JP2019181628A - 工作機械、切削方法、および切削プログラム - Google Patents

工作機械、切削方法、および切削プログラム Download PDF

Info

Publication number
JP2019181628A
JP2019181628A JP2018076202A JP2018076202A JP2019181628A JP 2019181628 A JP2019181628 A JP 2019181628A JP 2018076202 A JP2018076202 A JP 2018076202A JP 2018076202 A JP2018076202 A JP 2018076202A JP 2019181628 A JP2019181628 A JP 2019181628A
Authority
JP
Japan
Prior art keywords
cutting
tool
workpiece
spindle
machine tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018076202A
Other languages
English (en)
Other versions
JP6735309B2 (ja
Inventor
謙吾 河合
Kengo Kawai
謙吾 河合
静雄 西川
Shizuo Nishikawa
静雄 西川
勝彦 大野
Katsuhiko Ono
勝彦 大野
康彦 森田
Yasuhiko Morita
康彦 森田
正憲 室住
Masanori Murozumi
正憲 室住
将隆 阪本
Masataka Sakamoto
将隆 阪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DMG Mori Co Ltd
Original Assignee
DMG Mori Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DMG Mori Seiki Co Ltd filed Critical DMG Mori Seiki Co Ltd
Priority to JP2018076202A priority Critical patent/JP6735309B2/ja
Publication of JP2019181628A publication Critical patent/JP2019181628A/ja
Application granted granted Critical
Publication of JP6735309B2 publication Critical patent/JP6735309B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Numerical Control (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

【課題】切削方向に関わらず再生びびり振動の発生を抑制することができる工作機械を提供する。【解決手段】工作機械は、ワークを切削するための工具と、ワークまたは工具を回転するための主軸と、主軸を回転駆動するための駆動部と、工具によるワークの切込み幅と主軸の回転数との切削条件の関係において再生びびり振動が生じない切削条件の範囲を規定した安定範囲を、ワークに対する工具の切削方向ごとに対応付けて格納するための記憶装置と、駆動部による主軸の駆動方向を制御することで、ワークに対する工具の切削方向を制御するための制御装置とを備え、制御装置は、現在の切削方向に対応する安定範囲に切削条件が収まるように、工具によるワークの切込み幅と、主軸の回転数との少なくとも一方に関する制御パラメータを設定する。【選択図】図11

