JP2019185905A - Ceramic member and manufacturing method of buffer member - Google Patents

Ceramic member and manufacturing method of buffer member Download PDF

Info

Publication number
JP2019185905A
JP2019185905A JP2018072141A JP2018072141A JP2019185905A JP 2019185905 A JP2019185905 A JP 2019185905A JP 2018072141 A JP2018072141 A JP 2018072141A JP 2018072141 A JP2018072141 A JP 2018072141A JP 2019185905 A JP2019185905 A JP 2019185905A
Authority
JP
Japan
Prior art keywords
metal
ceramic
core material
buffer member
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018072141A
Other languages
Japanese (ja)
Other versions
JP7010750B2 (en
Inventor
淳 土田
Atsushi Tsuchida
淳 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2018072141A priority Critical patent/JP7010750B2/en
Publication of JP2019185905A publication Critical patent/JP2019185905A/en
Application granted granted Critical
Publication of JP7010750B2 publication Critical patent/JP7010750B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Resistance Heating (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

To provide a ceramic member through which a heavy-current can flow, while cushioning stress between an embedded metal and a terminal, and even after long term use, an embedded member and the ceramic substrate are never cracked.SOLUTION: A ceramic member 1 includes a ceramic base material 10 having a principal surface 11, a hole 12, a metal electrode layer 20 embedded in the ceramic base material 10, a conductive member 30 embedded in the ceramic base material 10, and a buffer member 40 connected with the conductive member 30 via a solder material solidification part. The buffer member 40 has a lamination structure consisting of a heartwood 41 composed of a first metal having an average linear coefficient of expansion larger than or equal to that of the conductive member 30 but smaller than that of a metal terminal 60, and a metal layer 51 composed of a second metal where (σ/E), obtained by dividing tensile strength σ by Young's modulus E satisfies a relation (σ/E)≤1.6×10.SELECTED DRAWING: Figure 1

Description

本発明は、セラミックス部材および緩衝部材の製造方法に関する。   The present invention relates to a method for manufacturing a ceramic member and a buffer member.

従来、金属端子が設けられたセラミックス部材に対して、高温と低温との熱サイクルを非常に多数回、あるいは長期間にわたって繰り返した場合や、各熱サイクルにおける温度差や温度降下速度・温度上昇速度が非常に大きい場合、さらには端子に対して高い機械的応力が加わるような場合には、金属端子とセラミックスの接合部分において、各部材中にクラックが発生・進展するおそれがある。その対策として、セラミックスからなる基体と金属端子との間に中間挿入材を設けてクラックを抑えようとする技術が提案されている。(例えば、特許文献1)。   Conventionally, high temperature and low temperature thermal cycles have been repeated many times or over a long period of time for ceramic members with metal terminals, and the temperature difference, temperature decrease rate, and temperature increase rate in each thermal cycle Is very large, or when a high mechanical stress is applied to the terminal, cracks may occur and develop in each member at the joint between the metal terminal and the ceramic. As a countermeasure, a technique has been proposed in which an intermediate insertion material is provided between a ceramic substrate and a metal terminal to suppress cracks. (For example, patent document 1).

特許第4005268号公報Japanese Patent No. 4005268

特許文献1の技術は、セラミックスからなる基体と、この基体に埋設されている金属埋設体とを備えている第1の部材であって、第1の部材の接合面に金属埋設体の一部が露出している第1の部材と、金属からなる第2の部材との接合構造体であって、第1の部材の接合面と第2の部材との間に介在する中間挿入材と、第1の部材の接合面と中間挿入材とを接合する第1の接合層と、第2の部材との中間挿入材とを接合する第2の接合層とを備えており、中間挿入材が、複数のセラミックス層と、各セラミックス層の間に介在する少なくとも1つの金属層との積層体が開示されていた。   The technique of Patent Document 1 is a first member including a base made of ceramics and a metal embedded body embedded in the base, and a part of the metal embedded body is formed on the joint surface of the first member. An intermediate insertion material interposed between the bonding surface of the first member and the second member, the bonding structure of the first member exposed to the metal and the second member made of metal, A first bonding layer for bonding the bonding surface of the first member and the intermediate insertion material; and a second bonding layer for bonding the intermediate insertion material for the second member. A laminate of a plurality of ceramic layers and at least one metal layer interposed between the ceramic layers has been disclosed.

しかし、特許文献1のような端子部の構造であっても、セラミックスの基体に内蔵される電極と端子が電気的接続をとるために、中間挿入材を構成する金属層は一定の断面積を有する必要があるが、大電流を流す用途に対しては十分ではなかった。   However, even in the structure of the terminal portion as in Patent Document 1, since the electrode built in the ceramic base and the terminal are electrically connected, the metal layer constituting the intermediate insert has a certain cross-sectional area. Although it is necessary to have, it was not enough for the application which flows a large current.

本発明は、以上の点に鑑み、大電流を流せて且つ、埋設金属と端子間の応力を緩和することができ、長期間使用しても埋設部材およびセラミックスの基体にクラックが入ることがないセラミックス部材を提供することを目的とする。   In view of the above points, the present invention can flow a large current and relieve stress between the buried metal and the terminal, and even if used for a long time, the buried member and the ceramic substrate do not crack. An object is to provide a ceramic member.

[1]上記目的を達成するため、本発明のセラミックス部材は、
主面を有するセラミックス基材と、
前記主面から前記セラミックス基材の内部に伸長する穴部と、
前記セラミックス基材に埋設されている金属電極層と、
前記金属電極層に電気的に接続され且つ前記穴部の底部を構成するように前記セラミックス基材に埋設されている導電部材と、
前記導電部材とロウ材固化部を介して接続されている緩衝部材と、
前記穴部に少なくとも一部が位置し、前記緩衝部材に接合され、前記導電部材より平均線膨張係数が大きい金属端子とを備えたセラミックス部材であって、
前記緩衝部材は、前記導電部材の平均線膨張係数以上で前記金属端子の平均線膨張係数より小さい平均線膨張係数を有する第1の金属からなる心材と、引張強度σをヤング率Eで割った(σ/E)が、(σ/E)≦1.6×10−3を満たす第2の金属からなる金属層と、からなる積層構造を有し、
互いに隣接する前記金属層及び前記心材について、前記心材の厚みに対する前記金属層の厚みの比率が10[%]以上であり、
前記心材及び前記金属層の積層方向における前記緩衝部材の厚みが1[mm]以上であることを特徴とする。
[1] To achieve the above object, the ceramic member of the present invention comprises:
A ceramic substrate having a main surface;
A hole extending from the main surface into the ceramic substrate;
A metal electrode layer embedded in the ceramic substrate;
A conductive member that is electrically connected to the metal electrode layer and embedded in the ceramic substrate so as to form the bottom of the hole;
A buffer member connected via the conductive member and the brazing material solidifying portion;
A ceramic member comprising at least a part of the hole, joined to the buffer member, and a metal terminal having a larger average linear expansion coefficient than the conductive member;
The buffer member includes a core material made of a first metal having an average linear expansion coefficient that is equal to or larger than an average linear expansion coefficient of the conductive member and smaller than an average linear expansion coefficient of the metal terminal, and a tensile strength σ divided by a Young's modulus E. (Σ / E) has a laminated structure consisting of a metal layer made of a second metal satisfying (σ / E) ≦ 1.6 × 10 −3 ,
For the metal layer and the core material adjacent to each other, the ratio of the thickness of the metal layer to the thickness of the core material is 10% or more,
A thickness of the buffer member in the stacking direction of the core material and the metal layer is 1 [mm] or more.

