JP2019212717A - Laminated ceramic capacitor - Google Patents

Laminated ceramic capacitor Download PDF

Info

Publication number
JP2019212717A
JP2019212717A JP2018106422A JP2018106422A JP2019212717A JP 2019212717 A JP2019212717 A JP 2019212717A JP 2018106422 A JP2018106422 A JP 2018106422A JP 2018106422 A JP2018106422 A JP 2018106422A JP 2019212717 A JP2019212717 A JP 2019212717A
Authority
JP
Japan
Prior art keywords
layer
plating layer
internal electrode
ceramic capacitor
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018106422A
Other languages
Japanese (ja)
Other versions
JP7145652B2 (en
Inventor
晴菜 生方
haruna Ubukata
晴菜 生方
聡子 並木
Satoko Namiki
聡子 並木
篤博 柳澤
Atsuhiro Yanagisawa
篤博 柳澤
知徳 山藤
Tomonori Yamato
知徳 山藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2018106422A priority Critical patent/JP7145652B2/en
Priority to US16/417,323 priority patent/US11264168B2/en
Priority to TW108117485A priority patent/TWI807030B/en
Priority to KR1020190060423A priority patent/KR20190137692A/en
Priority to CN201910461518.8A priority patent/CN110556248B/en
Publication of JP2019212717A publication Critical patent/JP2019212717A/en
Application granted granted Critical
Publication of JP7145652B2 publication Critical patent/JP7145652B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • H01G4/2325Terminals electrically connecting two or more layers of a stacked or rolled capacitor characterised by the material of the terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1236Ceramic dielectrics characterised by the ceramic dielectric material based on zirconium oxides or zirconates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1236Ceramic dielectrics characterised by the ceramic dielectric material based on zirconium oxides or zirconates
    • H01G4/1245Ceramic dielectrics characterised by the ceramic dielectric material based on zirconium oxides or zirconates containing also titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/129Ceramic dielectrics containing a glassy phase, e.g. glass ceramic

Abstract

To provide a laminated ceramic capacitor capable of suppressing hydrogen intrusion from an external electrode.SOLUTION: A laminated ceramic capacitor includes a laminated chip in which a dielectric layer mainly composed of ceramic and an internal electrode layer are alternately laminated, and the plurality of laminated internal electrode layers are formed so as to be exposed at two opposite end faces, and that has a substantially rectangular parallelepiped shape, and a pair of external electrodes formed on the two end faces, and the pair of external electrodes have a structure in which a plating layer is formed on a base layer, and the base layer is mainly composed of a metal or alloy containing at least one of Ni and Cu, and an inclusion containing Mo is provided on at least a part of the surface on the plating layer side.SELECTED DRAWING: Figure 1

Description

本発明は、積層セラミックコンデンサに関する。   The present invention relates to a multilayer ceramic capacitor.

積層セラミックコンデンサは、複数の誘電体層と複数の内部電極とが交互に積層された積層体と、積層体の表面に引き出された内部電極と導通するように積層体の表面に形成された一対の外部電極とを備えている。外部電極は、下地層上にめっき処理が施されている。特許文献1では、めっき処理の際に発生する水素が内部電極に吸蔵され、誘電体層を還元することで絶縁抵抗が劣化することが記載されている。また、特許文献1では、貴金属を主成分とする内部電極を用いた場合に水素の吸収を抑制する金属としてNi(ニッケル)を添加することが記載されている。一方、特許文献2では、内部電極にNiが用いられている場合であっても、水素の影響によって絶縁抵抗の劣化が生じることが記載されている。   The multilayer ceramic capacitor is a pair formed on the surface of the multilayer body so as to be electrically connected to the multilayer body in which a plurality of dielectric layers and a plurality of internal electrodes are alternately stacked and the internal electrode drawn on the surface of the multilayer body. External electrodes. The external electrode is plated on the base layer. Patent Document 1 describes that the hydrogen generated during the plating process is occluded in the internal electrode, and the insulation resistance is deteriorated by reducing the dielectric layer. Patent Document 1 describes that Ni (nickel) is added as a metal that suppresses absorption of hydrogen when an internal electrode containing a noble metal as a main component is used. On the other hand, Patent Document 2 describes that even when Ni is used for the internal electrode, the insulation resistance is deteriorated due to the influence of hydrogen.

特開平1−80011号公報Japanese Patent Laid-Open No. 1-80011 特開2016−66783号公報JP, 2006-66783, A

水素の影響を抑制するためには、水素の侵入経路である外部電極からの水素の侵入を抑制することが望まれる。   In order to suppress the influence of hydrogen, it is desired to suppress the intrusion of hydrogen from the external electrode which is a hydrogen intrusion route.

本発明は、上記課題に鑑みなされたものであり、外部電極からの水素の侵入を抑制することができる積層セラミックコンデンサを提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a multilayer ceramic capacitor that can suppress the intrusion of hydrogen from an external electrode.

本発明に係る積層セラミックコンデンサは、セラミックを主成分とする誘電体層と、内部電極層と、が交互に積層され、積層された複数の前記内部電極層が交互に対向する2端面に露出するように形成され、略直方体形状を有する積層チップと、前記2端面に形成された1対の外部電極と、を備え、前記1対の外部電極は、下地層上にめっき層が形成された構造を有し、前記下地層は、NiおよびCuの少なくともいずれか一方を含む金属または合金を主成分とし、前記めっき層側の表面の少なくとも一部に、Moを含む介在物が備わることを特徴とする。   In the multilayer ceramic capacitor according to the present invention, dielectric layers mainly composed of ceramic and internal electrode layers are alternately stacked, and the plurality of stacked internal electrode layers are exposed at two opposite end faces. A laminated chip having a substantially rectangular parallelepiped shape and a pair of external electrodes formed on the two end faces, wherein the pair of external electrodes has a plating layer formed on a base layer The underlayer is mainly composed of a metal or alloy containing at least one of Ni and Cu, and at least part of the surface on the plating layer side is provided with inclusions containing Mo. To do.

上記積層セラミックコンデンサにおいて、前記めっき層は、Snめっき層を含んでいてもよい。   In the multilayer ceramic capacitor, the plating layer may include a Sn plating layer.

上記積層セラミックコンデンサにおいて、前記下地層の主成分金属をNiとしてもよい。   In the multilayer ceramic capacitor, the main component metal of the base layer may be Ni.

上記積層セラミックコンデンサにおいて、前記内部電極層は、Niを主成分としてもよい。   In the multilayer ceramic capacitor, the internal electrode layer may contain Ni as a main component.

上記積層セラミックコンデンサにおいて、前記誘電体層の主成分セラミックは、ペロブスカイト構造を有していてもよい。   In the multilayer ceramic capacitor, the main component ceramic of the dielectric layer may have a perovskite structure.

本発明によれば、外部電極からの水素の侵入を抑制することができる。   According to the present invention, intrusion of hydrogen from the external electrode can be suppressed.

積層セラミックコンデンサの部分断面斜視図である。It is a partial section perspective view of a multilayer ceramic capacitor. 図1のA−A線の部分断面図である。It is a fragmentary sectional view of the AA line of FIG. 積層セラミックコンデンサの製造方法のフローを例示する図である。It is a figure which illustrates the flow of the manufacturing method of a multilayer ceramic capacitor. (a)はSTEMを用いて下地層およびCuめっき層を観察した結果を示す図であり、(b)はSTEM−EDSを用いて下地層およびCuめっき層におけるMoの分布を測定した結果である。(A) is a figure which shows the result of having observed the base layer and Cu plating layer using STEM, (b) is the result of having measured distribution of Mo in a base layer and Cu plating layer using STEM-EDS. . (a)は測定箇所を例示する図であり、(b)はB線断面におけるMo濃度の測定結果である。(A) is a figure which illustrates a measurement location, (b) is a measurement result of Mo concentration in a B line section.

以下、図面を参照しつつ、実施形態について説明する。   Hereinafter, embodiments will be described with reference to the drawings.