Description

本開示は、工作機械に生じ得る再生びびり振動の発生を抑制するための技術に関する。
工作機械でワークを切削する際、工具の刃先が振動することがある。このような振動は、再生びびり振動と呼ばれる。再生びびり振動が生じると、ワークの切削精度が低下してしまう。
再生びびり振動は、工具の振動周波数と工具によるワークの切込み幅との関係が所定の条件を満たした場合に生じる振動である。
再生びびり振動を抑制するための技術を開示する文献として、特開2005−74568号公報(特許文献1)と、特開2013−43240号公報(特許文献2)と、特開2012−183596号公報(特許文献3)とがある。特許文献1〜3に開示される工作機械は、再生びびり振動が発生しない切削条件の安定範囲と、再生びびり振動が発生する切削条件の不安定範囲とを規定した安定ローブを複数準備しておき、各安定ローブの安全範囲の重複範囲に切削条件を収めることで、再生びびり振動を抑制することを開示している。
特開2005−74568号公報 特開2013−43240号公報 特開2012−183596号公報
しかしながら、再生びびり振動が発生する切削条件は、切削方向によって変化するので、再生びびり振動の発生をより確実に抑制するためには、切削方向を考慮する必要がある。特許文献1〜4に開示される工作機械は、切削方向に対応した安定ローブを用いていないので、切削方向によっては再生びびり振動が発生する可能性がある。
本開示は上述のような問題点を解決するためになされたものであって、ある局面における目的は、切削方向に関わらず再生びびり振動の発生を抑制することができる工作機械を提供することである。他の局面における目的は、切削方向に関わらず再生びびり振動の発生を抑制することができる切削方法を提供することである。他の局面における目的は、切削方向に関わらず再生びびり振動の発生を抑制することができる切削プログラムを提供することである。
本開示の一例では、工作機械は、ワークを切削するための工具と、上記ワークまたは上記工具を回転するための主軸と、上記主軸を駆動するための駆動部と、上記工具による上記ワークの切込み幅と上記主軸の回転数との切削条件の関係においてびびり振動が生じない切削条件の範囲を規定した安定範囲を、上記ワークに対する上記工具の切削方向ごとに対応付けて格納するための記憶装置と、上記駆動部による上記主軸の駆動方向を制御することで、上記ワークに対する上記工具の切削方向を制御するための制御装置とを備える。上記制御装置は、現在の切削方向に対応する上記安定範囲に上記切削条件が収まるように、上記工具による上記ワークの切込み幅と、上記主軸の回転数との少なくとも一方に関する制御パラメータを設定する、工作機械。
本開示の一例では、上記制御装置は、上記記憶装置に格納されている複数の安定範囲の重複範囲に上記切削条件が収まるように、上記制御パラメータを設定する。
本開示の一例では、上記制御装置は、上記ワークに対する上記工具の切削方向に合わせて、上記制御パラメータを変えない。
本開示の一例では、上記制御装置は、上記ワークに対する上記工具の切削方向を変える度に、上記記憶装置に格納されている複数の安定範囲の内から、変更後の切削方向に対応する安定範囲を選択し、当該安定範囲に収まるように上記制御パラメータを設定する。
本開示の一例では、上記制御装置は、上記選択された安定範囲内で上記切込み幅が最大となるように上記制御パラメータを制御する。
本開示の一例では、上記制御装置は、上記ワークに対する上記工具の切削方向を変えたことに基づいて、上記記憶装置に格納されている複数の安定範囲の内から、変更後の切削方向に対応する所定数の安定範囲を選択し、当該選択された所定数の安定範囲の重複範囲に収まるように上記制御パラメータを設定する。
本開示の他の例では、工作機械による切削方法が提供される。上記工作機械は、ワークを切削するための工具と、上記ワークまたは上記工具を回転するための主軸と、上記主軸を駆動するための駆動部とを備える。上記切削方法は、上記工具による上記ワークの切込み幅と上記主軸の回転数との切削条件の関係においてびびり振動が生じない切削条件の範囲を規定した複数の安定範囲を取得するステップを備える。上記複数の安定範囲は、それぞれ、上記ワークに対する上記工具の切削方向ごとに対応付けられている。上記切削方法は、さらに、上記駆動部による上記主軸の駆動方向を制御することで、上記ワークに対する上記工具の切削方向を制御するステップと、上記複数の安定範囲の内の現在の切削方向に対応する安定範囲に上記切削条件が収まるように、上記工具による上記ワークの切込み幅と、上記主軸の回転数との少なくとも一方に関する制御パラメータを設定するステップを備える。
本開示の他の例では、工作機械で実行される切削プログラムが提供される。上記工作機械は、ワークを切削するための工具と、上記ワークまたは上記工具を回転するための主軸と、上記主軸を駆動するための駆動部とを備える。上記切削プログラムは、上記工作機械に、上記工具による上記ワークの切込み幅と上記主軸の回転数との切削条件の関係においてびびり振動が生じない切削条件の範囲を規定した複数の安定範囲を取得するステップを実行させる。上記複数の安定範囲は、それぞれ、上記ワークに対する上記工具の切削方向ごとに対応付けられている。上記切削プログラムは、上記工作機械に、さらに、上記駆動部による上記主軸の駆動方向を制御することで、上記ワークに対する上記工具の切削方向を制御するステップと、上記複数の安定範囲の内の現在の切削方向に対応する安定範囲に上記切削条件が収まるように、上記工具による上記ワークの切込み幅と、上記主軸の回転数との少なくとも一方に関する制御パラメータを設定するステップを実行させる。
ある局面において、切削方向に関わらず再生びびり振動の発生を抑制することができる。
本発明の上記および他の目的、特徴、局面および利点は、添付の図面と関連して理解される本発明に関する次の詳細な説明から明らかとなるであろう。
実施の形態に従う工作機械の一例を示す図である。 再生びびり振動が生じやすい切削条件の一例を示す図である。 再生びびり振動が生じにくい切削条件の一例を示す図である。 ワークの切削態様を示す図である。 主軸回転数とワークの切込み幅との関係において再生びびり振動が生じない安定範囲と再生びびり振動が生じる不安定範囲とを示す図である。 工具によるワークの切削態様を示す図である。 ワークと切削方向との関係を示す図である。 主軸回転数を固定した上で再生びびり振動が発生しない最大の切込み幅を切削方向ごとに調べた結果を示す図である。 主軸回転数を最適化した上で再生びびり振動が発生しない最大の切込み幅を切削方向ごとに調べた結果を示す図である。 実験結果から得られた安定ローブを切削方向ごとに示す図である。 具体例1に従う切削態様を示す図である。 具体例2に従う切削態様を示す図である。 具体例3に従う切削態様を示す図である。 各切削方向に対応した安定ローブの生成工程を表わすフローチャートである。 生成された安定ローブを用いた切削工程を表わすフローチャートである。 生成された安定ローブを用いた切削工程を表わすフローチャートである。 実施の形態に従う工作機械の主要なハードウェア構成を示すブロック図である。
以下、図面を参照しつつ、本発明に従う各実施の形態について説明する。以下の説明では、同一の部品および構成要素には同一の符号を付してある。それらの名称および機能も同じである。したがって、これらについての詳細な説明は繰り返さない。なお、以下で説明される各実施の形態および各変形例は、適宜選択的に組み合わされてもよい。
<A.工作機械100の構成>
図1を参照して、工作機械100の構成について説明する。図1は、工作機械100の一例を示す図である。
図1には、マシニングセンタとしての工作機械100が示されている。以下では、マシニングセンタとしての工作機械100について説明するが、工作機械100は、マシニングセンタに限定されない。たとえば、工作機械100は、旋盤であってもよいし、その他の切削機械や研削機械であってもよい。また、工作機械100は、工具が鉛直方向に取り付けられる縦形のマシニングセンタであってもよいし、工具が水平方向に取り付けられる横形のマシニングセンタであってもよい。
図1に示されるように、工作機械100は、主軸頭21を有する。主軸頭21は、主軸22と、ハウジング23とで構成されている。主軸22は、ハウジング23の内部に配置されている。主軸22には、被加工物であるワークを加工するための工具が装着される。図1の例では、エンドミルとしての工具32が主軸22に装着されている。
主軸頭21は、ボールねじ25に沿ってZ軸方向に駆動可能に構成されている。ボールねじ25にはサーボモータなどの駆動機構が接続されている。当該駆動機構は、ボールねじ25を駆動することで主軸頭21を移動させ、Z軸方向の任意の位置に主軸頭21を移動する。
また、主軸22にはサーボモータなどの駆動機構が接続される。当該駆動機構は、Z軸方向(鉛直方向)に平行な中心軸AX1を中心に主軸22を回転駆動する。その結果、主軸22に装着された工具32は、主軸22の回転に伴って中心軸AX1を中心に回転する。なお、工作機械100が旋盤である場合には、主軸22には、ワークが装着される。この場合、主軸22の回転に伴って、主軸22に装着されたワークが回転する。
工作機械100は、自動工具交換装置(ATC:Automatic Tool Changer)30をさらに有する。自動工具交換装置30は、マガジン31と、押出し機構33と、アーム36とで構成されている。マガジン31は、ワークを加工するための種々の工具32を収容するための装置である。マガジン31は、複数の工具保持部34と、スプロケット35とで構成されている。
工具保持部34は、種々の工具32を保持可能なように構成されている。複数の工具保持部34は、スプロケット35の周囲に環状に配列されている。スプロケット35は、モータ駆動により、X軸に平行な中心軸AX2を中心に回転可能に設けられている。スプロケット35の回転に伴って、複数の工具保持部34が中心軸AX2を中心に回転移動する。
