JP2019188281A - Catalyst for producing hydrocarbon from carbon dioxide and hydrogen, process for producing said catalyst, and process for producing hydrocarbon from carbon dioxide and hydrogen - Google Patents

Catalyst for producing hydrocarbon from carbon dioxide and hydrogen, process for producing said catalyst, and process for producing hydrocarbon from carbon dioxide and hydrogen Download PDF

Info

Publication number
JP2019188281A
JP2019188281A JP2018080915A JP2018080915A JP2019188281A JP 2019188281 A JP2019188281 A JP 2019188281A JP 2018080915 A JP2018080915 A JP 2018080915A JP 2018080915 A JP2018080915 A JP 2018080915A JP 2019188281 A JP2019188281 A JP 2019188281A
Authority
JP
Japan
Prior art keywords
catalyst
carbon dioxide
producing
hydrogen
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018080915A
Other languages
Japanese (ja)
Other versions
JP7009294B2 (en
Inventor
典之 山根
Noriyuki Yamane
典之 山根
鈴木 公仁
Kimihito Suzuki
公仁 鈴木
讓 加藤
Yuzuru Kato
讓 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Corp
Priority to JP2018080915A priority Critical patent/JP7009294B2/en
Publication of JP2019188281A publication Critical patent/JP2019188281A/en
Application granted granted Critical
Publication of JP7009294B2 publication Critical patent/JP7009294B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a catalyst that can produce a liquid product material of C5 or higher with high selectivity even when using a cobalt-based catalyst under a condition in which the reaction temperature is as low as about 220°C.SOLUTION: The catalyst for producing hydrocarbon from carbon dioxide and hydrogen according to the present invention contains a catalyst carrier mainly composed of silica and cobalt supported on the catalyst carrier, and further contains sodium, potassium, calcium and magnesium by more than 0.15 mass% and 3.5 mass% or less in total.SELECTED DRAWING: None

Description

本発明は、二酸化炭素と水素から炭化水素を製造するための触媒、その触媒の製造方法、及び二酸化炭素と水素とから炭化水素を製造する方法に関する。   The present invention relates to a catalyst for producing a hydrocarbon from carbon dioxide and hydrogen, a method for producing the catalyst, and a method for producing a hydrocarbon from carbon dioxide and hydrogen.

近年、地球温暖化への関心が高まっており、温室効果ガス排出削減等の国際的枠組みを協議するCOP(Conference of the Parties)では、世界共通の長期目標として産業革命前からの平均気温の上昇を2℃よりも十分下方に保持することを目的とし、排出ピークをできるだけ早期に抑え、最新の科学に従って急激に削減することが目標とされている。COP21パリ協定では、全ての国が長期の温室効果ガス低排出開発戦略を策定・提出するように努めるべきとされており、我が国では長期的目標として2050年までに80%の温室効果ガスの排出削減を目指すことが策定された。人為的に排出されている温室効果ガスの中では、二酸化炭素の影響量が最も大きいと見積もられており、二酸化炭素削減のための対策技術開発が各所で精力的に行われている。対策技術の一つとして、排出された二酸化炭素を有用物に変換する幾つかの試みが提案されているが、二酸化炭素を別の物質に変換させるためには大きなエネルギーが必要であり、反応を促進させるための有効な触媒の開発が望まれていた。   In recent years, interest in global warming has increased, and COP (Conference of the Parties), which discusses international frameworks such as reducing greenhouse gas emissions, has raised the average temperature since the pre-industrial level as a global long-term goal. The objective is to keep the temperature well below 2 ° C., and the goal is to suppress the emission peak as early as possible and reduce it rapidly according to the latest science. According to the COP21 Paris Agreement, all countries should endeavor to formulate and submit a long-term greenhouse gas low emission development strategy. In Japan, 80% greenhouse gas emissions will be achieved by 2050 as a long-term target. Aiming for reduction was formulated. It is estimated that the amount of influence of carbon dioxide is the largest among the artificially emitted greenhouse gases, and countermeasure technology development for reducing carbon dioxide is being vigorously carried out in various places. As one of the countermeasure technologies, some attempts to convert the emitted carbon dioxide into useful substances have been proposed, but a large amount of energy is required to convert the carbon dioxide into another substance, and the reaction The development of an effective catalyst for promoting it has been desired.

また、二酸化炭素削減に資する技術とするためには、需要の多い有用物を製造する必要がある。炭化水素(メタンやガソリン等の燃料)は二酸化炭素を炭素源として製造可能な有用物の中でも最も需要が多く、二酸化炭素と水素を原料として炭化水素を製造する技術は二酸化炭素削減のための対策技術として位置付けられる。   In addition, in order to obtain a technology that contributes to carbon dioxide reduction, it is necessary to produce useful products with high demand. Hydrocarbons (fuels such as methane and gasoline) are most in demand among useful materials that can be produced using carbon dioxide as a carbon source, and technologies for producing hydrocarbons using carbon dioxide and hydrogen as raw materials are measures to reduce carbon dioxide. Positioned as a technology.

化学反応によって炭化水素を製造する技術としては、一酸化炭素と水素の混合ガス、いわゆる合成ガスを原料として、触媒を用いて変換するF−T合成が知られている。触媒としては、コバルト系、鉄系が有効であり、世界中で精力的に技術開発が行われてきた。主触媒であるコバルト、鉄の微細構造、助触媒の機能等、触媒性能に対する触媒組成、構造の詳細が明らかにされている。一方、二酸化炭素と水素を原料とした炭化水素への変換においても、従来のF−T合成触媒に似た組成の触媒を使用する試みについて、鉄系触媒の報告(非特許文献1、2)や、コバルト系触媒(非特許文献3)の報告があるものの、地球温暖化への関心の高まりを受けて取り組みの始まった研究が多く、触媒性能に対する詳細な検討は十分とは言えない状況である。   As a technique for producing hydrocarbons by a chemical reaction, FT synthesis is known in which a mixed gas of carbon monoxide and hydrogen, so-called synthesis gas, is used as a raw material and converted using a catalyst. Cobalt-based and iron-based catalysts are effective as catalysts, and technological development has been energetically performed all over the world. Details of the catalyst composition and structure with respect to the catalyst performance, such as the main catalyst cobalt and iron microstructure, the function of the promoter, etc. have been clarified. On the other hand, in the conversion to hydrocarbons using carbon dioxide and hydrogen as raw materials, reports on iron-based catalysts have been made regarding attempts to use a catalyst having a composition similar to that of conventional FT synthesis catalysts (Non-Patent Documents 1 and 2). Although there are reports of cobalt-based catalysts (Non-patent Document 3), there are many studies that have been undertaken in response to growing interest in global warming, and detailed studies on catalyst performance are not sufficient. is there.

M.Albercht et al., Applied Catalysis B:Environmental, 204(2017)119-126M.Albercht et al., Applied Catalysis B: Environmental, 204 (2017) 119-126 Y.H.Choi et al., Applied Catalysis B:Environmental, 202(2017)605-610Y.H.Choi et al., Applied Catalysis B: Environmental, 202 (2017) 605-610 C.G.Visconti et al., Catalysis Today, 277(2016)161-170C.G.Visconti et al., Catalysis Today, 277 (2016) 161-170

二酸化炭素と水素を原料とした炭化水素製造における反応は、従来の一酸化炭素と水素を原料としたF−T合成反応と同様に発熱反応であるが、プラントの安定操業のためには反応熱を効果的に除去することが重要である。反応形式としては、気相合成プロセス(固定床、噴流床、流動床)と、液相合成プロセス(スラリー床)があり、それぞれ特徴を有しているが、熱除去効率が高く、生成した高沸点炭化水素の触媒上への蓄積やそれに伴う反応管閉塞が起こらないスラリー床液相合成プロセスが有利であると予想される。しかし、二酸化炭素を排出する発生源において、炭化水素への変換プラントを併設する場合には、天然ガス田を対象とした従来のF−T合成プラントと比較して生産量は少なくなると考えられ、この場合にはマイクロチャネル反応器が有利となる可能性も考えられる。   The reaction in hydrocarbon production using carbon dioxide and hydrogen as raw materials is an exothermic reaction similar to the conventional FT synthesis reaction using carbon monoxide and hydrogen as raw materials. It is important to remove effectively. The reaction formats include gas phase synthesis process (fixed bed, spouted bed, fluidized bed) and liquid phase synthesis process (slurry bed). It is expected that a slurry bed liquid phase synthesis process in which boiling point hydrocarbons do not accumulate on the catalyst and the resulting reaction tube blockage will be advantageous. However, in the generation source that emits carbon dioxide, when a conversion plant for hydrocarbons is installed, the production amount is considered to be smaller than that of a conventional FT synthesis plant for natural gas fields, In this case, a microchannel reactor may be advantageous.

一般的に触媒の活性は、高ければ高いほど好ましいことは言うまでもない。特にスラリー床では、良好なスラリー流動状態を保持するためにはスラリー濃度、ひいては触媒濃度を一定の値以下にする必要があるという制限が存在するため、触媒の高活性化は、プロセス設計の自由度を拡大する上で、非常に重要な要素となる。   Needless to say, the higher the activity of the catalyst, the better. In particular, in the slurry bed, there is a restriction that the slurry concentration and thus the catalyst concentration needs to be a certain value or less in order to maintain a good slurry flow state. It becomes a very important element in expanding the degree.

ところが、二酸化炭素と水素を原料とする炭化水素製造においては、触媒性能に及ぼす因子に関する知見は十分ではない。このような反応における触媒活性や選択性は未だ十分ではなく、鉄系触媒ではC5以上の液状生成物は得られるものの反応温度が300℃程度と厳しく、コバルト系触媒を使用すると反応温度は220℃程度と比較的マイルドになるもののC5以上の液状生成物の生成量はわずかである。以上、プラントの設計自由度を拡大する観点からも高性能触媒の開発が急務である。即ち、本発明では反応温度が220℃程度と低い条件でコバルト系触媒を使用してもC5以上の液状生成物が、高い選択率で製造可能な触媒を提供する。   However, in hydrocarbon production using carbon dioxide and hydrogen as raw materials, knowledge about factors affecting catalyst performance is not sufficient. The catalytic activity and selectivity in such a reaction are not yet sufficient. Although a liquid product of C5 or higher can be obtained with an iron-based catalyst, the reaction temperature is as severe as about 300 ° C. When a cobalt-based catalyst is used, the reaction temperature is 220 ° C. Although it is relatively mild, the amount of liquid product of C5 or higher is slight. As described above, the development of a high-performance catalyst is urgently necessary from the viewpoint of expanding the degree of freedom in plant design. That is, the present invention provides a catalyst capable of producing a liquid product of C5 or higher with a high selectivity even when a cobalt-based catalyst is used under a reaction temperature as low as about 220 ° C.

本発明者らは、シリカを主体とする触媒担体にコバルトが担持され、シリカ製造の原料や触媒製造工程において混入する成分であるナトリウム、カリウム、カルシウム、及びマグネシウムの合計を0.15質量%超3.5質量%以下の適切な範囲に制御することによって、二酸化炭素と水素を原料とする炭化水素製造において触媒が高い性能を有すること、特にC5以上の液状生成物を高い選択率で生成することを見出し、本発明に至った。   The present inventors have cobalt supported on a catalyst carrier mainly composed of silica, and the total of sodium, potassium, calcium, and magnesium, which are components mixed in the raw material for silica production and the catalyst production process, exceeds 0.15% by mass. By controlling to an appropriate range of 3.5% by mass or less, the catalyst has high performance in hydrocarbon production using carbon dioxide and hydrogen as raw materials, and in particular, a liquid product of C5 or higher is produced with high selectivity. As a result, they have reached the present invention.

