eq.

<エポキシ樹脂硬化物のガラス転移温度と貯蔵弾性率の評価方法>に従いゴム状態の貯蔵弾性率を測定したところ、7.2MPaであり、全エポキシ樹脂100質量部中の活性エポキシ基モル数(Ma)とゴム状態の貯蔵弾性率(Y)の比率(Y/Ma)は、1118であった。   When the storage elastic modulus in a rubber state was measured according to <Evaluation method of glass transition temperature and storage elastic modulus of cured epoxy resin>, it was 7.2 MPa, and the number of moles of active epoxy group (Ma) in 100 parts by mass of all epoxy resins was measured. ) And the storage elastic modulus (Y) in the rubber state (Y / Ma) was 1118.

このエポキシ樹脂組成物について、<エポキシ樹脂硬化物の曲げ特性の評価方法>に従い、180℃にて硬化したエポキシ樹脂硬化物の曲げ特性を取得したところ、曲げ弾性率は4.5GPa、曲げひずみ量は5.7%、曲げ強度は194MPaであった。   For this epoxy resin composition, the flexural properties of the cured epoxy resin cured at 180 ° C. were obtained in accordance with <Evaluation method for flexural properties of cured epoxy resin>. The flexural modulus was 4.5 GPa and the amount of flexural strain was obtained. Was 5.7% and the bending strength was 194 MPa.

得られたエポキシ樹脂組成物から、<プリプレグの作製方法>に従って、繊維質量含有率67質量%のプリプレグを作製し、得られたプリプレグを13プライ積層し、180℃で硬化せしめて、一方向の繊維強化複合材料(CFRP)を作製した。   From the obtained epoxy resin composition, a prepreg having a fiber mass content of 67% by mass was prepared according to the <prepreg preparation method>, 13 ply of the obtained prepreg was laminated, cured at 180 ° C, and cured in one direction. A fiber reinforced composite material (CFRP) was produced.

CFRPの機械特性を測定した結果、0°曲げ強度は1810MPa、90°曲げ強度は132MPaと、良好であった。   As a result of measuring the mechanical properties of CFRP, the 0 ° bending strength was 1810 MPa, and the 90 ° bending strength was 132 MPa, which was good.

また、CFRPの層間靱性を評価した結果、G1cは513J/m、G2cは602J/mと、良好な値を示した。 The results of evaluation of the interlayer toughness of CFRP, G 1c is 513J / m 2, G 2c and 602J / m 2, showed a good value.

(実施例2〜16)
樹脂組成をそれぞれ表1および2に示したように変更した以外は、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、樹脂硬化物、およびCFRPを作製した。
(Examples 2 to 16)
An epoxy resin composition, a prepreg, a cured resin, and CFRP were produced in the same manner as in Example 1 except that the resin compositions were changed as shown in Tables 1 and 2, respectively.

表1に示したエポキシ樹脂硬化物について、実施例1にと同じ方法で、ゴム状態の貯蔵弾性率を取得した。各実施例のエポキシ樹脂硬化物は、式(1):1100≦Y/Ma≦2000(式中、Yはゴム状態の貯蔵弾性率、Maは全エポキシ樹脂100質量部中の活性エポキシ基モル数を表す)の関係を満たし、各実施例のエポキシ樹脂組成物に関して、曲げ特性を評価した結果、全ての水準で良好な物性が得られた。   For the cured epoxy resin shown in Table 1, the storage elastic modulus in a rubber state was obtained in the same manner as in Example 1. The epoxy resin cured product of each example is represented by the following formula (1): 1100 ≦ Y / Ma ≦ 2000 (where Y is the storage elastic modulus in a rubber state, and Ma is the number of moles of active epoxy group in 100 parts by mass of all epoxy resins) And the bending properties of the epoxy resin compositions of the examples were evaluated. As a result, good physical properties were obtained at all levels.

また、CFRPの曲げ特性および層間靱性を評価した結果、全ての水準で良好な物性が得られた。   In addition, as a result of evaluating the bending properties and the interlayer toughness of CFRP, good physical properties were obtained at all levels.

(比較例1)
表3に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグを作製した。成分[B]の平均エポキシ当量は2273g/eqであった。
(Comparative Example 1)
With respect to the resin compositions shown in Table 3, an epoxy resin composition and a prepreg were produced in the same manner as in Example 1. The average epoxy equivalent of the component [B] was 2273 g / eq.