自動工具交換装置30は、工具の交換命令を受けたことに基づいて、マガジン31から装着対象の工具32を抜き取り、当該工具32を主軸22に装着する。より具体的には、自動工具交換装置30は、目的の工具32を保持する工具保持部34を押出し機構33の前に移動する。次に、押出し機構33は、アーム36による交換位置に向けて目的の工具32を押し出す。その後、アーム36は、目的の工具32を工具保持部34から抜き取るとともに、現在装着されている工具32を主軸22から抜き取る。その後、アーム36は、これらの工具32を保持した状態で半回転し、目的の工具32を主軸22に装着するとともに、元の工具32を工具保持部34に収容する。これにより、工具32の交換が行われる。
工作機械100は、加工対象のワークをXY平面上で移動するための移動機構50をさらに有する。移動機構50は、ガイド51,53と、ボールねじ52,54と、ワークを保持するためのテーブル55(ワーク保持部)とで構成されている。
ガイド51は、Y軸に対して平行に設置されている。ガイド53は、ガイド51上に設けられており、X軸に対して平行に設置されている。ガイド53は、ガイド51に沿って駆動可能に構成されている。テーブル55は、ガイド53上に設けられており、ガイド53に沿って駆動可能に構成されている。
ボールねじ52にはサーボモータなどの駆動機構が接続されている。当該駆動機構は、ボールねじ52を駆動することでガイド53をガイド51に沿って移動し、Y軸方向の任意の位置にガイド53を移動する。同様に、ボールねじ54にもサーボモータなどの駆動機構が接続されている。当該駆動機構は、ボールねじ54を駆動することでテーブル55をガイド53に沿って移動し、X軸方向の任意の位置にテーブル55を移動する。すなわち、工作機械100は、ボールねじ52,54のそれぞれに接続される駆動機構を協働して制御することで、XY平面上の任意の位置にテーブル55を移動する。これにより、工作機械100は、テーブル55上で保持されるワークをXY平面上で移動させながら加工を行うことができる。
ハウジング43には、主軸22または工具32の振動周波数を検知するための加速度センサ110が設けられている。好ましくは、複数の加速度センサ110がハウジング43に設けられ、各加速度センサ110は、主軸22または工具32の異なる方向(たとえば、X,Y,Z方向)の振動を検知する。なお、振動周波数を検知するためのセンサは、加速度センサ110に限定されず、工具32または主軸22の振動周波数を検知することが可能な任意のセンサが用いられ得る。
<B.再生びびり振動が生じる原理>
工作機械100でワークを加工する際、工具32の刃先が微小に振動する再生びびり振動が生じることがある。再生びびり振動は、工具32の振動周波数と工具32によるワークの切込み幅との関係が所定の条件を満たしたときに生じる振動である。
本実施の形態に従う工作機械100は、切削方向に対応した複数の安定ローブに基づいて制御パラメータを設定することで、切削方向に関わらず再生びびり振動の発生を抑制する。この制御処理の理解を容易にするために、まず、図2〜図6を参照して、再生びびり振動が生じる原理について説明する。
図2は、再生びびり振動が生じやすい切削条件の一例を示す図である。より詳細には、図2(A)には、前回の切削時におけるワーク上の切削跡が示されている。図2(B)には、今回の切削時における工具32の振動周波数が示されている。図2(C)には、今回の切削時における工具32によるワークの切削厚が示されている。
工具32は、回転しながらワークを繰り返し切削することでワークを切削する。工具32は、ワークの切削中に振動しており、図2(A)に示されるように、ワークの切削面に起伏が生じる。
工具32が次にワークを切削するとき、前回の切削時における切削跡と、今回の切削時における工具32の振動周波数とがずれることがある。このずれを「φ」で表わすと、図2(A)および図2(B)の例では、ずれφは、π/4(=90度)となっている。このようなずれが生じると、ワークの切削厚が切削位置に応じて変動する。図2(C)には、φ=π/4のずれが生じている場合における切削厚の変動が示されている。切削厚が変動すると、工具32が切削中にワークから受ける力が変動し、再生びびり振動が生じやすくなる。特に、φ=π/4となるときが、再生びびり振動が一番生じやすい。
図3は、再生びびり振動が生じにくい切削条件の一例を示す図である。より詳細には、図3(A)には、前回の切削時におけるワーク上の切削跡が示されている。図3(B)には、今回の切削時における工具32の振動周波数が示されている。図3(C)には、今回の切削時における工具32によるワークの切削厚が示されている。
図3(A)および図3(B)の例では、工具32の振動周波数は、前回の切削時における切削跡と重なっている。この場合、ずれ「φ」が0となり、ワークの切削厚が一定になる。そのため、工具32が切削中にワークから受ける力が一定になり、再生びびり振動が生じにくくなる。
したがって、ずれ「φ」が0に近付くように主軸22の回転数が調整されると再生びびり振動が生じにくくなる。一方で、ずれ「φ」がπ/4に近付くように主軸22の回転数が調整されると再生びびり振動が生じやすくなる。
典型的には、下記式(1)に示される「k」が整数になるとき、ずれ「φ」が0となる。
(数1)
k=60・f/(n・N)・・・(1)
式(1)に示される「k」は、工具32の第1の刃がワークに接触してから第2の刃がワークに接触するまでの間に工具32の振動によって生じる切削面の波数を表わす。「f」は、主軸22の振動周波数を表わす。「N」は、工具32の刃数を表わす。「n」は、主軸22の回転数を表わす。ここでいう回転数とは、単位時間辺り(たとえば、一分間辺り)における主軸22の回転数を意味し、回転速度と同義である。工具32は、主軸22に連動するため、主軸22の回転数は、工具32の回転数と等しい。そのため、主軸22の回転数は、工具32の回転数と同義である。
図4は、「k」が整数となる場合におけるワークWの切削態様を示す図である。図4には、主軸22の軸方向から見た場合における工具32およびワークWの態様が示されている。
図4(A)には、「k」が1である場合におけるワークWの切削態様が示されている。図4(A)に示されるように、「k」が1である場合、工具32の刃32AがワークWに接触してから工具32の刃32BがワークWに接触するまでの間に工具32の振動によって生じる切削面の波数は1となる。
図4(B)には、「k」が2である場合におけるワークWの切削態様が示されている。図4(B)の切削態様における工具回転数は、図4(A)の切削態様における主軸回転数の1/2に相当する。図4(B)に示されるように、「k」が2である場合、ワークWの切削面における波数は2となる。
図4(C)には、「k」が3である場合におけるワークWの切削態様が示されている。図4(C)の切削態様における主軸回転数は、図4(A)の切削態様における主軸回転数の1/3に相当する。図4(C)に示されるように、「k」が3である場合、ワークWの切削面における波数は3となる。
図4(A)〜図4(C)に示される切削態様では、ずれ「φ」がいずれも0となるため、再生びびり振動が生じにくい。
再生びびり振動が生じるか否かは、主軸回転数とワークWの切込み幅との関係によって決まる。図5は、主軸回転数とワークWの切込み幅との関係において再生びびり振動が生じない安定範囲と再生びびり振動が生じる不安定範囲とを示す図である。図5では、安定範囲と不安定範囲との関係が安定ローブ60として示されている。安定範囲にはハッチングが付されており、不安定範囲にはハッチングが付されていない。
図5に示されるグラフの横軸は、主軸回転数を表わす。図5に示されるグラフの縦軸は、ワークの切込み幅を表わす。ここでいう「切込み幅」は、主軸22の軸方向において工具32がワークWを切込む幅(以下、「切込み幅Ap」ともいう。)と、主軸22の軸方向の直交方向であってワークWに対する工具32の移動方向の直交方向において工具32がワークWを切込む幅(以下、「切込み幅Ae」ともいう。)とを含む概念である。すなわち、図5に示されるグラフの縦軸は、切込み幅Apで表されてもよいし、切込み幅Aeで表されてもよい。
図6は、工具32によるワークWの切削態様を示す図である。図6には、エンドミルとしての工具32が示されている。工具32は、その側面に複数の刃を有し、回転しながらワークWに接触することでワークWを切削する。
図6には、エンドミルとしての工具32が示されている。工具32は、その側面に複数の刃を有し、予め定められた経路に沿って回転しながらワークWに接触することでワークWを切削する。一例として、工具32は、切込み幅Apの1段目の切削部分を切込み幅Aeごとに順次切削する。次に、工具32は、切込み幅Apの2段目の切削部分を切込み幅Aeごとに順次切削する。このような切削が繰り返されることで、工具32は、ワークWを任意の形状に切削する。
<C.実験>
発明者らは、工具32によるワークWの切削方向に応じて安定ローブ60に規定される安定範囲が変化することを実証するために、切削方向ごとに再生びびり振動が生じる条件が変化することを実験で確認した。以下では、図7〜図10を参照して、発明者らが行った実験内容について説明する。
図7は、ワークWと切削方向との関係を示す図である。発明者らは、図7に示される切削方向d1〜d8の8方向について再生びびり振動が発生する切削条件を調べた。ここでいう切削方向とは、ワークWに対する工具32の相対的な移動方向を意味する。
まず、発明者らは、主軸回転数を「n1」に固定した上で、再生びびり振動が発生しない最大の切込み幅Aeを調べた。また、主軸の初期送り速度を「v1」とし、切込み幅Apを「Ap1」とした。切込み幅Aeについては、「Ae1」から開始して、再生びびり振動が発生するまで「Ae2」→「Ae3」→「Ae4」→「Ae5」と切込み幅Aeを順次増加させた(すなわち、Ae1<Ae2<Ae3<Ae4<Ae5)。
図8は、主軸回転数を固定した上で再生びびり振動が発生しない最大の切込み幅Aeを切削方向ごとに調べた結果を示す図である。
図8に示されるように、切削方向d1においては、切込み幅Aeが「Ae1」以上で再生びびり振動が発生している。