かかる構成によれば、緩衝部材を、導電部材の平均線膨張係数以上で金属端子の平均線膨張係数より小さい平均線膨張係数を有する金属からなる心材と、引張強度σをヤング率Eで割った(σ/E)が、(σ/E)≦1.6×10−3を満たす金属からなる金属層と、からなる積層構造を有するセラミックス部材にした。セラミックス基材に埋設された導電部材は、焼成温度を経験し粒成長するため脆弱化して強度が低下するが、緩衝部材を、導電部材の平均線膨張係数以上で金属端子の平均線膨張係数より小さい平均線膨張係数を有する第1の金属からなる心材と、引張強度σをヤング率Eで割った(σ/E)が、(σ/E)≦1.6×10−3を満たす第2の金属からなる金属層と、からなる積層構造とすることで、導電部材と金属端子との平均線膨張係数の差によって働く応力を、導電部材の平均線膨張係数以上で金属端子の平均線膨張係数より小さい平均線膨張係数を有する第1の金属からなる積層された心材で受けて、導電部材に働く応力を抑制することができる。 According to this configuration, the buffer member is formed by dividing the tensile strength σ by the Young's modulus E, the core material made of a metal having an average linear expansion coefficient that is greater than the average linear expansion coefficient of the conductive member and smaller than the average linear expansion coefficient of the metal terminal. A ceramic member having a laminated structure including a metal layer made of a metal satisfying (σ / E) satisfying (σ / E) ≦ 1.6 × 10 −3 . The conductive member embedded in the ceramic base material experiences weakness due to grain growth as a result of the firing temperature, and the strength is reduced. A core material made of a first metal having a small average linear expansion coefficient, and a second material satisfying (σ / E) ≦ 1.6 × 10 −3 when (σ / E) obtained by dividing tensile strength σ by Young's modulus E By forming a laminated structure consisting of a metal layer made of a metal, the stress acting due to the difference in the average linear expansion coefficient between the conductive member and the metal terminal is greater than the average linear expansion coefficient of the conductive member and the average linear expansion of the metal terminal The stress acting on the conductive member can be suppressed by receiving the laminated core material made of the first metal having an average linear expansion coefficient smaller than the coefficient.

このように、平均線膨張係数が昇順に大きくなるように傾斜化して導電部材に、第1の金属を含む緩衝部材および金属端子を順に接合したので、導電部材および緩衝部材間に働く応力、緩衝部材および金属端子間に働く応力を抑制することができ、導電部材にクラックが入ることを防止できる。   As described above, since the buffer member and the metal terminal containing the first metal are joined to the conductive member in order so that the average linear expansion coefficient increases in ascending order, the stress acting on the conductive member and the buffer member, the buffer The stress acting between the member and the metal terminal can be suppressed, and the conductive member can be prevented from cracking.

また、緩衝部材を、第1の金属からなる心材と、引張強度σをヤング率Eで割った(σ/E)が、(σ/E)≦1.6×10−3を満たす第2の金属からなる金属層と、からなる積層構造を有するセラミックス部材にした。心材の間に(σ/E)≦1.6×10−3を満たす第2の金属からなる金属層を用いたので、金属層に平面方向の塑性変形を誘起させ、埋設された導電部材と金属端子間の平均線膨張係数の差による歪を緩和し、導電部材及び金属端子間の応力を緩和する。結果、埋設された導電部材に働く応力を低減し、クラックを防止することができる。また、金属層を心材に積層することで、緩衝部材に大電流を流すことができる。 In addition, the buffer member includes a core material made of the first metal, and a second material satisfying (σ / E) ≦ 1.6 × 10 −3 when (σ / E) obtained by dividing the tensile strength σ by the Young's modulus E. A ceramic member having a laminated structure made of a metal layer made of metal was formed. Since the metal layer made of the second metal satisfying (σ / E) ≦ 1.6 × 10 −3 is used between the core materials, the metal layer is induced to plastic deformation in the plane direction, and the embedded conductive member and The strain due to the difference in average linear expansion coefficient between the metal terminals is relieved, and the stress between the conductive member and the metal terminal is relieved. As a result, stress acting on the embedded conductive member can be reduced and cracks can be prevented. Moreover, a large electric current can be sent through a buffer member by laminating | stacking a metal layer on a core material.

[2]また、本発明のセラミックス部材において、主面を有するセラミックス基材と、
前記主面から前記セラミックス基材の内部に伸長する穴部と、
前記セラミックス基材に埋設されている金属電極層と、
前記金属電極層に電気的に接続され且つ前記穴部の底部を構成するように前記セラミックス基材に埋設されているタングステンからなる導電部材と、
前記導電部材とロウ材固化部を介して接続されている緩衝部材と、
前記穴部に少なくとも一部が位置し、前記緩衝部材に接合され、ニッケルを含む金属端子と、を備えたセラミックス部材であって、
前記緩衝部材は、第1の金属からなる心材と、第2の金属からなる金属層と、からなる積層構造を有し、
前記第1の金属は、タングステン、モリブデン又はコバールであり、
前記第2の金属からなる金属層は、金、銀、銅、白金、及びニッケルの少なくともいずれか一つを含む、又は、金、銀、銅、白金、及びニッケルの少なくとも二つ以上の組み合わせを含み、
互いに隣接する前記金属層及び前記心材について、前記心材の厚みに対する前記金属層の厚みの比率が10[%]以上であり、
前記心材及び前記金属層の積層方向における前記緩衝部材の厚みが1[mm]以上であることが好ましい。
[2] In the ceramic member of the present invention, a ceramic substrate having a main surface;
A hole extending from the main surface into the ceramic substrate;
A metal electrode layer embedded in the ceramic substrate;
A conductive member made of tungsten that is electrically connected to the metal electrode layer and is embedded in the ceramic substrate so as to form the bottom of the hole;
A buffer member connected via the conductive member and the brazing material solidifying portion;
A ceramic member having at least a portion located in the hole, joined to the buffer member, and a metal terminal containing nickel,
The buffer member has a laminated structure composed of a core material made of a first metal and a metal layer made of a second metal,
The first metal is tungsten, molybdenum or kovar;
The metal layer made of the second metal includes at least one of gold, silver, copper, platinum, and nickel, or a combination of at least two of gold, silver, copper, platinum, and nickel. Including
For the metal layer and the core material adjacent to each other, the ratio of the thickness of the metal layer to the thickness of the core material is 10% or more,
The thickness of the buffer member in the stacking direction of the core material and the metal layer is preferably 1 [mm] or more.

かかる構成によれば、第2の金属からなる金属層を、金、銀、銅、白金及びニッケルの少なくともいずれか一つを含む、又はこれらの金属の少なくとも二つ以上の組み合わせを含むものとすることで、心材間で平面方向の塑性変形を誘起させ、埋設された導電部材と金属端子間の平均線膨張係数の差による歪を緩和し、導電部材及び金属端子間の応力をより緩和する。結果、埋設された導電部材に働く応力を低減し、クラックを防止することができる。また、緩衝部材に金、銀、銅、白金及びニッケルの少なくともいずれか一つを含む、又はこれらの金属の少なくとも二つ以上の組み合わせを含む金属層を、心材に積層することで、大電流を流すことができる。   According to such a configuration, the metal layer made of the second metal includes at least one of gold, silver, copper, platinum, and nickel, or includes a combination of at least two of these metals. In addition, plastic deformation in the planar direction is induced between the core materials, strain due to a difference in average linear expansion coefficient between the embedded conductive member and the metal terminal is relieved, and stress between the conductive member and the metal terminal is further relieved. As a result, stress acting on the embedded conductive member can be reduced and cracks can be prevented. In addition, the buffer member includes at least one of gold, silver, copper, platinum, and nickel, or a metal layer including a combination of at least two of these metals is stacked on the core material, thereby generating a large current. It can flow.

[3]また、本発明のセラミックス部材において、前記緩衝部材の厚みは、0.2[mm]/(前記第2の金属の金属層の厚み/前記第1の金属の心材の厚み)以上であることが好ましい。   [3] In the ceramic member of the present invention, the thickness of the buffer member is 0.2 [mm] / (the thickness of the metal layer of the second metal / the thickness of the core material of the first metal) or more. Preferably there is.