実施例1と同じ方法で、ゴム状態の貯蔵弾性率を取得した。このエポキシ樹脂硬化物について、式(1):1100≦Y/Ma≦2000(式中、Yはゴム状態の貯蔵弾性率、Maは全エポキシ樹脂100質量部中の活性エポキシ基モル数を表す)の関係を調べたところ、式(1)を満たさなかった。<エポキシ樹脂硬化物の曲げ特性の評価方法>に従い、130℃にて硬化したエポキシ樹脂硬化物の曲げ特性を取得したところ、樹脂硬化物の曲げ弾性率は4.5GPaであったが、曲げひずみ量は4.3%、曲げ強度は180MPaと低いものとなった。   In the same manner as in Example 1, the storage elastic modulus in a rubber state was obtained. Formula (1) for this cured epoxy resin: 1100 ≦ Y / Ma ≦ 2000 (where Y represents the storage elastic modulus in a rubber state, and Ma represents the number of moles of active epoxy groups in 100 parts by mass of the total epoxy resin). When the relationship was examined, the expression (1) was not satisfied. According to the <Evaluation method for bending properties of cured epoxy resin>, the bending properties of the cured epoxy resin cured at 130 ° C. were obtained. The flexural modulus of the cured resin was 4.5 GPa. The amount was 4.3% and the bending strength was as low as 180 MPa.

得られたエポキシ樹脂組成物から、<プリプレグの作製方法>に従って、繊維質量含有率67質量%のプリプレグを作製し、得られたプリプレグを13プライ積層し、130℃で硬化せしめて、一方向の繊維強化複合材料(CFRP)を作製した。   From the obtained epoxy resin composition, a prepreg having a fiber mass content of 67% by mass was prepared according to <Prepreg preparation method>, 13 ply of the obtained prepreg was laminated, cured at 130 ° C, and cured in one direction. A fiber reinforced composite material (CFRP) was produced.

CFRPの機械特性を測定した結果、0°曲げ強度は1701MPa、90°曲げ強度は113MPaであり、90°曲げ強度が低いものであった。   As a result of measuring the mechanical properties of CFRP, the 0 ° bending strength was 1701 MPa, the 90 ° bending strength was 113 MPa, and the 90 ° bending strength was low.

また、CFRPの層間靱性を評価した結果、G1cは228J/m、G2cは483J/mと、不十分なものとなった。 Further, as a result of evaluating the interlayer toughness of CFRP, G 1c was 228 J / m 2 and G 2c was 483 J / m 2 , which was insufficient.

(比較例2〜3)
表3に示した樹脂組成について、比較例1と同じ方法でエポキシ樹脂組成物、プリプレグ、樹脂硬化物、および、CFRPを作製し、樹脂硬化物の曲げ特性、全エポキシ樹脂100質量部中の活性エポキシ基モル数とゴム状態の貯蔵弾性率の関係(式(1))、CFRPの曲げ特性、およびCFRPの層間靱性を取得した。各樹脂組成物は成分[B]を含まず、また、樹脂硬化物は式(1)を満たさないため、樹脂硬化物の曲げ弾性率が低く、また、CFRPの曲げ特性が不十分であった。また、層間靱性も不十分なものであった。
(Comparative Examples 2-3)
For the resin compositions shown in Table 3, an epoxy resin composition, a prepreg, a cured resin, and a CFRP were prepared in the same manner as in Comparative Example 1, and the bending properties of the cured resin and the activity in 100 parts by mass of all epoxy resins were prepared. The relationship between the number of moles of epoxy group and the storage modulus in the rubber state (formula (1)), the bending properties of CFRP, and the interlayer toughness of CFRP were obtained. Since each resin composition did not contain the component [B], and the cured resin did not satisfy the formula (1), the flexural modulus of the cured resin was low and the bending characteristics of CFRP were insufficient. . Also, the interlayer toughness was insufficient.