切削方向d2,d4,d6,d8においては、切込み幅Aeが「Ae4」以下では再生びびり振動が発生しておらず、切込み幅Aeが「Ae5」以上で再生びびり振動が発生している。
切削方向d3においては、切込み幅Aeが「Ae2」以下では再生びびり振動が発生しておらず、切込み幅Aeが「Ae3」以上で再生びびり振動が発生している。
切削方向d5においては、切込み幅Aeが「Ae1」以下では再生びびり振動が発生しておらず、切込み幅Aeが「Ae2」以上で再生びびり振動が発生している。
切削方向d7においては、切込み幅Aeが「Ae3」以下では再生びびり振動が発生しておらず、切込み幅Aeが「Ae4」以上で再生びびり振動が発生している。
図8に示される実験結果から、再生びびり振動が発生しない最大の切込み幅Aeは、切削方向ごとに異なっていることが分かる。
次に、発明者らは、DMG森精機社が提供するMVC(Machine Vibration Control)機能を用いて、主軸回転数を最適化した上で再生びびり振動が発生しない最大の切込み幅Aeを調べた。MVC機能は、主軸回転数を自動で制御することで、再生びびり振動の発生を抑制する機能である。
図9は、主軸回転数を最適化した上で再生びびり振動が発生しない最大の切込み幅Aeを切削方向ごとに調べた結果を示す図である。
図9に示されるように、切削方向d1においては、主軸回転数が「n2」に最適化されており、かつ、切込み幅Aeが「Ae4」に増加している。
切削方向d3においては、主軸回転数が「n3」に最適化されており、かつ、切込み幅Aeが「Ae4」に増加している。
切削方向d5においては、主軸回転数が「n4」に最適化されており、かつ、切込み幅Aeが「Ae4」に増加している。
切削方向d7においては、主軸回転数が「n5」に最適化されており、かつ、切込み幅Aeを「Ae4」に増加している。
切削方向d2,d4,d6,d8においては、主軸回転数が変化しなかった。すなわち、切削方向d2,d4,d6,d8においては、主軸回転数が既に最適に設定されていたことになる。
図9に示される実験結果から、切込み幅Aeを最大にするための主軸回転数は、切削方向ごとに異なっていることが分かる。
図10は、上記実験結果から得られた安定ローブを切削方向ごとに示す図である。図10に示されるように、安定ローブは、切削方向ごとに異なる。このような安定ローブの差異は、工作機械の内部構造の違いや、ワークWの剛性が方向によって異なることなどに起因して生じるものと推測される。
以上の実験結果により、発明者らは、再生びびり振動が生じる切削条件が切削方向によって変わることを実証した。
なお、上述の実験では、主軸22の軸方向における切込み幅Apを固定し、主軸22の径方向における切込み幅Aeを変化させる例について説明を行ったが、切込み幅Aeを固定し、切込み幅Aeを変化させた場合でも、切削方向ごとに安定ローブは変化する。すなわち、図10に示される安定ローブの縦軸は、主軸22の軸方向における切込み幅Apであってもよいし、主軸22の径方向における切込み幅Aeであってもよい。
<D.再生びびり振動の抑制処理>
上述のように、再生びびり振動が生じる切削条件は、切削方向によって異なる。そこで、本実施の形態に従う工作機械100の制御装置101(図17参照)は、切込み幅と主軸回転数との切削条件の関係において再生びびり振動が生じない切削条件の範囲を規定した安定範囲(安定ローブ)を、ワークWに対する工具32の切削方向ごとに対応付けて準備しておく。そして、制御装置101は、現在の切削方向に対応する安定ローブの安定範囲に切込み幅と主軸回転数との切削条件が収まるように、切込み幅と主軸回転数との少なくとも一方に関する制御パラメータを設定する。これにより、工作機械100は、切削方向に関わらず再生びびり振動の発生を抑制することができる。
切削方向に基づく制御パラメータの調整処理は、種々の方法で実現される。以下では、図11〜図13を参照して、制御パラメータの調整処理の具体例について説明する。
(D1.制御パラメータの調整処理の具体例1)
まず、図11を参照して、制御パラメータの調整処理の具体例1について説明する。図11は、具体例1に従う切削態様を示す図である。図11には、+X方向に対応した安定ローブ61と、+Y方向に対応した安定ローブ63とが示されている。
本具体例においては、工作機械100の制御装置101(図17参照)は、安定ローブ61の安定範囲と安定ローブ63の安定範囲との重複範囲70に主軸回転数と切込み幅との切削条件が収まるように、主軸回転数と切込み幅との少なくとも一方に関する制御パラメータを調整する。図11の例では、制御パラメータP0として示される制御条件が重複範囲70に収められている。これにより、工作機械100は、切削方向が+X方向であるか+Y方向であるかに関わらず再生びびり振動の発生を抑制することができる。
ある局面においては、工作機械100は、安定ローブ61の安定範囲と、安定ローブ63の安定範囲とを合成し、重複範囲70を表わす合成安定ローブを生成し、主軸回転数および切込み幅が当該合成安定ローブに収まるように制御パラメータを制御する。他の局面においては、工作機械100は、安定ローブ61,63の合成安定ローブを生成せずに、主軸回転数および切込み幅が安定ローブ61の安定範囲と安定ローブ61の安定範囲との両方に収まるように制御パラメータを制御する。
好ましくは、工作機械100の制御装置101は、ワークWに対する工具32の切削方向に合わせて、制御パラメータP0を変えない。すなわち、制御装置101は、切削方向が変化した場合であっても、主軸回転数および切込み幅を変えない。図11の例では、切削方向が+X方向から+Y方向に変化した場合であっても、制御パラメータP0が維持されている。これにより、工作機械100は、切削条件を安定させることができ、結果として、ワークの切削品質を安定させることができる。
なお、図11の例では、2つの安定ローブ61,63の重複範囲70に切削条件を収めるように制御パラメータが調整される例について説明を行ったが、3つ以上の安定ローブの重複範囲に切削条件を収めるように制御パラメータが調整されてもよい。このようにより多くの安定ローブが考慮されることで、再生びびり振動の発生をより確実に抑制することができる。
(D2.制御パラメータの調整処理の具体例2)
次に、図12を参照して、制御パラメータの調整処理の具体例2について説明する。図12は、具体例2に従う切削態様を示す図である。図12には、+X方向に対応した安定ローブ61と、+Y方向に対応した安定ローブ63とが示されている。
本具体例においては、工作機械100の制御装置101(図17参照)は、切削方向を変える度に、各切削方向に対応した複数の安定ローブの内から、変更後の切削方向に対応する安定ローブを選択する。このとき、現在の切削方向に完全に一致する安定ローブが存在しない場合には、現在の切削方向に一番近い安定ローブが選択される。その後、制御装置101は、主軸回転数および切込み幅が選択された安定ローブの安定範囲に収まるように、主軸回転数および切込み幅の少なくとも一方の制御パラメータを設定する。このように、工作機械100は、現在の切削方向に応じて安定ローブを適宜切り替えることにより、切削方向に関わらず再生びびり振動の発生を抑制しつつ、切削効率を向上させることができる。
図12の例では、切削方向が+X方向である場合には、+X方向に対応した安定ローブ61の安定範囲に収まるように制御パラメータPXが設定されている。このとき、好ましくは、制御装置101は、選択された安定ローブ61の安定範囲内で切込み幅が最大となるように制御パラメータを制御する。より具体的には、制御装置101は、現在の主軸回転数を含む主軸回転数の所定範囲内で、かつ、+X方向に対応した安定ローブ61の安定範囲内で、切込み幅が最大となるように制御パラメータを設定する。これにより、工作機械100は、再生びびり振動の発生を抑制しつつ、切削効率をさらに向上させることができる。
その後、切削方向が+X方向から+Y方向に切り替えられたとする。このことに基づいて、制御装置101は、予め準備されている安定ローブ61,63の内から、+Y方向に対応する安定ローブ63を選択し、主軸回転数と切込み幅とが安定ローブ63の安定範囲内に収まるように制御パラメータを切り替える。
図12の例では、制御パラメータPYが設定されている。このとき、好ましくは、制御装置101は、選択された安定ローブ63の安定範囲内で切込み幅が最大となるように制御パラメータを制御する。より具体的には、制御装置101は、現在の主軸回転数を含む主軸回転数の所定範囲内で、かつ、+Y方向に対応した安定ローブ63の安定範囲内で、切込み幅が最大となるように制御パラメータを設定する。これにより、工作機械100は、再生びびり振動の発生を抑制しつつ、切削効率をさらに向上させることができる。
なお、図12の例では、2つの安定ローブ61,63に基づいて制御パラメータが切り替えられる例について説明を行ったが、3つ以上の安定ローブに基づいて制御パラメータが調整されてもよい。このようにより多くの安定ローブが考慮されることで、再生びびり振動が発生する可能性がより低くなる。
(D3.制御パラメータの調整処理の具体例3)
次に、図13を参照して、制御パラメータの調整処理の具体例3について説明する。図13は、具体例3に従う切削態様を示す図である。図13には、+X方向に対応した安定ローブ61と、−X方向に対応した安定ローブ62と、+Y方向に対応した安定ローブ63と、−Y方向に対応した安定ローブ64とが示されている。
本具体例においては、工作機械100の制御装置101(図17参照)は、切削方向が変化したことに基づいて、各切削方向に対応した複数の安定ローブの内から、変更後の切削方向に対応する所定数の安定ローブを選択し、当該選択された所定数の安定範囲の重複範囲に収まるように制御パラメータを設定する。選択される安定ローブの数は、切削方向に関わらず一定であってもよいし、切削方向ごとに異なっていてもよい。また、選択される安定ローブの数は、工作機械100の設計時に予め規定されていてもよいし、ユーザによって任意に設定されてもよい。