かかる構成によれば、金属層において平面方向の塑性変形を良好に誘起させ、クラックを防止することができる。   According to such a configuration, it is possible to induce plastic deformation in the plane direction in the metal layer, and to prevent cracks.

[4]また、本発明のセラミックス部材において、前記緩衝部材には、互いに異なる種類の前記第1の金属からなる複数の心材を含むことが好ましい。   [4] In the ceramic member of the present invention, it is preferable that the buffer member includes a plurality of core materials made of different types of the first metal.

かかる構成によれば、用途に応じた材料の選択ができ設計の自由度を向上させることができる。   According to such a configuration, it is possible to select a material according to the application and improve the degree of freedom in design.

[5]また、本発明のセラミックス部材において、前記緩衝部材には、互いに異なる厚みの前記第1の金属からなる複数の心材を含むことが好ましい。   [5] In the ceramic member of the present invention, it is preferable that the buffer member includes a plurality of core materials made of the first metal having different thicknesses.

かかる構成によれば、用途に応じた緩衝部材の厚みを変更でき設計の自由度を向上させることができる。   According to such a configuration, the thickness of the buffer member can be changed according to the application, and the degree of design freedom can be improved.

[6]また、本発明の緩衝部材の製造方法において、前記第1の金属からなる心材と前記第2の金属からなる金属層とを交互に積層する積層工程と、
積層した前記第1の金属からなる心材と前記第2の金属からなる金属層とを、熱間でプレスして一体化したのちに所定の形状に加工する加工工程とを備えることが好ましい。
[6] Moreover, in the manufacturing method of the buffer member of the present invention, a laminating step of alternately laminating the core material made of the first metal and the metal layer made of the second metal,
It is preferable to include a processing step of processing the laminated core material made of the first metal and the metal layer made of the second metal into a predetermined shape after being pressed and integrated.

かかる構成によれば、心材と金属層を積層した状態にて熱間でプレスするだけで緩衝部材を得ることができ、緩衝部材の加工を容易におこなうことができる。   According to such a configuration, the buffer member can be obtained simply by hot pressing in a state where the core material and the metal layer are laminated, and the buffer member can be easily processed.

図1Aは本発明のセラミックス部材を示す断面図である。図1Bは図1Aにおける第1態様の緩衝部材を示す要部拡大図である。FIG. 1A is a cross-sectional view showing a ceramic member of the present invention. FIG. 1B is an enlarged view of a main part showing the buffer member of the first mode in FIG. 1A. 第2態様の緩衝部材を示す要部拡大図である。It is a principal part enlarged view which shows the buffer member of a 2nd aspect. 第3態様の緩衝部材を示す要部拡大図である。It is a principal part enlarged view which shows the buffer member of a 3rd aspect. 金属層と心材との厚み比率を示す相関図である。It is a correlation diagram which shows the thickness ratio of a metal layer and a core material.

(実施形態)
以下、図面を用いて本発明の実施形態を説明する。なお、図面は、セラミックス部材1を概念的(模式的)に示すものとする。
(Embodiment)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, drawing shall show the ceramic member 1 notionally (schematically).

図1Aに示すように、セラミックス部材1は、主面11を有するセラミックス基材10と、主面11からセラミックス基材10の内部に伸長する穴部12と、セラミックス基材10に埋設されている金属電極層20と、金属電極層20に電気的に接続され且つ穴部12の底部13を構成するようにセラミックス基材10に埋設されている導電部材30と、導電部材30とロウ材固化部21を介して接続されている緩衝部材40と、穴部12に少なくとも一部が位置し、緩衝部材40に接合され、導電部材30より平均線膨張係数が大きい金属端子60と、を備えている。穴部12は円柱状であり、直径は5mmであるが4〜12mmの範囲で任意の寸法に設定することができる。   As shown in FIG. 1A, the ceramic member 1 is embedded in a ceramic base material 10 having a main surface 11, a hole 12 extending from the main surface 11 into the ceramic base material 10, and the ceramic base material 10. Metal electrode layer 20, conductive member 30 electrically connected to metal electrode layer 20 and embedded in ceramic substrate 10 so as to form bottom 13 of hole 12, conductive member 30 and brazing material solidified portion And a metal terminal 60 that is at least partially located in the hole 12, joined to the buffer member 40, and has a larger average linear expansion coefficient than that of the conductive member 30. . The hole 12 has a cylindrical shape and a diameter of 5 mm, but can be set to an arbitrary size within a range of 4 to 12 mm.

セラミックス部材1は、半導体製造装置において半導体ウエハを載置するために用いられるヒータ又は静電チャックである。セラミックス基材10は、窒化アルミニウムから形成される板状部材であり、主面11の反対側の表面に半導体ウエハが載置されることとなる。なお、セラミックス基材10は、窒化アルミニウムに代えてアルミナなどの他のセラミックス材料から形成されていてもよい。金属電極層20は、吸着電極、ヒータ電極または高周波発生用電極として用いられ、モリブデンからなるメッシュまたは箔である。   The ceramic member 1 is a heater or an electrostatic chuck used to place a semiconductor wafer in a semiconductor manufacturing apparatus. The ceramic substrate 10 is a plate-like member formed from aluminum nitride, and a semiconductor wafer is placed on the surface opposite to the main surface 11. The ceramic substrate 10 may be formed of other ceramic materials such as alumina instead of aluminum nitride. The metal electrode layer 20 is a mesh or foil made of molybdenum, used as an adsorption electrode, a heater electrode, or a high frequency generating electrode.

緩衝部材40及び金属端子60と、穴部12を画定するセラミックス基材10の内側面14との間には、隙間15が形成されている。隙間15の幅は、0.1[mm]である。   A gap 15 is formed between the buffer member 40 and the metal terminal 60 and the inner surface 14 of the ceramic substrate 10 that defines the hole 12. The width of the gap 15 is 0.1 [mm].

なお、実施形態では、隙間15の幅を0.1[mm]としたが、これに限定されず、隙間15の幅は0.05[mm]、0.3[mm]など間隙が設けられていれば差し支えないが、0.1[mm]以上であれば好ましい。導電部材30の一部は穴部12に露出する露出面31を有する。なお、図1の模式図においては、ロウ材固化部21が、緩衝部材40と内側面14との隙間15が残るように、すなわち露出面31を緩衝部材40の全周に亘って露出させるように存在しているが、導電部材30の露出面31が周方向について一部又は全部が露出しないようにロウ材固化部21が穴部12の径方向に広がっていても良い。   In the embodiment, the width of the gap 15 is set to 0.1 [mm]. However, the width is not limited to this, and the gap 15 is provided with a gap of 0.05 [mm], 0.3 [mm], or the like. However, it is preferably 0.1 [mm] or more. A part of the conductive member 30 has an exposed surface 31 exposed in the hole 12. In the schematic diagram of FIG. 1, the brazing material solidifying portion 21 is exposed so that the gap 15 between the buffer member 40 and the inner surface 14 remains, that is, the exposed surface 31 is exposed over the entire circumference of the buffer member 40. However, the brazing material solidified portion 21 may extend in the radial direction of the hole 12 so that a part or all of the exposed surface 31 of the conductive member 30 is not exposed in the circumferential direction.

導電部材30は、板状部材であるとともに、タングステンからなる。金属端子60は、柱状部材であり、ニッケルを含む。ロウ材固化部21は、いわゆるAuロウ材(Au−Ni)である。実施形態において、導電部材30は直径6mm、厚さ0.2mmの円板状部
材である。
The conductive member 30 is a plate-like member and is made of tungsten. The metal terminal 60 is a columnar member and contains nickel. The brazing material solidifying part 21 is a so-called Au brazing material (Au—Ni). In the embodiment, the conductive member 30 is a disk-shaped member having a diameter of 6 mm and a thickness of 0.2 mm.