(比較例4)
表3に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、樹脂硬化物、および、CFRPを作製し、樹脂硬化物の曲げ特性、全エポキシ樹脂100質量部中の活性エポキシ基モル数とゴム状態の貯蔵弾性率の関係(式(1))、CFRPの曲げ特性、およびCFRPの層間靱性を取得した。該エポキシ樹脂組成物は、成分[B]を含まない。樹脂硬化物は式(1)を満たさず、曲げ弾性率が3.7GPa、曲げひずみ量が5.8%、曲げ強度が181MPaと低いものとなった。
(Comparative Example 4)
For the resin compositions shown in Table 3, an epoxy resin composition, a prepreg, a cured resin, and a CFRP were prepared in the same manner as in Example 1, and the bending properties of the cured resin and the activity in 100 parts by mass of all epoxy resins were prepared. The relationship between the number of moles of epoxy group and the storage modulus in the rubber state (formula (1)), the bending properties of CFRP, and the interlayer toughness of CFRP were obtained. The epoxy resin composition does not contain the component [B]. The cured resin did not satisfy the formula (1), and the flexural modulus was 3.7 GPa, the flexural strain was 5.8%, and the flexural strength was as low as 181 MPa.

また、CFRPの0°、90°曲げ強度、および、層間靱性も低いものであった。   Further, the 0 ° and 90 ° bending strength and interlayer toughness of CFRP were also low.

(比較例5)
表3に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、樹脂硬化物、および、CFRPを作製し、樹脂硬化物の曲げ特性、全エポキシ樹脂100質量部中の活性エポキシ基モル数とゴム状態の貯蔵弾性率の関係(式(1))、CFRPの曲げ特性、およびCFRPの層間靱性を取得した。該エポキシ樹脂組成物は、成分[B]を含まないが、25℃において液状のビスフェノールFを40質量部含む。樹脂硬化物は式(1)を満たさず、曲げ弾性率、曲げひずみ量、曲げ強度は不十分なものであった。また、CFRPの90°曲げ強度も98MPaと低いものであった。
(Comparative Example 5)
For the resin compositions shown in Table 3, an epoxy resin composition, a prepreg, a cured resin, and a CFRP were prepared in the same manner as in Example 1, and the bending properties of the cured resin and the activity in 100 parts by mass of all epoxy resins were prepared. The relationship between the number of moles of epoxy group and the storage modulus in the rubber state (formula (1)), the bending properties of CFRP, and the interlayer toughness of CFRP were obtained. The epoxy resin composition does not contain the component [B], but contains 40 parts by mass of bisphenol F which is liquid at 25 ° C. The cured resin did not satisfy the formula (1), and the flexural modulus, flexural strain, and flexural strength were insufficient. Further, the 90 ° bending strength of CFRP was as low as 98 MPa.

CFRPの層間靱性を評価した結果、G1cは218J/m、G2cは312J/mと、不十分なものとなった。 Results of the evaluation of the interlayer toughness of CFRP, G 1c is 218J / m 2, G 2c and 312J / m 2, was unsatisfactory.

(比較例6)
表3に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、樹脂硬化物、および、CFRPを作製し、樹脂硬化物の曲げ特性、全エポキシ樹脂100質量部中の活性エポキシ基モル数とゴム状態の貯蔵弾性率の関係(式(1))、CFRPの曲げ特性、およびCFRPの層間靱性を取得した。該エポキシ樹脂組成物は、成分[B]の平均エポキシ当量は2273g/eqであった。樹脂硬化物は式(1)を満たさなかった。樹脂硬化物の曲げ弾性率は4.5GPaだが、曲げ強度が180MPaと低いため、CFRPの90°曲げ強度が89MPaと不十分なものとなった。また、CFRPの層間靱性は、G1cは119J/m、G2cは365J/mと、不十分なものとなった。
(Comparative Example 6)
For the resin compositions shown in Table 3, an epoxy resin composition, a prepreg, a cured resin, and a CFRP were prepared in the same manner as in Example 1, and the bending properties of the cured resin and the activity in 100 parts by mass of all epoxy resins were prepared. The relationship between the number of moles of epoxy group and the storage modulus in the rubber state (formula (1)), the bending properties of CFRP, and the interlayer toughness of CFRP were obtained. In the epoxy resin composition, the average epoxy equivalent of the component [B] was 2,273 g / eq. The cured resin did not satisfy the formula (1). Although the flexural modulus of the cured resin was 4.5 GPa, the flexural strength was as low as 180 MPa, and the 90 ° flexural strength of CFRP was insufficient at 89 MPa. Further, an interlayer toughness of the CFRP, G 1c is 119J / m 2, G 2c and 365J / m 2, was unsatisfactory.

