JP2019178647A - ピストン式圧縮機 - Google Patents

ピストン式圧縮機 Download PDF

Info

Publication number
JP2019178647A
JP2019178647A JP2018068580A JP2018068580A JP2019178647A JP 2019178647 A JP2019178647 A JP 2019178647A JP 2018068580 A JP2018068580 A JP 2018068580A JP 2018068580 A JP2018068580 A JP 2018068580A JP 2019178647 A JP2019178647 A JP 2019178647A
Authority
JP
Japan
Prior art keywords
chamber
drive shaft
passage
discharge
rotating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018068580A
Other languages
English (en)
Inventor
明広 村西
Akihiro Muranishi
明広 村西
山本 真也
Shinya Yamamoto
真也 山本
明信 金井
Akinobu Kanai
明信 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2018068580A priority Critical patent/JP2019178647A/ja
Publication of JP2019178647A publication Critical patent/JP2019178647A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

【課題】圧縮室から吐出室に吐出される冷媒の流量を好適に変化させることが可能であるとともに、OFF運転を行い易いピストン式圧縮機を提供する。【解決手段】本発明の圧縮機では、回転体11の軸心O方向の位置に応じて、駆動軸3の1回転当たりで第1連通路22と第2連通路41とが連通する軸心O周りの連通角度が変化し、圧縮室45から吐出室29に吐出される冷媒の流量が変化する。この圧縮機では、駆動軸3と回転体11とにより、付勢室としての第1付勢室37及び第2付勢室43が構成されている。第1、2付勢室37、43には、第1、2連通路22、41を介して、圧縮室45で圧縮された冷媒が導入される。第2付勢室43内には、付勢部材としての第1コイルばね47が設けられている。また、吐出通路29aには、逆止弁20が設けられている。逆止弁20は、設定圧力を超える冷媒を吐出室29から外部冷媒回路100に吐出させる。【選択図】図4

Description

本発明はピストン式圧縮機に関する。
特許文献1の図18に従来のピストン式圧縮機(以下、単に圧縮機という。)が開示されている。この圧縮機は、ハウジングと、駆動軸と、固定斜板と、複数のピストンと、吐出弁と、制御弁と、回転体とを備えている。
ハウジングは、シリンダブロックを有している。シリンダブロックには、複数のシリンダボアが形成されている他、シリンダボアに連通する第1連通路が形成されている。また、ハウジングには、吸入室として機能する斜板室と、吐出室と、制御圧室と、軸孔とが形成されている。斜板室は軸孔と連通している。
駆動軸は、軸孔内に回転可能に支承されている。固定斜板は、駆動軸の回転によって斜板室内で回転可能である。固定斜板は、駆動軸に垂直な平面に対する傾斜角度が一定である。各ピストンは、各シリンダボア内に圧縮室を形成している。各ピストンは、固定斜板に連結されている。圧縮室と吐出室との間には、圧縮室内の冷媒を吐出室に吐出させるリード弁式の吐出弁が設けられている。制御弁は、制御圧室内の制御圧力を制御する。
回転体は、駆動軸の外周面に設けられている。回転体は、軸孔内で駆動軸と一体回転可能であるとともに、制御圧力と斜板室内の吸入圧力との差圧に基づいて駆動軸の軸心方向に駆動軸に対して移動可能となっている。また、回転体の外周面には第2連通路が形成されている。第2連通路は、駆動軸の回転に伴い間欠的に第1連通路と連通する。また、駆動軸と回転体とにより、回転体の内部には空間が構成されており、この空間内には付勢部材が設けられている。付勢部材は、圧縮室から吐出室に吐出される冷媒の流量が減少する方向に回転体を付勢している。