なお、1[atm](1013.25[hPa])、20[℃]のときの各材料の平均線膨張係数は、タングステンが略4.3[×10−6/℃]であり、コバールが略4.8[×10−6/℃]であり、ニッケルが13.3[×10−6/℃]であり、金が14.2[×10−6/℃]であり、モリブデンが5.2[×10−6/℃]である。 The average linear expansion coefficient of each material at 1 [atm] (1013.25 [hPa]) and 20 [° C.] is approximately 4.3 [× 10 −6 / ° C.] for tungsten and It is approximately 4.8 [× 10 −6 / ° C.], nickel is 13.3 [× 10 −6 / ° C.], gold is 14.2 [× 10 −6 / ° C.], and molybdenum is 5 2 [× 10 −6 / ° C.].

図1Bに示すように、第1態様の緩衝部材40は、導電部材30の平均線膨張係数以上で金属端子60の平均線膨張係数より小さい平均線膨張係数を有する第1の金属からなる心材41と、引張強度σをヤング率Eで割った(σ/E)が、(σ/E)≦1.6×10−3を満たす第2の金属からなる金属層51と、からなる積層構造を有する。なお、引張強度やヤング率は、従前の引張強度試験(JIS Z2241)や共振法で測定される。また、ナノインデンテーションにおいて圧子を押圧したときの荷重変位曲線からヤング率の測定をすることができる。更にナノインデンテーション法においては降伏応力が測定できるが、これを引張強度に代用することができる。 As shown in FIG. 1B, the buffer member 40 of the first aspect is a core material 41 made of a first metal having an average linear expansion coefficient that is equal to or greater than the average linear expansion coefficient of the conductive member 30 and smaller than the average linear expansion coefficient of the metal terminal 60. And a metal layer 51 made of the second metal satisfying (σ / E) ≦ 1.6 × 10 −3 (σ / E) obtained by dividing the tensile strength σ by the Young's modulus E. Have. The tensile strength and Young's modulus are measured by a conventional tensile strength test (JIS Z2241) or a resonance method. In addition, Young's modulus can be measured from a load displacement curve when the indenter is pressed in nanoindentation. Furthermore, in the nanoindentation method, the yield stress can be measured, but this can be substituted for the tensile strength.

第1の金属からなる複数の心材41のそれぞれは、タングステン、モリブデン及びコバールのいずれか一つであり、心材41の厚みのそれぞれは等しい。また、第2の金属からなる複数の金属層51は、金、銀、銅、白金、及びニッケルの少なくともいずれか一つを含み、金属層51の厚みのそれぞれは等しい。複数の心材41は金属層51を介して積層されている。   Each of the plurality of cores 41 made of the first metal is any one of tungsten, molybdenum, and Kovar, and each of the cores 41 has the same thickness. The plurality of metal layers 51 made of the second metal include at least one of gold, silver, copper, platinum, and nickel, and the thicknesses of the metal layers 51 are equal. The plurality of core materials 41 are stacked via the metal layer 51.

次に、第2態様の緩衝部材40について説明する。図2に示すように、緩衝部材40は、第1の金属からなる心材41と、第2の金属からなる金属層51とが複数交互に積層されている。緩衝部材40には、互いに異なる種類の第1の金属からなる複数の心材41を含み、例えば心材41a(aは第1の金属からなる心材41の材料の種類を識別するための符号、以下同じ。)はタングステンであり、心材41b(bは第1の金属からなる心材41の材料の種類を識別するための符号、以下同じ。)はモリブデンである。なお、心材41にコバールを組み合わせても差し支えない。   Next, the buffer member 40 according to the second aspect will be described. As shown in FIG. 2, the buffer member 40 includes a plurality of core materials 41 made of a first metal and metal layers 51 made of a second metal, which are alternately stacked. The buffer member 40 includes a plurality of core materials 41 made of different types of first metals. For example, the core material 41a (a is a code for identifying the material type of the core material 41 made of the first metal, and so on. .) Is tungsten, and the core material 41b (b is a code for identifying the material type of the core material 41 made of the first metal, the same applies hereinafter) is molybdenum. Note that Kovar may be combined with the core material 41.

なお、図2では第2の金属からなる複数の金属層51を同一の材料からなるものとしたがこれに限定されず、第2の金属からなる複数の金属層51は、金、銀、銅、白金、及びニッケルの少なくとも二つを含む組み合わせを含み、例えば複数の金属層51を金と銀との組み合わせにしてもよく、金、銀、銅、白金、及びニッケルの組み合わせであればいずれの組み合わせであってもよい。   In FIG. 2, the plurality of metal layers 51 made of the second metal are made of the same material, but the present invention is not limited to this, and the plurality of metal layers 51 made of the second metal are made of gold, silver, copper Including a combination including at least two of platinum, and nickel. For example, the plurality of metal layers 51 may be a combination of gold and silver, and any combination of gold, silver, copper, platinum, and nickel may be used. It may be a combination.

次に、第3態様の緩衝部材40について説明する。図3に示すように、緩衝部材40には、互いに異なる厚みの第1の金属からなる複数の心材41を含む。例えば、心材41aはタングステンであるとともに厚みがt1であり、心材41bはモリブデンであるとともに厚みがt2である。   Next, the buffer member 40 according to the third aspect will be described. As shown in FIG. 3, the buffer member 40 includes a plurality of core members 41 made of first metals having different thicknesses. For example, the core material 41a is made of tungsten and has a thickness of t1, and the core material 41b is made of molybdenum and has a thickness of t2.

図1A〜図3に示すように、心材41と金属層51の積層方向における緩衝部材40の厚みは、0.2[mm]/(第2の金属の金属層51の厚み/第1の金属の心材41の厚み)以上である。   As shown in FIGS. 1A to 3, the thickness of the buffer member 40 in the stacking direction of the core material 41 and the metal layer 51 is 0.2 [mm] / (thickness of the second metal layer 51 / first metal. The thickness of the core material 41).

このような構成にすることで、心材41間で金属層51の平面方向の塑性変形を良好に誘起させ、クラックを防止することができる。   With such a configuration, it is possible to satisfactorily induce plastic deformation in the planar direction of the metal layer 51 between the core members 41 and prevent cracks.

次に、上記の理由となる評価方法について説明する。評価方法は、緩衝部材40を構成する第1の金属からなる心材41を、タングステン(表中:Wと示す)、モリブデン(表中:Moと示す)及びコバールのいずれか一つ又はそれらの組み合わせとし、第2の金属からなる金属層51を金(表中:Auと示す)として、心材41のそれぞれの厚み、金属層51のそれぞれの厚みを表1のように変えて試験を行った。   Next, the evaluation method that is the above reason will be described. In the evaluation method, the core material 41 made of the first metal constituting the buffer member 40 is any one of tungsten (in the table: indicated as W), molybdenum (in the table: indicated as Mo), and kovar, or a combination thereof. Then, the metal layer 51 made of the second metal was gold (in the table: indicated as Au), and the thickness of the core material 41 and the thickness of the metal layer 51 were changed as shown in Table 1, and the test was performed.