一例として、現在の切削方向を中心とする所定の角度範囲(たとえば、±90度)に対応している安定ローブが選択される。図13の例では、切削方向が+X方向である場合、予め準備されている4つの安定ローブ61〜64の内から、+X方向に対応した安定ローブ61と、+Y方向に対応した安定ローブ63と、−Y方向に対応した安定ローブ64との3つが選択されている。そして、制御装置101は、主軸回転数と切込み幅とが安定ローブ61,63,64の安定範囲の重複範囲72Aに収まるように制御パラメータを切り替える。
このとき、好ましくは、制御装置101は、重複範囲72A内で切込み幅が最大となるように制御パラメータを制御する。より具体的には、制御装置101は、現在の主軸回転数を含む主軸回転数の所定範囲内で、かつ、重複範囲72A内で、切込み幅が最大となるように制御パラメータを設定する。図13の例では、制御パラメータPXが設定されている。
その後、工具32の切削方向が+X方向から+Y方向に切り替わったとする。このことに基づいて、制御装置101は、予め準備されている4つの安定ローブ61〜64の内から、−X方向に対応した安定ローブ62と、+Y方向に対応した安定ローブ63と、−Y方向に対応した安定ローブ64との3つを選択する。そして、制御装置101は、主軸回転数と切込み幅とが安定ローブ62〜64の安定範囲の重複範囲72Bに収まるように制御パラメータを切り替える。
このとき、好ましくは、制御装置101は、重複範囲72B内で切込み幅が最大となるように制御パラメータを制御する。より具体的には、制御装置101は、現在の主軸回転数を含む主軸回転数の所定範囲内で、かつ、重複範囲72B内で、切込み幅が最大となるように制御パラメータを設定する。図13の例では、制御パラメータPYが設定されている。
これにより、工作機械100は、再生びびり振動の発生を抑制しつつ、切削効率をさらに向上させることができる。
<E.工作機械100の制御構造>
図14〜図16を参照して、工作機械100の制御構造について説明する。工作機械100が実行する工程は、各切削方向に対応した安定ローブを生成する工程と、生成された安定ローブを用いた切削工程とに分けられる。
図14は、各切削方向に対応した安定ローブの生成工程を表わすフローチャートである。図15および図16は、生成された安定ローブを用いた切削工程を表わすフローチャートである。より詳細には、図15には、上述の「D1.制御パラメータの調整処理の具体例1」で説明した切削工程が示されている。図16には、上述の「D2.制御パラメータの調整処理の具体例2」で説明した切削工程が示されている。
図14〜図16の処理は、工作機械100の制御装置101(図17参照)がプログラムを実行することにより実現される。他の局面において、処理の一部または全部が、回路素子またはその他のハードウェアによって実行されてもよい。
また、安定ローブの生成工程と、生成された安定ローブを用いる切削工程とは、異なる工作機械100で行われてもよいし、同じ工作機械100で行われてもよい。また、安定ローブの生成工程は、必ずしも工作機械100で行われる必要はなく、たとえば、サーバーなどで行われてもよい。
以下では、図14〜図16を参照して、安定ローブの生成工程と、生成された安定ローブを用いた切削工程とについて順に説明する。
(E1.安定ローブの生成工程)
まず、図14を参照して、各切削方向に対応した安定ローブの生成処理の制御フローについて説明する。
ステップS50において、制御装置101は、加速度センサ110(図1参照)の出力値に基づいて、再生びびり振動が生じているか否かを判断する。より具体的には、制御装置101は、加速度センサ110の出力信号を所定のサンプリングレートでサンプリングし、所定時間のサンプリング結果をフーリエ変換する。その結果、周波数ごとの振動強度を示すスペクトルが算出される。その後、制御装置101は、算出したスペクトルから振動強度が最大となる周波数成分を特定し、当該周波数成分の振動強度が所定閾値を超えている場合に、再生びびり振動を検知する。
制御装置101は、再生びびり振動が生じていると判断した場合(ステップS50においてYES)、制御をステップS54に切り替える。そうでない場合には(ステップS50においてNO)、制御装置101は、制御をステップS52に切り替える。
ステップS52において、制御装置101は、現在設定されている制御パラメータを変更する。変更対象の制御パラメータは、たとえば、主軸回転数や切込み幅や切削方向などの切削に関する制御パラメータ群である。制御パラメータの変更方法は、任意である。一例として、予め定められた異なる複数の制御パラメータ群が予め決められた順番で設定される。あるいは、制御パラメータは、ランダムに変えられてもよい。
ステップS54において、制御装置101は、再生びびり振動が発生した現在の切削条件(制御パラメータ)を現在の切削方向(角度)に関連付けて記憶装置120にする。切削方向に関連付けて記憶される切削条件は、たとえば、現在の主軸回転数、現在の振動強度、現在の振動周波数、現在の主軸の送り速度、現在の切込み幅Ae,Apなどである。
ステップS60において、制御装置101は、ステップS54で記憶された切削条件が各切削方向について所定数以上蓄積されたか否かを判断する。当該所定数は、たとえば、2または3以上である。制御装置101は、ステップS54で記憶された切削条件が各切削方向について所定数以上蓄積されたと判断した場合(ステップS60においてYES)、制御をステップS62に切り替える。そうでない場合には(ステップS60においてNO)、制御装置101は、制御をステップS52に戻す。
ステップS62において、制御装置101は、ステップS54で記憶された切削方向ごとの切削条件に基づいて、各切削方向に対応する安定ローブを生成する。安定ローブは、種々の方法で生成される。一例として、安定ローブは、Y・Altintasが考案した解析方法を用いて求められる。
Y・Altintasによる解析方法では、工具32の運動方程式が、下記式(2),(3)で示されるように、X方向とY方向との2自由度の物理モデルで表される。
(数2)
x”+2Gωx’+ω x=F/m・・・(2)
(数3)
y”+2Gωy’+ω y=F/m・・・(3)
上記式に示される「ω」は、工具32のX方向の固有振動数[rad/sec]を表わす。「ω」は、工具32のY方向の固有振動数[rad/sec]を表わす。「G」は、X方向の減衰比[%]を表わす。「G」は、Y方向の減衰比[%]を表わす。「m」は、X方向の等価質量[kg]を表わす。「m」は、Y方向の等価質量[kg]を表わす。「F」は、工具32に作用するX方向の切削動力[N]を表わす。「F」は、工具32に作用するY方向の切削動力[N]を表わす。「x”」および「y”」は、それぞれ時間の二階微分を表わす。「x’」および「y’」は、それぞれ時間の一階微分を表わす。
上記式(2),(3)に示される切削動力「F」,「F」は、下記式(4),(5)で求められる。
(数4)
=−Kh(φ)cos(φ)−Kh(φ)sin(φ)・・・(4)
(数5)
=+Kh(φ)sin(φ)−Kh(φ)cos(φ)・・・(5)
上記式に示される「h(φ)」は、工具32の刃がワークWを切り取る厚さ[m]を表わす。「a」は、軸方向の切込み幅[mm]を表わす。「K」は、主分力の比切削抵抗[N/m]を表わす。「K」は、主分力と背分力との比[%]を表わす。
切削動力F,Fは、工具32の回転角「φ」によって変化するため、切削の開始角度「φ」と切削の終了角度「φ」との間で切削動力F,Fを積分し、それぞれの平均を求めることによって得られる。また、回転角「φ」および回転角「φ」は、工具32の直径D[mm]、径方向の切込み幅A[mm]、送り方向、アッパーカットかダウンカットかによって幾何学的に求めることができる。
上記式(2),(3)に係る固有値Λは、再生びびり振動の振動数をωとすると、下記式(6)によって表わされる。但し、下記式(6)の右辺の各変数は、下記式(7)〜(14)から求められる。
(数6)
Λ=−(a±(a −4a1/2)/2a・・・(6)
(数7)
=Φxx(iω)Φyy(iω)(αxxαyy−αxyαyx)・・・(7)
(数8)
=αxxΦxx(iω)+αyyΦyy(iω)・・・(8)
(数9)
Φxx(iω)=1/(m(−ω +2iGωω+ω ))・・・(9)
(数10)
Φyy(iω)=1/(m(−ω +2iGωω+ω ))・・・(10)
(数11)
αxx=[(cos2φ−2Kφ+Ksin2φ)−(cos2φ−2Kφ+Ksin2φ)]/2・・・(11)
(数12)
αxy=[(−sin2φ−2φ+Kcos2φ)−(−sin2φ−2φ+Kcos2φ)]/2・・・(12)
(数13)
αyx=[(−sin2φ+2φ+Kcos2φ)−(−sin2φ+2φ+Kcos2φ)]/2・・・(13)
(数14)
αyy=[(−cos2φ−2Kφ−Ksin2φ)−(cos2φ−2Kφ−Ksin2φ)]/2・・・(14)
次に、固有値「Λ」の実部を「Λ」、虚部を「Λ」とすると、安定限界における軸方向の切込み幅aplim、および主軸回転速度nlimは、それぞれ、下記式(15),式(16)によって表される。
(数15)
plim=2πΛ(1+(Λ/Λ)2)/(NK)・・・(15)
(数16)
lim=60ω/(N(2kπ+π−2tan−1(Λ/Λ)))・・・(16)
工作機械100は、上記数式(15),(16)に示される「ω」および「k」の値を任意に変化させながら限界切込み幅「aplim」および主軸回転速度「nlim」を順次算出することで安定ローブを生成する。このような安定ローブの生成が、ステップS54で記憶された切削条件に基づいて切削方向ごとに行われることで、各切削方向に対応した安定ローブが生成される。
(E2.切削工程(具体例1))
次に、図15を参照して、上述の図14に示される生成工程で生成された切削方向ごとの安定ローブに基づいた切削工程の具体例1について説明する。図15には、上述の「D1.制御パラメータの調整処理の具体例1」で説明した切削工程が示されている。
ステップS110において、工作機械100の制御装置101は、上述の図14に示される生成工程で生成された各切削方向に対応した複数の安定ローブを取得する。