この圧縮機では、駆動軸が回転し、各ピストンが各シリンダボア内を往復動することにより、各圧縮室では、冷媒を吸入する吸入行程と、吸入した冷媒を圧縮する圧縮行程と、圧縮した冷媒を吐出する吐出行程とが行われる。そして、この圧縮機では、回転体の軸孔内の位置により、駆動軸の1回転当たりで各第1連通路と第2連通路とが連通する軸心周りの連通角度が変化する。これにより、この圧縮機では、圧縮室から吐出室へ吐出される冷媒の流量を変化させることが可能となっている。
特開平5−306680号公報
しかし、上記圧縮機では、圧縮室から吐出室へ吐出される冷媒の流量が最少となるように回転体を軸心方向に移動させるべく、制御弁が制御圧力を調整しても、回転体は、圧縮室から吐出室へ吐出される冷媒の流量が最少となる位置まで移動し難い。この原因は、この圧縮機では、回転体が制御圧力と吸入圧力との差圧に基づいて移動するため、圧縮室から吐出室へ吐出される冷媒の流量が最少となる位置まで回転体が移動する途中において、制御圧力と吸入圧力とがバランスし易く、これによって、回転体が移動しなくなるためである。このため、この圧縮機では、圧縮室から吐出室へ吐出される冷媒の流量を最少まで減少させ難いことから、駆動軸を回転させつつ、吐出室の冷媒を圧縮機の外部の外部冷媒回路に吐出させない運転状態(以下、このような運転状態をOFF運転という。)を行い難い。
そこで、この圧縮機では、付勢部材の付勢力を大きくすることによって、圧縮室から吐出室へ吐出される冷媒の流量が最少となる位置まで回転体を移動させることが考えられる。しかしながら、この場合には、圧縮室から吐出室へ吐出される冷媒の流量が増大するように回転体を軸心方向に移動させる際に、付勢力による抵抗力が大きくなる。このため、圧縮室から吐出室に吐出される冷媒の流量を好適に増大させ難くなる。
本発明は、上記従来の実情に鑑みてなされたものであって、圧縮室から吐出室に吐出される冷媒の流量を好適に変化させることが可能であるとともに、OFF運転を行い易いピストン式圧縮機を提供することを解決すべき課題としている。
本発明のピストン式圧縮機は、複数のシリンダボアが形成されたシリンダブロックを有し、吸入室と、吐出室と、制御圧室と、軸孔とが形成されたハウジングと、
前記軸孔内に回転可能に支承された駆動軸と、
前記駆動軸の回転によって前記ハウジング内で回転可能であり、前記駆動軸に垂直な平面に対する傾斜角度が一定である固定斜板と、
前記各シリンダボア内に圧縮室を形成し、前記固定斜板に連結されるピストンと、
前記圧縮室内の冷媒を前記吐出室に吐出させる吐出弁と、
前記制御圧室内の制御圧力を制御可能な制御弁と、
前記駆動軸に設けられ、前記駆動軸と一体回転するとともに、前記制御圧力と前記吸入室内の吸入圧力との差圧に基づいて前記駆動軸の軸心方向に前記駆動軸に対して移動可能である回転体とを備え、
前記シリンダブロックには、前記シリンダボアに連通する第1連通路が形成され、
前記回転体には、前記駆動軸の回転に伴い間欠的に前記第1連通路と連通する第2連通路が形成され、
前記回転体の前記軸心方向の位置に応じて、前記駆動軸の1回転当たりで前記第1連通路と前記第2連通路とが連通する前記軸心周りの連通角度が変化することで、前記圧縮室から前記吐出室に吐出される冷媒の流量が変化するピストン式圧縮機であって、
前記駆動軸と前記回転体とにより構成され、前記圧縮室から前記第1連通路及び前記第2連通路を介して前記圧縮室で圧縮された冷媒が導入され、前記圧縮室から前記吐出室に吐出される冷媒の流量が減少する方向に前記回転体を付勢する付勢室と、
前記付勢室内に設けられ、前記圧縮室から前記吐出室に吐出される冷媒の流量が減少する方向に前記回転体を付勢する付勢部材と、
前記吐出室と外部冷媒回路との間の吐出通路に設けられ、設定圧力を超える冷媒を前記吐出室から前記外部冷媒回路に吐出させる逆止弁とを備えていることを特徴とする。
本発明のピストン式圧縮機では、圧縮室から吐出室に吐出される冷媒の流量が最大である場合を含め、圧縮室から吐出室に吐出される冷媒の流量が多い場合には、吐出室内の冷媒の圧力が設定圧力を超える。このため、吐出室内の冷媒は外部冷媒回路に吐出される。一方、圧縮室から吐出室に吐出される冷媒の流量が最少である場合を含め、圧縮室から吐出室に吐出される冷媒の流量が少ない場合には、吐出室の冷媒の圧力が設定圧力を下回る。このため、吐出室の冷媒は外部冷媒回路に吐出されなくなる。こうして、この圧縮機では、OFF運転が可能となる。