本発明は、二酸化炭素からの炭化水素製造において高い活性を有する触媒と触媒の製造方法及び該触媒を用いた炭化水素の製造方法に関する。更に詳しくは、以下に記す通りである。
(1) シリカを主成分とする触媒担体と、
前記触媒担体に担持されたコバルトと、を含み、
さらに、ナトリウム、カリウム、カルシウム、及びマグネシウムを、合計で、0.15質量%超3.5質量%以下含む、二酸化炭素と水素とから炭化水素を製造するための触媒。
(2)さらに、前記触媒担体に担持されたジルコニウム成分を含む、(1)に記載の二酸化炭素と水素とから炭化水素を製造するための触媒。
(3)前記触媒中におけるナトリウム、カリウム、カルシウム、及びマグネシウムの合計量が0.2〜2.0質量%である、(1)又は(2)に記載の二酸化炭素と水素とから炭化水素を製造するための触媒。
(4)前記触媒中におけるコバルトの含有量が金属換算で5〜50質量%である、(1)〜(3)のいずれかに記載の二酸化炭素と水素とから炭化水素を製造する触媒。
(5)前記触媒中におけるジルコニウム成分の含有量がZr/Coのモル比で0.03〜0.6である、(2)〜(4)のいずれかに記載の二酸化炭素と水素とから炭化水素を製造するための触媒。
(6)前記触媒担体が、8〜50nmの細孔径、80〜450m/gの比表面積、および0.3〜2.0mL/gの細孔容量を同時に満足する、(1)〜(5)のいずれかに記載の二酸化炭素と水素とから炭化水素を製造するための触媒。
(7)前記触媒担体が球状のシリカである(1)〜(6)のいずれかに記載の二酸化炭素と水素とから炭化水素を製造するための触媒。
(8)前記触媒担体を、噴霧法により球状に成形する、(1)〜(7)のいずれかに記載の二酸化炭素と水素とから炭化水素を製造するための触媒の製造方法。
(9)前記触媒担体中のナトリウムの含有量が0.15質量%超3.5質量%以下である、(8)に記載の二酸化炭素と水素とから炭化水素を製造するための触媒の製造方法。
(10)(1)〜(7)のいずれかに記載の二酸化炭素と水素とから炭化水素を製造するための触媒を製造する方法であって、シリカを主成分とする触媒担体に、含浸法、インシピエントウェットネス法、沈殿法、又はイオン交換法を用いて、コバルト成分及び/又はジルコニウム成分を担持させる二酸化炭素と水素とから炭化水素を製造するための触媒の製造方法。
(11)前記触媒担体にジルコニウム成分を担持させ、乾燥処理、又は乾燥処理及び焼成処理を行い、
次いで前記触媒担体にコバルト成分を担持させ、還元処理、又は焼成処理及び還元処理を行う、(10)に記載の二酸化炭素と水素とから炭化水素を製造するための触媒の製造方法。
(12)(1)〜(7)のいずれかに記載の二酸化炭素から炭化水素を製造する触媒を用いて炭化水素を製造する、二酸化炭素と水素とから炭化水素を製造する方法。
(13)スラリー床を用いた液相反応で前記炭化水素を製造する、(12)に記載の二酸化炭素と水素とから炭化水素を製造する方法。
The present invention relates to a catalyst having high activity in the production of hydrocarbons from carbon dioxide, a method for producing the catalyst, and a method for producing hydrocarbons using the catalyst. Further details are as described below.
(1) a catalyst carrier mainly composed of silica;
Cobalt supported on the catalyst carrier,
Furthermore, the catalyst for manufacturing a hydrocarbon from a carbon dioxide and hydrogen which contains sodium, potassium, calcium, and magnesium in total more than 0.15 mass% and 3.5 mass% or less.
(2) The catalyst for producing hydrocarbons from carbon dioxide and hydrogen according to (1), further comprising a zirconium component supported on the catalyst carrier.
(3) A hydrocarbon is produced from carbon dioxide and hydrogen according to (1) or (2), wherein the total amount of sodium, potassium, calcium and magnesium in the catalyst is 0.2 to 2.0% by mass. Catalyst for manufacturing.
(4) The catalyst which manufactures a hydrocarbon from the carbon dioxide and hydrogen in any one of (1)-(3) whose content of cobalt in the said catalyst is 5-50 mass% in conversion of a metal.
(5) Carbonization from carbon dioxide and hydrogen according to any one of (2) to (4), wherein the content of the zirconium component in the catalyst is 0.03 to 0.6 in terms of a molar ratio of Zr / Co. Catalyst for producing hydrogen.
(6) The catalyst carrier simultaneously satisfies a pore diameter of 8 to 50 nm, a specific surface area of 80 to 450 m 2 / g, and a pore volume of 0.3 to 2.0 mL / g, (1) to (5 The catalyst for manufacturing a hydrocarbon from the carbon dioxide and hydrogen in any one of.
(7) The catalyst for producing a hydrocarbon from carbon dioxide and hydrogen according to any one of (1) to (6), wherein the catalyst carrier is spherical silica.
(8) The method for producing a catalyst for producing a hydrocarbon from carbon dioxide and hydrogen according to any one of (1) to (7), wherein the catalyst carrier is formed into a spherical shape by a spraying method.
(9) Production of a catalyst for producing hydrocarbons from carbon dioxide and hydrogen according to (8), wherein the content of sodium in the catalyst carrier is more than 0.15% by mass and 3.5% by mass or less. Method.
(10) A method for producing a catalyst for producing a hydrocarbon from carbon dioxide and hydrogen according to any one of (1) to (7), wherein a catalyst carrier mainly composed of silica is impregnated. A method for producing a catalyst for producing a hydrocarbon from carbon dioxide and hydrogen carrying a cobalt component and / or a zirconium component, using an incipient wetness method, a precipitation method, or an ion exchange method.
(11) A zirconium component is supported on the catalyst carrier, and a drying process or a drying process and a firing process are performed.
Next, the method for producing a catalyst for producing hydrocarbons from carbon dioxide and hydrogen according to (10), wherein a cobalt component is supported on the catalyst carrier and subjected to reduction treatment, or calcination treatment and reduction treatment.
(12) A method for producing a hydrocarbon from carbon dioxide and hydrogen, wherein the hydrocarbon is produced using the catalyst for producing a hydrocarbon from carbon dioxide according to any one of (1) to (7).
(13) The method for producing a hydrocarbon from carbon dioxide and hydrogen according to (12), wherein the hydrocarbon is produced by a liquid phase reaction using a slurry bed.

本発明によると二酸化炭素と水素を原料とする炭化水素製造において、反応温度が低くても活性に優れ、C5以上の液状生成物の選択率の高いコバルト系触媒を提供することができる。   According to the present invention, in the hydrocarbon production using carbon dioxide and hydrogen as raw materials, it is possible to provide a cobalt-based catalyst which is excellent in activity even when the reaction temperature is low and has a high selectivity for a liquid product of C5 or higher.

以下、本発明を好適な実施形態に基づき、更に詳述する。   Hereinafter, the present invention will be described in more detail based on preferred embodiments.

<1.触媒>
本実施形態にかかる触媒は、シリカを主成分とする触媒担体(以下、単に「シリカ担体」ともいう。)上に、二酸化炭素と水素を原料とする炭化水素製造に活性を有する金属としてコバルトを含むものである。また、助触媒としてジルコニウム成分を含むことができる。
<1. Catalyst>
The catalyst according to the present embodiment has cobalt as a metal having an activity for producing hydrocarbons using carbon dioxide and hydrogen as raw materials on a catalyst carrier mainly composed of silica (hereinafter also simply referred to as “silica carrier”). Is included. Moreover, a zirconium component can be included as a promoter.

そして、本実施形態においては、触媒中におけるナトリウム、カリウム、カルシウム、及びマグネシウムの総含有量は、0.15質量%超3.5質量%以下である。このように、触媒がナトリウム、カリウム、カルシウム、マグネシウム等のアルカリ金属及びアルカリ土類金属を適切な範囲で含有することで、C5以上の液状生成物の選択率が向上する。触媒性能へ最も影響が大きいのは、アルカリ金属のナトリウム、及びカリウムであり、次に影響が大きいのはアルカリ土類金属のカルシウムとマグネシウムである。触媒担体中のナトリウム、カリウム、カルシウム、及びマグネシウムの含有量が3.5質量%を上回ると、反応活性が低下するため、ナトリウム、カリウム、カルシウム、及びマグネシウムの含有量は3.5質量%以下とすることが好ましい。   In this embodiment, the total content of sodium, potassium, calcium, and magnesium in the catalyst is more than 0.15% by mass and 3.5% by mass or less. Thus, the selectivity of the C5 or higher liquid product is improved when the catalyst contains an alkali metal such as sodium, potassium, calcium, and magnesium and an alkaline earth metal in an appropriate range. The alkali metals sodium and potassium have the greatest impact on catalyst performance, and the alkaline earth metals calcium and magnesium have the next greatest impact. When the content of sodium, potassium, calcium, and magnesium in the catalyst support exceeds 3.5% by mass, the reaction activity decreases, so the content of sodium, potassium, calcium, and magnesium is 3.5% by mass or less. It is preferable that

なお、ナトリウム、カリウム、カルシウム、及びマグネシウム等のアルカリ金属及びアルカリ土類金属は、触媒の製造時において混入し得る成分である。例えば、触媒担体製造時においては、ナトリウム、カリウム、カルシウム、及びマグネシウムはシリカを主成分とする担体の製造工程で使用される洗浄水に含有されるものや、出発原料に含有される金属によるものがある。   Note that alkali metals and alkaline earth metals such as sodium, potassium, calcium, and magnesium are components that can be mixed during the production of the catalyst. For example, at the time of catalyst carrier production, sodium, potassium, calcium, and magnesium are contained in the washing water used in the production process of the carrier containing silica as the main component, or from the metal contained in the starting material. There is.

また、触媒担体に金属系化合物を担持する際には、ナトリウム、カリウム、カルシウム、及びマグネシウムは担持する金属系化合物の前駆体、担持の際の処理水や洗浄水、担持後の乾燥工程や焼成工程で混入する可能性がある。これらのうち、カリウムは、シリカを主成分とする担体から製造した触媒においては、ごく僅かしか含まれていないことが多く、ナトリウム、カルシウム、マグネシウムの含有量が比較的多い。通常、これらの成分は、不純物として認識されており、他の不純物、例えば大量の硫酸ナトリウム、アルミニウム、鉄などとともに、極力除去した上で触媒担体として使用される。   In addition, when loading a metal compound on the catalyst carrier, sodium, potassium, calcium, and magnesium are precursors of the metal compound to be loaded, treated water and washing water at the time of loading, drying step and baking after loading. There is a possibility of mixing in the process. Of these, potassium is often contained in a catalyst produced from a carrier mainly composed of silica, and the contents of sodium, calcium and magnesium are relatively high. Usually, these components are recognized as impurities, and are used as a catalyst support after being removed as much as possible together with other impurities such as a large amount of sodium sulfate, aluminum, iron and the like.

従って、本発明においては、通常混入を避け、極力含有量を低減させるべき成分であるナトリウム、カリウム、カルシウム、及びマグネシウムを敢えて適切な範囲の合計含有量に制御することにより、C5以上の液状生成物の選択率を向上させることを可能とした。   Therefore, in the present invention, normal mixing is avoided, and sodium, potassium, calcium, and magnesium, which are components that should be reduced as much as possible, are intentionally controlled to a total content within an appropriate range, thereby producing a liquid product of C5 or higher. It was possible to improve the selectivity of the product.

なお、これらの金属は、酸化物等の化合物となって存在するものも多いが、全て金属換算した量で含有量を算出する。触媒中におけるナトリウム、カリウム、カルシウム、及びマグネシウムの総含有量は、0.15質量%超3.5質量%以下であり、好ましくは0.2〜2.0質量%、より好ましくは0.2〜1.2質量%である。なお、これらアルカリ金属、アルカリ土類金属の含有量は総含有量であり、これらの中でいずれかが含まれない場合もあるが、その場合においてもこれらの総含有量が0.15質量%超3.5質量%以下であれば良い。   In addition, although many of these metals exist as compounds such as oxides, the content is calculated in an amount converted into metal. The total content of sodium, potassium, calcium and magnesium in the catalyst is more than 0.15% by mass and 3.5% by mass or less, preferably 0.2 to 2.0% by mass, more preferably 0.2%. It is -1.2 mass%. In addition, the content of these alkali metals and alkaline earth metals is the total content, and some of them may not be included, but even in that case, the total content is 0.15% by mass. What is necessary is just super 3.5 mass% or less.

(1.1. 触媒担体)
上述したように、本実施形態に係る触媒において、触媒担体は、シリカを主成分とする。ここでいうシリカを主成分とする触媒担体とは、シリカ含有量が50質量%以上で100質量%未満のものであり、シリカ以外にアルミナを含有するシリカ−アルミナ担体や、シリカ担体の製造工程における不可避的不純物を少量含むものを指す。触媒中、及び触媒担体中のシリカ含有量の測定方法は、酸分解やアルカリ溶融等の前処理後にICP−AES(Inductively Coupled Plasma Atomic Emission Spectroscopy−Auger Electron Spectroscopy)法にて測定する方法とする。
(1.1. Catalyst support)
As described above, in the catalyst according to this embodiment, the catalyst carrier has silica as a main component. The catalyst carrier having silica as a main component as used herein means a silica-alumina carrier containing silica in addition to silica and having a silica content of 50% by mass or more and less than 100% by mass, or a process for producing a silica carrier. It contains a small amount of inevitable impurities. The silica content in the catalyst and the catalyst support is measured by ICP-AES (Inductively Coupled Plasma Atomic Emission Spectroscopy-Auger Electron Spectroscopy) method after pretreatment such as acid decomposition and alkali melting.

なお、シリカを主成分とする触媒担体中のナトリウム、カリウム、カルシウム、及びマグネシウムの合計含有量は0.15質量%超3.5質量%以下が好ましく、より好ましくは0.2〜2.0質量%、更に好ましくは0.2〜1.2質量%である。   The total content of sodium, potassium, calcium, and magnesium in the catalyst carrier mainly composed of silica is preferably more than 0.15% by mass and 3.5% by mass or less, and more preferably 0.2 to 2.0%. It is 0.2 mass%, More preferably, it is 0.2-1.2 mass%.

触媒担体の物理性状としては特に限定されないが、触媒活性の観点からは、金属の分散度を高く保ち、担持したコバルト金属の反応に寄与する効率を向上させるためには、高比表面積の触媒担体を使用することが好ましい。しかし、比表面積を大きくするためには、気孔径を小さくする、細孔容積を大きくする必要があるものの、この二つの要因を増大させると、耐摩耗性や強度が低下することになるため、触媒担体の各物性が、以下に示す範囲とすることが、活性、強度の両面から好ましい。細孔径が8〜50nm、比表面積が80〜450m/g、細孔容積が0.3〜2.0mL/gを同時に満足するものが、触媒用の担体として、極めて好適である。細孔径が8〜30nm、比表面積が100〜400m/g、細孔容積が0.4〜1.5mL/gを同時に満足するものであればより好ましく、細孔径が10〜20nm、比表面積が150〜350m/g、細孔容積が0.4〜1.2mL/gを同時に満足するものであれば更に好ましい。上記の比表面積はBET法で、細孔容積は前記水銀圧入法で測定する。また、細孔径はガス吸着法で測定する。 The physical properties of the catalyst carrier are not particularly limited, but from the viewpoint of catalyst activity, in order to keep the metal dispersibility high and improve the efficiency of contributing to the reaction of the supported cobalt metal, the catalyst carrier having a high specific surface area. Is preferably used. However, in order to increase the specific surface area, it is necessary to reduce the pore diameter and increase the pore volume, but if these two factors are increased, the wear resistance and strength will be reduced. It is preferable from the standpoints of both activity and strength that the physical properties of the catalyst carrier are in the ranges shown below. Those that simultaneously satisfy a pore diameter of 8 to 50 nm, a specific surface area of 80 to 450 m 2 / g, and a pore volume of 0.3 to 2.0 mL / g are extremely suitable as a catalyst support. More preferably, the pore diameter is 8 to 30 nm, the specific surface area is 100 to 400 m 2 / g, and the pore volume is 0.4 to 1.5 mL / g at the same time. The pore diameter is 10 to 20 nm, the specific surface area. Is more preferably 150 to 350 m 2 / g and a pore volume satisfying 0.4 to 1.2 mL / g at the same time. The specific surface area is measured by the BET method, and the pore volume is measured by the mercury intrusion method. The pore diameter is measured by a gas adsorption method.

二酸化炭素と水素を原料として炭化水素を製造する反応に十分な活性を発現する触媒を得るためには、比表面積は80m/g以上であることが好ましい。この比表面積を下回ると、担持した金属の分散度が低下してしまい、活性金属の反応への寄与効率が低下する可能性がある。また、450m/g超とすると、細孔容積と細孔径が上記範囲を同時に満足することが困難となる場合がある。 In order to obtain a catalyst that exhibits sufficient activity for the reaction of producing hydrocarbons using carbon dioxide and hydrogen as raw materials, the specific surface area is preferably 80 m 2 / g or more. Below this specific surface area, the dispersibility of the supported metal decreases, and the contribution efficiency to the reaction of the active metal may decrease. On the other hand, if it exceeds 450 m 2 / g, it may be difficult for the pore volume and the pore diameter to satisfy the above ranges at the same time.