(実施形態)
まず、積層セラミックコンデンサについて説明する。図1は、積層セラミックコンデンサ100の部分断面斜視図である。図1で例示するように、積層セラミックコンデンサ100は、直方体形状を有する積層チップ10と、積層チップ10のいずれかの対向する2端面に設けられた外部電極20a,20bとを備える。なお、積層チップ10の当該2端面以外の4面を側面と称する。外部電極20a,20bは、4つの側面に延在している。ただし、外部電極20a,20bは、4つの側面において互いに離間している。
(Embodiment)
First, a multilayer ceramic capacitor will be described. FIG. 1 is a partial cross-sectional perspective view of a multilayer ceramic capacitor 100. As illustrated in FIG. 1, the multilayer ceramic capacitor 100 includes a multilayer chip 10 having a rectangular parallelepiped shape, and external electrodes 20 a and 20 b provided on two opposing end faces of the multilayer chip 10. Note that four surfaces other than the two end surfaces of the laminated chip 10 are referred to as side surfaces. The external electrodes 20a and 20b extend on four side surfaces. However, the external electrodes 20a and 20b are separated from each other on the four side surfaces.

積層チップ10は、誘電体として機能するセラミック材料を含む誘電体層11と、卑金属材料を含む内部電極層12とが、交互に積層された構成を有する。各内部電極層12の端縁は、積層チップ10の外部電極20aが設けられた端面と、外部電極20bが設けられた端面とに、交互に露出している。それにより、各内部電極層12は、外部電極20aと外部電極20bとに、交互に導通している。その結果、積層セラミックコンデンサ100は、複数の誘電体層11が内部電極層12を介して積層された構成を有する。また、積層チップ10において、4つの側面のうち、誘電体層11と内部電極層12との積層方向(以下、積層方向と称する。)の上面と下面とに対応する2側面は、カバー層13によって覆われている。カバー層13は、セラミック材料を主成分とする。例えば、カバー層13の材料は、誘電体層11とセラミック材料の主成分が同じである。   The multilayer chip 10 has a configuration in which dielectric layers 11 including a ceramic material functioning as a dielectric and internal electrode layers 12 including a base metal material are alternately stacked. The edge of each internal electrode layer 12 is alternately exposed on the end surface of the multilayer chip 10 where the external electrode 20a is provided and the end surface where the external electrode 20b is provided. Thereby, each internal electrode layer 12 is alternately conducted to the external electrode 20a and the external electrode 20b. As a result, the multilayer ceramic capacitor 100 has a configuration in which a plurality of dielectric layers 11 are stacked via the internal electrode layer 12. In the multilayer chip 10, of the four side surfaces, two side surfaces corresponding to the upper surface and the lower surface in the stacking direction of the dielectric layer 11 and the internal electrode layer 12 (hereinafter referred to as the stacking direction) are the cover layer 13. Covered by. The cover layer 13 is mainly composed of a ceramic material. For example, the material of the cover layer 13 is the same as that of the dielectric layer 11 and the ceramic material.

積層セラミックコンデンサ100のサイズは、例えば、長さ0.25mm、幅0.125mm、高さ0.125mmであり、または長さ0.4mm、幅0.2mm、高さ0.2mm、または長さ0.6mm、幅0.3mm、高さ0.3mmであり、または長さ1.0mm、幅0.5mm、高さ0.5mmであり、または長さ3.2mm、幅1.6mm、高さ1.6mmであり、または長さ4.5mm、幅3.2mm、高さ2.5mmであるが、これらのサイズに限定されるものではない。   The size of the multilayer ceramic capacitor 100 is, for example, a length of 0.25 mm, a width of 0.125 mm, and a height of 0.125 mm, or a length of 0.4 mm, a width of 0.2 mm, a height of 0.2 mm, or a length. 0.6 mm, width 0.3 mm, height 0.3 mm, or length 1.0 mm, width 0.5 mm, height 0.5 mm, or length 3.2 mm, width 1.6 mm, height The length is 1.6 mm, or the length is 4.5 mm, the width is 3.2 mm, and the height is 2.5 mm, but is not limited to these sizes.

内部電極層12は、Ni,Cu(銅),Sn(スズ)等の卑金属を主成分とする。内部電極層12として、Pt(白金)、Pd(パラジウム)、Ag(銀)、Au(金)などの貴金属やこれらを含む合金を用いてもよい。誘電体層11は、例えば、一般式ABOで表されるペロブスカイト構造を有するセラミック材料を主成分とする。なお、当該ペロブスカイト構造は、化学量論組成から外れたABO3−αを含む。例えば、当該セラミック材料として、BaTiO(チタン酸バリウム)、CaZrO(ジルコン酸カルシウム)、CaTiO(チタン酸カルシウム)、SrTiO(チタン酸ストロンチウム)、ペロブスカイト構造を形成するBa1-x−yCaSrTi1−zZr(0≦x≦1,0≦y≦1,0≦z≦1)等を用いることができる。 The internal electrode layer 12 contains a base metal such as Ni, Cu (copper), or Sn (tin) as a main component. As the internal electrode layer 12, a noble metal such as Pt (platinum), Pd (palladium), Ag (silver), Au (gold), or an alloy containing these may be used. The dielectric layer 11 includes, for example, a ceramic material having a perovskite structure represented by the general formula ABO 3 as a main component. Note that the perovskite structure includes ABO 3-α deviating from the stoichiometric composition. For example, as the ceramic material, BaTiO 3 (barium titanate), CaZrO 3 (calcium zirconate), CaTiO 3 (calcium titanate), SrTiO 3 (strontium titanate), and Ba 1-xy that forms a perovskite structure. Ca x Sr y Ti 1-z Zr z O 3 (0 ≦ x ≦ 1,0 ≦ y ≦ 1,0 ≦ z ≦ 1) , or the like can be used.

図2は、外部電極20aの断面図であり、図1のA−A線の部分断面図である。なお、図2では断面を表すハッチを省略している。図2で例示するように、外部電極20aは、下地層21上に、Cuめっき層22、Niめっき層23およびSnめっき層24が形成された構造を有する。下地層21、Cuめっき層22、Niめっき層23およびSnめっき層24は、積層チップ10の両端面から4つの側面に延在している。なお、図2では、外部電極20aについて例示しているが、外部電極20bも同様の構造を有する。   2 is a cross-sectional view of the external electrode 20a, and is a partial cross-sectional view taken along line AA of FIG. In FIG. 2, a hatch indicating a cross section is omitted. As illustrated in FIG. 2, the external electrode 20 a has a structure in which a Cu plating layer 22, a Ni plating layer 23, and a Sn plating layer 24 are formed on a base layer 21. The underlayer 21, the Cu plating layer 22, the Ni plating layer 23, and the Sn plating layer 24 extend from the both end surfaces of the multilayer chip 10 to four side surfaces. Although FIG. 2 illustrates the external electrode 20a, the external electrode 20b has a similar structure.

下地層21は、NiおよびCuの少なくともいずれか一方を含む金属または合金を主成分とし、下地層21の緻密化のためのガラス成分を含んでいてもよく、下地層21の焼結性を制御するための共材を含んでいてもよい。ガラス成分は、Ba,Sr,Ca,Zn(亜鉛),Al(アルミニウム),Si(ケイ素),B(ホウ素)等の酸化物である。共材は、セラミック成分であり、例えば、誘電体層11が主成分とするセラミック成分である。   The underlayer 21 is mainly composed of a metal or alloy containing at least one of Ni and Cu, may contain a glass component for densification of the underlayer 21, and controls the sinterability of the underlayer 21. A common material for the purpose may be included. The glass component is an oxide such as Ba, Sr, Ca, Zn (zinc), Al (aluminum), Si (silicon), and B (boron). The common material is a ceramic component, for example, a ceramic component mainly composed of the dielectric layer 11.