(比較例7)
表4に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、樹脂硬化物、および、CFRPを作製し、樹脂硬化物の曲げ特性、全エポキシ樹脂100質量部中の活性エポキシ基モル数とゴム状態の貯蔵弾性率の関係(式(1))、CFRPの曲げ特性、およびCFRPの層間靱性を取得した。該エポキシ樹脂組成物は、成分[B]の平均エポキシ当量は4190g/eqであった。樹脂硬化物は式(1)を満たさず、曲げひずみ量が低いものであった。
(Comparative Example 7)
For the resin compositions shown in Table 4, an epoxy resin composition, a prepreg, a cured resin, and a CFRP were prepared in the same manner as in Example 1, and the bending properties of the cured resin and the activity in 100 parts by mass of all epoxy resins were prepared. The relationship between the number of moles of epoxy group and the storage modulus in the rubber state (formula (1)), the bending properties of CFRP, and the interlayer toughness of CFRP were obtained. The epoxy resin composition had an average epoxy equivalent of the component [B] of 4190 g / eq. The cured resin did not satisfy the formula (1) and had a low bending strain.

また、CFRPの90°曲げ強度が90MPaと低く、層間靱性値も不十分であった。   Further, the 90 ° bending strength of CFRP was as low as 90 MPa, and the interlayer toughness value was insufficient.

(比較例8)
表4に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、樹脂硬化物、および、CFRPを作製し、樹脂硬化物の曲げ特性、全エポキシ樹脂100質量部中の活性エポキシ基モル数とゴム状態の貯蔵弾性率の関係(式(1))、CFRPの曲げ特性、およびCFRPの層間靱性を取得した。該エポキシ樹脂組成物は、成分[B]の平均エポキシ当量は480g/eqであり、樹脂硬化物は式(1)を満たさず、曲げ弾性率が不十分なものとなった。
(Comparative Example 8)
For the resin compositions shown in Table 4, an epoxy resin composition, a prepreg, a cured resin, and a CFRP were prepared in the same manner as in Example 1, and the bending properties of the cured resin and the activity in 100 parts by mass of all epoxy resins were prepared. The relationship between the number of moles of epoxy group and the storage modulus in the rubber state (formula (1)), the bending properties of CFRP, and the interlayer toughness of CFRP were obtained. In the epoxy resin composition, the average epoxy equivalent of the component [B] was 480 g / eq, and the cured resin did not satisfy the formula (1), and the flexural modulus was insufficient.

また、CFRPの0°および90°曲げ強度と層間靱性値が低いものであった。   In addition, CFRP had low 0 ° and 90 ° bending strength and low interlayer toughness.

(比較例9)
表4に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、樹脂硬化物、および、CFRPを作製し、樹脂硬化物の曲げ特性、全エポキシ樹脂100質量部中の活性エポキシ基モル数とゴム状態の貯蔵弾性率の関係(式(1))、CFRPの曲げ特性、およびCFRPの層間靱性を取得した。該エポキシ樹脂組成物は、成分[B]を含まないが、25℃で固形のビスフェノールA型エポキシ樹脂を40質量部含む。樹脂硬化物は式(1)を満たさず、曲げ弾性率が4.0GPaと低いものであった。
(Comparative Example 9)
For the resin compositions shown in Table 4, an epoxy resin composition, a prepreg, a cured resin, and a CFRP were prepared in the same manner as in Example 1, and the bending properties of the cured resin and the activity in 100 parts by mass of all epoxy resins were prepared. The relationship between the number of moles of epoxy group and the storage modulus in the rubber state (formula (1)), the bending properties of CFRP, and the interlayer toughness of CFRP were obtained. The epoxy resin composition does not contain the component [B], but contains 40 parts by mass of a bisphenol A type epoxy resin solid at 25 ° C. The cured resin did not satisfy the formula (1) and had a low flexural modulus of 4.0 GPa.

また、CFRPの0°および90°曲げ強度が不足し、層間靱性値も不十分であった。   Further, the 0 ° and 90 ° bending strength of CFRP was insufficient, and the interlayer toughness value was also insufficient.