細孔径を小さくするほど比表面積を大きくすることが可能となるが、8nmを下回ると、細孔内のガス拡散速度が水素と二酸化炭素では異なり、細孔の奥へ行くほど水素分圧が高くなるという結果を招き、メタン等の軽質炭化水素が多量に生成しやすくなるため、8nm以上の細孔径とすることが好ましい。加えて、生成した炭化水素の細孔内拡散速度も低下し、結果として、見かけの反応速度を低下させることとなる。また、一定の細孔容積で比較を行うと、細孔径が大きくなるほど比表面積が低下するため、細孔径が50nmを超えると、比表面積を増大させることが困難となり、活性金属の分散度が低下してしまうため、細孔径は50nm以下とすることが好ましい。   It is possible to increase the specific surface area as the pore diameter is reduced, but below 8 nm, the gas diffusion rate in the pore differs between hydrogen and carbon dioxide, and the hydrogen partial pressure increases as it goes deeper into the pore. As a result, it becomes easy to produce a large amount of light hydrocarbons such as methane, so that the pore diameter is preferably 8 nm or more. In addition, the diffusion rate of the generated hydrocarbons in the pores is also reduced, and as a result, the apparent reaction rate is reduced. In addition, when the comparison is made with a constant pore volume, the specific surface area decreases as the pore diameter increases. Therefore, when the pore diameter exceeds 50 nm, it is difficult to increase the specific surface area, and the dispersity of the active metal decreases. Therefore, the pore diameter is preferably 50 nm or less.

細孔容積は0.3〜2.0mL/gの範囲内にあるものが好ましい。0.3mL/gを下回るものでは、細孔径と比表面積が上記範囲を同時に満足することが困難となり好ましくなく、また、2.0mL/gを上回る値とすると、強度が低下してしまうため、好ましくない。   The pore volume is preferably in the range of 0.3 to 2.0 mL / g. If it is less than 0.3 mL / g, it is difficult to satisfy the above range at the same time as the pore diameter and the specific surface area, and if it exceeds 2.0 mL / g, the strength decreases. It is not preferable.

(1.2. コバルト)
本実施形態に係る触媒の触媒担体上には、コバルトが担持されている。コバルトは、本実施形態に係る触媒において、触媒活性を示す主たる成分である。通常、コバルトは、コバルト粒子として触媒担体上に存在する。活性を示すコバルト粒子は、還元処理によって全部が金属化されたコバルト粒子であってもよい。また、大部分は金属化されているが一部としてコバルト酸化物が残存したコバルト粒子であってもよい。
(1.2. Cobalt)
Cobalt is supported on the catalyst carrier of the catalyst according to the present embodiment. Cobalt is a main component exhibiting catalytic activity in the catalyst according to the present embodiment. Usually, cobalt is present on the catalyst support as cobalt particles. The cobalt particles exhibiting activity may be cobalt particles that are all metallized by reduction treatment. Alternatively, cobalt particles which are mostly metallized but have a cobalt oxide remaining as a part may be used.

触媒中におけるコバルトの担持率(含有量)は、好ましくは5〜50質量%であり、より好ましくは10〜40質量%である。この範囲を下回ると活性を十分発現しない場合があり、また、この範囲を上回ると分散度が低下して、担持したコバルトの利用効率が低下することがあり、不経済となる。   The supported rate (content) of cobalt in the catalyst is preferably 5 to 50% by mass, more preferably 10 to 40% by mass. If it is below this range, the activity may not be sufficiently expressed. If it exceeds this range, the degree of dispersion may be reduced and the utilization efficiency of the supported cobalt may be reduced, which is uneconomical.

ここでいう担持率とは、担持したコバルトが最終的に100%還元されるとは限らないため、100%還元されたと考えた場合の金属コバルトの質量が触媒質量全体に占める割合を指す。触媒中のコバルトの定量方法は、酸分解やアルカリ溶融等の前処理後にICP−AES法にて測定する方法とする。   The supported rate here refers to the ratio of the mass of metallic cobalt to the total mass of the catalyst when the supported cobalt is not necessarily 100% reduced in the end, and is considered to be 100% reduced. The cobalt in the catalyst is quantified by the ICP-AES method after pretreatment such as acid decomposition or alkali melting.

(1.3. ジルコニウム成分)
また、本実施形態に係る触媒の触媒担体上には、コバルトとともにジルコニウム成分が担持されていることが好ましい。ジルコニウム成分は、本実施形態に係る触媒の耐水性を向上させ、長期にわたって触媒の活性を維持する。また、ジルコニウム成分は、さらにC5以上の液状生成物の選択性を向上させるとともに、触媒の活性自体をも向上させる。
(1.3. Zirconium component)
Moreover, it is preferable that a zirconium component is supported together with cobalt on the catalyst carrier of the catalyst according to the present embodiment. The zirconium component improves the water resistance of the catalyst according to this embodiment and maintains the activity of the catalyst over a long period of time. Further, the zirconium component further improves the selectivity of the liquid product of C5 or higher and also improves the activity of the catalyst itself.

ところで、二酸化炭素と水素を原料として炭化水素を製造する反応においては、下記化学式にも記載されるように、一酸化炭素と水素を原料として炭化水素を製造する反応と比較して副生する水の量が多くなる。一般的に炭化水素製造のための触媒の活性種は金属状態であることから、副生する水と金属状態の活性種が反応して金属酸化物に変化すること等による触媒失活が起こり易くなる。   By the way, in the reaction for producing hydrocarbons using carbon dioxide and hydrogen as raw materials, as described in the following chemical formula, water produced as a by-product compared to the reaction for producing hydrocarbons using carbon monoxide and hydrogen as raw materials. The amount of increases. In general, the active species of catalysts for hydrocarbon production are in the metal state, and therefore, catalyst deactivation is likely to occur due to the reaction of the by-product water with the active species in the metal state to change into metal oxides. Become.

Figure 2019188281
Figure 2019188281

そして、特に、ジルコニウム成分は、後述する推定機構により、本実施形態に係る触媒の耐水性を向上させ、触媒失活を防止することができる。   And especially a zirconium component can improve the water resistance of the catalyst which concerns on this embodiment by the estimation mechanism mentioned later, and can prevent catalyst deactivation.

コバルトと共に担持するジルコニウム成分の担持量の適正範囲は、活性向上効果、液状生成物選択性向上効果、耐水性向上効果、寿命延長効果を発現するための最低量以上であり、担持したジルコニウム成分の分散度が極端に低下して、添加したジルコニウム成分のうち効果発現に寄与しないジルコニウム成分の割合が高くなり不経済となる担持量以下であればよい。   The appropriate range of the supported amount of the zirconium component supported together with cobalt is at least the minimum amount for exhibiting the activity improving effect, the liquid product selectivity improving effect, the water resistance improving effect, and the life extending effect. It is sufficient that the dispersity is extremely reduced and the amount of the zirconium component that does not contribute to the effect expression in the added zirconium component is increased and the amount is less than the supported amount, which is uneconomical.

具体的には、触媒中におけるジルコニウム成分の含有量(担持量)は、コバルトとジルコニウムのモル比で、好ましくはZr/Co=0.03〜0.6であり、より好ましくは0.04〜0.4、さらに好ましくは0.05〜0.3である。この範囲を下回るとジルコニウム成分を添加することによる活性向上効果、液状生成物選択性向上効果、耐水性向上効果、寿命延長効果を十分発現することができず、また、この範囲を上回ると担持したジルコニウムの利用効率が低下して不経済となる。   Specifically, the content (supported amount) of the zirconium component in the catalyst is a molar ratio of cobalt to zirconium, preferably Zr / Co = 0.03 to 0.6, more preferably 0.04 to 0.4, more preferably 0.05 to 0.3. Below this range, the activity improvement effect, liquid product selectivity improvement effect, water resistance improvement effect, and life extension effect due to the addition of the zirconium component cannot be fully expressed. Zirconium utilization efficiency is reduced, which is uneconomical.

ジルコニウム成分は、触媒中においていかなる状態で存在してもよいが、好ましくは金属ジルコニウムおよび/またはジルコニウム酸化物として、より好ましくはジルコニウム酸化物(例えばZrO)として存在する。これにより、上述したジルコニウム成分を添加することによる各効果がより確実に発揮される。 The zirconium component may be present in any state in the catalyst, but is preferably present as metallic zirconium and / or zirconium oxide, more preferably as zirconium oxide (eg, ZrO 2 ). Thereby, each effect by adding the zirconium component mentioned above is more reliably exhibited.

また、ジルコニウム成分は、触媒担体上にあればよく、触媒担体上でコバルト共に混在してもよいし、コバルトと触媒担体との間に存在してもよいし、触媒担体上に担持されたコバルト上に存在してもよい。   Further, the zirconium component only needs to be on the catalyst support, and may be mixed with cobalt on the catalyst support, or may be present between cobalt and the catalyst support, or cobalt supported on the catalyst support. May be present above.

特に、本発明者らは、上述の効果を発現するためには、触媒担体上にジルコニウム酸化物が存在し、活性を示すコバルト粒子がジルコニウム酸化物上に存在する触媒構造が好ましいと推定している。活性向上効果は、ジルコニウム酸化物が存在することでコバルト粒子がより高分散で担持されるため、活性表面積が増大することが要因と推定される。
液状生成物選択性向上効果は、ジルコニウム酸化物が存在することでコバルト表面の電子状態が二酸化炭素の吸着を促進し、中間体であるCHを生成し易いためであると推定される。中間体であるCHの存在量が多くなると連鎖成長が起こり易くなり、液状生成物が生成し易くなる。
In particular, the present inventors presume that a catalyst structure in which zirconium oxide is present on the catalyst carrier and cobalt particles exhibiting activity are present on the zirconium oxide is preferable in order to exhibit the above-described effects. Yes. The activity improvement effect is presumed to be due to the fact that the presence of zirconium oxide allows cobalt particles to be supported at a higher dispersion, so that the active surface area increases.
The liquid product selectivity improvement effect is presumed to be because the presence of zirconium oxide facilitates the adsorption of carbon dioxide due to the electronic state of the cobalt surface and facilitates the production of CH 2 as an intermediate. When the abundance of CH 2 as an intermediate is increased, chain growth is likely to occur, and a liquid product is likely to be generated.

耐水性向上効果は、触媒担体上にジルコニウム酸化物が存在することで、活性を示すコバルト粒子と触媒担体の界面を減少し、副生水により形成が加速されるコバルトシリケートの形成が抑制されることが関与していると推察される。また、ジルコニウム酸化物と活性を示すコバルト粒子の相互作用は触媒担体と活性を示すコバルト粒子の相互作用よりも大きいため、コバルト化合物とジルコニウム化合物を担持してなる触媒の活性を示すコバルト粒子間ではシンタリングが比較的起こり難く、シンタリングが起こり易い副生水が存在する雰囲気においても耐水性が向上すると考えられる。
寿命延長効果は、上記の耐水性向上とシンタリング抑制により、活性を発現する触媒構造をより長く保持できることによると考えられる。
The effect of improving water resistance is that the presence of zirconium oxide on the catalyst carrier reduces the interface between the active cobalt particles and the catalyst carrier and suppresses the formation of cobalt silicate that is accelerated by by-product water. It is inferred that this is involved. In addition, since the interaction between the zirconium oxide exhibiting activity and the cobalt particles exhibiting activity is greater than the interaction between the catalyst carrier and the cobalt particles exhibiting activity, between the cobalt particles exhibiting the activity of the catalyst comprising the cobalt compound and the zirconium compound. It is considered that the water resistance is improved even in an atmosphere where there is by-product water in which sintering is relatively unlikely to occur.
The life extension effect is considered to be due to the fact that the catalyst structure that expresses the activity can be maintained for a longer time by the above-described improvement in water resistance and suppression of sintering.

(1.4. 形状、粒径等)
一般的に触媒の粒子径は、熱や物質の拡散が律速となる可能性を低くするという観点からは、小さいほど好ましい。しかし、スラリー床による炭化水素製造では、生成する炭化水素の内、高沸点炭化水素は反応容器内に蓄積されるため、触媒と生成物との固液分離操作が必ず必要になることから、触媒の粒子径が小さ過ぎる場合、分離操作の効率が大きく低下するという問題が発生する。よって、スラリー床用の触媒には最適な粒子径範囲が存在する。触媒担体の粒径は、20〜250μm程度、平均粒径として40〜150μm程度が好ましい。なお本明細書中において、平均粒径とは、レーザ回折法による体積基準メジアン径(D50)をいう。
(1.4. Shape, particle size, etc.)
In general, the smaller the particle diameter of the catalyst, the lower the possibility that the diffusion of heat or substance becomes rate-limiting. However, in hydrocarbon production using a slurry bed, among the hydrocarbons produced, high boiling point hydrocarbons accumulate in the reaction vessel, so a solid-liquid separation operation between the catalyst and the product is absolutely necessary. If the particle size of the particles is too small, there arises a problem that the efficiency of the separation operation is greatly reduced. Therefore, there is an optimum particle size range for the catalyst for the slurry bed. The particle size of the catalyst carrier is preferably about 20 to 250 μm, and the average particle size is preferably about 40 to 150 μm. In addition, in this specification, an average particle diameter means the volume reference | standard median diameter (D50) by a laser diffraction method.

また、反応中に触媒が破壊、粉化を起こして、粒子径が小さくなることがあり、この点、注意が必要である。即ち、スラリー床では相当高い原料ガス空塔速度(0.1m/秒以上)で運転されることが多く、触媒粒子は反応中に激しく互いに衝突するため、物理的な強度や耐摩耗性(耐粉化性)が不足すると、反応中に触媒粒径が低下して、上記分離操作に不都合をきたすことがある。更に、スラリー床では液媒体として有機物を使用するが、炭素源として二酸化炭素、一酸化炭素のいずれを使用する場合でも多量の水が副生する。したがって、耐水性が低く、水により強度低下や破壊、粉化を起こし易い触媒を用いる場合は、反応中に触媒粒径が細かくなることがあり、上記と同様に分離操作に不都合をきたすことになる。   In addition, the catalyst may be destroyed or pulverized during the reaction, and the particle size may be reduced. That is, the slurry bed is often operated at a considerably high raw material gas superficial velocity (0.1 m / second or more), and the catalyst particles violently collide with each other during the reaction. If the pulverization property is insufficient, the catalyst particle size may decrease during the reaction, which may cause inconvenience in the separation operation. Furthermore, although an organic substance is used as a liquid medium in the slurry bed, a large amount of water is produced as a by-product regardless of whether carbon dioxide or carbon monoxide is used as a carbon source. Therefore, when using a catalyst that has low water resistance and is likely to cause strength reduction, destruction, or pulverization with water, the catalyst particle size may become fine during the reaction, which inconveniences the separation operation as described above. Become.