表1では、隣接する金属層及び心材についての(金属層/心材)の厚みの比率を[%]で表記し、緩衝部材厚みを[mm]で表記し、セラミックス基材10および導電部材30にクラックが発生しないものを表1で「○」と表記し、クラックが発生したものを「×」と表記した。クラックの発生の有無を確認するにあたっては、金属電極層20をヒータ電極とし、これに金属端子60から交流電流を流し、自己発熱によりセラミックス部材1を加熱し以下の条件での試験を行った。尚、昇温時の電流は30〜40[A]であった。
(1)サイクリック加熱試験:室温から600℃まで昇温し、室温まで冷却する温度サイクルを10回繰り返し実施。
(2)高温放置試験:600℃で300時間放置。
上記(1)、(2)の試験の後、目視でクラックの有無を確認するとともに、焼損その他外観上の変化の発生の有無および、金属端子60の剥離、セラミックス基材10のクラックの発生の有無を確認した。その後、断面をSEM観察することによってセラミックス基材10及び導電部材30におけるクラックの有無を確認した。
In Table 1, the ratio of the thickness of the (metal layer / core material) of the adjacent metal layer and core material is expressed in [%], the buffer member thickness is expressed in [mm], and the ceramic base material 10 and the conductive member 30 are Those in which no cracks occurred were indicated as “◯” in Table 1, and those in which cracks occurred were indicated as “x”. In confirming the presence or absence of the occurrence of cracks, the metal electrode layer 20 was used as a heater electrode, an alternating current was passed from the metal terminal 60, the ceramic member 1 was heated by self-heating, and the test was performed under the following conditions. The current at the time of temperature increase was 30 to 40 [A].
(1) Cyclic heating test: A temperature cycle of raising the temperature from room temperature to 600 ° C. and cooling to room temperature was repeated 10 times.
(2) High temperature standing test: Standing at 600 ° C. for 300 hours.
After the tests of (1) and (2) above, the presence or absence of cracks was confirmed visually, the presence or absence of burnout and other changes in appearance, the peeling of the metal terminals 60, and the occurrence of cracks in the ceramic substrate 10 The presence or absence was confirmed. Thereafter, the presence or absence of cracks in the ceramic substrate 10 and the conductive member 30 was confirmed by SEM observation of the cross section.

下表は、以上の試験結果を示している。   The table below shows the test results.

比較例1は、緩衝部材がタングステンのみから構成されており、心材41と金属層51の積層構造を有していない。そのため、ニッケルの金属端子60と埋設されたタングステンの導電部材30との間の応力緩和効果が小さいため、埋設されたタングステンの導電部材30にクラックが発生した。
比較例2は、緩衝部材40の総厚が小さく、ニッケルの金属端子60と埋設されたタングステンの導電部材30との間の応力緩和効果が小さいため、埋設されたタングステンの導電部材30にクラックが発生した。
In Comparative Example 1, the buffer member is made of only tungsten and does not have a laminated structure of the core material 41 and the metal layer 51. Therefore, since the stress relaxation effect between the nickel metal terminal 60 and the buried tungsten conductive member 30 is small, cracks occurred in the buried tungsten conductive member 30.
In Comparative Example 2, since the total thickness of the buffer member 40 is small and the stress relaxation effect between the nickel metal terminal 60 and the buried tungsten conductive member 30 is small, the buried tungsten conductive member 30 has cracks. Occurred.

比較例3は、タングステンの心材41が厚すぎたため、心材41に隣接する金の金属層51では歪を十分に緩和できない。そのため、緩衝効果が小さくニッケルの金属端子60と緩衝部材40を構成する心材41との間で剥離が発生した。   In Comparative Example 3, since the tungsten core material 41 is too thick, the gold metal layer 51 adjacent to the core material 41 cannot sufficiently relax the strain. Therefore, the buffering effect was small, and peeling occurred between the nickel metal terminal 60 and the core material 41 constituting the buffer member 40.

比較例4は、タングステンの心材41の厚みが金の金属層51の厚みと比較して厚すぎたため、心材41に隣接する金属層51では歪を十分に緩和できない。そのため、緩衝効果が小さくニッケルの金属端子60と緩衝部材40を構成する心材41との間で剥離が発生した。   In Comparative Example 4, the thickness of the tungsten core material 41 is too thick compared to the thickness of the gold metal layer 51, so the strain cannot be sufficiently relaxed in the metal layer 51 adjacent to the core material 41. Therefore, the buffering effect was small, and peeling occurred between the nickel metal terminal 60 and the core material 41 constituting the buffer member 40.

比較例5は、緩衝部材40の総厚が小さく、ニッケルの金属端子60と埋設されたタングステンの導電部材30との間委の応力緩和効果が小さいため、埋設されたタングステンの導電部材30にクラックが発生した。   In Comparative Example 5, since the total thickness of the buffer member 40 is small and the stress relaxation effect between the nickel metal terminal 60 and the embedded tungsten conductive member 30 is small, the embedded tungsten conductive member 30 is cracked. There has occurred.

この表1を参照すると、実施例1〜実施例9が、クラックが発生せずに合格「〇」となっていることが判る。比較例1〜比較例5は、クラックが発生し不合格「×」となっている。この評価結果をグラフ化したものを次に示す。   Referring to this Table 1, it can be seen that Examples 1 to 9 have passed “◯” without cracks. In Comparative Examples 1 to 5, a crack occurs and the result is “x”. A graph of this evaluation result is shown below.

図4に示すように、横軸は(金属層/心材)の厚み比率を示し、縦軸は緩衝部材厚みを示し、曲線は合否を分ける(0.2[mm]/(金属層の厚み/心材の厚み))の線を示す。表中◇は合格である実施例の値をプロットしたものであり、表中△は不合格である比較例の値をプロットしたものである。   As shown in FIG. 4, the horizontal axis indicates the thickness ratio of (metal layer / core material), the vertical axis indicates the thickness of the buffer member, and the curve divides pass / fail (0.2 [mm] / (metal layer thickness / The core thickness)) line is shown. In the table, ◇ is a plot of the values of the examples that passed, and Δ in the table is a plot of the values of the comparative examples that failed.

なお、実施形態では、図4の合否は上記(1)、(2)の試験における結果であるが、試験は上記(1)、(2)の試験に限定されず、上記(1)の温度サイクルを5回繰り返し実施にすることや、上記(2)の高温放置試験を:400℃で300時間放置にするなど試験条件を変更することで、(0.2[mm]/(金属層の厚み/心材の厚み))未満の厚みであっても、クラックが入らなければ合格に含まれるものとする。   In the embodiment, the acceptance / rejection in FIG. 4 is the result in the above tests (1) and (2), but the test is not limited to the above tests (1) and (2), and the temperature in (1) above. By changing the test conditions such as repeating the cycle 5 times or changing the test conditions such as the high temperature storage test of (2) above: at 400 ° C. for 300 hours, (0.2 [mm] / (metal layer Even if the thickness is less than the thickness / thickness of the core material))), it is included in the pass if there is no crack.

次に、金属層51を金以外の材料にした実験について説明する。評価方法は、緩衝部材40を構成する第1の金属からなる心材41を、タングステン(表中:Wと示す)とし、第2の金属からなる金属層51を銀(表中:Agと示す)、銅(表中:Cuと示す)、ニッケル(表中:Niと示す)及びチタン(表中:Tiと示す)のいずれか一つを表2のように変えて試験を行った。   Next, an experiment in which the metal layer 51 is made of a material other than gold will be described. In the evaluation method, the core material 41 made of the first metal constituting the buffer member 40 is tungsten (shown as W in the table), and the metal layer 51 made of the second metal is silver (shown as Ag in the table). The test was conducted by changing any one of copper (shown in the table: Cu), nickel (shown in the table: Ni) and titanium (shown in the table: Ti) as shown in Table 2.

表2では、心材41の厚みを[μm]で表記し、金属層51の厚みを[μm]で表記し、(金属層/心材)の厚みの比率を[%]で表記し、緩衝部材厚みを[mm]で表記し、セラミックス基材10および導電部材30にクラックが発生しないものを表2で「○」と表記し、クラックが発生したものを「×」と表記した。   In Table 2, the thickness of the core material 41 is expressed by [μm], the thickness of the metal layer 51 is expressed by [μm], the thickness ratio of (metal layer / core material) is expressed by [%], and the buffer member thickness Is expressed in [mm], those in which no cracks occur in the ceramic substrate 10 and the conductive member 30 are expressed as “◯” in Table 2, and those in which cracks are generated are expressed as “x”.

下表は、以上の試験結果を示している。   The table below shows the test results.