ステップS112において、制御装置101は、ステップS110で取得した安定ローブの61の各安定範囲の重複範囲に主軸回転数および切込み幅が収まるように、主軸回転数および切込み幅の少なくとも一方に関する制御パラメータを調整する。本ステップでの制御パラメータの調整処理については図11で説明した通りであるので、その説明については繰り返さない。
ステップS114において、制御装置101は、ステップS112で設定された制御パラメータに基づいて、ワークを切削する。
ステップS120において、制御装置101は、ワークの切削が終了したか否かを判断する。制御装置101は、ワークの切削が終了したと判断した場合(ステップS120においてYES)、図15に示される処理を終了する。そうでない場合には(ステップS120においてNO)、制御装置101は、制御をステップS114に戻す。
(E3.切削工程(具体例2))
次に、図16を参照して、上述の図14に示される生成工程で生成された安定ローブに基づいた切削工程の具体例2について説明する。図16には、上述の「D2.制御パラメータの調整処理の具体例2」で説明した切削工程が示されている。
ステップS150において、工作機械100の制御装置101は、設定されている制御パラメータに従ってワークを切削する。
ステップS152において、制御装置101は、ワークの切削が終了したか否かを判断する。制御装置101は、ワークの切削が終了したと判断した場合(ステップS152においてYES)、図16に示される処理を終了する。そうでない場合には(ステップS152においてNO)、制御装置101は、制御をステップS160に切り替える。
ステップS160において、制御装置101は、切削方向が変化したか否かを判断する。一例として、制御装置101は、切削プログラム122(図17参照)を解析することにより現在の切削方向を特定し、当該切削方向が前回の切削方向とは異なる場合に、切削方向が変化したと判断(ステップS160においてYES)、制御をステップS162に切り替える。そうでない場合には(ステップS160においてNO)、制御装置101は、制御をステップS150に戻す。
ステップS162において、制御装置101は、上述の図14に示される生成工程で生成された各切削方向に対応した複数の安定ローブの内から、現在の切削方向に対応する安定ローブを取得する。このとき、現在の切削方向に完全に一致する安定ローブが存在しない場合には、現在の切削方向に一番近い安定ローブが選択される。
ステップS164において、制御装置101は、主軸回転数および切込み幅がステップS162で取得した安定ローブの安定範囲に収まるように主軸回転数および切込み幅の少なくとも一方に関する制御パラメータを調整する。本ステップでの制御パラメータの調整処理については図12で説明した通りであるので、その説明については繰り返さない。
<F.工作機械100のハードウェア構成>
図17を参照して、工作機械100のハードウェア構成の一例について説明する。図17は、工作機械100の主要なハードウェア構成を示すブロック図である。
工作機械100は、主軸22と、ボールねじ25,52,54と、制御装置101と、ROM102と、RAM103と、通信インターフェイス104と、表示インターフェイス105と、入力インターフェイス109と、加速度センサ110と、サーボドライバ111A〜111Dと、サーボモータ112A〜112D(駆動部)と、エンコーダ113A〜113Dと、記憶装置120とを含む。
制御装置101は、たとえば、NC(Numerical Control)プログラムを実行可能なNC制御装置である。NC制御装置は、少なくとも1つの集積回路によって構成される。集積回路は、たとえば、少なくとも1つのCPU(Central Processing Unit)、少なくとも1つのASIC(Application Specific Integrated Circuit)、少なくとも1つのFPGA(Field Programmable Gate Array)、またはそれらの組み合わせなどによって構成される。
制御装置101は、工作機械100の切削プログラム122(NCプログラム)などの各種プログラムを実行することで工作機械100の動作を制御する。制御装置101は、切削プログラム122の実行命令を受け付けたことに基づいて、記憶装置120からROM102に切削プログラム122を読み出す。RAM103は、ワーキングメモリとして機能し、切削プログラム122の実行に必要な各種データを一時的に格納する。
通信インターフェイス104には、LANやアンテナなどが接続される。工作機械100は、通信インターフェイス104を介して、外部の通信機器との間でデータをやり取りする。外部の通信機器は、たとえば、サーバーや、その他の通信端末などを含む。工作機械100は、当該通信端末から切削プログラム122をダウンロードできるように構成されてもよい。
表示インターフェイス105は、ディスプレイ130などの表示機器と接続され、制御装置101などからの指令に従って、ディスプレイ130に対して、画像を表示するための画像信号を送出する。ディスプレイ130は、たとえば、液晶ディスプレイ、有機ELディスプレイ、またはその他の表示機器である。一例として、ディスプレイ130は、切削方向ごとの安定ローブを重ねて表示したり、現在の切削方向に対応する安定ローブを表示したりする。
入力インターフェイス109は、入力デバイス131に接続され得る。入力デバイス131は、たとえば、マウス、キーボード、タッチパネル、またはユーザ操作を受け付けることが可能なその他の入力機器である。
サーボドライバ111Aは、制御装置101から目標回転数(または目標位置)の入力を逐次的に受け、サーボモータ112Aが目標回転数で回転するようにサーボモータ112Aを制御する。より具体的には、サーボドライバ111Aは、エンコーダ113Aのフィードバック信号からサーボモータ112Aの実回転数(または実位置)を算出し、当該実回転数が目標回転数よりも小さい場合にはサーボモータ112Aの回転数を上げ、当該実回転数が目標回転数よりも大きい場合にはサーボモータ112Aの回転数を下げる。このように、サーボドライバ111Aは、サーボモータ112Aの回転数のフィードバックを逐次的に受けながらサーボモータ112Aの回転数を目標回転数に近付ける。サーボドライバ111Aは、ボールねじ54に接続されるテーブル55(図1参照)をX軸方向に沿って移動し、テーブル55をX軸方向の任意の位置に移動する。
同様のモータ制御により、サーボドライバ111Bは、ボールねじ52に接続されるガイド53(図1参照)をY軸方向に沿って移動し、ガイド53上のテーブル55(図1参照)をY軸方向の任意の位置に移動する。同様のモータ制御を行うことにより、サーボドライバ111Cは、ボールねじ25に接続される主軸頭21(図1参照)をZ軸方向の任意の位置に移動する。同様のモータ制御を行うことにより、サーボドライバ111Dは、主軸22の回転数を制御する。
記憶装置120は、たとえば、ハードディスクやフラッシュメモリなどの記憶媒体である。記憶装置120は、本実施の形態に従う切削プログラム122、切削プログラム122で用いられる各種の制御パラメータ124(たとえば、主軸回転数、主軸22の送り速度、切込み幅Ap,Aeなど)、切削方向ごとの安定ローブ126などを格納する。安定ローブ126の各々は、たとえば、限界の切込み幅を目的変数とし、現在の主軸回転数や再生びびり振動の振動強度などを説明変数とする予め定められた演算式で規定される。あるいは、限界の切込み幅と、現在の主軸回転数と、再生びびり振動の振動強度との関係がテーブル形式で規定されてもよい。
切削プログラム122、制御パラメータ124、および、切削方向ごとの安定ローブ126の格納場所は、記憶装置120に限定されず、制御装置101の記憶領域(たとえば、キャッシュ領域など)、ROM102、RAM103、外部機器(たとえば、サーバー)などに格納されていてもよい。
切削プログラム122は、単体のプログラムとしてではなく、任意のプログラムの一部に組み込まれて提供されてもよい。この場合、本実施の形態に従う制御処理は、任意のプログラムと協働して実現される。このような一部のモジュールを含まないプログラムであっても、本実施の形態に従う切削プログラム122の趣旨を逸脱するものではない。さらに、切削プログラム122によって提供される機能の一部または全部は、専用のハードウェアによって実現されてもよい。さらに、少なくとも1つのサーバーが切削プログラム122の処理の一部を実行する所謂クラウドサービスのような形態で工作機械100が構成されてもよい。
<G.まとめ>
以上のようにして、工作機械100は、各切削方向に対応した複数の安定ローブに基づいて、主軸回転数およびワークの切込み幅が現在の切削方向に対応する安定ローブの安定範囲内に収まるように、主軸回転数と切込み幅との少なくとも一方に関する制御パラメータを制御する。これにより、工作機械100は、切削方向に関わらず再生びびり振動の発生を抑制することができる。
今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
21 主軸頭、22 主軸、23,43 ハウジング、25,52,54 ボールねじ、30 自動工具交換装置、31 マガジン、32 工具、32A,32B 刃、33 押出し機構、34 工具保持部、35 スプロケット、36 アーム、50 移動機構、51,53 ガイド、55 テーブル、60,61,62,63,64,126 安定ローブ、70,72A,72B 重複範囲、100 工作機械、101 制御装置、102 ROM、103 RAM、104 通信インターフェイス、105 表示インターフェイス、109 入力インターフェイス、110 加速度センサ、111A,111B,111C,111D サーボドライバ、112A,112D サーボモータ、113A,113D エンコーダ、120 記憶装置、122 切削プログラム、124 制御パラメータ、130 ディスプレイ、131 入力デバイス。