また、一般的に、スラリー床用の触媒は、上記したような最適粒径となるように粉砕して粒度調整をして実用に供することが多い。ところが、このような破砕状の触媒には予亀裂が入っていたり、鋭角な突起が生じていたりすることが多く、機械的強度や耐摩耗性に劣る場合がある。このため、このような破砕状の触媒をスラリー床に用いた場合には、触媒が破壊して微粉が発生することになり、生成する高沸点炭化水素と触媒との分離が困難になる場合がある。   In general, the catalyst for the slurry bed is often put to practical use after being pulverized to adjust the particle size so as to have the optimum particle size as described above. However, such a crushed catalyst is often pre-cracked or has a sharp protrusion, which may be inferior in mechanical strength and wear resistance. For this reason, when such a crushed catalyst is used in the slurry bed, the catalyst is destroyed and fine powder is generated, and it may be difficult to separate the high-boiling hydrocarbon to be produced from the catalyst. is there.

このように、スラリー床反応用の触媒には、耐摩耗性、強度が要求される。また、二酸化炭素と水素を原料として炭化水素を製造する反応では、水が副生するために、水の存在下で破壊、粉化するような触媒又は担体を用いると、前述したような不都合が生じることになるために注意を要する。よって、予亀裂が入っている可能性が高く、鋭角な角が折損、剥離し易い破砕状の担体ではなく、球状の担体を用いた触媒が好ましい。例えば、円形度と呼ばれる、粒子を画像解析した際の二次元画像における面積と周囲長を元に数値で表現する、形状の複雑さを測る指標などを用いることもでき、この円形度が0.7以上が好ましい。   Thus, the catalyst for slurry bed reaction is required to have wear resistance and strength. In addition, in the reaction of producing hydrocarbons using carbon dioxide and hydrogen as raw materials, since water is by-produced, the use of a catalyst or carrier that breaks and pulverizes in the presence of water has the disadvantages described above. Care must be taken to make it happen. Therefore, a catalyst using a spherical support is preferable instead of a crushed support that is highly likely to have a pre-crack and has an acute angle that easily breaks and peels off. For example, an index for measuring the complexity of the shape, which is expressed as a numerical value based on the area and the perimeter in a two-dimensional image when the particle is image-analyzed, which is called circularity, can be used. 7 or more is preferable.

二酸化炭素を排出する発生源において、炭化水素への変換プラントを併設する比較的小規模なプラントの場合、マイクロチャネル反応器が有利となる可能性が考えられるが、ミリオーダー以下の流路に触媒を充填することを考慮すると、スラリー床の場合と同様に粒径は20〜250μm程度が好ましい。   In the case of a relatively small-scale plant with a conversion plant for hydrocarbons that emits carbon dioxide, a microchannel reactor may be advantageous. In consideration of the filling, the particle size is preferably about 20 to 250 μm as in the case of the slurry bed.

なお、炭化水素への変換プラントとして、マイクロチャネル反応器ではない通常の固定床を採用する場合には、反応器内での圧力損失を勘案して、触媒はペレット状の形状に成型することが好ましく、例えば、シリカを主成分とする触媒担体を含有する前駆体を押出成型にて加工することが可能である。   In addition, when adopting a normal fixed bed that is not a microchannel reactor as a hydrocarbon conversion plant, the catalyst may be formed into a pellet shape in consideration of pressure loss in the reactor. Preferably, for example, a precursor containing a catalyst carrier mainly composed of silica can be processed by extrusion molding.

以上述べたような触媒を用いることにより、二酸化炭素と水素とを原料として炭化水素を製造する反応において、液状炭化水素の選択性が高めることができる。この結果、液状炭化水素の生産量が高くなる。また、ジルコニウム成分を含む場合には耐水性が高く、長寿命な触媒を得ることができる。   By using the catalyst as described above, the selectivity of the liquid hydrocarbon can be enhanced in the reaction for producing hydrocarbons using carbon dioxide and hydrogen as raw materials. As a result, the production amount of liquid hydrocarbon is increased. Further, when a zirconium component is included, a catalyst having high water resistance and a long life can be obtained.

上述のようにして得られた触媒の寿命延長効果を評価する方法としては、触媒をオートクレーブに溶媒と共に仕込み強撹拌状態として、二酸化炭素と水素を供給しながら昇温・昇圧することでオートクレーブ内を完全混合状態に保ちながら炭化水素を製造する反応を行い、断続的に撹拌を停止する手法が挙げられる。完全混合状態では、活性点で副生した水は直ちには原料ガス、生成ガスとの混合が進まない。したがって、副生した水は活性点近傍に滞留することになり、水への耐性が低い触媒は急速に活性低下することとなる。撹拌停止によって触媒を活性低下させた後、再度完全混合状態として触媒活性を評価し、撹拌停止前後での活性低下の度合を評価することで副生水への耐性を把握できる。   As a method for evaluating the life extension effect of the catalyst obtained as described above, the catalyst is charged into the autoclave together with a solvent, and in a vigorous stirring state, the temperature in the autoclave is increased by raising the temperature and increasing the pressure while supplying carbon dioxide and hydrogen. There is a method in which a reaction for producing hydrocarbons is carried out while maintaining a completely mixed state, and stirring is intermittently stopped. In the completely mixed state, the water produced as a by-product at the active site does not immediately mix with the raw material gas and the product gas. Therefore, the by-produced water stays in the vicinity of the active point, and the activity of the catalyst having low resistance to water is rapidly reduced. After reducing the activity of the catalyst by stopping the stirring, the catalyst activity is evaluated again in a completely mixed state, and the resistance to by-product water can be grasped by evaluating the degree of the decrease in activity before and after stopping the stirring.

その他には、高圧ポンプで強制的に水をオートクレーブ内に導入して、水分圧が高い条件を作り出す手法でも評価することができる。いずれも副生水への耐性は、水分圧を高い条件とした前後での活性の比率で評価する。   In addition, it can be evaluated by a method of forcibly introducing water into the autoclave with a high-pressure pump to create a condition with a high water pressure. In any case, the resistance to by-product water is evaluated by the ratio of the activity before and after the moisture pressure is high.

<2.触媒の製造方法>
次に、上述した触媒の製造方法について、好適な実施形態に基づき説明する。
<2. Catalyst production method>
Next, the catalyst production method described above will be described based on a preferred embodiment.

(2.1. 触媒担体の調整)
まず、シリカを主成分とする触媒担体を調製する。一般にシリカの製造方法は、乾式法と湿式法に大別される。乾式法としては燃焼法、アーク法等、湿式法としては沈降法、ゲル法等があり、いずれの製造方法でも触媒担体を製造することは可能であるが、ゲル法を除く上記方法では球状に成形することが技術的、経済的に困難である為、シリカゾルを気体媒体中又は液体媒体中で噴霧させて容易に球状に成形することが可能であるゲル法(噴霧法)が好ましい。球状の触媒担体を製造する際には、一般的なスプレードライ法等の噴霧法を用いればよい。特に、20〜250μm程度の粒径の球状シリカ担体を製造する際には、噴霧法が適しており、耐摩耗性、強度、耐水性に優れた球状シリカ担体が得られる。
(2.1. Adjustment of catalyst carrier)
First, a catalyst carrier mainly composed of silica is prepared. In general, silica production methods are roughly classified into a dry method and a wet method. The dry method includes a combustion method, an arc method, etc., and the wet method includes a sedimentation method, a gel method, etc., and it is possible to manufacture a catalyst carrier by any of the manufacturing methods. Since it is technically and economically difficult to form, a gel method (a spray method) that can easily form a spherical shape by spraying silica sol in a gas medium or a liquid medium is preferable. When producing a spherical catalyst carrier, a spraying method such as a general spray drying method may be used. In particular, when producing a spherical silica carrier having a particle size of about 20 to 250 μm, a spraying method is suitable, and a spherical silica carrier excellent in wear resistance, strength and water resistance can be obtained.

例えば、上記ゲル法にて触媒担体としてのシリカ担体を製造する際には、製造工程で多量の硫酸ナトリウムが生成するため、これを取り除くために通常多量の洗浄水を用いる。アルカリ金属、アルカリ土類金属の含有量を適切な範囲とする観点からは、全く洗浄しない方法や、使用する洗浄水を極端に少なくすることで硫酸ナトリウムを適切な範囲で残存させる方法が考えられるが、硫酸ナトリウムを多量に含有したシリカは比表面積、細孔容積、細孔径の物性制御が困難となる。   For example, when a silica carrier as a catalyst carrier is produced by the gel method, a large amount of sodium sulfate is produced in the production process, and thus a large amount of washing water is usually used to remove this. From the viewpoint of setting the content of alkali metals and alkaline earth metals to an appropriate range, a method of not cleaning at all and a method of leaving sodium sulfate in an appropriate range by extremely reducing the amount of cleaning water to be used are considered. However, silica containing a large amount of sodium sulfate makes it difficult to control the physical properties of the specific surface area, pore volume, and pore diameter.

従って、物性も同時に適切な範囲とするためには、硫酸ナトリウムの除去が必要であり、多量の洗浄水を用いた洗浄工程が必要である。洗浄工程において、工業用水等のアルカリ金属、アルカリ土類金属を多く含んだ洗浄水のみを用いると、担体中に多量のアルカリ金属、アルカリ土類金属が残留することになり、シリカ担体中のナトリウム、カリウム、カルシウム、マグネシウムを適切な範囲とすることが可能であるが、イオン交換水等のアルカリ金属、アルカリ土類金属を全く含まないものを使用することもできる。アルカリ金属、アルカリ土類金属の含有率制御の方法としては、適切な含有率の工業用水を選択する他、イオン交換水などのアルカリ金属、アルカリ土類金属を全く含まないものを工業用水と組み合わせて用いることもできる。   Therefore, in order to bring the physical properties to an appropriate range at the same time, it is necessary to remove sodium sulfate, and a washing step using a large amount of washing water is necessary. In the washing process, if only washing water containing a large amount of alkali metals and alkaline earth metals such as industrial water is used, a large amount of alkali metals and alkaline earth metals will remain in the carrier, and sodium in the silica carrier Potassium, calcium, and magnesium can be set within an appropriate range, but those containing no alkali metal or alkaline earth metal such as ion-exchanged water can also be used. In order to control the content of alkali metals and alkaline earth metals, in addition to selecting industrial water with an appropriate content, combined with industrial water that does not contain alkali metals or alkaline earth metals such as ion exchange water at all Can also be used.

洗浄によって、アルカリ金属、アルカリ土類金属の含有量が適切な範囲を下回る場合には、シリカ担体を製造後、アルカリ金属、アルカリ土類金属を担持することで含有させることができる。シリカを主成分とする触媒担体へアルカリ金属、アルカリ土類金属を担持する方法は、通常の含浸法、インシピエントウェットネス(Incipient Wetness)法、沈殿法、イオン交換法等によればよい。担持において使用する原料(前駆体)である化合物としては、溶媒に溶解するものであれば特に制限はなく、硝酸塩、炭酸塩、酢酸塩、塩化物、水酸化物等が使用可能であるが、担持操作をする際に水溶液を用いることができる水溶性の化合物を用いることが製造コストの低減や安全な製造作業環境の確保のためには好ましい。なお、水溶液にした際にアルカリ性が強すぎるものは、シリカ担体を溶解させることがあるため、アルカリ性であっても弱いもの、例えば炭酸塩が好ましい。   When the content of alkali metal or alkaline earth metal is below an appropriate range by washing, it can be contained by supporting the alkali metal or alkaline earth metal after the production of the silica carrier. A method for supporting an alkali metal or alkaline earth metal on a catalyst carrier containing silica as a main component may be a normal impregnation method, an incipient wetness method, a precipitation method, an ion exchange method, or the like. The compound that is a raw material (precursor) used in the support is not particularly limited as long as it is soluble in a solvent, and nitrates, carbonates, acetates, chlorides, hydroxides, and the like can be used. It is preferable to use a water-soluble compound that can be used as an aqueous solution during the carrying operation in order to reduce manufacturing costs and to ensure a safe manufacturing work environment. In addition, since the thing with too strong alkalinity when made into aqueous solution may dissolve a silica support | carrier, even if it is alkaline, a weak thing, for example, carbonate, is preferable.

シリカ担体は鉄、アルミニウム等のアルカリ金属、アルカリ土類金属以外の不純物が含まれることが多く、これら不純物の含有量を低下させることで触媒性能を向上させ、且つアルカリ金属、アルカリ土類金属を適切な範囲に制御する方法としては、シリカ担体製造においてはアルカリ金属、アルカリ土類金属を含めて可能な限り不純物量を低下させ、その後、アルカリ金属、アルカリ土類金属を担持させることが好ましい。   Silica supports often contain impurities other than alkali metals and alkaline earth metals such as iron and aluminum, and the catalytic performance is improved by reducing the content of these impurities, and alkali metals and alkaline earth metals are reduced. As a method for controlling to an appropriate range, it is preferable to reduce the amount of impurities including alkali metals and alkaline earth metals as much as possible in the production of the silica support, and then support the alkali metals and alkaline earth metals.

また、シリカを主成分とする触媒担体中のナトリウム、カリウム、カルシウム、及びマグネシウムの合計含有量が少ない場合には、これら成分を担持することができる。   Further, when the total content of sodium, potassium, calcium, and magnesium in the catalyst carrier mainly composed of silica is small, these components can be supported.

また、シリカを主成分とする触媒担体中のナトリウム、カリウム、カルシウム、及びマグネシウムの合計含有量を、0.15質量%超3.5質量%以下とすることが好ましく、より好ましくは0.2〜2.0質量%、更に好ましくは0.2〜1.2質量%とする。   Further, the total content of sodium, potassium, calcium and magnesium in the catalyst carrier mainly composed of silica is preferably more than 0.15% by mass and 3.5% by mass or less, more preferably 0.2%. -2.0 mass%, More preferably, it is 0.2-1.2 mass%.

シリカを主成分とする触媒担体へナトリウム、カリウム、カルシウム、及びマグネシウムを担持する方法は、通常の含浸法、インシピエントウェットネス(Incipient Wetness)法、沈殿法、イオン交換法等によればよい。担持において使用する原料(前駆体)としては、担持後に乾燥処理又は、乾燥処理及び焼成処理を行う際に、カウンターイオン(例えば炭酸ナトリウムであればNaCO中の(CO)2−)が揮散するものであり、溶媒に溶解するものであれば特に制限はなく、硝酸塩、炭酸塩、酢酸塩等が使用可能であるが、担持操作をする際に水溶液を用いることができる水溶性の化合物を用いることが製造コストの低減や安全な製造作業環境の確保のためには好ましい。 A method for supporting sodium, potassium, calcium, and magnesium on a catalyst carrier containing silica as a main component may be performed by a normal impregnation method, an incipient wetness method, a precipitation method, an ion exchange method, or the like. . The raw material (precursor) used in the loading is a counter ion (for example, (CO 3 ) 2− in Na 2 CO 3 in the case of sodium carbonate) when performing drying treatment or drying treatment and firing treatment after loading. Is volatilized and is not particularly limited as long as it dissolves in a solvent, and nitrates, carbonates, acetates, and the like can be used. It is preferable to use a compound in order to reduce the manufacturing cost and secure a safe manufacturing work environment.