金属層51の引張強度をσ/Pa、ヤング率E/Paとして、変形のしやすさを(σ/E)で表すと、実施例10は、(σ/E)比が小さく、塑性変形する効果が大きい。その結果、応力緩和効果が大きい。   When the tensile strength of the metal layer 51 is σ / Pa and Young's modulus E / Pa and the ease of deformation is expressed by (σ / E), Example 10 has a small (σ / E) ratio and undergoes plastic deformation. Great effect. As a result, the stress relaxation effect is great.

比較例6は、(σ/E)比が大きく、塑性変形する効果が小さい。その結果、応力緩和効果が小さい。   In Comparative Example 6, the (σ / E) ratio is large, and the effect of plastic deformation is small. As a result, the stress relaxation effect is small.

この表2を参照すると、実施例10〜実施例12が、クラックが発生せずに合格「〇」となっていることが判る。比較例6は、クラックが発生し不合格「×」となっている。   Referring to Table 2, it can be seen that Examples 10 to 12 have passed “◯” without cracks. In Comparative Example 6, cracks occurred and the result was “failed”.

次に、金属層51の材料と変形のしやすさを(σ/E)の値について説明する。下表は(σ/E)の値をまとめたものを示している。   Next, the material of the metal layer 51 and the ease of deformation will be described with respect to the value of (σ / E). The table below shows a summary of the values of (σ / E).

この表3を参照すると、金(Au)、銀(Ag)、銅(Cu)およびニッケル(Ni)はクラックが発生せずに合格「○」となり、チタン(Ti)およびジルコニウム(Zr)はクラックが発生し不合格「×」となっていることが判る。これにより、(σ/E)≦1.6×10−3である金属層51の種類が好適であることが確認された。なお、実施形態では、上記の金属を使用したが、これに限定されず、クラックが発生しない金属であれば、これ以外の金属による金属層51としても差し支えない。 Referring to Table 3, gold (Au), silver (Ag), copper (Cu), and nickel (Ni) pass without being cracked, and “pass”, and titanium (Ti) and zirconium (Zr) crack. Is generated, and it is understood that the result is “x”. Thereby, it was confirmed that the kind of the metal layer 51 which is ((sigma) / E) <= 1.6 * 10 < -3 > was suitable. In the embodiment, the above-described metal is used. However, the present invention is not limited to this, and the metal layer 51 may be formed of other metals as long as the metal does not cause cracks.

次に、緩衝部材40の製造方法について説明する。ステップ1で、第1の金属からなる心材41と第2の金属からなる金属層51とを交互に積層する(積層工程)。   Next, a method for manufacturing the buffer member 40 will be described. In step 1, the core material 41 made of the first metal and the metal layer 51 made of the second metal are alternately laminated (lamination process).

ステップ2で、積層した第1の金属からなる心材41と第2の金属からなる金属層51とを、熱間でプレスして一体化したのちに所定の形状に加工する(加工工程)。   In step 2, the core material 41 made of the first metal and the metal layer 51 made of the second metal are pressed and integrated with heat, and then processed into a predetermined shape (processing step).

このような製造方法によれば、心材41と金属層51を積層した状態にて熱間でプレスするだけで緩衝部材40を得ることができ、緩衝部材40の加工を容易におこなうことができる。   According to such a manufacturing method, the buffer member 40 can be obtained simply by hot pressing in the state where the core material 41 and the metal layer 51 are laminated, and the buffer member 40 can be easily processed.

次に作用、効果について説明する。セラミックス基材10に埋設された導電部材30は、焼成温度1800℃以上を経験し粒成長するため脆弱化して強度が低下するが、緩衝部材40を、導電部材30の平均線膨張係数以上で金属端子60の平均線膨張係数より小さい平均線膨張係数を有する第1の金属からなる心材41と、引張強度σをヤング率Eで割
った(σ/E)が、(σ/E)≦1.6×10−3を満たす第2の金属からなる金属層51と、からなる積層構造とすることで、導電部材30と金属端子60との平均線膨張係数の差によって働く応力を、導電部材30の平均線膨張係数以上で金属端子60の平均線膨張係数より小さい平均線膨張係数を有する第1の金属からなる積層された心材41で受けて、導電部材30に働く応力を抑制することができる。
Next, functions and effects will be described. The conductive member 30 embedded in the ceramic substrate 10 experiences a firing temperature of 1800 ° C. or more and grows and thus weakens as the grain grows. The core material 41 made of the first metal having an average linear expansion coefficient smaller than the average linear expansion coefficient of the terminal 60 and (σ / E) obtained by dividing the tensile strength σ by the Young's modulus E is (σ / E) ≦ 1. By making the metal layer 51 composed of the second metal satisfying 6 × 10 −3 , the stress acting on the conductive member 30 due to the difference in the average linear expansion coefficient between the conductive member 30 and the metal terminal 60 is reduced. The stress acting on the conductive member 30 can be suppressed by receiving the laminated core material 41 made of the first metal having an average linear expansion coefficient equal to or greater than the average linear expansion coefficient of the metal terminal 60 and smaller than the average linear expansion coefficient of the metal terminal 60. .

さらに、平均線膨張係数が昇順に大きくなるように傾斜化して導電部材30に、第1の金属を含む緩衝部材40および金属端子60を順に接合したので、導電部材30および緩衝部材40間に働く応力、緩衝部材40および金属端子60間に働く応力を抑制することができ、導電部材30にクラックが入ることを防止できる。   In addition, the buffer member 40 and the metal terminal 60 containing the first metal are joined to the conductive member 30 in order so that the average linear expansion coefficient increases in ascending order, and thus acts between the conductive member 30 and the buffer member 40. The stress, the stress acting between the buffer member 40 and the metal terminal 60 can be suppressed, and the conductive member 30 can be prevented from cracking.

さらに、緩衝部材40を、第1の金属からなる心材41と、引張強度σをヤング率Eで割った(σ/E)が、(σ/E)≦1.6×10−3を満たす第2の金属からなる金属層51と、からなる積層構造を有するセラミックス部材1にした。心材41の間に(σ/E)≦1.6×10−3を満たす第2の金属からなる金属層51を用いたので、心材41間で平面方向の塑性変形を誘起させ、埋設された導電部材30と金属端子60間の平均線膨張係数の差による歪を緩和し、導電部材30及び金属端子60間の応力を緩和する。結果、埋設された導電部材30に働く応力を低減し、クラックを防止することができる。さらに、金属層51を心材41の間に積層することで、緩衝部材40に大電流を流すことができる。 Further, the buffer member 40 includes a core material 41 made of the first metal, and (σ / E) obtained by dividing the tensile strength σ by the Young's modulus E satisfies (σ / E) ≦ 1.6 × 10 −3 . A ceramic member 1 having a laminated structure made of a metal layer 51 made of two metals was used. Since the metal layer 51 made of the second metal satisfying (σ / E) ≦ 1.6 × 10 −3 is used between the core materials 41, it is embedded by inducing plastic deformation in the plane direction between the core materials 41. The strain due to the difference in average linear expansion coefficient between the conductive member 30 and the metal terminal 60 is relieved, and the stress between the conductive member 30 and the metal terminal 60 is relieved. As a result, stress acting on the embedded conductive member 30 can be reduced and cracks can be prevented. Furthermore, by laminating the metal layer 51 between the core members 41, a large current can be passed through the buffer member 40.