(比較例10)
表4に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、樹脂硬化物、および、CFRPを作製し、樹脂硬化物の曲げ特性、全エポキシ樹脂100質量部中の活性エポキシ基モル数とゴム状態の貯蔵弾性率の関係(式(1))、CFRPの曲げ特性、およびCFRPの層間靱性を取得した。該エポキシ樹脂組成物は、成分[B]を含まないが、25℃で固形のビスフェノールA型エポキシ樹脂を30質量部含む。樹脂硬化物は式(1)を満たさず、曲げ弾性率および曲げ強度は低いものであった。
(Comparative Example 10)
For the resin compositions shown in Table 4, an epoxy resin composition, a prepreg, a cured resin, and a CFRP were prepared in the same manner as in Example 1, and the bending properties of the cured resin and the activity in 100 parts by mass of all epoxy resins were prepared. The relationship between the number of moles of epoxy group and the storage modulus in the rubber state (formula (1)), the bending properties of CFRP, and the interlayer toughness of CFRP were obtained. The epoxy resin composition does not contain the component [B], but contains 30 parts by mass of a bisphenol A type epoxy resin solid at 25 ° C. The cured resin did not satisfy the formula (1), and had a low flexural modulus and a low flexural strength.

また、CFRPの0°、90°曲げ強度、および層間靱性値も不十分であった。   Further, the 0 ° and 90 ° flexural strengths and interlayer toughness values of CFRP were also insufficient.

(比較例11)
表4に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、樹脂硬化物、および、CFRPを作製し、樹脂硬化物の曲げ特性、全エポキシ樹脂100質量部中の活性エポキシ基モル数とゴム状態の貯蔵弾性率の関係(式(1))、CFRPの曲げ特性、およびCFRPの層間靱性を取得した。該エポキシ樹脂組成物は、成分[A]を含まないが、4官能グリシジルアミン型エポキシ樹脂であるELM434を60質量部含む。樹脂硬化物は式(1)を満たさず、曲げ弾性率は4.0GPa、曲げひずみは4.2%、曲げ強度は160MPaと低いものであった。
(Comparative Example 11)
For the resin compositions shown in Table 4, an epoxy resin composition, a prepreg, a cured resin, and a CFRP were prepared in the same manner as in Example 1, and the bending properties of the cured resin and the activity in 100 parts by mass of all epoxy resins were prepared. The relationship between the number of moles of epoxy group and the storage modulus in the rubber state (formula (1)), the bending properties of CFRP, and the interlayer toughness of CFRP were obtained. The epoxy resin composition does not contain the component [A] but contains 60 parts by mass of ELM434 which is a tetrafunctional glycidylamine type epoxy resin. The cured resin did not satisfy the formula (1), the flexural modulus was 4.0 GPa, the flexural strain was 4.2%, and the flexural strength was as low as 160 MPa.

また、CFRPの0°、90°曲げ強度、および層間靱性値も低いものであった。   Further, the 0 ° and 90 ° flexural strengths and interlayer toughness values of CFRP were also low.

Figure 2019218541
Figure 2019218541

Figure 2019218541
Figure 2019218541

Figure 2019218541
Figure 2019218541

Figure 2019218541
Figure 2019218541

なお、表中の各成分の単位は質量部である。   The unit of each component in the table is parts by mass.

本発明のエポキシ樹脂組成物は、曲げ弾性率と曲げひずみを両立するエポキシ樹脂硬化物を与え、該エポキシ樹脂組成物を用いた繊維強化複合材料は、優れた0°曲げ強度と90°曲げ強度、および、層間靱性を有する。これにより、繊維強化複合材料の軽量化と高靱性化が可能となるため、様々な構造部材に適用可能である。   The epoxy resin composition of the present invention provides an epoxy resin cured product having both flexural modulus and flexural strain, and a fiber reinforced composite material using the epoxy resin composition has excellent 0 ° bending strength and 90 ° bending strength. , And interlayer toughness. Thereby, the weight reduction and the high toughness of the fiber-reinforced composite material can be achieved, so that the fiber-reinforced composite material can be applied to various structural members.

Claims (9)