また、下地層21のめっき層側の表面に、Mo(モリブデン)を含む介在物25が形成されている。下地層21の表面にMoを含む介在物25が形成されていることから、Cuめっき層22、Niめっき層23およびSnめっき層24を形成する場合に発生する水素が下地層21および内部電極層12に侵入することが抑制される。例えば、Moは、水素透過を妨げる働きを有している。水素透過を妨げるMoを含む介在物25が下地層21の表面に存在することで、外部電極20a,20bにおける水素の透過性が低下し、水素の侵入経路を遮断している(ブロッキング効果を発揮している)と考えられる。水素の侵入経路が遮断されれば、下地層21および内部電極層12への水素の吸蔵が抑制され、誘電体層11の還元が抑制される。それにより、積層セラミックコンデンサ100の絶縁抵抗の低下が抑制される。なお、Cuめっき層22およびNiめっき層23のめっき工程では、めっき対象の表面で水素が多く発生する。したがって、水素の侵入経路を遮断することは特に効果的である。   An inclusion 25 containing Mo (molybdenum) is formed on the surface of the base layer 21 on the plating layer side. Since inclusions 25 containing Mo are formed on the surface of the underlayer 21, hydrogen generated when forming the Cu plating layer 22, the Ni plating layer 23, and the Sn plating layer 24 is generated by the underlayer 21 and the internal electrode layer. 12 is suppressed from entering. For example, Mo has a function of hindering hydrogen permeation. The inclusion 25 containing Mo that hinders hydrogen permeation is present on the surface of the underlayer 21, so that the hydrogen permeability in the external electrodes 20a and 20b is reduced and the hydrogen intrusion path is blocked (the blocking effect is exhibited) it seems to do. If the hydrogen intrusion path is blocked, the occlusion of hydrogen into the base layer 21 and the internal electrode layer 12 is suppressed, and the reduction of the dielectric layer 11 is suppressed. Thereby, a decrease in the insulation resistance of the multilayer ceramic capacitor 100 is suppressed. In the plating process of the Cu plating layer 22 and the Ni plating layer 23, a large amount of hydrogen is generated on the surface of the plating target. Therefore, it is particularly effective to block the hydrogen entry path.

介在物25の形状は、特に限定されるものではない。例えば、介在物25は、下地層21の表面を覆うように層状に形成されていてもよい。または、介在物25は、下地層21の表面において島状に点在していてもよい。また、介在物25は、Moの化合物を主成分とする。介在物25の主成分であるMo化合物は、酸化モリブデン(MoO、MoO)などである。 The shape of the inclusion 25 is not particularly limited. For example, the inclusions 25 may be formed in layers so as to cover the surface of the base layer 21. Alternatively, the inclusions 25 may be scattered in an island shape on the surface of the base layer 21. The inclusion 25 contains a Mo compound as a main component. The Mo compound that is the main component of the inclusion 25 is molybdenum oxide (MoO 2 , MoO 3 ) or the like.

なお、本実施形態においては、下地層21の表面に存在する元素としてMoに着目しているが、それに限られない。水素透過を妨げる効果を有する元素をMoの代わりに用いてもよい。   In the present embodiment, attention is focused on Mo as an element present on the surface of the underlayer 21, but the present invention is not limited to this. An element having an effect of preventing hydrogen permeation may be used instead of Mo.

なお、内部電極層12がNiを主成分とすると、内部電極層12の水素吸蔵性が高くなる。したがって、内部電極層12がNiを主成分とする場合には、外部電極20a,20bからの水素侵入を抑制することが特に効果的である。また、Cuめっき層22およびNiめっき層23のめっき工程では、めっき対象の表面で水素が多く発生する。したがって、水素の侵入経路を遮断することは特に効果的である。   In addition, when the internal electrode layer 12 has Ni as a main component, the hydrogen occlusion property of the internal electrode layer 12 becomes high. Therefore, when the internal electrode layer 12 contains Ni as a main component, it is particularly effective to suppress hydrogen intrusion from the external electrodes 20a and 20b. Further, in the plating process of the Cu plating layer 22 and the Ni plating layer 23, a large amount of hydrogen is generated on the surface to be plated. Therefore, it is particularly effective to block the hydrogen entry path.

また、Snは高い緻密性を有している。これは、Snが最密充填構造を有することに起因する。下地層21上にSnめっき層34が設けられていると、水素がSnめっき層34よりも積層チップ10側に閉じ込められることになる。すなわち、水素の影響が生じやすくなる。したがって、下地層21上にSnめっき層34が設けられている場合には、外部電極20a,20bからの水素侵入を抑制することが特に効果的である。   Sn has a high density. This is because Sn has a close-packed structure. When the Sn plating layer 34 is provided on the base layer 21, hydrogen is confined to the laminated chip 10 side than the Sn plating layer 34. That is, the influence of hydrogen tends to occur. Therefore, when the Sn plating layer 34 is provided on the foundation layer 21, it is particularly effective to suppress hydrogen intrusion from the external electrodes 20a and 20b.

続いて、積層セラミックコンデンサ100の製造方法について説明する。図3は、積層セラミックコンデンサ100の製造方法のフローを例示する図である。   Then, the manufacturing method of the multilayer ceramic capacitor 100 is demonstrated. FIG. 3 is a diagram illustrating a flow of a method for manufacturing the multilayer ceramic capacitor 100.

(原料粉末作製工程)
まず、誘電体層11の主成分であるセラミック材料の粉末に、目的に応じて所定の添加化合物を添加する。添加化合物としては、Mg(マグネシウム),Mn(マンガン),V(バナジウム),Cr(クロム),希土類元素(Y(イットリウム),Sm(サマリウム),Eu(ユウロピウム),Gd(ガドリニウム),Tb(テルビウム),Dy(ジスプロシウム),Ho(ホロミウム),Er(エルビウム),Tm(ツリウム)およびYb(イッテルビウム))の酸化物、並びに、Co(コバルト),Ni,Li(リチウム),B,Na(ナトリウム),K(カリウム)およびSiの酸化物もしくはガラスが挙げられる。例えば、まず、セラミック材料の粉末に添加化合物を含む化合物を混合して仮焼を行う。続いて、得られたセラミック材料の粒子を添加化合物とともに湿式混合し、乾燥および粉砕してセラミック材料の粉末を調製する。
(Raw material powder production process)
First, a predetermined additive compound is added to the ceramic material powder as the main component of the dielectric layer 11 according to the purpose. As additive compounds, Mg (magnesium), Mn (manganese), V (vanadium), Cr (chromium), rare earth elements (Y (yttrium), Sm (samarium), Eu (europium), Gd (gadolinium), Tb ( (Terbium), Dy (dysprosium), Ho (holmium), Er (erbium), Tm (thulium) and Yb (ytterbium)), and Co (cobalt), Ni, Li (lithium), B, Na ( Sodium), K (potassium) and Si oxides or glasses. For example, first, a ceramic material powder is mixed with a compound containing an additive compound and calcined. Subsequently, the obtained ceramic material particles are wet-mixed with an additive compound, dried and pulverized to prepare a ceramic material powder.

(積層工程)
次に、得られたセラミック材料の粉末に、ポリビニルブチラール(PVB)樹脂等のバインダと、エタノール、トルエン等の有機溶剤と、可塑剤とを加えて湿式混合する。得られたスラリーを使用して、例えばダイコータ法やドクターブレード法により、基材上に例えば厚み0.8μm以下の帯状の誘電体グリーンシートを塗工して乾燥させる。
(Lamination process)
Next, a binder such as polyvinyl butyral (PVB) resin, an organic solvent such as ethanol and toluene, and a plasticizer are added to the obtained powder of ceramic material and wet mixed. Using the obtained slurry, for example, a band-shaped dielectric green sheet having a thickness of 0.8 μm or less is applied on a substrate by, for example, a die coater method or a doctor blade method and dried.

次に、誘電体グリーンシートの表面に、内部電極形成用導電ペーストをスクリーン印刷、グラビア印刷等により印刷することで、内部電極層12のパターンを配置する。内部電極層形成用導電ペーストは、内部電極層12の主成分金属の粉末と、バインダと、溶剤と、必要に応じてその他助剤とを含んでいる。バインダおよび溶剤は、上記したセラミックスラリーと異なるものを使用することが好ましい。また、内部電極形成用導電ペーストには、共材として、誘電体層11の主成分であるセラミック材料を分散させてもよい。   Next, the pattern of the internal electrode layer 12 is arranged on the surface of the dielectric green sheet by printing the internal electrode forming conductive paste by screen printing, gravure printing or the like. The internal electrode layer-forming conductive paste contains the main component metal powder of the internal electrode layer 12, a binder, a solvent, and other auxiliary agents as required. It is preferable to use a binder and a solvent different from the above ceramic slurry. In addition, in the internal electrode forming conductive paste, a ceramic material that is a main component of the dielectric layer 11 may be dispersed as a co-material.