このようなシリカを主成分とする触媒担体の製造法の一具体例を以下に例示する。珪酸アルカリ水溶液と酸水溶液とを混合し、pHが2〜10.5となる条件で生成させたシリカゾルを、空気等の気体媒体中又は前記ゾルと不溶性の有機溶媒中へ噴霧してゲル化させ、次いで、酸処理、水洗、乾燥する。ここで、珪酸アルカリとしては珪酸ソーダ水溶液が好適で、NaO:SiOのモル比は1:1〜1:5、シリカの濃度は5〜30質量%が好ましい。用いる酸としては、硝酸、塩酸、硫酸、有機酸等が使用できるが、製造する際の容器への腐食を防ぎ、有機物が残留しないという観点からは、硫酸が好ましい。酸の濃度は1〜10mol/Lが好ましく、この範囲を下回るとゲル化の進行が著しく遅くなり、また、この範囲を上回るとゲル化速度が速過ぎてその制御が困難となり、所望の物性値を得ることが難しくなるため、好ましくない。また、有機溶媒中へ噴霧する方法を採用する場合には、有機溶媒として、ケロシン、パラフィン、キシレン、トルエン等を用いることができる。 A specific example of a method for producing such a catalyst carrier containing silica as a main component is illustrated below. A silica sol produced by mixing an alkali silicate aqueous solution and an acid aqueous solution and having a pH of 2 to 10.5 is gelled by spraying it in a gaseous medium such as air or an organic solvent insoluble in the sol. Then, acid treatment, washing with water and drying. Here, a sodium silicate aqueous solution is suitable as the alkali silicate, and the molar ratio of Na 2 O: SiO 2 is preferably 1: 1 to 1: 5, and the concentration of silica is preferably 5 to 30% by mass. As the acid to be used, nitric acid, hydrochloric acid, sulfuric acid, organic acid, and the like can be used, but sulfuric acid is preferable from the viewpoint of preventing corrosion of the container during production and leaving no organic matter. The concentration of the acid is preferably 1 to 10 mol / L, and if it falls below this range, the progress of gelation becomes remarkably slow. On the other hand, if it exceeds this range, the gelation rate becomes too fast and difficult to control, and the desired physical property value This is not preferable because it is difficult to obtain. Moreover, when employ | adopting the method sprayed in an organic solvent, kerosene, paraffin, xylene, toluene etc. can be used as an organic solvent.

(2.2. コバルトのみ担持を行う場合)
シリカを主成分とする触媒担体へコバルト化合物を担持する方法は、通常の含浸法、インシピエントウェットネス(Incipient Wetness)法、沈殿法、イオン交換法等によればよい。担持において使用する原料(前駆体)であるコバルト化合物としては、担持後に乾燥処理及び還元処理、又は、乾燥処理、焼成処理及び還元処理を行う際に、カウンターイオン(例えばコバルト硝酸塩であればCo(NO中の(NO))が揮散するものであり、溶媒に溶解するものであれば特に制限はなく、硝酸塩、炭酸塩、酢酸塩、塩化物、アセチルアセトナート等が使用可能であるが、担持操作をする際に水溶液を用いることができる水溶性の化合物を用いることが製造コストの低減や安全な製造作業環境の確保のためには好ましい。なお、担持後の乾燥処理は省略することもできる。コバルト化合物として硝酸コバルト、酢酸コバルトを用いると、焼成時に酸化コバルトに容易に変化し、その後のコバルト酸化物の還元処理も容易であるため好ましい。
(2.2. When carrying only cobalt)
A method for supporting a cobalt compound on a catalyst carrier containing silica as a main component may be an ordinary impregnation method, an incipient wetness method, a precipitation method, an ion exchange method, or the like. The cobalt compound that is a raw material (precursor) used for loading is a counter ion (for example, Co (if cobalt nitrate is used in the case of cobalt nitrate) when performing drying treatment and reduction treatment, or drying treatment, firing treatment and reduction treatment after loading. There is no particular limitation as long as (NO 3 ) ) in NO 3 ) 2 is volatilized and dissolves in the solvent, and nitrates, carbonates, acetates, chlorides, acetylacetonates, etc. can be used. However, it is preferable to use a water-soluble compound in which an aqueous solution can be used during the carrying operation in order to reduce manufacturing costs and secure a safe manufacturing work environment. In addition, the drying process after carrying | supporting can also be abbreviate | omitted. Cobalt nitrate or cobalt acetate is preferably used as the cobalt compound because it easily changes to cobalt oxide at the time of firing and the subsequent reduction treatment of the cobalt oxide is easy.

また、コバルトの担持操作中に一定量はナトリウム、カリウム、カルシウム、及びマグネシウムが混入しても良く、極端に純度の高いコバルト前駆体を使用する必要がないため触媒コストの観点から好ましい。   In addition, a certain amount of sodium, potassium, calcium and magnesium may be mixed during the cobalt loading operation, and it is not necessary to use an extremely pure cobalt precursor, which is preferable from the viewpoint of catalyst cost.

(2.3. ジルコニウム成分とコバルトとの担持を行う場合)
ジルコニウム成分を担持する場合にも、上記と同様の方法によればよい。担持において使用する原料(前駆体)であるジルコニウム成分としては、同様に担持後に乾燥処理及び還元処理、又は、乾燥処理、焼成処理及び還元処理を行う際に、カウンターイオンが揮散するものであり、溶媒に溶解するものであれば特に制限はなく、硝酸塩、炭酸塩、酢酸塩、塩化物、アセチルアセトナート等が使用可能であるが、担持操作をする際に水溶液を用いることができる水溶性の化合物を用いることが製造コストの低減や安全な製造作業環境の確保のためには好ましい。具体的には、酢酸ジルコニル、硝酸ジルコニウム、硝酸酸化ジルコニウムは、焼成時にジルコニウム酸化物に容易に変化するため好ましい。なお、担持後の乾燥処理は省略することもできる。
(2.3. When supporting zirconium component and cobalt)
Even when a zirconium component is supported, the same method as described above may be used. As a zirconium component which is a raw material (precursor) used in loading, counter ions are volatilized when performing drying treatment and reduction treatment after loading, or drying treatment, firing treatment and reduction treatment, There is no particular limitation as long as it is soluble in a solvent, and nitrates, carbonates, acetates, chlorides, acetylacetonates, etc. can be used. It is preferable to use a compound in order to reduce the manufacturing cost and secure a safe manufacturing work environment. Specifically, zirconyl acetate, zirconium nitrate, and zirconium nitrate oxide are preferable because they easily change to zirconium oxide during firing. In addition, the drying process after carrying | supporting can also be abbreviate | omitted.

コバルト成分、ジルコニウム成分のシリカを主成分とする触媒担体への担持は、前述の担持方法によって行うことが可能であるが、最初に触媒担体にジルコニウム成分を担持させ、次いで触媒担体にコバルト成分を担持させることが好ましい。   The cobalt component and the zirconium component can be supported on the catalyst carrier containing silica as a main component by the above-described supporting method. First, the zirconium component is supported on the catalyst carrier, and then the cobalt component is supported on the catalyst carrier. It is preferable to carry.

具体的には、コバルト成分の溶液、ジルコニウム成分の溶液をそれぞれ調製し、最初にジルコニウム成分の溶液を用いてシリカを主成分とする触媒担体にジルコニウム成分を担持させ、乾燥処理または乾燥処理及び焼成処理後、コバルト成分の溶液を用いて更に触媒担体へコバルトを担持させる。担持後は必要に応じて乾燥処理を行い、引き続き還元処理、又は焼成処理及び還元処理を行う。このような処理を施すことにより、コバルト成分の全部を金属化、又は一部を酸化物化し残りを金属化して、且つ、ジルコニウム成分を酸化物化することができる。   Specifically, a cobalt component solution and a zirconium component solution are prepared, respectively, and a zirconium component is first supported on a catalyst carrier mainly composed of silica using a zirconium component solution, followed by drying treatment or drying treatment and firing. After the treatment, cobalt is further supported on the catalyst carrier using a solution of the cobalt component. After the loading, a drying process is performed as necessary, followed by a reduction process, or a baking process and a reduction process. By performing such treatment, all of the cobalt component can be metallized, or part of the cobalt component can be oxidized and the rest can be metallized, and the zirconium component can be oxidized.

(2.4 触媒製造例)
以下に、触媒担体からジルコニウム成分を含まない触媒を得る方法の一例を示す。
(2.4 Catalyst production example)
Below, an example of the method of obtaining the catalyst which does not contain a zirconium component from a catalyst support | carrier is shown.

コバルト前駆体の水溶液にナトリウム、カリウム、カルシウム、及びマグネシウムの合計含有量が0.15質量%超3.5質量%以下であるシリカを主成分とする触媒担体を含浸して処理後、乾燥、又は乾燥と焼成処理を行い、必要に応じて乾燥と還元処理、又は乾燥と焼成と還元処理を行い、二酸化炭素と水素を原料として炭化水素を製造する触媒を得ることができる。   An aqueous solution of cobalt precursor is impregnated with a catalyst support mainly composed of silica having a total content of sodium, potassium, calcium, and magnesium of more than 0.15% by mass and 3.5% by mass or less, and then dried. Alternatively, drying and calcination treatment can be performed, and drying and reduction treatment, or drying, calcination and reduction treatment can be performed as necessary to obtain a catalyst for producing hydrocarbons using carbon dioxide and hydrogen as raw materials.

コバルト前駆体の含浸担持を行った後、必要に応じて乾燥処理を行い、引き続き担体表面のコバルト化合物をコバルト金属に還元(例えば、常圧水素気流中450℃−15時間、通常は250〜600℃程度の範囲であるが、特に限定されない。)することで触媒が得られる。なお、焼成して酸化物に変化させた後に還元処理を行っても、焼成せずに直接還元処理を行っても良い。   After impregnating and supporting the cobalt precursor, drying treatment is performed as necessary, and the cobalt compound on the surface of the support is subsequently reduced to cobalt metal (for example, 450 ° C. for 15 hours in a normal pressure hydrogen stream, usually 250 to 600). The temperature is within the range of about 0 ° C., but is not particularly limited. Note that the reduction treatment may be performed after firing and changing to an oxide, or the reduction treatment may be performed directly without firing.

還元処理の温度を高くしたり時間を長くしたりすることにより還元条件を厳しくすると、還元処理後に金属系化合物が酸化物の状態から金属状態まで還元される比率が高くなり、極端に厳しい還元処理を行うと活性金属のみの状態にすることも可能となる。しかし、一般的な還元条件ではコバルト酸化物を一部含有する化学状態となることが多い。   If the reduction conditions are made stricter by increasing the temperature of the reduction treatment or lengthening the time, the ratio of reduction of the metal-based compound from the oxide state to the metal state after the reduction treatment increases, and extremely severe reduction treatment is performed. If it is performed, it becomes possible to make only the active metal state. However, in general reducing conditions, the chemical state often contains a part of cobalt oxide.

還元処理後の触媒は、大気に触れて酸化失活しないように取り扱う必要があるが、触媒担体上のコバルト金属の表面を大気から遮断するような安定化処理を行うと、大気中での取り扱いが可能となり好適である。この安定化処理には、低濃度の酸素を含有する窒素、二酸化炭素、不活性ガスを触媒に触れさせて、担体上の活性金属の極表層のみを酸化するいわゆるパッシベーション(不動態化処理)を行ったり、二酸化炭素と水素を原料として炭化水素を製造する反応を液相で行う場合には反応溶媒や溶融したワックス等に浸漬して大気と遮断したりする方法があり、状況に応じて適切な安定化処理を行えばよい。   The catalyst after the reduction treatment must be handled so as not to be oxidized and deactivated by exposure to the atmosphere. However, if the stabilization treatment is performed to block the cobalt metal surface on the catalyst support from the atmosphere, the catalyst should be handled in the atmosphere. Is possible and preferable. In this stabilization treatment, so-called passivation (passivation treatment) is performed in which only the extreme surface layer of the active metal on the support is oxidized by bringing nitrogen, carbon dioxide, and inert gas containing low concentrations of oxygen into contact with the catalyst. Or when the reaction to produce hydrocarbons using carbon dioxide and hydrogen as raw materials is conducted in the liquid phase, there are methods of immersing them in a reaction solvent or molten wax, etc. to shut off from the atmosphere. The stabilization process may be performed.

また、以下に、ジルコニウム成分を含む触媒を得る方法の一例を示す。   Moreover, an example of the method of obtaining the catalyst containing a zirconium component below is shown.

ジルコニウム前駆体の水溶液にナトリウム、カリウム、カルシウム、及びマグネシウムの合計含有量が0.15質量%超3.5質量%以下であるシリカを主成分とする触媒担体を含浸して処理後、乾燥、又は乾燥と焼成処理を行い、次いでコバルト前駆体の水溶液にジルコニウム成分を担持した触媒担体を含浸して処理後、乾燥、又は乾燥と焼成処理を行い、必要に応じて乾燥と還元処理、又は乾燥と焼成と還元処理を行い、二酸化炭素と水素を原料として炭化水素を製造する触媒を得ることができる。   The aqueous solution of the zirconium precursor is impregnated with a catalyst support mainly composed of silica having a total content of sodium, potassium, calcium, and magnesium of more than 0.15% by mass and 3.5% by mass or less, and then dried. Or after drying and calcination treatment, impregnation with a catalyst carrier carrying a zirconium component in an aqueous solution of a cobalt precursor, after treatment, drying, or drying and calcination treatment, and drying and reduction treatment or drying as necessary A catalyst for producing hydrocarbons using carbon dioxide and hydrogen as raw materials can be obtained by performing calcination and reduction treatment.

触媒担体についてジルコニウム成分の含浸担持を行った後、必要に応じて乾燥処理を行い、引き続き担体表面のジルコニウム化合物をジルコニウム酸化物に変換(例えば、空気気流中450℃−2h、通常は300〜550℃程度の範囲であるが、特に限定されない。)することでジルコニア担持シリカが得られる。ジルコニウム成分の担持後には乾燥処理(例えば空気中100℃−1h)を行い、引き続き焼成処理を行っても、乾燥処理を行うだけで次工程であるコバルト含浸担持を行っても良いが、ジルコニウム成分がコバルト成分含浸担持操作中にコバルト成分の中に取り込まれることでジルコニウムの添加効率が低下しないようにするためには、焼成処理を行ってジルコニウム酸化物に変換しておくと良い。   After the catalyst support is impregnated and supported with the zirconium component, a drying treatment is performed as necessary, and subsequently the zirconium compound on the support surface is converted into zirconium oxide (for example, 450 ° C. for 2 hours in an air stream, usually 300 to 550). Zirconia-supported silica can be obtained by performing the treatment within the range of about 0 ° C., but not particularly limited. After supporting the zirconium component, a drying treatment (for example, 100 ° C. in air for 1 h) may be performed, followed by a calcination treatment, or a cobalt impregnation support as the next step may be performed only by performing the drying treatment. In order to prevent the addition efficiency of zirconium from being reduced by being taken into the cobalt component during the operation of impregnating and impregnating the cobalt component, it is preferable to perform a calcination treatment to convert it into zirconium oxide.