Claims (8)

  1. ワークを切削するための工具と、
    前記ワークまたは前記工具を回転するための主軸と、
    前記主軸を駆動するための駆動部と、
    前記工具による前記ワークの切込み幅と前記主軸の回転数との切削条件の関係においてびびり振動が生じない切削条件の範囲を規定した安定範囲を、前記ワークに対する前記工具の切削方向ごとに対応付けて格納するための記憶装置と、
    前記駆動部による前記主軸の駆動方向を制御することで、前記ワークに対する前記工具の切削方向を制御するための制御装置とを備え、前記制御装置は、現在の切削方向に対応する前記安定範囲に前記切削条件が収まるように、前記工具による前記ワークの切込み幅と、前記主軸の回転数との少なくとも一方に関する制御パラメータを設定する、工作機械。
  2. 前記制御装置は、前記記憶装置に格納されている複数の安定範囲の重複範囲に前記切削条件が収まるように、前記制御パラメータを設定する、請求項1に記載の工作機械。
  3. 前記制御装置は、前記ワークに対する前記工具の切削方向に合わせて、前記制御パラメータを変えない、請求項2に記載の工作機械。
  4. 前記制御装置は、前記ワークに対する前記工具の切削方向を変える度に、前記記憶装置に格納されている複数の安定範囲の内から、変更後の切削方向に対応する安定範囲を選択し、当該安定範囲に収まるように前記制御パラメータを設定する、請求項1に記載の工作機械。
  5. 前記制御装置は、前記選択された安定範囲内で前記切込み幅が最大となるように前記制御パラメータを制御する、請求項4に記載の工作機械。
  6. 前記制御装置は、前記ワークに対する前記工具の切削方向を変えたことに基づいて、前記記憶装置に格納されている複数の安定範囲の内から、変更後の切削方向に対応する所定数の安定範囲を選択し、当該選択された所定数の安定範囲の重複範囲に収まるように前記制御パラメータを設定する、請求項1に記載の工作機械。
  7. 工作機械による切削方法であって、
    前記工作機械は、
    ワークを切削するための工具と、
    前記ワークまたは前記工具を回転するための主軸と、
    前記主軸を駆動するための駆動部とを備え、
    前記切削方法は、
    前記工具による前記ワークの切込み幅と前記主軸の回転数との切削条件の関係においてびびり振動が生じない切削条件の範囲を規定した複数の安定範囲を取得するステップを備え、前記複数の安定範囲は、それぞれ、前記ワークに対する前記工具の切削方向ごとに対応付けられており、
    前記切削方法は、さらに、
    前記駆動部による前記主軸の駆動方向を制御することで、前記ワークに対する前記工具の切削方向を制御するステップと、
    前記複数の安定範囲の内の現在の切削方向に対応する安定範囲に前記切削条件が収まるように、前記工具による前記ワークの切込み幅と、前記主軸の回転数との少なくとも一方に関する制御パラメータを設定するステップを備える、切削方法。
  8. 工作機械で実行される切削プログラムであって、
    前記工作機械は、
    ワークを切削するための工具と、
    前記ワークまたは前記工具を回転するための主軸と、
    前記主軸を駆動するための駆動部とを備え、
    前記切削プログラムは、前記工作機械に、
    前記工具による前記ワークの切込み幅と前記主軸の回転数との切削条件の関係においてびびり振動が生じない切削条件の範囲を規定した複数の安定範囲を取得するステップを実行させ、前記複数の安定範囲は、それぞれ、前記ワークに対する前記工具の切削方向ごとに対応付けられており、
    前記切削プログラムは、前記工作機械に、さらに、
    前記駆動部による前記主軸の駆動方向を制御することで、前記ワークに対する前記工具の切削方向を制御するステップと、
    前記複数の安定範囲の内の現在の切削方向に対応する安定範囲に前記切削条件が収まるように、前記工具による前記ワークの切込み幅と、前記主軸の回転数との少なくとも一方に関する制御パラメータを設定するステップを実行させる、切削プログラム。
JP2018076202A 2018-04-11 2018-04-11 工作機械、切削方法、および切削プログラム Active JP6735309B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018076202A JP6735309B2 (ja) 2018-04-11 2018-04-11 工作機械、切削方法、および切削プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018076202A JP6735309B2 (ja) 2018-04-11 2018-04-11 工作機械、切削方法、および切削プログラム