次に、内部電極層パターンが印刷された誘電体グリーンシートを所定の大きさに打ち抜いて、打ち抜かれた誘電体グリーンシートを、基材を剥離した状態で、内部電極層12と誘電体層11とが互い違いになるように、かつ内部電極層12が誘電体層11の長さ方向両端面に端縁が交互に露出して極性の異なる一対の外部電極に交互に引き出されるように、所定層数(例えば200〜500層)だけ積層する。積層したパターン形成シートの上下にカバー層13となるカバーシートを圧着させ、所定チップ寸法(例えば1.0mm×0.5mm)にカットする。これにより、略直方体形状のセラミック積層体が得られる。   Next, the dielectric green sheet on which the internal electrode layer pattern is printed is punched to a predetermined size, and the punched dielectric green sheet is peeled off from the base electrode and the internal electrode layer 12 and the dielectric layer 11. And the internal electrode layers 12 are alternately exposed to a pair of external electrodes having different polarities so that the edges are alternately exposed on both end faces in the length direction of the dielectric layer 11. A number of layers (for example, 200 to 500 layers) are stacked. A cover sheet to be the cover layer 13 is pressure-bonded on the upper and lower sides of the laminated pattern forming sheet, and cut into a predetermined chip size (for example, 1.0 mm × 0.5 mm). Thereby, a substantially rectangular parallelepiped ceramic laminate is obtained.

(金属ペースト塗布工程)
次に、積層工程で得られたセラミック積層体を、200℃〜500℃のN雰囲気中で脱バインダした後に、セラミック積層体の両端面から各側面にかけて、金属フィラー、共材、バインダ、溶剤およびMo源を含む金属ペーストを塗布し、乾燥させる。この金属ペーストは、外部電極形成用金属ペーストである。このとき、Mo源の濃度が表面側で高くなるように塗布し、乾燥させることが好ましい。例えば、Mo源の濃度が異なる外部電極形成用金属ペーストを用意し、セラミック積層体の端面側のMo源の濃度が低く、表面側のMo源の濃度が高くなるようにしてもよい。
(Metal paste application process)
Next, after removing the binder in the N 2 atmosphere at 200 ° C. to 500 ° C. from the ceramic laminate obtained in the lamination step, the metal filler, the co-material, the binder, the solvent are applied from both end faces to each side face of the ceramic laminate. A metal paste containing Mo and Mo sources is applied and dried. This metal paste is a metal paste for forming an external electrode. At this time, it is preferable to apply and dry the Mo source so that the concentration of the Mo source is higher on the surface side. For example, external electrode forming metal pastes having different Mo source concentrations may be prepared so that the Mo source concentration on the end face side of the ceramic laminate is low and the Mo source concentration on the surface side is high.

Mo源の種類、形状等は特に限定されない。例えば、Mo源として、具体的には、酸化モリブデン(MoO,MoO)、塩化モリブデン(MoCl,MoCl,MoCl)、水酸化モリブデン(Mo(OH),Mo(OH))、モリブデン酸バリウム(BaMoO)、モリブデン酸アンモニウム((NHMo24・4HO)、モリブデン−ニッケル合金等を用いることができる。また、共材にMoを予め固溶させておき、当該共材をMo源として用いてもよい。 The type and shape of the Mo source are not particularly limited. For example, as the Mo source, specifically, molybdenum oxide (MoO 2 , MoO 3 ), molybdenum chloride (MoCl 2 , MoCl 3 , MoCl 4 ), molybdenum hydroxide (Mo (OH) 3 , Mo (OH) 5 ) Barium molybdate (BaMoO 4 ), ammonium molybdate ((NH 4 ) 6 Mo 7 O 24 · 4H 2 O), molybdenum-nickel alloy, or the like can be used. Alternatively, Mo may be previously dissolved in the common material, and the common material may be used as the Mo source.

(焼成工程)
次に、外部電極形成用金属ペーストが塗布されたセラミック積層体を、還元雰囲気中で1100〜1300℃で10分〜2時間焼成する。このようにして、内部に焼結体からなる誘電体層11と内部電極層12とが交互に積層されてなる積層チップ10と、積層方向上下の最外層として形成されるカバー層13と、下地層21とを有する焼結体が得られる。
(Baking process)
Next, the ceramic laminate coated with the external electrode forming metal paste is fired at 1100 to 1300 ° C. for 10 minutes to 2 hours in a reducing atmosphere. Thus, the laminated chip 10 in which the dielectric layers 11 and the internal electrode layers 12 made of a sintered body are alternately laminated, the cover layer 13 formed as the outermost layer above and below the lamination direction, A sintered body having the formation 21 is obtained.

(めっき処理工程)
その後、めっき処理工程を実施することによって、Cuめっき層22、Niめっき層23およびSnめっき層24を、下地層21上に順に形成する。以上の工程を経て、積層セラミックコンデンサ100が完成する。
(Plating process)
Thereafter, the Cu plating layer 22, the Ni plating layer 23, and the Sn plating layer 24 are sequentially formed on the base layer 21 by performing a plating process. Through the above steps, the multilayer ceramic capacitor 100 is completed.

図4(a)は、STEM(Scanning Transmission Electron Microscope)を用いて下地層21およびCuめっき層22を観察した結果である。図4(a)に示すように、下地層21とCuめっき層22との間に界面26が生じていることがわかる。   FIG. 4A shows the result of observing the base layer 21 and the Cu plating layer 22 using a STEM (Scanning Transmission Electron Microscope). As shown in FIG. 4A, it can be seen that an interface 26 is generated between the base layer 21 and the Cu plating layer 22.

図4(b)は、STEM−EDS(Energy−Dispersive-Spectroscopy)を用いて下地層21およびCuめっき層22におけるMoの分布を測定した結果である。図4(b)の測定領域は、図4(a)の測定領域と同範囲である。図4(b)の例では、中央部分の網掛け部分がMo濃度の比較的高い分布領域であり、介在物25に相当する。網掛けになっていない領域がMoの検出されなかった領域である。図4(a)および図4(b)の結果から、下地層21のめっき層側表面に、Moを含む介在物25が形成されていることがわかる。   FIG. 4B shows the result of measuring the Mo distribution in the underlayer 21 and the Cu plating layer 22 using STEM-EDS (Energy-Dispersive-Spectroscopy). The measurement region in FIG. 4B is the same range as the measurement region in FIG. In the example of FIG. 4B, the shaded portion at the center is a distribution region having a relatively high Mo concentration and corresponds to the inclusion 25. A region not shaded is a region where Mo was not detected. From the results of FIG. 4A and FIG. 4B, it can be seen that inclusions 25 containing Mo are formed on the surface of the base layer 21 on the plating layer side.

図4(a)と図4(b)とを対比すると、Moが局在化していることがわかった。この結果から、NiやCuとMoとは互いに固溶せずに金属間化合物を形成せず、互いに独立して分布していることがわかる。したがって、Moは水素透過係数が非常に低い単体のMoとして存在していることがわかる。以上のことから、外部電極20a,20bからの水素の侵入経路を遮断している(ブロッキング効果を発揮している)ことが裏付けられた。なお、Moが局在化する理由としては、Mo源を含む金属ペーストの焼き付けを、Mo源の融点より高い温度で行うことで、融解したMo源が下地層21の表面に析出したものと考えられる。   Comparing FIG. 4A and FIG. 4B, it was found that Mo was localized. From this result, it can be seen that Ni, Cu, and Mo do not form a solid solution with each other, do not form an intermetallic compound, and are distributed independently of each other. Therefore, it can be seen that Mo exists as a single Mo having a very low hydrogen permeability coefficient. From the above, it was confirmed that the hydrogen intrusion path from the external electrodes 20a and 20b is blocked (the blocking effect is exhibited). In addition, it is considered that Mo is localized because the molten Mo source is deposited on the surface of the underlayer 21 by baking the metal paste containing the Mo source at a temperature higher than the melting point of the Mo source. It is done.