さらに、第2の金属からなる金属層51を、金、銀、銅、白金及びニッケルの少なくともいずれか一つを含む、又はこれらの金属の少なくとも二つ以上の組み合わせを含むものとすることで、心材41間で金属層51に平面方向の塑性変形を誘起させ、埋設された導電部材30と金属端子60間の平均線膨張係数の差による歪を緩和し、導電部材30及び金属端子60間の応力をより緩和する。結果、埋設された導電部材30に働く応力を低減し、クラックを防止することができる。また、緩衝部材40に金、銀、銅、白金及びニッケルの少なくともいずれか一つを含む、又はこれらの金属の少なくとも二つ以上の組み合わせを含む金属層51を、心材41を介して積層することで、大電流を流すことができる。   Furthermore, the metal layer 51 made of the second metal includes at least one of gold, silver, copper, platinum, and nickel, or includes a combination of at least two of these metals, so that the core material 41 The plastic deformation in the plane direction is induced in the metal layer 51 between them, the strain due to the difference in the average linear expansion coefficient between the embedded conductive member 30 and the metal terminal 60 is relieved, and the stress between the conductive member 30 and the metal terminal 60 is reduced. Relax more. As a result, stress acting on the embedded conductive member 30 can be reduced and cracks can be prevented. In addition, a metal layer 51 containing at least one of gold, silver, copper, platinum and nickel, or a combination of at least two of these metals is laminated on the buffer member 40 via the core material 41. Thus, a large current can flow.

さらに、緩衝部材40には、互いに異なる種類の第1の金属からなる複数の心材41を含んだので、用途に応じた材料の選択ができ設計の自由度を向上させることができる。   Furthermore, since the buffer member 40 includes a plurality of core materials 41 made of different types of first metals, the material can be selected according to the application, and the degree of design freedom can be improved.

さらに、緩衝部材40には、互いに異なる厚みの第1の金属からなる複数の心材41を含んだので、用途に応じた緩衝部材の厚みを変更でき設計の自由度を向上させることができる。   Furthermore, since the buffer member 40 includes a plurality of core members 41 made of first metals having different thicknesses, the thickness of the buffer member can be changed according to the application, and the degree of freedom in design can be improved.

なお、実施形態における、セラミックス基材10の穴部12の穴径、緩衝部材40の直径は、例であり、穴部12の穴径をφ5.2[mm]とし、緩衝部材40の直径をφ5.0[mm]にするなど、部材にクラックが生じない寸法であれば適宜変更してもよい。また、実施形態では、心材41を、タングステン、モリブデン、コバールとしたが、これに限定されず、導電部材30の平均線膨張係数以上で金属端子60の平均線膨張係数より小さい平均線膨張係数を有する金属であれば他の一般的な金属であっても差し支えない。   In the embodiment, the hole diameter of the hole portion 12 of the ceramic substrate 10 and the diameter of the buffer member 40 are examples. The hole diameter of the hole portion 12 is φ5.2 [mm], and the diameter of the buffer member 40 is If it is a dimension that does not cause cracks in the member, such as φ5.0 [mm], it may be changed as appropriate. In the embodiment, the core material 41 is tungsten, molybdenum, or kovar. However, the core material 41 is not limited to this, and an average linear expansion coefficient that is equal to or larger than the average linear expansion coefficient of the conductive member 30 and smaller than the average linear expansion coefficient of the metal terminal 60 is used. Other common metals can be used as long as they have metals.

1 … セラミックス部材
10… セラミックス基材
11… 主面
12… 穴部
13… 底部
20… 金属電極層
21… ロウ材固化部
30… 導電部材(タングステン)
40… 緩衝部材
41、41a、41b… 心材(第1の金属、タングステン、モリブデン、コバール)
51… 金属層(第2の金属、金、銀、銅、白金、ニッケル)
60… 金属端子(ニッケル)
DESCRIPTION OF SYMBOLS 1 ... Ceramic member 10 ... Ceramic base material 11 ... Main surface 12 ... Hole part 13 ... Bottom part 20 ... Metal electrode layer 21 ... Brazing material solidification part 30 ... Conductive member (tungsten)
40 ... Buffer member 41, 41a, 41b ... Core material (first metal, tungsten, molybdenum, Kovar)
51 ... Metal layer (second metal, gold, silver, copper, platinum, nickel)
60 ... Metal terminal (nickel)

Claims (6)

主面を有するセラミックス基材と、
前記主面から前記セラミックス基材の内部に伸長する穴部と、
前記セラミックス基材に埋設されている金属電極層と、
前記金属電極層に電気的に接続され且つ前記穴部の底部を構成するように前記セラミックス基材に埋設されている導電部材と、
前記導電部材とロウ材固化部を介して接続されている緩衝部材と、
前記穴部に少なくとも一部が位置し、前記緩衝部材に接合され、前記導電部材より平均線膨張係数が大きい金属端子とを備えたセラミックス部材であって、
前記緩衝部材は、前記導電部材の平均線膨張係数以上で前記金属端子の平均線膨張係数より小さい平均線膨張係数を有する第1の金属からなる心材と、引張強度σをヤング率Eで割った(σ/E)が、(σ/E)≦1.6×10−3を満たす第2の金属からなる金属層と、からなる積層構造を有し、
互いに隣接する前記金属層及び前記心材について、前記心材の厚みに対する前記金属層の厚みの比率が10[%]以上であり、
前記心材及び前記金属層の積層方向における前記緩衝部材の厚みが1[mm]以上であることを特徴とするセラミックス部材。
A ceramic substrate having a main surface;
A hole extending from the main surface into the ceramic substrate;
A metal electrode layer embedded in the ceramic substrate;
A conductive member that is electrically connected to the metal electrode layer and embedded in the ceramic substrate so as to form the bottom of the hole;
A buffer member connected via the conductive member and the brazing material solidifying portion;
A ceramic member comprising at least a part of the hole, joined to the buffer member, and a metal terminal having a larger average linear expansion coefficient than the conductive member;
The buffer member includes a core material made of a first metal having an average linear expansion coefficient that is equal to or larger than an average linear expansion coefficient of the conductive member and smaller than an average linear expansion coefficient of the metal terminal, and a tensile strength σ divided by a Young's modulus E. (Σ / E) has a laminated structure consisting of a metal layer made of a second metal satisfying (σ / E) ≦ 1.6 × 10 −3 ,
For the metal layer and the core material adjacent to each other, the ratio of the thickness of the metal layer to the thickness of the core material is 10% or more,
The ceramic member, wherein a thickness of the buffer member in the stacking direction of the core material and the metal layer is 1 [mm] or more.
主面を有するセラミックス基材と、
前記主面から前記セラミックス基材の内部に伸長する穴部と、
前記セラミックス基材に埋設されている金属電極層と、
前記金属電極層に電気的に接続され且つ前記穴部の底部を構成するように前記セラミックス基材に埋設されているタングステンからなる導電部材と、
前記導電部材とロウ材固化部を介して接続されている緩衝部材と、
前記穴部に少なくとも一部が位置し、前記緩衝部材に接合され、ニッケルを含む金属端子と、を備えたセラミックス部材であって、
前記緩衝部材は、第1の金属からなる心材と、第2の金属からなる金属層と、からなる積層構造を有し、
前記第1の金属は、タングステン、モリブデン又はコバールであり、
前記第2の金属からなる金属層は、金、銀、銅、白金、及びニッケルの少なくともいずれか一つを含む、又は、金、銀、銅、白金、及びニッケルの少なくとも二つ以上の組み合わせを含み、
互いに隣接する前記金属層及び前記心材について、前記心材の厚みに対する前記金属層の厚みの比率が10[%]以上であり、
前記心材及び前記金属層の積層方向における前記緩衝部材の厚みが1[mm]以上であることを特徴とするセラミックス部材。
A ceramic substrate having a main surface;
A hole extending from the main surface into the ceramic substrate;
A metal electrode layer embedded in the ceramic substrate;
A conductive member made of tungsten that is electrically connected to the metal electrode layer and is embedded in the ceramic substrate so as to form the bottom of the hole;
A buffer member connected via the conductive member and the brazing material solidifying portion;
A ceramic member having at least a portion located in the hole, joined to the buffer member, and a metal terminal containing nickel,
The buffer member has a laminated structure composed of a core material made of a first metal and a metal layer made of a second metal,
The first metal is tungsten, molybdenum or kovar;
The metal layer made of the second metal includes at least one of gold, silver, copper, platinum, and nickel, or a combination of at least two of gold, silver, copper, platinum, and nickel. Including
For the metal layer and the core material adjacent to each other, the ratio of the thickness of the metal layer to the thickness of the core material is 10% or more,
The ceramic member, wherein a thickness of the buffer member in the stacking direction of the core material and the metal layer is 1 [mm] or more.
請求項1又は請求項2に記載のセラミックス部材であって、
前記緩衝部材の厚みは、0.2[mm]/(前記第2の金属の金属層の厚み/前記第1の金属の心材の厚み)以上であることを特徴とするセラミックス部材。
The ceramic member according to claim 1 or 2,
The ceramic member having a thickness of the buffer member equal to or greater than 0.2 [mm] / (thickness of the metal layer of the second metal / thickness of the core material of the first metal).
請求項1から請求項3のいずれか1項記載のセラミックス部材であって、
前記緩衝部材には、互いに異なる種類の前記第1の金属からなる複数の心材を含むことを特徴とするセラミックス部材。
The ceramic member according to any one of claims 1 to 3,
The ceramic member according to claim 1, wherein the buffer member includes a plurality of cores made of different types of the first metal.
請求項1から請求項4のいずれか1項記載のセラミックス部材であって、
前記緩衝部材には、互いに異なる厚みの前記第1の金属からなる複数の心材を含むことを特徴とするセラミックス部材。
The ceramic member according to any one of claims 1 to 4, wherein:
The ceramic member according to claim 1, wherein the buffer member includes a plurality of core members made of the first metal having different thicknesses.
請求項1から請求項5のいずれか1項記載の緩衝部材の製造方法であって、
前記第1の金属からなる心材と前記第2の金属からなる金属層とを交互に積層する積層工程と、
積層した前記第1の金属からなる心材と前記第2の金属からなる金属層とを、熱間でプレスして一体化したのちに所定の形状に加工する加工工程とを備える緩衝部材の製造方法。
It is a manufacturing method of the buffer member according to any one of claims 1 to 5,
A laminating step of alternately laminating a core material made of the first metal and a metal layer made of the second metal;
A buffer member manufacturing method comprising: a laminated core material made of the first metal and a metal layer made of the second metal that are pressed and integrated into a predetermined shape after hot pressing. .
JP2018072141A 2018-04-04 2018-04-04 Manufacturing method of ceramic member and cushioning member Active JP7010750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018072141A JP7010750B2 (en) 2018-04-04 2018-04-04 Manufacturing method of ceramic member and cushioning member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018072141A JP7010750B2 (en) 2018-04-04 2018-04-04 Manufacturing method of ceramic member and cushioning member