Publications (2)

Publication Number Publication Date
JP2019181628A true JP2019181628A (ja) 2019-10-24
JP6735309B2 JP6735309B2 (ja) 2020-08-05

Family

ID=68338036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018076202A Active JP6735309B2 (ja) 2018-04-11 2018-04-11 工作機械、切削方法、および切削プログラム

Country Status (1)

Country Link
JP (1) JP6735309B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065238A1 (ja) 2019-10-01 2021-04-08 株式会社キャタラー 排ガス浄化用触媒
CN114509991A (zh) * 2022-02-25 2022-05-17 成都大学 考虑参数不确定的数控机床切削稳定性预测与优化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005074568A (ja) * 2003-09-01 2005-03-24 Mitsubishi Heavy Ind Ltd 多軸加工機、ワークの加工方法
JP2011206894A (ja) * 2010-03-30 2011-10-20 Nagoya Univ 工具軌跡生成装置、工具軌跡算出方法および工具軌跡生成プログラム
JP2012183596A (ja) * 2011-03-03 2012-09-27 Okuma Corp 工作機械の振動抑制方法及び装置
JP2013043240A (ja) * 2011-08-23 2013-03-04 Jtekt Corp 加工データ修正方法
CN105678043A (zh) * 2014-11-17 2016-06-15 天津职业技术师范大学 一种考虑刚度时变的大切除率铣削颤振监测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005074568A (ja) * 2003-09-01 2005-03-24 Mitsubishi Heavy Ind Ltd 多軸加工機、ワークの加工方法
JP2011206894A (ja) * 2010-03-30 2011-10-20 Nagoya Univ 工具軌跡生成装置、工具軌跡算出方法および工具軌跡生成プログラム
JP2012183596A (ja) * 2011-03-03 2012-09-27 Okuma Corp 工作機械の振動抑制方法及び装置
JP2013043240A (ja) * 2011-08-23 2013-03-04 Jtekt Corp 加工データ修正方法
CN105678043A (zh) * 2014-11-17 2016-06-15 天津职业技术师范大学 一种考虑刚度时变的大切除率铣削颤振监测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
中野 寛,外1名: "エンドミル加工中に発生するびびり振動の動的安定性解析", DYNAMICS & DESIGN CONFERENCE, JPN6020008378, 2 September 2008 (2008-09-02), ISSN: 0004228614 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065238A1 (ja) 2019-10-01 2021-04-08 株式会社キャタラー 排ガス浄化用触媒
CN114509991A (zh) * 2022-02-25 2022-05-17 成都大学 考虑参数不确定的数控机床切削稳定性预测与优化方法
CN114509991B (zh) * 2022-02-25 2024-02-06 成都大学 考虑参数不确定的数控机床切削稳定性预测与优化方法

Also Published As

Publication number Publication date
JP6735309B2 (ja) 2020-08-05

Similar Documents

Publication Publication Date Title
US10241493B2 (en) Control device for machine tool and machine tool including the control device
JP6744815B2 (ja) 工作機械の制御装置および工作機械
US11338404B2 (en) Machine tool and control apparatus of the machine tool
US20190001455A1 (en) Machine tool and control apparatus of the machine tool
WO2015146945A1 (ja) 工作機械の制御装置及びこの制御装置を備えた工作機械
CN110475637B (zh) 机床的控制装置以及机床
JP2019217604A (ja) 工作機械、制御方法、および制御プログラム
US10744611B2 (en) Machine tool control device and machine tool equipped with said control device
CN111002088B (zh) 机床
JP6735309B2 (ja) 工作機械、切削方法、および切削プログラム
JP7444697B2 (ja) 数値制御装置、制御プログラム及び制御方法
WO2019073908A1 (ja) 工作機械
CN112130524A (zh) 数值控制装置、程序记录介质以及控制方法
JP2021066005A (ja) 数値制御装置、プログラム及び制御方法
WO2017154671A1 (ja) エンドミル加工装置およびcam装置およびncプログラムおよび加工方法
JP6695306B2 (ja) 工作機械、加工方法、および加工プログラム
JP2019089169A (ja) 工作機械、および、切削条件の設定方法
JP2017126274A (ja) タレット回転による切込み制御機能を有する数値制御装置
CN111240264B (zh) 数值控制装置、程序记录介质以及控制方法
JP6675435B2 (ja) 工作機械、表示方法、および表示プログラム
JP6701142B2 (ja) 工作機械、加工方法、および加工プログラム
JP2018043306A (ja) 工作機械およびその制御装置
JP5897259B2 (ja) 工作機械およびその制御方法
WO2023017751A1 (ja) 速度調整装置
CN116710223A (zh) 控制装置以及计算装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200713

R150 Certificate of patent or registration of utility model

Ref document number: 6735309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250