次に、XPS(X-ray Photoelectron Spectroscopy)とAr(アルゴン)スパッタによる、下地層21の表面から誘電体層11に向かう深さ方向における、Mo濃度の測定結果について説明する。図5(a)は、測定箇所を例示する図である。図5(a)で例示するように、下地層21の表面から誘電体層11に向かう深さ方向におけるB線断面についてNi濃度を基準としたMo濃度を測定した。図5(b)は、B線断面におけるMo濃度の測定結果である。図5(b)において、横軸は下地層21の表面から誘電体層11に向かう深さ方向の距離を表し、縦軸はNi濃度を基準としたMo濃度の正規化値である。具体的には、各測定地点においてXPSによる組成分析をおこない、Ni濃度を基準としてMoの濃度を算出し、積層チップ10の端面におけるNi濃度を1とした場合の正規化値(at%)である。B線断面において、下地層21の表面近傍にMoが存在していることがわかる。すなわち、下地層21の表面においてMoが検出され、下地層21の表面から誘電体層11に向かう深さ方向において表面以外から検出限界以上のMoが検出されなかった。すなわち、下地層21の表面にMoが局在していることが裏付けられている。加えて、深さ方向に20nm間隔で測定を行ったが、最初の測定地点のみで検出限界以上のMoが検出されているため、Moの局在は深さ方向において20nm以下の厚みであることも確認できた。   Next, the measurement result of the Mo concentration in the depth direction from the surface of the underlayer 21 toward the dielectric layer 11 by XPS (X-ray Photoelectron Spectroscopy) and Ar (argon) sputtering will be described. FIG. 5A is a diagram illustrating measurement locations. As illustrated in FIG. 5A, the Mo concentration based on the Ni concentration was measured for the B line cross section in the depth direction from the surface of the base layer 21 toward the dielectric layer 11. FIG. 5B is a measurement result of the Mo concentration in the B line cross section. In FIG. 5B, the horizontal axis represents the distance in the depth direction from the surface of the base layer 21 toward the dielectric layer 11, and the vertical axis represents the normalized value of the Mo concentration based on the Ni concentration. Specifically, composition analysis by XPS is performed at each measurement point, the concentration of Mo is calculated based on the Ni concentration, and the normalized value (at%) when the Ni concentration at the end face of the multilayer chip 10 is 1. is there. It can be seen that Mo is present in the vicinity of the surface of the underlayer 21 in the B line cross section. That is, Mo was detected on the surface of the underlayer 21, and Mo beyond the detection limit was not detected from other than the surface in the depth direction from the surface of the underlayer 21 toward the dielectric layer 11. That is, it is confirmed that Mo is localized on the surface of the base layer 21. In addition, measurement was performed at intervals of 20 nm in the depth direction, but Mo above the detection limit was detected only at the first measurement point, and therefore the localization of Mo has a thickness of 20 nm or less in the depth direction. Was also confirmed.

本実施形態に係る製造方法によれば、下地層21のめっき層側の表面にMoを含む介在物25が形成される。この場合、Cuめっき層22、Niめっき層23およびSnめっき層24を形成する場合に発生する水素が内部電極層12に侵入することが抑制される。それにより、内部電極層12への水素の吸蔵が抑制され、誘電体層11の還元が抑制される。その結果、絶縁抵抗の低下が抑制される。また、Moを含む介在物25が20nm以下の厚みで形成されることで、下地層21上に形成されるめっき層に対する密着性の低下が抑制される。   According to the manufacturing method according to the present embodiment, inclusions 25 containing Mo are formed on the surface of the base layer 21 on the plating layer side. In this case, hydrogen generated when the Cu plating layer 22, the Ni plating layer 23, and the Sn plating layer 24 are formed is prevented from entering the internal electrode layer 12. Thereby, the occlusion of hydrogen into the internal electrode layer 12 is suppressed, and the reduction of the dielectric layer 11 is suppressed. As a result, a decrease in insulation resistance is suppressed. Moreover, since the inclusion 25 containing Mo is formed with a thickness of 20 nm or less, a decrease in adhesion to the plating layer formed on the base layer 21 is suppressed.

なお、外部電極形成前の金属ペーストにMo源を添加せずに、例えば金属ペースト塗布後に、スパッタ等でMo源の膜を形成する方法も可能である。   It is also possible to form a Mo source film by sputtering or the like after applying the metal paste without adding the Mo source to the metal paste before forming the external electrode.

以下、実施形態に係る積層セラミックコンデンサを作製し、特性について調べた。   Hereinafter, the multilayer ceramic capacitor according to the embodiment was produced, and the characteristics were examined.

(実施例)
チタン酸バリウム粉末に必要な添加物を添加し、ボールミルで十分に湿式混合粉砕して誘電体材料を得た。誘電体材料に有機バインダおよび溶剤を加えてドクターブレード法にて誘電体グリーンシートを作製した。誘電体グリーンシートの塗工厚みを0.8μmとし、有機バインダとしてポリビニルブチラール(PVB)等を用い、溶剤としてエタノール、トルエン酸等を加えた。その他、可塑剤などを加えた。次に、内部電極層12の主成分金属の粉末と、バインダと、溶剤と、必要に応じてその他助剤とを含んでいる内部電極形成用導電ペーストを作製した。内部電極形成用導電ペーストの有機バインダおよび溶剤には、誘電体グリーンシートとは異なるものを用いた。誘電体シートに内部電極形成用導電ペーストをスクリーン印刷した。内部電極形成用導電ペーストを印刷したシートを250枚重ね、その上下にカバーシートをそれぞれ積層した。その後、熱圧着によりセラミック積層体を得て、所定の形状に切断した。
(Example)
Necessary additives were added to the barium titanate powder and sufficiently wet-mixed and pulverized with a ball mill to obtain a dielectric material. An organic binder and a solvent were added to the dielectric material, and a dielectric green sheet was produced by a doctor blade method. The coating thickness of the dielectric green sheet was 0.8 μm, polyvinyl butyral (PVB) or the like was used as an organic binder, and ethanol, toluene acid or the like was added as a solvent. In addition, plasticizers were added. Next, a conductive paste for forming an internal electrode containing a powder of a main component metal of the internal electrode layer 12, a binder, a solvent, and other auxiliary agents as required was prepared. The organic binder and solvent for the internal electrode forming conductive paste were different from the dielectric green sheet. A conductive paste for forming internal electrodes was screen printed on the dielectric sheet. 250 sheets on which the internal electrode forming conductive paste was printed were stacked, and cover sheets were stacked on the top and bottom. Then, the ceramic laminated body was obtained by thermocompression bonding and cut into a predetermined shape.

得られたセラミック積層体をN雰囲気中で脱バインダした後に、セラミック積層体の両端面から各側面にかけて、Niを主成分とする金属フィラー、共材、バインダ、溶剤およびMo源を含む金属ペーストを塗布し、乾燥させた。Mo源として、MoOを用いた。実施例では、金属ペーストの固形分に対して0.1wt%のMoOを添加した。その後、還元雰囲気中で1100℃〜1300℃で10分〜2時間、金属ペーストをセラミック積層体と同時に焼成して焼結体を得た。 After removing the binder from the obtained ceramic laminate in an N 2 atmosphere, a metal paste containing a metal filler mainly composed of Ni, a co-material, a binder, a solvent, and a Mo source from both end faces to each side face of the ceramic laminate. Was applied and dried. MoO 3 was used as the Mo source. In the examples, 0.1 wt% of MoO 3 was added to the solid content of the metal paste. Thereafter, the metal paste was fired simultaneously with the ceramic laminate at 1100 ° C. to 1300 ° C. for 10 minutes to 2 hours in a reducing atmosphere to obtain a sintered body.

得られた焼結体の形状寸法は、長さ=0.6mm、幅=0.3mm、高さ0.3mmであった。焼結体をN雰囲気下800℃の条件で再酸化処理を行った後、メッキ処理して下地層21の表面にCuめっき層22、Niめっき層23およびSnめっき層24を形成し、積層セラミックコンデンサ100を得た。実施例に係るサンプルをそれぞれ100個作成した。 The shape and size of the obtained sintered body were length = 0.6 mm, width = 0.3 mm, and height 0.3 mm. The sintered body was subjected to re-oxidation treatment at 800 ° C. under N 2 atmosphere, and then plated to form a Cu plating layer 22, a Ni plating layer 23, and a Sn plating layer 24 on the surface of the underlayer 21. A ceramic capacitor 100 was obtained. 100 samples of each example were prepared.