Publications (2)

Publication Number Publication Date
JP2019185905A true JP2019185905A (en) 2019-10-24
JP7010750B2 JP7010750B2 (en) 2022-01-26

Family

ID=68341574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018072141A Active JP7010750B2 (en) 2018-04-04 2018-04-04 Manufacturing method of ceramic member and cushioning member

Country Status (1)

Country Link
JP (1) JP7010750B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58125673A (en) * 1982-01-12 1983-07-26 新明和工業株式会社 Diffusion joining method
JPS60145972A (en) * 1983-12-29 1985-08-01 株式会社東芝 Ceramic-metal bonded body
JPS63206365A (en) * 1987-02-23 1988-08-25 京セラ株式会社 Joined body of ceramic and metal
JPH01208374A (en) * 1988-02-15 1989-08-22 Sumitomo Cement Co Ltd Conjugate of sic ceramics member and metallic member
JPH1112053A (en) * 1997-06-20 1999-01-19 Ngk Insulators Ltd Bonded structure of ceramic and its production
JP2001010873A (en) * 1999-06-25 2001-01-16 Ngk Insulators Ltd Method for joining different kinds of members to each other, and composite member joined by the same method
JP2001223261A (en) * 2000-02-07 2001-08-17 Hitachi Ltd Electrostatic chuck and electrostatic attraction device
JP2003017552A (en) * 2001-07-03 2003-01-17 Onahama Seisakusho:Kk Ceramic heater, and electrostatic chuck incorporating same
US20040217104A1 (en) * 2003-05-01 2004-11-04 Applied Materials, Inc. Low residual-stress brazed terminal for heater
JP4005268B2 (en) * 1999-06-01 2007-11-07 日本碍子株式会社 Bonding structure of ceramics and metal and intermediate insert used for this
JP2008130609A (en) * 2006-11-16 2008-06-05 Ngk Insulators Ltd Heating apparatus
JP2018016536A (en) * 2016-07-29 2018-02-01 日本特殊陶業株式会社 Ceramic member

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58125673A (en) * 1982-01-12 1983-07-26 新明和工業株式会社 Diffusion joining method
JPS60145972A (en) * 1983-12-29 1985-08-01 株式会社東芝 Ceramic-metal bonded body
JPS63206365A (en) * 1987-02-23 1988-08-25 京セラ株式会社 Joined body of ceramic and metal
JPH01208374A (en) * 1988-02-15 1989-08-22 Sumitomo Cement Co Ltd Conjugate of sic ceramics member and metallic member
JPH1112053A (en) * 1997-06-20 1999-01-19 Ngk Insulators Ltd Bonded structure of ceramic and its production
JP4005268B2 (en) * 1999-06-01 2007-11-07 日本碍子株式会社 Bonding structure of ceramics and metal and intermediate insert used for this
JP2001010873A (en) * 1999-06-25 2001-01-16 Ngk Insulators Ltd Method for joining different kinds of members to each other, and composite member joined by the same method
JP2001223261A (en) * 2000-02-07 2001-08-17 Hitachi Ltd Electrostatic chuck and electrostatic attraction device
JP2003017552A (en) * 2001-07-03 2003-01-17 Onahama Seisakusho:Kk Ceramic heater, and electrostatic chuck incorporating same
US20040217104A1 (en) * 2003-05-01 2004-11-04 Applied Materials, Inc. Low residual-stress brazed terminal for heater
JP2008130609A (en) * 2006-11-16 2008-06-05 Ngk Insulators Ltd Heating apparatus
JP2018016536A (en) * 2016-07-29 2018-02-01 日本特殊陶業株式会社 Ceramic member

Also Published As

Publication number Publication date
JP7010750B2 (en) 2022-01-26

Similar Documents

Publication Publication Date Title
JP4421595B2 (en) Heating device
TWI317138B (en)
JP6441921B2 (en) Joined structure
KR101099891B1 (en) Body having a junction and method of manufacturing the same
JP4005268B2 (en) Bonding structure of ceramics and metal and intermediate insert used for this
JP2007258610A (en) Alumina sintered body
JP2016051778A (en) Metal-ceramic bonded substrate
JP2019185905A (en) Ceramic member and manufacturing method of buffer member
JPH0769750A (en) Bonded ceramic structure
US7252872B2 (en) Joined structures of ceramics
JP7025268B2 (en) Ceramic structure
JP7014651B2 (en) Ceramic substrate structure and its manufacturing method
JP2003347487A (en) Semiconductor device
JP7109262B2 (en) Electrode embedded material
US10750611B2 (en) Electrode embedded member
JP2019202331A (en) Joining method of dissimilar material, and joined body of dissimilar material
KR102386581B1 (en) Wafer placement table and method for manufacturing the same
JP7284561B2 (en) Electrode embedded material
JP6966651B2 (en) Electrode embedded member and its manufacturing method, electrostatic chuck, ceramic heater
JP6994257B2 (en) Wiring structure
JP7038027B2 (en) Manufacturing method of electrode embedded member
JP2009182209A (en) Semiconductor device
JP2020177735A (en) Manufacturing method of electrode embedded member
JP6224416B2 (en) BONDED BODY OF CERAMIC BODY AND METAL BODY, AND METHOD FOR PRODUCING BONDED BODY OF CERAMIC BODY AND METAL BODY
JP2017135350A (en) Electrode built-in ceramic sintered body and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220113

R150 Certificate of patent or registration of utility model

Ref document number: 7010750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350