次いで、触媒担体についてコバルト前駆体の含浸担持を行った後、必要に応じて乾燥処理を行い、引き続き担体表面のコバルト化合物をコバルト金属に還元(例えば、常圧水素気流中450℃−15h、通常は250〜600℃程度の範囲であるが、特に限定されない。)することで触媒が得られるが、焼成して酸化物に変化させた後に還元処理を行っても、焼成せずに直接還元処理を行っても良い。還元後の処理は上記のジルコニウム成分を含まない触媒と同様に実施することができる。   Next, after impregnating and supporting the cobalt precursor on the catalyst support, drying treatment is performed as necessary, and the cobalt compound on the support surface is subsequently reduced to cobalt metal (for example, 450 ° C. for 15 hours in a normal pressure hydrogen stream, usually Is in the range of about 250 to 600 ° C., but is not particularly limited.) Although a catalyst is obtained by firing, reduction treatment is carried out directly without firing even if reduction treatment is performed after firing to change to an oxide. May be performed. The treatment after the reduction can be carried out in the same manner as the catalyst containing no zirconium component.

以上のような構成あるいは製造法を用いれば、強度や耐摩耗性を損なうことなく、高い活性および高い液状炭化水素選択性を発現する二酸化炭素と水素とを原料として炭化水素を製造するための触媒の提供が可能となる。   The catalyst for producing hydrocarbons using carbon dioxide and hydrogen as raw materials that exhibit high activity and high liquid hydrocarbon selectivity without impairing strength and wear resistance if the above-described configuration or production method is used. Can be provided.

<3.炭化水素の製造方法>
次に、上述した触媒を用いた炭化水素の製造方法について、好適な実施形態に基づき説明する。
<3. Production method of hydrocarbon>
Next, a hydrocarbon production method using the above-described catalyst will be described based on a preferred embodiment.

炭化水素の製造は、二酸化炭素および水素を本実施形態に係る触媒と接触させることにより行うことができる。二酸化炭素および水素は別個に供給されてもよいが、通常これらの混合ガスとして供給される。   The hydrocarbon can be produced by bringing carbon dioxide and hydrogen into contact with the catalyst according to the present embodiment. Carbon dioxide and hydrogen may be supplied separately, but are usually supplied as a mixed gas thereof.

本実施形態に係る方法で使用する二酸化炭素と水素の混合ガスには、二酸化炭素と水素の合計が全体の50体積%以上であるガスが生産性の面から好ましく、特に、水素と二酸化炭素のモル比(水素/二酸化炭素)が0.5〜4.0の範囲であることが望ましい。これは、水素と二酸化炭素のモル比が0.5未満の場合には、原料ガス中の水素の存在量が少な過ぎるため、二酸化炭素の水素化反応が進み難く、生産性が高くならないためであり、一方、水素と二酸化炭素のモル比が4.0を超える場合には、原料ガス中の二酸化炭素の存在量が少な過ぎるため、触媒活性に関わらず液状炭化水素の生産性が高くならないためである。   The mixed gas of carbon dioxide and hydrogen used in the method according to the present embodiment is preferably a gas in which the total amount of carbon dioxide and hydrogen is 50% by volume or more from the viewpoint of productivity. The molar ratio (hydrogen / carbon dioxide) is desirably in the range of 0.5 to 4.0. This is because when the molar ratio of hydrogen to carbon dioxide is less than 0.5, the amount of hydrogen in the raw material gas is too small, so that the hydrogenation reaction of carbon dioxide is difficult to proceed and productivity is not increased. On the other hand, when the molar ratio of hydrogen to carbon dioxide exceeds 4.0, the amount of carbon dioxide in the raw material gas is too small, and the productivity of liquid hydrocarbons does not increase regardless of the catalyst activity. It is.

また、混合ガスと本実施形態に係る触媒との接触に用いられる反応器としては、特に限定されず、例えば、固定床、噴流床、流動床等の一般的な気相合成プロセス用反応器、スラリー床等の液相合成プロセス用反応器およびマイクロチャネル反応器等が挙げられる。   The reactor used for contacting the mixed gas with the catalyst according to the present embodiment is not particularly limited. For example, a reactor for a general gas phase synthesis process such as a fixed bed, a spouted bed, or a fluidized bed, Examples thereof include a reactor for a liquid phase synthesis process such as a slurry bed and a microchannel reactor.

炭化水素を製造する反応を行う際には、触媒の中のコバルトが、還元された金属コバルトである必要がある。したがって、混合ガスを供給して炭化水素を製造する前に、水素ガス等の還元性ガスを流通させて触媒の還元処理を行うことができる。このような還元処理は、特に限定されないが、例えば300〜500℃の温度で、1〜40時間行うことができる。   When carrying out the reaction for producing hydrocarbons, the cobalt in the catalyst needs to be reduced metallic cobalt. Therefore, before supplying the mixed gas to produce hydrocarbons, it is possible to reduce the catalyst by circulating a reducing gas such as hydrogen gas. Although such a reduction process is not specifically limited, For example, it can carry out at the temperature of 300-500 degreeC for 1 to 40 hours.

なお、触媒は、反応器への充填後に還元されてもよいし、充填前に還元されてもよい。例えば、反応器内に触媒を仕込む前に還元処理を行い、その後に充填することも可能である。還元処理後の触媒は、大気に触れて酸化失活しないように取り扱う必要があるが、触媒担体上のコバルト金属等の表面を大気から遮断するような安定化処理を行うと、大気中での取り扱いが可能となり好適である。この安定化処理には、低濃度の酸素を含有する窒素、二酸化炭素、不活性ガスを触媒に触れさせて、担体上のコバルト金属等の極表層のみを酸化するいわゆるパッシベーション(不動態化処理)を行うとよい。   The catalyst may be reduced after filling the reactor, or may be reduced before filling. For example, it is possible to carry out a reduction treatment before charging the catalyst into the reactor and to charge the catalyst after that. The catalyst after the reduction treatment must be handled so as not to be oxidized and deactivated by exposure to the atmosphere. However, if a stabilization treatment is performed to block the surface of cobalt metal etc. on the catalyst support from the atmosphere, It can be handled and is suitable. This stabilization treatment involves so-called passivation (passivation treatment) in which only the surface layer of cobalt metal or the like on the support is oxidized by bringing nitrogen, carbon dioxide, or inert gas containing low concentrations of oxygen into contact with the catalyst. It is good to do.

本実施形態に係る触媒中のコバルトが金属コバルトに十分に還元された状態で、反応器へ混合ガスを供給することにより、炭化水素を製造することができる。   A hydrocarbon can be manufactured by supplying mixed gas to a reactor in the state in which cobalt in the catalyst concerning this embodiment was fully reduced to metallic cobalt.

炭化水素の製造時における条件は、特に限定されず、反応器の種類に応じ、従来適用されてきた条件を設定することができる。   The conditions during the production of the hydrocarbon are not particularly limited, and conventionally applied conditions can be set according to the type of the reactor.

炭化水素を製造する反応時における反応温度は、特に限定されないが、200〜260℃、好ましくは210〜250℃であることができる。また、反応時における系内の圧力は、特に限定されないが、例えば、1〜4MPa、好ましくは1.5〜3MPaであることができる。   Although the reaction temperature at the time of reaction which manufactures hydrocarbon is not specifically limited, It can be 200-260 degreeC, Preferably it is 210-250 degreeC. Moreover, the pressure in the system at the time of reaction is not particularly limited, but may be, for example, 1 to 4 MPa, preferably 1.5 to 3 MPa.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

触媒の反応性を評価するため、内容積300mLのオートクレーブを用い、シリカを主成分とする触媒担体(噴霧法で球状に成形、表面積:300m/g)にインシピエントウェットネス法でCo(またはZrOおよびCo)を担持させて、乾燥処理、焼成処理後、還元処理、パッシベーションを施して、実施例1〜15および比較例1〜6にかかるCo/SiO触媒又はCo/ZrO/SiO触媒を調製した。なお、ナトリウム、カリウム、カルシウム、及びマグネシウムは、上述した方法により、表1〜4に記載された含有量となるように触媒担体に予め含有させた。また、これらの触媒中シリカを主成分とする触媒担体は、平均粒径100μmの球形の担体であり、触媒におけるCo担持率は20〜30質量%であった。また、実施例7〜10、13〜15においては、触媒担体上に、ZrOが担持され、ZrO上にCoが担持されている。また、実施例11においては、触媒担体上にCoおよびZrOが同時に(混合されて)担持されている。さらに、実施例12においては、触媒担体上に、Coが担持され、Co上にZrOが担持されている。 In order to evaluate the reactivity of the catalyst, an autoclave having an internal volume of 300 mL was used, and a catalyst support (molded in a spherical shape by a spraying method, surface area: 300 m 2 / g) was used as a main component of silica, and Co ( Alternatively, ZrO 2 and Co) are supported, dried, calcined, subjected to reduction treatment and passivation, and the Co / SiO 2 catalysts or Co / ZrO 2 // according to Examples 1 to 15 and Comparative Examples 1 to 6 are used. A SiO 2 catalyst was prepared. In addition, sodium, potassium, calcium, and magnesium were previously contained in the catalyst carrier so as to have the contents described in Tables 1 to 4 by the method described above. Further, the catalyst carrier mainly composed of silica in these catalysts was a spherical carrier having an average particle diameter of 100 μm, and the Co loading ratio in the catalyst was 20 to 30% by mass. In Examples 7 to 10 and 13 to 15, ZrO 2 is supported on the catalyst carrier, and Co is supported on ZrO 2 . In Example 11, Co and ZrO 2 are simultaneously supported (mixed) on the catalyst support. Further, in Example 12, Co is supported on the catalyst carrier, and ZrO 2 is supported on Co.

各実施例および比較例において、1.5gのCo/SiO触媒又はCo/ZrO/SiO触媒と50mLのn−C16(n−ヘキサデカン)をオートクレーブ(反応器)に仕込んだ後、220℃、2.0MPa−Gの条件下、撹拌子を800min−1で回転させながら、W(触媒質量)/F(混合ガス流量);(g・h/mol)=3.0となるようにF(混合ガス(H/CO=3)流量)を調整し、触媒反応による炭化水素の合成を行った。供給ガス及びオートクレーブ出口ガスの組成をガスクロマトグラフィー法により求め、CO転化率、炭素数に応じて、CH選択率、C選択率、C選択率、C選択率、およびC5+選択率、ならびに液状炭化水素生産性を得た。なお、液状炭化水素生産性は、1時間の反応における触媒1kgあたりの炭素数が5以上の炭化水素の生産量(g/kg−cat.h)であり、以下「C5+生産性」とも記載する。 In each example and comparative example, 1.5 g of Co / SiO 2 catalyst or Co / ZrO 2 / SiO 2 catalyst and 50 mL of n—C 16 (n-hexadecane) were charged into an autoclave (reactor) and then 220 Under the conditions of 2.0 ° C. and 2.0 MPa-G, while rotating the stirring bar at 800 min −1 , W (catalyst mass) / F (mixed gas flow rate); (g · h / mol) = 3.0 F (mixed gas (H 2 / CO 2 = 3) flow rate) was adjusted to synthesize hydrocarbons by catalytic reaction. The composition of the feed gas and the autoclave outlet gas was determined by gas chromatography, and according to the CO 2 conversion rate and carbon number, CH 4 selectivity, C 2 selectivity, C 3 selectivity, C 4 selectivity, and C 5+ Selectivity and liquid hydrocarbon productivity were obtained. The liquid hydrocarbon productivity is the production amount (g / kg-cat.h) of hydrocarbons having 5 or more carbon atoms per 1 kg of catalyst in one hour reaction, and is also referred to as “C 5+ productivity” hereinafter. To do.

また、触媒の耐水性を評価するため、以下の実験を実施し、耐水性評価の指標としての活性保持率を得た。
内容積300mLのオートクレーブを用い、上述の方法で調製した1.5gのCo/SiO触媒又はCo/ZrO/SiO触媒と100mLのn−C16を仕込んだ後、230℃−2.2MPa−G、オートクレーブの撹拌速度を800min−1に保持した条件で、CO転化率が25%となるようにW/FのF(H/CO=3の混合ガス)を調整し、数時間の安定運転後、撹拌を停止して6h保持した。その後、再度、撹拌速度を800min−1に設定し、さらに数時間の安定運転を実施した。撹拌停止中は活性点近傍では局所的に副生する水が滞留し、触媒が失活し易い条件となるため、撹拌停止による活性低下の度合を把握することで、触媒寿命を評価することが可能である。したがって、撹拌の停止前後におけるCO転化率の比を活性保持率とし、活性保持率を耐水性の評価の指標とした。
Moreover, in order to evaluate the water resistance of a catalyst, the following experiment was implemented and the activity retention rate as a parameter | index of water resistance evaluation was obtained.
Using an autoclave with an internal volume of 300 mL, charging 1.5 g of the Co / SiO 2 catalyst or Co / ZrO 2 / SiO 2 catalyst and 100 mL of n-C 16 prepared by the above-mentioned method, and then 230 ° C.-2.2 MPa -G, adjusting the F / W of F / H (mixed gas of H 2 / CO 2 = 3) so that the CO 2 conversion is 25% under the condition that the stirring speed of the autoclave is kept at 800 min −1 , After stable operation for a period of time, stirring was stopped and held for 6 hours. Thereafter, the stirring speed was set again at 800 min −1 and a stable operation for several hours was performed. While stirring is stopped, water by-produced locally remains in the vicinity of the active point, and it becomes a condition that the catalyst tends to be deactivated, so it is possible to evaluate the catalyst life by grasping the degree of decrease in activity due to stirring stop. Is possible. Therefore, the ratio of CO 2 conversion before and after the stop of stirring was defined as the activity retention rate, and the activity retention rate was used as an index for evaluating water resistance.

以下の実施例に記載したCO転化率、CH選択率、C選択率、C選択率、C選択率、C5+選択率および活性保持率は、それぞれ次に示す式により算出した。 The CO 2 conversion, CH 4 selectivity, C 2 selectivity, C 3 selectivity, C 4 selectivity, C 5+ selectivity and activity retention described in the following examples were calculated by the following formulas, respectively. .