(比較例)
比較例では下地層21用の金属ペーストにMo源を添加しなかった。他は、実施例と同様の条件とした。比較例に係るサンプルをそれぞれ100個作成した。
(Comparative example)
In the comparative example, the Mo source was not added to the metal paste for the base layer 21. The other conditions were the same as in the example. 100 samples according to comparative examples were prepared.

STEMを用いて下地層21およびCuめっき層22を観察した結果、実施例および比較例のいずれにおいても、下地層21とCuめっき層22との間に界面26が生じていることが確認された。さらに、STEM−EDSを用いて下地層21およびCuめっき層22におけるMoの分布を測定した結果、実施例ではMoを含む介在物25が確認された。比較例では、介在物25が確認されなかった。   As a result of observing the underlayer 21 and the Cu plating layer 22 using STEM, it was confirmed that an interface 26 was formed between the underlayer 21 and the Cu plating layer 22 in both the examples and the comparative examples. . Furthermore, as a result of measuring the distribution of Mo in the underlayer 21 and the Cu plating layer 22 using STEM-EDS, inclusions 25 containing Mo were confirmed in the examples. In the comparative example, the inclusion 25 was not confirmed.

実施例および比較例のそれぞれについて、温度=85℃、相対湿度85%、10Vの耐圧試験を100h時間行った。この場合に、60秒間100MΩ以下になるサンプルの発生率を調べた。表1は、その結果を示す。表1に示すように、比較例では、当該発生率が18%以上と高くなった。これは、外部電極20a,20bを透過して内部電極層12に水素が吸蔵され、当該水素によって誘電体層11が還元されたからであると考えられる。これに対して、実施例では、当該発生率が大幅に低下した。これは、下地層21のCuめっき層側表面にMoを含む介在物25が形成されたことで外部電極20a,20bの水素透過が抑制され、内部電極層12への水素吸蔵が抑制されたからであると考えられる。

Figure 2019212717
About each of an Example and a comparative example, the pressure | voltage resistant test of temperature = 85 degreeC, relative humidity 85%, and 10V was done for 100 hours. In this case, the occurrence rate of samples that were 100 MΩ or less for 60 seconds was examined. Table 1 shows the results. As shown in Table 1, in the comparative example, the incidence was as high as 18% or more. This is presumably because hydrogen was stored in the internal electrode layer 12 through the external electrodes 20a and 20b, and the dielectric layer 11 was reduced by the hydrogen. On the other hand, in the Example, the said incidence rate fell significantly. This is because the inclusion 25 containing Mo is formed on the surface of the base layer 21 on the Cu plating layer side, so that hydrogen permeation of the external electrodes 20a and 20b is suppressed, and hydrogen occlusion in the internal electrode layer 12 is suppressed. It is believed that there is.
Figure 2019212717

以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.

10 積層チップ
11 誘電体層
12 内部電極層
20a,20b 外部電極
21 下地層
22 Cuめっき層
23 Niめっき層
24 Snめっき層
100 積層セラミックコンデンサ
DESCRIPTION OF SYMBOLS 10 Multilayer chip 11 Dielectric layer 12 Internal electrode layer 20a, 20b External electrode 21 Underlayer 22 Cu plating layer 23 Ni plating layer 24 Sn plating layer 100 Multilayer ceramic capacitor

Claims (5)

セラミックを主成分とする誘電体層と、内部電極層と、が交互に積層され、積層された複数の前記内部電極層が交互に対向する2端面に露出するように形成され、略直方体形状を有する積層チップと、
前記2端面に形成された1対の外部電極と、を備え、
前記1対の外部電極は、下地層上にめっき層が形成された構造を有し、
前記下地層は、NiおよびCuの少なくともいずれか一方を含む金属または合金を主成分とし、前記めっき層側の表面の少なくとも一部に、Moを含む介在物が備わることを特徴とする積層セラミックコンデンサ。
Dielectric layers mainly composed of ceramic and internal electrode layers are alternately laminated, and the plurality of laminated internal electrode layers are formed so as to be exposed at two opposite end faces, and have a substantially rectangular parallelepiped shape. A laminated chip having,
A pair of external electrodes formed on the two end faces,
The pair of external electrodes has a structure in which a plating layer is formed on a base layer,
The underlayer has a metal or alloy containing at least one of Ni and Cu as a main component, and an inclusion containing Mo is provided on at least a part of the surface on the plating layer side. .
前記めっき層は、Snめっき層を含むことを特徴とする請求項1記載の積層セラミックコンデンサ。   The multilayer ceramic capacitor according to claim 1, wherein the plating layer includes a Sn plating layer. 前記下地層の主成分金属は、Niであることを特徴とする請求項1または2に記載の積層セラミックコンデンサ。   The multilayer ceramic capacitor according to claim 1, wherein a main component metal of the underlayer is Ni. 前記内部電極層は、Niを主成分とすることを特徴とする請求項1〜3のいずれか一項に記載の積層セラミックコンデンサ。   The multilayer ceramic capacitor according to claim 1, wherein the internal electrode layer contains Ni as a main component. 前記誘電体層の主成分セラミックは、ペロブスカイト構造を有することを特徴とする請求項1〜4のいずれか一項に記載の積層セラミックコンデンサ。   The multilayer ceramic capacitor according to claim 1, wherein the main component ceramic of the dielectric layer has a perovskite structure.
JP2018106422A 2018-06-01 2018-06-01 Multilayer ceramic capacitor and manufacturing method thereof Active JP7145652B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018106422A JP7145652B2 (en) 2018-06-01 2018-06-01 Multilayer ceramic capacitor and manufacturing method thereof
US16/417,323 US11264168B2 (en) 2018-06-01 2019-05-20 Multilayer ceramic capacitor with interposing molybdenum (Mo) ground layer
TW108117485A TWI807030B (en) 2018-06-01 2019-05-21 Multilayer ceramic capacitor
KR1020190060423A KR20190137692A (en) 2018-06-01 2019-05-23 Multilayer ceramic capacitor
CN201910461518.8A CN110556248B (en) 2018-06-01 2019-05-30 Multilayer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018106422A JP7145652B2 (en) 2018-06-01 2018-06-01 Multilayer ceramic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2019212717A true JP2019212717A (en) 2019-12-12
JP7145652B2 JP7145652B2 (en) 2022-10-03

Family

ID=68692732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018106422A Active JP7145652B2 (en) 2018-06-01 2018-06-01 Multilayer ceramic capacitor and manufacturing method thereof

Country Status (5)

Country Link
US (1) US11264168B2 (en)
JP (1) JP7145652B2 (en)
KR (1) KR20190137692A (en)
CN (1) CN110556248B (en)
TW (1) TWI807030B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101912291B1 (en) * 2017-10-25 2018-10-29 삼성전기 주식회사 Inductor
JP7089402B2 (en) * 2018-05-18 2022-06-22 太陽誘電株式会社 Multilayer ceramic capacitors and their manufacturing methods
JP7145652B2 (en) * 2018-06-01 2022-10-03 太陽誘電株式会社 Multilayer ceramic capacitor and manufacturing method thereof
JP7446705B2 (en) * 2018-06-12 2024-03-11 太陽誘電株式会社 Multilayer ceramic capacitor and its manufacturing method
US10971302B2 (en) * 2018-06-19 2021-04-06 Taiyo Yuden Co., Ltd. Multilayer ceramic capacitor and manufacturing method of the same
JP7348890B2 (en) 2020-10-30 2023-09-21 太陽誘電株式会社 Ceramic electronic components and their manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09219338A (en) * 1996-02-08 1997-08-19 Murata Mfg Co Ltd Ceramic electronic component
JP2001015376A (en) * 1999-06-30 2001-01-19 Kyocera Corp Laminated ceramic capacitor
JP2004228094A (en) * 2003-01-24 2004-08-12 E I Du Pont De Nemours & Co Terminal electrode composition material for multi-layer ceramic capacitor
JP2013165180A (en) * 2012-02-10 2013-08-22 Tdk Corp Electronic component and method of manufacturing electronic component