ここで、この圧縮機では、第1連通路及び第2連通路を介して、圧縮室で圧縮された冷媒が圧縮室から付勢室に導入される。圧縮室で圧縮された冷媒の圧力は、制御圧力よりも高圧となる。このため、付勢室は、導入された冷媒の圧力によって、付勢部材とともに、圧縮室から吐出室に吐出される冷媒の流量が減少する方向に回転体を付勢する。このため、回転体は、軸心方向で圧縮室から吐出室に吐出される冷媒の流量が減少する方向に好適に移動可能となる。これにより、この圧縮機では、圧縮室から吐出室へ吐出される冷媒の流量が最少となるまで、冷媒の流量を好適に減少させることが可能となる。これにより、吐出室内の冷媒の圧力が設定圧力を好適に下回る状態となるため、この圧縮機では、OFF運転を行い易い。
このように、この圧縮機では、付勢部材の付勢力を過剰に大きくして、回転体を圧縮室から吐出室に吐出される冷媒の流量が減少する方向に付勢する必要がない。このため、軸心方向で圧縮室から吐出室に吐出される冷媒の流量が増大する方向に回転体を移動させる際に、付勢部材の付勢力が抵抗となり難い。また、付勢室内に導入された冷媒による付勢室の付勢力は、OFF運転の継続や圧縮機の作動停止によって圧縮機内が均圧化していくことで次第に小さくなる。これらのため、OFF運転や作動停止の状態から通常の運転状態に復帰するに当たり、圧縮室から吐出室に吐出される冷媒の流量を好適に増大させ易い。
したがって、本発明のピストン式圧縮機は、圧縮室から吐出室に吐出される冷媒の流量を好適に変化させることが可能であるとともに、OFF運転を行い易い。
本発明の圧縮機は、制御圧室内に設けられ、圧縮室から吐出室に吐出される冷媒の流量が増大する方向に回転体を付勢する補助付勢部材を備えていることが好ましい。この場合には、圧縮室から吐出室に吐出される冷媒の流量が増大する方向に回転体が移動し易くなるため、圧縮室から吐出室へ吐出される冷媒の流量を好適に増大させることが可能となる。
また、本発明の圧縮機において、付勢部材は、軸心方向に延びるコイルばねであり得る。そして、コイルばねは、一端側で回転体に係止され、他端側で駆動軸に係止されていることも好ましい。この場合、圧縮室から吐出室に吐出される冷媒の流量が減少する方向に回転体を付勢するに当たって、コイルばねが自由長を超えて伸張することにより、圧縮室から吐出室に吐出される冷媒の流量を増大させる際に、自由長に復帰しようとするコイルばねの付勢力が回転体に作用する。このため、圧縮室から吐出室に吐出される冷媒の流量を増大させ易くなる。なお、自由長とは、荷重が作用していない状態におけるコイルばねの長さを指す。
本発明の圧縮機において、駆動軸には、吸入室と連通する第1通路と、第2連通路と連通する第2通路と、第1通路と前記第2通路とを接続する第3通路とが形成されていることが好ましい。この場合には、第1〜3通路及び第2連通路を通じて、吸入室から圧縮室に冷媒を好適に吸入させることが可能となる。
本発明のピストン式圧縮機は、圧縮室から吐出室に吐出される冷媒の流量を好適に変化させることが可能であるとともに、OFF運転を行い易い。
図1は、実施例1のピストン式圧縮機に係り、最大流量時における断面図である。 図2は、実施例1のピストン式圧縮機に係り、最少流量時における断面図である。 図3は、実施例1のピストン式圧縮機に係り、最大流量時における駆動軸及び回転体等を示す要部拡大断面図である。 図4は、実施例1のピストン式圧縮機に係り、最少流量時における駆動軸及び回転体等を示す要部拡大断面図である。 図5は、実施例2のピストン式圧縮機に係り、最少流量時における駆動軸及び回転体等を示す要部拡大断面図である。
以下、本発明を具体化した実施例1、2を図面を参照しつつ説明する。これらの圧縮機は、片頭ピストン式圧縮機である。これらの圧縮機は、車両に搭載されており、空調装置の冷凍回路を構成している。
(実施例1)
図1及び図2に示すように、実施例1の圧縮機は、ハウジング1と、駆動軸3と、固定斜板5と、複数のピストン7と、弁形成プレート9と、回転体11と、制御弁13と、吸入機構15とを備えている。弁形成プレート9は、本発明の「吐出弁」の一例である。
ハウジング1は、フロントハウジング17と、リヤハウジング19と、シリンダブロック21とを有している。本実施例では、フロントハウジング17が位置する側を圧縮機の前方側とし、リヤハウジング19が位置する側を圧縮機の後方側として、圧縮機の前後方向を規定している。また、図1及び図2の紙面の上方を圧縮機の上方側とし、紙面の下方を圧縮機の下方側として、圧縮機の上下方向を規定している。そして、図3以降では、図1及び図2に対応させて前後方向及び上下方向を表示する。なお、実施例における前後方向等は一例であり、本発明の圧縮機は、搭載される車両等に対応して、その姿勢が適宜変更される。