次の成分[A]、[B]、[C]を含み、下記条件[a]および[b]を満たすエポキシ樹脂組成物。
[A]:3官能のアミン型エポキシ樹脂
[B]:25℃において固形のビスフェノールF型エポキシ樹脂
[C]:芳香族アミン化合物
[a]:成分[B]の平均エポキシ当量が600〜1000g/eq
[b]:エポキシ樹脂組成物を180℃で120分反応させて得られる樹脂硬化物の、動的粘弾性測定より得られるゴム状態の貯蔵弾性率Y(MPa)と、全エポキシ樹脂100質量部の活性基モル数(Ma)が、下式(1)を満たす
1100≦Y/Ma≦2000 ・・・(1)
An epoxy resin composition containing the following components [A], [B], and [C], and satisfies the following conditions [a] and [b].
[A]: trifunctional amine type epoxy resin [B]: bisphenol F type epoxy resin solid at 25 ° C. [C]: aromatic amine compound [a]: average epoxy equivalent of component [B] is 600 to 1000 g / eq
[B]: Storage elastic modulus Y (MPa) of a cured resin obtained by reacting the epoxy resin composition at 180 ° C. for 120 minutes in a rubber state obtained by dynamic viscoelasticity measurement, and 100 parts by mass of all epoxy resins 1100 ≦ Y / Ma ≦ 2000, in which the number of moles of the active group (Ma) satisfies the following formula (1) (1)
成分[A]が、アミノフェノール型エポキシ樹脂である、請求項1に記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 1, wherein the component [A] is an aminophenol-type epoxy resin. 全エポキシ樹脂100質量部のうち、成分[A]を50〜80質量部含む、請求項1または2に記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 1, comprising 50 to 80 parts by mass of component [A] based on 100 parts by mass of all epoxy resins. 全エポキシ樹脂100質量部のうち、成分[B]を20〜40質量部含む、請求項1〜3のいずれかに記載のエポキシ樹脂組成物。   The epoxy resin composition according to any one of claims 1 to 3, comprising 20 to 40 parts by mass of the component [B] based on 100 parts by mass of all epoxy resins. 成分[C]が、ジアミノジフェニルスルホンである、請求項1〜4のいずれかに記載のエポキシ樹脂組成物。   The epoxy resin composition according to any one of claims 1 to 4, wherein the component [C] is diaminodiphenyl sulfone. 成分[C]が、3,3’−ジアミノジフェニルスルホンである、請求項5に記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 5, wherein the component [C] is 3,3'-diaminodiphenylsulfone. エポキシ樹脂組成物を180℃で120分反応させて得られる樹脂硬化物の曲げ弾性率が4.6GPa以上、かつ、曲げひずみが6%以上である、請求項1〜6のいずれかに記載のエポキシ樹脂組成物。   The flexural modulus of a cured resin obtained by reacting the epoxy resin composition at 180 ° C for 120 minutes is 4.6 GPa or more, and the bending strain is 6% or more. Epoxy resin composition. 請求項1〜7のいずれかに記載のエポキシ樹脂組成物と強化繊維からなるプリプレグ。   A prepreg comprising the epoxy resin composition according to claim 1 and reinforcing fibers. 請求項8に記載のプリプレグを硬化させてなる繊維強化複合材料。   A fiber-reinforced composite material obtained by curing the prepreg according to claim 8.
JP2019111723A 2018-06-18 2019-06-17 Epoxy resin composition, prepreg, and fiber reinforced composite material Pending JP2019218541A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018115111 2018-06-18
JP2018115111 2018-06-18

Publications (1)

Publication Number Publication Date
JP2019218541A true JP2019218541A (en) 2019-12-26

Family

ID=69095624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019111723A Pending JP2019218541A (en) 2018-06-18 2019-06-17 Epoxy resin composition, prepreg, and fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JP2019218541A (en)

Similar Documents

Publication Publication Date Title
JP5800031B2 (en) Epoxy resin composition, prepreg and carbon fiber reinforced composite material
WO2016208618A1 (en) Epoxy resin composition, fiber-reinforced composite material, molded article, and pressure vessel
KR101878128B1 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
JP6665702B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
JP6771883B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
JP6497027B2 (en) Epoxy resin composition, cured resin, prepreg and fiber reinforced composite material
JP6771885B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
JP7290109B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
JP6573029B2 (en) Manufacturing method of fiber reinforced composite material
WO2022039050A1 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP7139572B2 (en) Epoxy resin compositions, fiber reinforced composites, moldings and pressure vessels
JP6961912B2 (en) Epoxy resin compositions, fiber reinforced composites, moldings and pressure vessels
JP2017039875A (en) Epoxy resin composition, resin cured product, prepreg, and fiber-reinforced composite material
JP2019218541A (en) Epoxy resin composition, prepreg, and fiber reinforced composite material
JP2019218540A (en) Epoxy resin composition, prepreg, and fiber reinforced composite material
JP2020204026A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2019023281A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2020019932A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2019023284A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
EP4059975A1 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP6421897B1 (en) Epoxy resin composition, prepreg, fiber reinforced composite material and method for producing the same
JP2022033709A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP6066026B1 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
JP2023067809A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2022033710A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material