Family Cites Families (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3034857A (en) * 1959-08-03 1962-05-15 Du Pont Compounds of the formula ab'0.5 b"0.5 o3 and process for preparing the same
US4511601A (en) * 1983-05-13 1985-04-16 North American Philips Corporation Copper metallization for dielectric materials
JPS60118666A (en) * 1983-11-30 1985-06-26 太陽誘電株式会社 Dielectric ceramic composition
JPS61147406A (en) * 1984-12-18 1986-07-05 太陽誘電株式会社 Dielectric ceramic composition
JPH0630318B2 (en) 1987-09-21 1994-04-20 株式会社村田製作所 Monolithic ceramic capacitors
JPH0650701B2 (en) * 1989-05-18 1994-06-29 松下電器産業株式会社 Multilayer capacitor element and manufacturing method thereof
US5198154A (en) * 1990-03-19 1993-03-30 Asahi Kasei Kogyo Kabushiki Kaisha High temperature baking paste
EP0581251A3 (en) * 1992-07-31 1995-02-08 Taiyo Yuden Kk Ceramic materials of improved dielectric constants, and capacitors fabricated therefrom.
EP0618597B1 (en) * 1993-03-31 1997-07-16 Texas Instruments Incorporated Lightly donor doped electrodes for high-dielectric-constant materials
JP3180690B2 (en) * 1996-07-19 2001-06-25 株式会社村田製作所 Multilayer ceramic capacitors
JP3147785B2 (en) * 1996-09-02 2001-03-19 株式会社村田製作所 Chip electronic components
US6159267A (en) * 1997-02-24 2000-12-12 Superior Micropowders Llc Palladium-containing particles, method and apparatus of manufacture, palladium-containing devices made therefrom
EP1007308B1 (en) * 1997-02-24 2003-11-12 Superior Micropowders LLC Aerosol method and apparatus, particulate products, and electronic devices made therefrom
JP3567759B2 (en) * 1998-09-28 2004-09-22 株式会社村田製作所 Dielectric ceramic composition and multilayer ceramic capacitor
TW508600B (en) * 2000-03-30 2002-11-01 Taiyo Yuden Kk Laminated ceramic capacitor and its manufacturing method
JP2002050536A (en) * 2000-07-31 2002-02-15 Murata Mfg Co Ltd Reduction-resistant dielectric ceramic and laminated ceramic capacitor
US20020150777A1 (en) * 2001-04-11 2002-10-17 Kerchner Jeffrey A. Electrode additives including compositions and structures formed using the same
US7524528B2 (en) * 2001-10-05 2009-04-28 Cabot Corporation Precursor compositions and methods for the deposition of passive electrical components on a substrate
US20040126484A1 (en) * 2002-12-30 2004-07-01 Robert Croswell Method for forming ceramic film capacitors
JP4110978B2 (en) * 2003-01-24 2008-07-02 株式会社村田製作所 Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor
JP4111006B2 (en) * 2003-03-03 2008-07-02 株式会社村田製作所 Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor
JP2005159224A (en) * 2003-11-28 2005-06-16 Tdk Corp Laminated ceramic capacitor
JP4776913B2 (en) * 2004-01-08 2011-09-21 Tdk株式会社 Multilayer ceramic capacitor and manufacturing method thereof
JP4407299B2 (en) * 2004-01-30 2010-02-03 Tdk株式会社 Multilayer ceramic capacitor
JP2005294314A (en) * 2004-03-31 2005-10-20 Tdk Corp Multilayer ceramic capacitor
EP2013888A2 (en) 2006-04-26 2009-01-14 Basf Se Method for the production of a coating of a porous, electrically conductive support material with a dielectric, and production of capacitors having high capacity density with the aid of said method
JP4936825B2 (en) * 2006-08-02 2012-05-23 太陽誘電株式会社 Multilayer ceramic capacitor
JP4936850B2 (en) * 2006-09-15 2012-05-23 太陽誘電株式会社 Multilayer ceramic capacitor
TWI399766B (en) * 2006-09-27 2013-06-21 Kyocera Corp Multilayer ceramic capacitor and production method of the same
JP5144052B2 (en) * 2006-10-13 2013-02-13 太陽誘電株式会社 DIELECTRIC CERAMIC COMPOSITION, MULTILAYER CERAMIC CAPACITOR AND METHOD FOR PRODUCING THE SAME
KR101229823B1 (en) * 2007-02-26 2013-02-05 가부시키가이샤 무라타 세이사쿠쇼 Dielectric ceramic and layer-built ceramic capacitor
US7808770B2 (en) 2007-06-27 2010-10-05 Murata Manufacturing Co., Ltd. Monolithic ceramic capacitor
JP5297011B2 (en) * 2007-07-26 2013-09-25 太陽誘電株式会社 Multilayer ceramic capacitor and manufacturing method thereof
JP2009044017A (en) * 2007-08-09 2009-02-26 Taiyo Yuden Co Ltd Multilayer ceramic capacitor and method of manufacturing multilayer ceramic capacitor
JP5282634B2 (en) * 2008-06-25 2013-09-04 株式会社村田製作所 Multilayer ceramic electronic component and manufacturing method thereof
JP5018839B2 (en) * 2009-07-22 2012-09-05 株式会社村田製作所 Dielectric ceramic and multilayer ceramic capacitors
TW201133525A (en) 2010-03-23 2011-10-01 Samsung Electro Mech Y5V characteristic multi-layer ceramic capacitor
JP5234035B2 (en) * 2010-03-24 2013-07-10 株式会社村田製作所 Dielectric ceramic and multilayer ceramic capacitors
WO2011125543A1 (en) * 2010-04-02 2011-10-13 株式会社村田製作所 Dielectric ceramic and multilayered ceramic capacitor including same
JP5267583B2 (en) * 2011-01-21 2013-08-21 株式会社村田製作所 Multilayer ceramic electronic components
WO2012120712A1 (en) 2011-03-04 2012-09-13 太陽誘電株式会社 Laminated ceramic capacitor
US8574983B2 (en) * 2011-05-13 2013-11-05 Intermolecular, Inc. Method for fabricating a DRAM capacitor having increased thermal and chemical stability
US20130107419A1 (en) * 2011-10-28 2013-05-02 Kemet Electronics Corporation Multilayered ceramic capacitor with improved lead frame attachment
JP2013201318A (en) * 2012-03-26 2013-10-03 Taiyo Yuden Co Ltd Porous capacitor
US20130309591A1 (en) * 2012-04-25 2013-11-21 Nanotune Technologies Corp. Nanoporous energy chips and related devices and methods
JP5910533B2 (en) * 2012-05-08 2016-04-27 株式会社村田製作所 Electronic component, electronic component-embedded substrate, and electronic component manufacturing method
JP5708586B2 (en) * 2012-07-26 2015-04-30 株式会社村田製作所 Multilayer ceramic electronic component and manufacturing method thereof
JP5655039B2 (en) * 2012-07-31 2015-01-14 太陽誘電株式会社 Dielectric ceramics, multilayer ceramic capacitors and methods for producing them
WO2014097678A1 (en) 2012-12-21 2014-06-26 株式会社村田製作所 Laminated ceramic capacitor and method for producing same
JP5689143B2 (en) * 2013-03-19 2015-03-25 太陽誘電株式会社 Low profile multilayer ceramic capacitor
JP6106009B2 (en) * 2013-04-03 2017-03-29 太陽誘電株式会社 Ceramic electronic components
JP6513328B2 (en) * 2013-07-10 2019-05-15 太陽誘電株式会社 Multilayer ceramic capacitor
JP6398349B2 (en) 2013-08-23 2018-10-03 Tdk株式会社 Multilayer ceramic electronic components
JP5897661B2 (en) 2013-08-30 2016-03-30 太陽誘電株式会社 Multilayer ceramic capacitor
JP6696124B2 (en) 2014-09-19 2020-05-20 株式会社村田製作所 Multilayer ceramic capacitor and manufacturing method thereof
US9959973B2 (en) * 2014-09-19 2018-05-01 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor and method for manufacturing same
JP6218725B2 (en) * 2014-12-26 2017-10-25 太陽誘電株式会社 Multilayer ceramic capacitor
US9922770B2 (en) * 2014-12-26 2018-03-20 Taiyo Yuden Co., Ltd. Through-type multilayer ceramic capacitor
JP6502092B2 (en) 2014-12-26 2019-04-17 太陽誘電株式会社 Multilayer ceramic capacitor
JP6415337B2 (en) * 2015-01-28 2018-10-31 太陽誘電株式会社 Multilayer ceramic capacitor
KR102139753B1 (en) * 2015-02-26 2020-07-31 삼성전기주식회사 Ceramic electronic component and method of manufacturing the same
JP2016181597A (en) * 2015-03-24 2016-10-13 太陽誘電株式会社 Multilayer ceramic capacitor
KR101808794B1 (en) * 2015-05-07 2018-01-18 주식회사 모다이노칩 Laminated device
US10074482B2 (en) * 2015-07-27 2018-09-11 Taiyo Yuden Co., Ltd. Multi-layer ceramic electronic component having side face external electrode and method of producing the same
JP6378651B2 (en) * 2015-07-28 2018-08-22 太陽誘電株式会社 Multilayer ceramic capacitor
JP6533429B2 (en) 2015-07-28 2019-06-19 太陽誘電株式会社 Multilayer ceramic capacitor
JP6470228B2 (en) * 2016-05-24 2019-02-13 太陽誘電株式会社 Multilayer ceramic capacitor
JP2017216330A (en) * 2016-05-31 2017-12-07 株式会社村田製作所 Ceramic capacitor
JP6570478B2 (en) * 2016-05-31 2019-09-04 太陽誘電株式会社 Multilayer ceramic capacitor and manufacturing method thereof
JP6945972B2 (en) * 2016-06-20 2021-10-06 太陽誘電株式会社 Multilayer ceramic capacitors
JP6955846B2 (en) * 2016-06-20 2021-10-27 太陽誘電株式会社 Multilayer ceramic capacitors
JP6955845B2 (en) * 2016-06-20 2021-10-27 太陽誘電株式会社 Multilayer ceramic capacitors
JP6955849B2 (en) * 2016-06-20 2021-10-27 太陽誘電株式会社 Multilayer ceramic capacitors
JP6571048B2 (en) * 2016-06-24 2019-09-04 太陽誘電株式会社 Multilayer ceramic capacitor, ceramic powder, and manufacturing method thereof
JP2018032788A (en) 2016-08-25 2018-03-01 太陽誘電株式会社 Multilayer ceramic capacitor and method for manufacturing the same
JP6823975B2 (en) * 2016-09-06 2021-02-03 太陽誘電株式会社 Multilayer ceramic capacitors and their manufacturing methods
JP6823976B2 (en) 2016-09-06 2021-02-03 太陽誘電株式会社 Multilayer ceramic capacitors and their manufacturing methods
JP2018098327A (en) * 2016-12-13 2018-06-21 太陽誘電株式会社 Multilayer ceramic capacitor and manufacturing method thereof
JP6933461B2 (en) * 2016-12-21 2021-09-08 太陽誘電株式会社 Multilayer ceramic capacitors and their manufacturing methods
US10734159B2 (en) * 2016-12-22 2020-08-04 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
JP6795422B2 (en) 2017-02-16 2020-12-02 太陽誘電株式会社 Multilayer ceramic capacitors and their manufacturing methods
JP6909011B2 (en) * 2017-02-21 2021-07-28 太陽誘電株式会社 Multilayer ceramic capacitors
JP6955363B2 (en) * 2017-04-17 2021-10-27 太陽誘電株式会社 Multilayer ceramic capacitors and their manufacturing methods
TWI814730B (en) * 2017-07-19 2023-09-11 日商太陽誘電股份有限公司 Multilayer ceramic capacitor and manufacturing method thereof
JP7227690B2 (en) * 2017-07-26 2023-02-22 太陽誘電株式会社 Multilayer ceramic capacitor and manufacturing method thereof
JP7131897B2 (en) * 2017-09-27 2022-09-06 太陽誘電株式会社 Ceramic electronic component and manufacturing method thereof
JP2019091813A (en) * 2017-11-15 2019-06-13 太陽誘電株式会社 Electronic component and electronic component mounting circuit board
JP7098340B2 (en) 2018-01-26 2022-07-11 太陽誘電株式会社 Multilayer ceramic capacitors and their manufacturing methods
JP7193918B2 (en) * 2018-02-08 2022-12-21 太陽誘電株式会社 Multilayer ceramic capacitor and manufacturing method thereof
JP7347926B2 (en) * 2018-03-02 2023-09-20 太陽誘電株式会社 Manufacturing method of multilayer ceramic capacitor and multilayer ceramic capacitor
JP7107712B2 (en) * 2018-03-19 2022-07-27 太陽誘電株式会社 Ceramic electronic component and manufacturing method thereof
JP7089402B2 (en) * 2018-05-18 2022-06-22 太陽誘電株式会社 Multilayer ceramic capacitors and their manufacturing methods
JP7424740B2 (en) 2018-05-18 2024-01-30 太陽誘電株式会社 Multilayer ceramic capacitor and its manufacturing method
JP7089404B2 (en) * 2018-05-22 2022-06-22 太陽誘電株式会社 Ceramic electronic components and their manufacturing methods
JP7145652B2 (en) * 2018-06-01 2022-10-03 太陽誘電株式会社 Multilayer ceramic capacitor and manufacturing method thereof
JP7231340B2 (en) * 2018-06-05 2023-03-01 太陽誘電株式会社 Ceramic electronic component and manufacturing method thereof
JP7446705B2 (en) * 2018-06-12 2024-03-11 太陽誘電株式会社 Multilayer ceramic capacitor and its manufacturing method
US10971302B2 (en) * 2018-06-19 2021-04-06 Taiyo Yuden Co., Ltd. Multilayer ceramic capacitor and manufacturing method of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09219338A (en) * 1996-02-08 1997-08-19 Murata Mfg Co Ltd Ceramic electronic component
JP2001015376A (en) * 1999-06-30 2001-01-19 Kyocera Corp Laminated ceramic capacitor
JP2004228094A (en) * 2003-01-24 2004-08-12 E I Du Pont De Nemours & Co Terminal electrode composition material for multi-layer ceramic capacitor
JP2013165180A (en) * 2012-02-10 2013-08-22 Tdk Corp Electronic component and method of manufacturing electronic component