フロントハウジング17は、径方向に延びる前壁17aと、前壁17aと一体をなして、前壁17aから駆動軸3の軸心O方向で後方に延びる周壁17bとを有しており、略円筒状をなしている。前壁17aには、第1ボス部171と、第2ボス部172と、第1軸孔173とが形成されている。第1ボス部171は軸心O方向で前方に向かって突出している。第1ボス部171内には軸封装置25が設けられている。第2ボス部172は後述する斜板室31内において、軸心O方向で後方に向かって突出している。第1軸孔173は、軸心O方向で前壁17aを貫通している。また、周壁17bには、吸入口174が形成されている。吸入口174は、配管101を介して圧縮機の外部に設けられた蒸発器102と接続している。
リヤハウジング19には、制御圧室27と、吐出室29と、吐出通路29aとが形成されている。制御圧室27は、リヤハウジング19の中心側に位置している。吐出室29は環状に形成されており、制御圧室27の外周側に位置している。吐出通路29aは、吐出室29と連通しており、リヤハウジング19を軸心O方向に延びてリヤハウジング19の外部に開いている。吐出通路29aにおいて、リヤハウジング19の外部に開く箇所は吐出口29bとされている。吐出通路29aは、配管105を介して圧縮機の外部に設けられた凝縮器103と接続している。蒸発器102と凝縮器103とは、配管106及び膨張弁104を介して接続している。蒸発器102、凝縮器103、膨張弁104及び配管101、105、106により、外部冷凍回路100が構成されている。
また、吐出通路29a内には、逆止弁20が設けられている。つまり、逆止弁20は、吐出室29と外部冷凍回路100との間、より具体的には、吐出室29と凝縮器103との間に配置されている。逆止弁20は、外部冷凍回路100側から吐出室29内に冷媒ガスが流入することを阻止する。一方、逆止弁20は、開弁することにより、吐出室29内から凝縮器103に向けて冷媒ガスを吐出させる。逆止弁20には、開弁させるための所定の設定圧力が予め設定されている。なお、設定圧力は適宜設定可能である。
シリンダブロック21は、フロントハウジング17とリヤハウジング19との間に位置している。シリンダブロック21には、複数のシリンダボア21aが形成されている。各シリンダボア21aは、それぞれ周方向に等角度間隔で配置されている。各シリンダボア21aは、それぞれ軸心O方向に延びている。なお、シリンダボア21aの個数は適宜設計可能である。
シリンダブロック21は、フロントハウジング17と接合されることにより、フロントハウジング17の前壁17a及び周壁17bとの間に斜板室31を形成している。斜板室31は、吸入口174と連通している。このため、斜板室31内には、吸入口174を通じて、蒸発器102を経た低圧の冷媒ガスが吸入される。これにより、斜板室31は、本発明の「吸入室」としても機能する。
また、シリンダブロック21には、第2軸孔23と、支持壁24と、シリンダボア21aと同数の第1連通路22とが形成されている。第2軸孔23は、シリンダブロック21の中心側に位置しており、軸心O方向に延びている。第2軸孔23の後方側は、シリンダブロック21が弁形成プレート9を介してリヤハウジング19と接合されることにより、制御圧室27内に位置する。これにより、第2軸孔23の後方側は制御圧室27と連通している。
支持壁24は、シリンダブロック21の中心側であって、第2軸孔23の前方に位置している。支持壁24により、第2軸孔23は斜板室31から区画されている。支持壁24には、第3軸孔240と、絞り通路241とが設けられている。第3軸孔240は、第1軸孔173と同軸であり、支持壁24を軸心O方向に貫通している。第1〜3軸孔173、23、240は、本発明の「軸孔」の一例である。
絞り通路241は、第3軸孔240とは異なる位置で、支持壁24を軸心O方向に貫通している。これにより、絞り通路241は、第2軸孔23の前方側と斜板室31とを連通させている。
各第1連通路22は、それぞれシリンダブロック21の径方向に延びており、各シリンダボア21aと第2軸孔23とに接続している。これにより、各シリンダボア21aは、各第1連通路22を通じて第2軸孔23と連通している。