Figure 2019188281
Figure 2019188281

表1〜4に実施例、比較例中の反応結果をまとめた。なお、表中、ナトリウム、カリウム、カルシウム、及びマグネシウムの含有量が微量である可能性も考慮して、これらの含有量をppmで示した。これらの含有量は、合計で1,500〜35,000ppmの範囲内にあることが求められる。   Tables 1 to 4 summarize the reaction results in Examples and Comparative Examples. In the table, the contents of sodium, potassium, calcium, and magnesium are shown in ppm in consideration of the possibility that the contents are very small. These contents are required to be within a range of 1,500 to 35,000 ppm in total.

(実施例1)
表1のAに示すような触媒を用いて反応を行ったところ、CO転化率21.7%、CH選択率81.8%、C選択率2.9%、C選択率2.6%、C選択率1.5%、C5+選択率11.2%、C5+生産性35g/kg−cat.hであった。
(Example 1)
When the reaction was carried out using a catalyst as shown in A of Table 1, the CO 2 conversion was 21.7%, the CH 4 selectivity was 81.8%, the C 2 selectivity was 2.9%, and the C 3 selectivity was 2. .6%, C 4 selectivity was 1.5%, C 5+ selectivity of 11.2%, C 5+ productivity 35g / kg-cat. h.

(実施例2)
表1のBに示すような触媒を用いて反応を行ったところ、CO転化率18.5%、CH選択率78.5%、C選択率2.1%、C選択率1.2%、C選択率1.0%、C5+選択率17.3%、C5+生産性45g/kg−cat.h、活性保持率74.3%であった。
(Example 2)
When the reaction was carried out using a catalyst as shown in B of Table 1, CO 2 conversion 18.5%, CH 4 selectivity 78.5%, C 2 selectivity 2.1%, C 3 selectivity 1 .2%, C 4 selectivity was 1.0%, C 5+ selectivity of 17.3%, C 5+ productivity 45g / kg-cat. h, activity retention was 74.3%.

(実施例3)
表1のCに示すような触媒を用いて反応を行ったところ、CO転化率16.3%、CH選択率78.8%、C選択率1.9%、C選択率1.3%、C選択率0.9%、C5+選択率17.2%、C5+生産性39g/kg−cat.hであった。
(Example 3)
When the reaction was carried out using a catalyst as shown in C of Table 1, the CO 2 conversion was 16.3%, the CH 4 selectivity was 78.8%, the C 2 selectivity was 1.9%, and the C 3 selectivity was 1. .3%, C 4 selectivity was 0.9%, C 5+ selectivity of 17.2%, C 5+ productivity 39g / kg-cat. h.

(実施例4)
表1のDに示すような触媒を用いて反応を行ったところ、CO転化率13.6%、CH選択率83.0%、C選択率2.4%、C選択率1.2%、C選択率0.6%、C5+選択率12.8%、C5+生産性25g/kg−cat.hであった。
Example 4
When the reaction was carried out using a catalyst as shown in Table 1 D, CO 2 conversion 13.6%, CH 4 selectivity 83.0%, C 2 selectivity 2.4%, C 3 selectivity 1 .2%, C 4 selectivity was 0.6%, C 5+ selectivity of 12.8%, C 5+ productivity 25g / kg-cat. h.

(実施例5)
表1のEに示すような触媒を用いて反応を行ったところ、CO転化率17.9%、CH選択率78.7%、C選択率3.2%、C選択率2.7%、C選択率1.5%、C5+選択率13.9%、C5+生産性36g/kg−cat.hであった。
(Example 5)
When the reaction was carried out using a catalyst as shown in E of Table 1, CO 2 conversion 17.9%, CH 4 selectivity 78.7%, C 2 selectivity 3.2%, C 3 selectivity 2 0.7%, C 4 selectivity 1.5%, C 5+ selectivity 13.9%, C 5+ productivity 36 g / kg-cat. h.

(実施例6)
表1のCに示すような触媒を用いて反応温度を230℃とする他は実施例3と同様にして反応を行ったところ、CO転化率18.7%、CH選択率80.5%、C選択率1.9%、C選択率1.3%、C選択率0.9%、C5+選択率15.4%、C5+生産性33g/kg−cat.hであった。
(Example 6)
The reaction was conducted in the same manner as in Example 3 except that the reaction temperature was set to 230 ° C. using a catalyst as shown in C of Table 1, and the CO 2 conversion was 18.7% and the CH 4 selectivity was 80.5. %, C 2 selectivity 1.9%, C 3 selectivity 1.3%, C 4 selectivity 0.9%, C 5+ selectivity 15.4%, C 5+ productivity 33 g / kg-cat. h.

(実施例7)
表2のFに示すような触媒を用いて反応を行ったところ、CO転化率23.9%、CH選択率77.3%、C選択率3.8%、C選択率4.2%、C選択率2.9%、C5+選択率11.8%、C5+生産性40g/kg−cat.h、活性保持率83.6%であった。
(Example 7)
When the reaction was carried out using a catalyst as shown in F of Table 2, the CO 2 conversion was 23.9%, the CH 4 selectivity was 77.3%, the C 2 selectivity was 3.8%, and the C 3 selectivity was 4. .2%, C 4 selectivity was 2.9%, C 5+ selectivity of 11.8%, C 5+ productivity 40g / kg-cat. h, activity retention was 83.6%.

(実施例8)
表2のGに示すような触媒を用いて反応を行ったところ、CO転化率22.5%、CH選択率69.4%、C選択率4.3%、C選択率5.0%、C選択率3.4%、C5+選択率18.0%、C5+生産性57g/kg−cat.h、活性保持率85.3%であった。
(Example 8)
When the reaction was carried out using a catalyst as shown in G of Table 2, the CO 2 conversion was 22.5%, the CH 4 selectivity was 69.4%, the C 2 selectivity was 4.3%, and the C 3 selectivity was 5 0.0%, C 4 selectivity 3.4%, C 5+ selectivity 18.0%, C 5+ productivity 57 g / kg-cat. h, activity retention was 85.3%.

(実施例9)
表2のHに示すような触媒を用いて反応を行ったところ、CO転化率20.2%、CH選択率70.1%、C選択率3.9%、C選択率4.7%、C選択率3.7%、C5+選択率17.6%、C5+生産性50g/kg−cat.h、活性保持率84.6%であった。
Example 9
When the reaction was carried out using a catalyst as shown in H of Table 2, the CO 2 conversion was 20.2%, the CH 4 selectivity was 70.1%, the C 2 selectivity was 3.9%, and the C 3 selectivity was 4. 0.7%, C 4 selectivity 3.7%, C 5+ selectivity 17.6%, C 5+ productivity 50 g / kg-cat. h, activity retention was 84.6%.

(実施例10)
表2のIに示すような触媒を用いて反応を行ったところ、CO転化率16.5%、CH選択率80.4%、C選択率2.8%、C選択率3.2%、C選択率2.1%、C5+選択率11.5%、C5+生産性27g/kg−cat.h、活性保持率82.5%であった。
(Example 10)
When the reaction was carried out using a catalyst as shown in I of Table 2, CO 2 conversion 16.5%, CH 4 selectivity 80.4%, C 2 selectivity 2.8%, C 3 selectivity 3 .2%, C 4 selectivity 2.1%, C 5+ selectivity 11.5%, C 5+ productivity 27 g / kg-cat. h, activity retention was 82.5%.

(実施例11)
表2のJに示すようなCo、Zrを同時に担持して乾燥処理、焼成処理後、還元処理、パッシベーションを施して調製した触媒を用いて反応を行ったところ、CO転化率21.3%、CH選択率72.8%、C選択率4.1%、C選択率4.9%、C選択率3.3%、C5+選択率14.9%、C5+生産性45g/kg−cat.h、活性保持率65.6%であった。Co、Zrを同時に担持することで活性保持率は大きく低下した。
(Example 11)
When a reaction was carried out using a catalyst prepared by carrying Co and Zr simultaneously as shown in J of Table 2 after drying treatment, firing treatment, reduction treatment and passivation, CO 2 conversion rate was 21.3%. CH 4 selectivity 72.8%, C 2 selectivity 4.1%, C 3 selectivity 4.9%, C 4 selectivity 3.3%, C 5+ selectivity 14.9%, C 5+ productivity 45 g / kg-cat. h, activity retention was 65.6%. By simultaneously supporting Co and Zr, the activity retention rate was greatly reduced.

(実施例12)
表3のKに示すようなCo、Zrの担持の順を逆にして、最初にCoを担持して乾燥処理、焼成処理後、次いでZrを担持して乾燥処理、焼成処理、還元処理、パッシベーションを施して調製した触媒を用いて反応を行ったところ、CO転化率20.8%、CH選択率72.5%、C選択率3.9%、C選択率4.4%、C選択率3.5%、C5+選択率15.7%、C5+生産性46g/kg−cat.h、活性保持率78.8%であった。
(Example 12)
The order of loading Co and Zr as shown in Table 3K is reversed, Co is first loaded and dried and fired, and then Zr is loaded and dried, fired, reduced and passivated. When the reaction was carried out using a catalyst prepared by applying CO 2 , CO 2 conversion 20.8%, CH 4 selectivity 72.5%, C 2 selectivity 3.9%, C 3 selectivity 4.4% C 4 selectivity 3.5%, C 5+ selectivity 15.7%, C 5+ productivity 46 g / kg-cat. h, activity retention was 78.8%.

(実施例13)
表3のLに示すような触媒を用いて反応を行ったところ、CO転化率19.1%、CH選択率68.7%、C選択率4.1%、C選択率4.9%、C選択率3.2%、C5+選択率19.1%、C5+生産性51g/kg−cat.h、活性保持率86.1%であった。
(Example 13)
When the reaction was carried out using a catalyst as shown in L of Table 3, the CO 2 conversion was 19.1%, the CH 4 selectivity was 68.7%, the C 2 selectivity was 4.1%, and the C 3 selectivity was 4. .9%, C 4 selectivity was 3.2%, C 5+ selectivity of 19.1%, C 5+ productivity 51g / kg-cat. h, activity retention was 86.1%.

(実施例14)
表3のMに示すような触媒を用いて反応を行ったところ、CO転化率23.3%、CH選択率67.5%、C選択率4.5%、C選択率5.2%、C選択率3.9%、C5+選択率18.9%、C5+生産性62g/kg−cat.h、活性保持率86.2%であった。
(Example 14)
When the reaction was carried out using a catalyst as indicated by M in Table 3, the CO 2 conversion was 23.3%, the CH 4 selectivity was 67.5%, the C 2 selectivity was 4.5%, and the C 3 selectivity was 5 .2%, C 4 selectivity 3.9%, C 5+ selectivity 18.9%, C 5+ productivity 62 g / kg-cat. h, activity retention was 86.2%.

(実施例15)
表3のNに示すような触媒を用いて反応を行ったところ、CO転化率21.8%、CH選択率68.8%、C選択率4.3%、C選択率4.9%、C選択率3.5%、C5+選択率18.5%、C5+生産性57g/kg−cat.h、活性保持率86.8%であった。
(Example 15)
When the reaction was carried out using a catalyst such as N shown in Table 3, the CO 2 conversion rate was 21.8%, the CH 4 selectivity was 68.8%, the C 2 selectivity was 4.3%, and the C 3 selectivity was 4. 0.9%, C 4 selectivity 3.5%, C 5+ selectivity 18.5%, C 5+ productivity 57 g / kg-cat. h, activity retention was 86.8%.

(比較例1)
表4のOに示すような触媒を用いて反応を行ったところ、CO転化率19.6%、CH選択率91.1%、C選択率0.5%、C選択率0.1%、C選択率0%、C5+選択率8.3%、C5+生産性23g/kg−cat.hであった。
(Comparative Example 1)
When the reaction was carried out using a catalyst as shown in Table 4 O, CO 2 conversion 19.6%, CH 4 selectivity 91.1%, C 2 selectivity 0.5%, C 3 selectivity 0 .1%, C 4 selectivity was 0%, C 5+ selectivity of 8.3%, C 5+ productivity 23g / kg-cat. h.

(比較例2)
表4のPに示すような触媒を用いて反応を行ったところ、CO転化率21.2%、CH選択率88.2%、C選択率1.0%、C選択率0.4%、C選択率0.1%、C5+選択率10.3%、C5+生産性31g/kg−cat.hであった。
(Comparative Example 2)
When the reaction was carried out using a catalyst as shown in P of Table 4, the CO 2 conversion was 21.2%, the CH 4 selectivity was 88.2%, the C 2 selectivity was 1.0%, and the C 3 selectivity was 0. .4%, C 4 selectivity was 0.1%, C 5+ selectivity of 10.3%, C 5+ productivity 31g / kg-cat. h.

(比較例3)
表4のQに示すような触媒を用いて反応を行ったところ、CO転化率18.6%、CH選択率86.4%、C選択率1.6%、C選択率0.9%、C選択率0.3%、C5+選択率10.8%、C5+生産性28g/kg−cat.hであった。
(Comparative Example 3)
When the reaction was carried out using a catalyst as indicated by Q in Table 4, the CO 2 conversion was 18.6%, the CH 4 selectivity was 86.4%, the C 2 selectivity was 1.6%, and the C 3 selectivity was 0. 0.9%, C 4 selectivity 0.3%, C 5+ selectivity 10.8%, C 5+ productivity 28 g / kg-cat. h.

(比較例4)
表4のRに示すような触媒を用いて反応を行ったところ、CO転化率10.6%、CH選択率87.3%、C選択率2.9%、C選択率1.2%、C選択率0.6%、C5+選択率8.0%、C5+生産性11g/kg−cat.hであった。
(Comparative Example 4)
When the reaction was carried out using a catalyst as indicated by R in Table 4, the CO 2 conversion was 10.6%, the CH 4 selectivity was 87.3%, the C 2 selectivity was 2.9%, and the C 3 selectivity was 1. .2%, C 4 selectivity 0.6%, C 5+ selectivity 8.0%, C 5+ productivity 11 g / kg-cat. h.

(比較例5)
表4のSに示すような触媒を用いて反応を行ったところ、CO転化率24.3%、CH選択率91.8%、C選択率0.6%、C選択率0.2%、C選択率0.1%、C5+選択率7.3%、C5+生産性25g/kg−cat.h、活性保持率82.1%であった。
(Comparative Example 5)
When the reaction was carried out using a catalyst as shown in S of Table 4, the CO 2 conversion was 24.3%, the CH 4 selectivity was 91.8%, the C 2 selectivity was 0.6%, and the C 3 selectivity was 0. 0.2%, C 4 selectivity 0.1%, C 5+ selectivity 7.3%, C 5+ productivity 25 g / kg-cat. h, activity retention was 82.1%.