Also Published As

Publication number Publication date
CN110556248A (en) 2019-12-10
TW202004794A (en) 2020-01-16
TWI807030B (en) 2023-07-01
KR20190137692A (en) 2019-12-11
CN110556248B (en) 2023-01-17
JP7145652B2 (en) 2022-10-03
US20190371526A1 (en) 2019-12-05
US11264168B2 (en) 2022-03-01

Similar Documents

Publication Publication Date Title
TWI725264B (en) Multilayer ceramic capacitor and making method for same
JP7145652B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
CN109559892B (en) Ceramic electronic device and method for manufacturing ceramic electronic device
JP7446705B2 (en) Multilayer ceramic capacitor and its manufacturing method
JP2019029422A (en) Multilayer ceramic capacitor and manufacturing method thereof
US11081282B2 (en) Multilayer ceramic capacitor with copper oxide layer and method of manufacturing the same
JP2019087627A (en) Multilayer ceramic capacitor
CN110690047B (en) Multilayer ceramic capacitor and method for manufacturing same
TW202318452A (en) Ceramic electronic device and manufacturing method of the same
JP7437866B2 (en) Ceramic electronic components and their manufacturing method
JP2022143334A (en) Ceramic electronic component and manufacturing method thereof
US10607782B2 (en) Ceramic electronic device and manufacturing method of ceramic electronic device
KR20230109095A (en) Multilayer ceramic electronic device and manufacturing method of the same
JP2018182107A (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2023043216A (en) Ceramic electronic component and method of manufacturing the same
JP2021068734A (en) Ceramic electronic component and manufacturing method thereof
JP7105615B2 (en) Ceramic electronic component and manufacturing method thereof
WO2024070428A1 (en) Ceramic electronic component and metho for producing ceramic electronic component
JP2023034395A (en) Ceramic electronic component and manufacturing method for the same
JP2024050136A (en) Ceramic electronic components and their manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220920

R150 Certificate of patent or registration of utility model

Ref document number: 7145652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150