弁形成プレート9は、リヤハウジング19とシリンダブロック21との間に設けられている。この弁形成プレート9を介して、リヤハウジング19とシリンダブロック21とが接合されている。
弁形成プレート9は、バルブプレート91と、吐出弁プレート92と、リテーナプレート93とで構成されている。バルブプレート91には、シリンダボア21aと同数個の吐出孔910が形成されている。各シリンダボア21aは、各吐出孔910を通じて吐出室29と連通する。
吐出弁プレート92は、バルブプレート91の後面に設けられている。吐出弁プレート92には、吐出孔910と同数個の吐出リード92aが設けられている。各吐出リード弁92aは、弾性変形によって各吐出孔910を開閉可能となっている。リテーナプレート93は、吐出弁プレート92の後面に設けられている。リテーナプレート93は、各吐出リード弁92aの最大開度を規制する。
駆動軸3は、軸心O方向で圧縮機の前方側から後方側に向かって延びている。駆動軸3は、ねじ部3aと、第1径部3bと、第2径部3cとを有している。ねじ部3aは、駆動軸3の前端に位置している。このねじ部3aを介して、駆動軸3は図示しないエンジンやモータ等の動力源と連結されている。つまり、この圧縮機は、クラッチ機構を介さずに動力源と連結する、いわゆるクラッチレス機構となっている。なお、圧縮機と動力源とをクラッチ機構を介して連結させても良い。
第1径部3bは、ねじ部3aの後端と連続しており、軸心O方向に延びている。第2径部3cは、第1径部3bの後端と連続しており、軸心O方向に延びている。第2径部3cは、第1径部3bよりも小径となっている。これにより、第1径部3bと第2径部3cとの間には、段部3dが形成されている。
また、駆動軸3には、第1通路30aと、第2通路30bと、第3通路30cとが形成されている。第1通路30aは、第1径部3b内に形成されており、第1径部3bの径方向に延びて第1径部3bの外周面に開いている。第2通路30bは、第2径部3c内に形成されており、第2径部3cの径方向に延びて第2径部3cの外周面に開いている。ここで、第2通路30bは、軸心O方向に延びる長孔形状に形成されている。第3通路30cは、第1径部3b内から第2径部3c内に亘って形成されており、軸心O方向に延びている。第3通路30cは、第1通路30aと第2径路30bとを接続している。また、第3通路30cの後端は、第2径部3cの後端、すなわち駆動軸3の後端まで延びている。
第3通路30cの後端には、封止部材33が圧入されている。これにより、封止部材33は、第2径部3cに固定されて、駆動軸3と一体をなしている。
駆動軸3は、第1径部3bを第1軸孔173及び第3軸孔240に支承させつつ、ハウジング1に回転可能に挿通されている。これにより、第1径部3bは、斜板室31内で回転可能となっている。また、第2径部3cは、第2軸孔23内に位置しており、第2軸孔23内で回転可能となっている。また、第1ボス部171内では、軸封装置25に駆動軸3が挿通される。これにより、軸封装置25は、ハウジング1の内部とハウジング1の外部との間を封止する。
固定斜板5は、駆動軸3の第1径部3bに圧入されており、斜板室31内に配置されている。これにより、固定斜板5は、駆動軸3が回転することにより、斜板室31内で駆動軸3とともに回転可能となっている。ここで、固定斜板5は、駆動軸3に垂直な平面に対する傾斜角度が一定となっている。また、斜板室31内において、第2ボス部172と固定斜板5との間には、スラスト軸受35が設けられている。
また、固定斜板5には、径方向に延びて斜板室31内に開く接続路5aが形成されている。接続路5aは、第1通路30aと連通している。これにより、第1〜3通路30a〜30cは、斜板室31と連通している。
各ピストン7は、各シリンダボア21a内にそれぞれ収容されている。各ピストン7と、弁形成プレート9とにより、各シリンダボア21a内には、圧縮室45がそれぞれ形成されている。
各ピストン7には、係合部7aが形成されている。各係合部7a内には、半球状のシュー8a、8bがそれぞれ設けられている。これらのシュー8a、8bによって、各ピストン7は固定斜板5に連結されている。これにより、シュー8a、8bは、固定斜板5の回転を各ピストン7の往復動に変換する変換機構と機能する。このため、各ピストン7は、それぞれシリンダボア21a内をピストン7の上死点とピストン7の下死点との間で往復動することが可能となっている。以下では、各ピストン7の上死点及びピストン7の下死点について、それぞれ上死点及び下死点と記載する。