(比較例6)
表4のTに示すような触媒を用いて反応を行ったところ、CO転化率10.6%、CH選択率84.5%、C選択率2.5%、C選択率3.0%、C選択率1.8%、C5+選択率8.2%、C5+生産性26g/kg−cat.h、活性保持率79.8%であった。
(Comparative Example 6)
When the reaction was carried out using a catalyst as indicated by T in Table 4, the CO 2 conversion was 10.6%, the CH 4 selectivity was 84.5%, the C 2 selectivity was 2.5%, and the C 3 selectivity was 3. .0%, C 4 selectivity was 1.8%, C 5+ selectivity of 8.2%, C 5+ productivity 26g / kg-cat. h, activity retention was 79.8%.

以上、実施例1〜15に係る触媒は、比較例1〜6に係る触媒と比較して、C5+選択率が高かった。この結果、実施例に係る触媒は、総じて、比較例1〜6に係る触媒と比較して、C5+生産性が高かった。

As described above, the catalysts according to Examples 1 to 15 had higher C 5+ selectivity than the catalysts according to Comparative Examples 1 to 6. As a result, the catalysts according to the examples generally had higher C 5+ productivity than the catalysts according to Comparative Examples 1 to 6.

Figure 2019188281
Figure 2019188281

Figure 2019188281
Figure 2019188281

Figure 2019188281
Figure 2019188281

Figure 2019188281
Figure 2019188281

以上、本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
As mentioned above, although preferred embodiment of this invention was described in detail, this invention is not limited to this example. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

Claims (13)

シリカを主成分とする触媒担体と、
前記触媒担体に担持されたコバルトと、を含み、
さらに、ナトリウム、カリウム、カルシウム、及びマグネシウムを、合計で、0.15質量%超3.5質量%以下含む、二酸化炭素と水素とから炭化水素を製造するための触媒。
A catalyst support mainly composed of silica;
Cobalt supported on the catalyst carrier,
Furthermore, the catalyst for manufacturing a hydrocarbon from a carbon dioxide and hydrogen which contains sodium, potassium, calcium, and magnesium in total more than 0.15 mass% and 3.5 mass% or less.
さらに、前記触媒担体に担持されたジルコニウム成分を含む、請求項1に記載の二酸化炭素と水素とから炭化水素を製造するための触媒。   The catalyst for producing hydrocarbons from carbon dioxide and hydrogen according to claim 1, further comprising a zirconium component supported on the catalyst carrier. 前記触媒中におけるナトリウム、カリウム、カルシウム、及びマグネシウムの合計量が0.2〜2.0質量%である、請求項1又は2に記載の二酸化炭素と水素とから炭化水素を製造するための触媒。   The catalyst for producing a hydrocarbon from carbon dioxide and hydrogen according to claim 1 or 2, wherein the total amount of sodium, potassium, calcium and magnesium in the catalyst is 0.2 to 2.0 mass%. . 前記触媒中におけるコバルトの含有量が金属換算で5〜50質量%である、請求項1〜3のいずれか1項に記載の二酸化炭素と水素とから炭化水素を製造するための触媒。   The catalyst for manufacturing a hydrocarbon from the carbon dioxide and hydrogen of any one of Claims 1-3 whose content of cobalt in the said catalyst is 5-50 mass% in conversion of a metal. 前記触媒中におけるジルコニウム成分の含有量がZr/Coのモル比で0.03〜0.6である、請求項2〜4のいずれか1項に記載の二酸化炭素と水素とから炭化水素を製造するための触媒。   The hydrocarbon is produced from carbon dioxide and hydrogen according to any one of claims 2 to 4, wherein the zirconium component content in the catalyst is 0.03 to 0.6 in terms of a molar ratio of Zr / Co. Catalyst to do. 前記触媒担体が、8〜50nmの細孔径、80〜450m/gの比表面積、および0.3〜2.0mL/gの細孔容量を同時に満足する、請求項1〜5のいずれか1項に記載の二酸化炭素と水素とから炭化水素を製造するための触媒。 6. The catalyst support according to claim 1, wherein the catalyst support simultaneously satisfies a pore diameter of 8 to 50 nm, a specific surface area of 80 to 450 m 2 / g, and a pore volume of 0.3 to 2.0 mL / g. The catalyst for manufacturing a hydrocarbon from the carbon dioxide and hydrogen as described in a term. 前記触媒担体が球状のシリカである、請求項1〜6のいずれか1項に記載の二酸化炭素と水素とから炭化水素を製造するための触媒。   The catalyst for producing a hydrocarbon from carbon dioxide and hydrogen according to any one of claims 1 to 6, wherein the catalyst carrier is spherical silica. 前記触媒担体を、噴霧法により球状に成形する、請求項1〜7のいずれか1項に記載の二酸化炭素と水素とから炭化水素を製造するための触媒の製造方法。   The method for producing a catalyst for producing a hydrocarbon from carbon dioxide and hydrogen according to any one of claims 1 to 7, wherein the catalyst carrier is formed into a spherical shape by a spraying method. 前記触媒担体中のナトリウムの含有量が0.15質量%超3.5質量%以下である、請求項8に記載の二酸化炭素と水素とから炭化水素を製造するための触媒の製造方法。   The method for producing a catalyst for producing a hydrocarbon from carbon dioxide and hydrogen according to claim 8, wherein the content of sodium in the catalyst carrier is more than 0.15 mass% and 3.5 mass% or less. 請求項1〜7のいずれか1項に記載の二酸化炭素と水素とから炭化水素を製造するための触媒を製造する方法であって、シリカを主成分とする触媒担体に、含浸法、インシピエントウェットネス法、沈殿法、又はイオン交換法を用いて、コバルト成分及び/又はジルコニウム成分を担持させる、二酸化炭素と水素とから炭化水素を製造するための触媒の製造方法。   A method for producing a catalyst for producing a hydrocarbon from carbon dioxide and hydrogen according to any one of claims 1 to 7, wherein a catalyst carrier mainly composed of silica is impregnated with an in-situ method. The manufacturing method of the catalyst for manufacturing a hydrocarbon from a carbon dioxide and hydrogen which carries a cobalt component and / or a zirconium component using an enwetness method, a precipitation method, or an ion exchange method. 前記触媒担体にジルコニウム成分を担持させ、乾燥処理、又は乾燥処理及び焼成処理を行い、
次いで前記触媒担体にコバルト成分を担持させ、還元処理、又は焼成処理及び還元処理を行う、請求項10に記載の二酸化炭素と水素とから炭化水素を製造するための触媒の製造方法。
A zirconium component is supported on the catalyst carrier, and a drying process, or a drying process and a firing process are performed.
The method for producing a catalyst for producing hydrocarbons from carbon dioxide and hydrogen according to claim 10, wherein a cobalt component is supported on the catalyst carrier, and reduction treatment or firing treatment and reduction treatment are performed.
請求項1〜7のいずれか1項に記載の触媒を用いて炭化水素を製造する、二酸化炭素と水素とから炭化水素を製造する方法。   A method for producing a hydrocarbon from carbon dioxide and hydrogen, wherein the hydrocarbon is produced using the catalyst according to claim 1. スラリー床を用いた液相反応で前記炭化水素を製造する、請求項12に記載の二酸化炭素と水素とから炭化水素を製造する方法。   The method for producing hydrocarbons from carbon dioxide and hydrogen according to claim 12, wherein the hydrocarbons are produced by a liquid phase reaction using a slurry bed.
JP2018080915A 2018-04-19 2018-04-19 A catalyst for producing a hydrocarbon from carbon dioxide and hydrogen, a method for producing the catalyst, and a method for producing a hydrocarbon from carbon dioxide and hydrogen. Active JP7009294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018080915A JP7009294B2 (en) 2018-04-19 2018-04-19 A catalyst for producing a hydrocarbon from carbon dioxide and hydrogen, a method for producing the catalyst, and a method for producing a hydrocarbon from carbon dioxide and hydrogen.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018080915A JP7009294B2 (en) 2018-04-19 2018-04-19 A catalyst for producing a hydrocarbon from carbon dioxide and hydrogen, a method for producing the catalyst, and a method for producing a hydrocarbon from carbon dioxide and hydrogen.

Publications (2)

Publication Number Publication Date
JP2019188281A true JP2019188281A (en) 2019-10-31
JP7009294B2 JP7009294B2 (en) 2022-02-10

Family

ID=68388522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018080915A Active JP7009294B2 (en) 2018-04-19 2018-04-19 A catalyst for producing a hydrocarbon from carbon dioxide and hydrogen, a method for producing the catalyst, and a method for producing a hydrocarbon from carbon dioxide and hydrogen.

Country Status (1)

Country Link
JP (1) JP7009294B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021261417A1 (en) * 2020-06-22 2021-12-30
DE112020004949T5 (en) 2019-10-14 2022-08-04 Denso Corporation VEHICLE ONBOARD DEVICE AND DRIVING ASSISTANCE METHOD
CN117019151A (en) * 2023-07-05 2023-11-10 珠海市福沺能源科技有限公司 Cavity microsphere catalyst for carbon dioxide hydrogenation and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273023A (en) * 1987-01-28 1990-03-13 Exxon Res & Eng Co Production of alcohol and olefin from h2 and co2 using iron carbide base catalyst
JP2000254508A (en) * 1999-03-10 2000-09-19 Mitsui Eng & Shipbuild Co Ltd Catalyst for methanizing carbon dioxide
JP2009034659A (en) * 2007-07-11 2009-02-19 Gunma Industry Support Organization Catalyst for synthesizing hydrocarbons, method for manufacturing the same and method for producing hydrocarbons by using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273023A (en) * 1987-01-28 1990-03-13 Exxon Res & Eng Co Production of alcohol and olefin from h2 and co2 using iron carbide base catalyst
JP2000254508A (en) * 1999-03-10 2000-09-19 Mitsui Eng & Shipbuild Co Ltd Catalyst for methanizing carbon dioxide
JP2009034659A (en) * 2007-07-11 2009-02-19 Gunma Industry Support Organization Catalyst for synthesizing hydrocarbons, method for manufacturing the same and method for producing hydrocarbons by using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEM.COMMUN., vol. 49, JPN6021036598, 2013, pages 11683 - 11685, ISSN: 0004596945 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112020004949T5 (en) 2019-10-14 2022-08-04 Denso Corporation VEHICLE ONBOARD DEVICE AND DRIVING ASSISTANCE METHOD
JPWO2021261417A1 (en) * 2020-06-22 2021-12-30
WO2021261417A1 (en) * 2020-06-22 2021-12-30 株式会社Ihi Hydrocarbon generation system
JP7392854B2 (en) 2020-06-22 2023-12-06 株式会社Ihi Hydrocarbon generation system
CN117019151A (en) * 2023-07-05 2023-11-10 珠海市福沺能源科技有限公司 Cavity microsphere catalyst for carbon dioxide hydrogenation and preparation method and application thereof
CN117019151B (en) * 2023-07-05 2024-04-12 珠海市福沺能源科技有限公司 Cavity microsphere catalyst for carbon dioxide hydrogenation and preparation method and application thereof

Also Published As

Publication number Publication date
JP7009294B2 (en) 2022-02-10

Similar Documents

Publication Publication Date Title
JP4674921B2 (en) Catalyst for producing carboxylic acid ester, method for producing the same, and method for producing carboxylic acid ester
JP4808688B2 (en) Catalyst for producing hydrocarbons from synthesis gas, catalyst production method, catalyst regeneration method, and method for producing hydrocarbons from synthesis gas
US10086365B2 (en) Strengthened iron catalyst for slurry reactors
CA2744051C (en) Method for activating strengthened iron catalyst for slurry reactors
KR101430775B1 (en) Catalyst for producing hydrocarbon from synthetic gas, method for producing catalyst, method for regenerating catalyst, and method for producing hydrocarbon from synthetic gas
JP7009294B2 (en) A catalyst for producing a hydrocarbon from carbon dioxide and hydrogen, a method for producing the catalyst, and a method for producing a hydrocarbon from carbon dioxide and hydrogen.
JPWO2009054462A1 (en) COMPOSITE PARTICLE CARRIER, METHOD FOR PRODUCING COMPOSITE PARTICLE CARRIER, AND METHOD FOR PRODUCING COMPOUND USING THE COMPOSITE PARTICLE CARRIER AS CATALYST FOR CHEMICAL SYNTHESIS
JP5336234B2 (en) Composite particle carrier, method for producing the same, and method for producing carboxylic acid ester
JP5336235B2 (en) Noble metal support and method for producing carboxylic acid ester using the same as catalyst
JP5610900B2 (en) FT synthesis catalyst production method and hydrocarbon production method using the catalyst
JP5335505B2 (en) Noble metal support and method for producing carboxylic acid ester using the same as catalyst
JP4698343B2 (en) Catalyst for producing hydrocarbons from synthesis gas, method for producing the catalyst, and method for producing hydrocarbons from synthesis gas using the catalyst
JP2014514130A (en) catalyst
WO2018069759A1 (en) Copper/zinc/aluminium catalyst for the methanol synthesis prepared from a binary zinc-aluminium precursor solution
JP5100151B2 (en) Catalyst for producing hydrocarbons from synthesis gas, catalyst production method, method for producing hydrocarbons from synthesis gas, and catalyst regeneration method
JP4773116B2 (en) Method for producing catalyst for producing hydrocarbons from synthesis gas, and method for producing hydrocarbons from synthesis gas using the catalyst
JP7012595B2 (en) A method for producing a catalyst that produces a hydrocarbon from carbon dioxide and hydrogen, and a method for producing a hydrocarbon from carbon dioxide and hydrogen.
JP7012596B2 (en) A method for producing a catalyst for producing a hydrocarbon from syngas, and a method for producing a hydrocarbon from syngas.
JP6920952B2 (en) Catalysts for producing hydrocarbons from syngas, methods for producing catalysts, and methods for producing hydrocarbons from syngas
JP6858109B2 (en) A method for producing a catalyst for producing a hydrocarbon from a synthetic gas, and a method for producing a hydrocarbon from a synthetic gas.
JP7018754B2 (en) A catalyst for producing a hydrocarbon from syngas, a method for producing the catalyst, a method for producing a hydrocarbon from syngas, and a catalyst carrier.
JP7145653B2 (en) Method for producing catalyst for producing hydrocarbons from synthesis gas, and method for producing hydrocarbons from synthesis gas
JP2015157249A (en) Catalyst for producing hydrocarbon from synthesis gas, method for producing catalyst for producing hydrocarbon from synthesis gas, method for producing hydrocarbon from synthesis gas and catalyst carrier
JP6004856B2 (en) Methanol production catalyst, method for producing the same, and method for producing methanol
CN117083123A (en) Catalyst for producing carboxylic acid ester, method for producing carboxylic acid ester, and method for producing catalyst for producing carboxylic acid ester

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190208

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190214

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190419

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220112

R150 Certificate of patent or registration of utility model

Ref document number: 7009294

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150