図3及び図4に示すように、回転体11は、外周面11aと、凹部11bと、前面111と、後面112と、突出部113とを有する略円筒状に形成されている。凹部11bは、底壁110側から軸心O方向で前方に向かって延びており、前面111に開口している。回転体11は、凹部11b内に駆動軸3の第2径部3cを挿通した状態で、第2径部3cの外周面とスプライン結合されている。これにより、回転体11は駆動軸3に取り付けられて、第2軸孔23内に配置されており、第2軸孔23内で駆動軸3と一体回転可能となっている。なお、図3及び図4では、説明を容易にするため、外部冷媒回路100の図示を省略している。後述する図5についても同様である。
第2軸孔23内に回転体11が配置されることにより、第2軸孔23内には、第1付勢室37が区画されている。第1付勢室37は、第2軸孔23の内周面と、支持壁24と、駆動軸3と、回転体11の前面111とによって構成されている。上記のように、第2軸孔23の前方側が絞り通路241を通じて斜板室31と連通していることから、第1付勢室37は、絞り通路241を通じて斜板室31と連通している。こうして、回転体11の前面111には、吸入圧力が作用するようになっている。
一方、後面112は制御圧室27に面している。また、突出部113は、後面112から後方、つまり制御圧室27に向かって突出している。これらにより、後面112及び突出部113には、制御圧力が作用するようになっている。
こうして、回転体11は、吸入圧力と制御圧力との差圧により、駆動軸3に対し、第2軸孔23内を軸心O方向、すなわち、第2軸孔23内を前後方向に移動可能となっている。なお、吸入圧力及び制御圧力については後述する。
また、凹部11b内に第2径部3cを挿通することにより、凹部11b内には、第2付勢室43が区画されている。第2付勢室43は、凹部11bの内周面と、凹部11bの底壁110と、第2径部3cの後端とによって構成されている。第1付勢室37及び第2付勢室43は、本発明の「付勢室」の一例である。ここで、第2径部3cには封止部材33が固定されていることにより、第2付勢室43は、第1〜3通路30a〜30cとは非連通となっている。第2付勢室43内には、第1コイルばね47が設けられている。第1コイルばね47は、本発明の「付勢部材」の一例である。第1コイルばね47は、軸心O方向に延びており、底壁110と第2径部3cとに当接している。これにより、第1コイルばね47は、回転体11を軸心O方向で後方側に向けて付勢している。
一方、制御圧室27内には、第2コイルばね48が設けられている。第2コイルばね48は、本発明の「補助付勢部材」の一例である。第2コイルばね48は、軸心O方向に延びており、制御圧室27の壁面、つまり、リヤハウジング19と、回転体11の後面112とに当接している。これにより、第2コイルばね48は、回転体11を軸心O方向で前方側に向けて付勢している。ここで、第2コイルばね48の付勢力は、第1コイルばね47の付勢力よりも小さく設定されている。
また、回転体11には、第2連通路41と導入通路44とが形成されている。第2連通路41は、第1径路41aと本体通路41bとからなる。第1径路41aは、回転体11の径方向に延びており、第2通路30bと連通している。ここで、第2通路30bが軸心O方向に延びる長孔形状をなしているため、回転体11が第2軸孔23内を軸心O方向に移動しても、第1径路41aと第2通路30bとの連通面積は一定となっている。
本体通路41bは、外周面11aに凹設されており、第1径路41aと連通している。本体通路41bは、外周面11aにおいて回転体11の前後方向の略中央から前方側に向かって延びるように形成されている。詳細な図示を省略するものの、本体通路41bは、回転体11の前方側に向かうにつれて、次第に外周面11aの周方向に大きく形成されている。つまり、外周面11aの周方向に小さく形成された第1部位411が本体通路41bの後端側に位置しており、外周面11aの周方向に大きく形成された第2部位412が本体通路41bの前端側に位置している。なお、本体通路41bの形状は適宜設計可能である。
本体通路41bは、駆動軸3が回転し、回転体11が第2軸孔23内で回転することにより、各第1連通路22と間欠的に連通する。これにより、本体通路41bは、回転体11の第2軸孔23内における位置によって、駆動軸3の1回転当たりで各第1連通路22と連通する軸心O周りの連通角度が変化する。以下、駆動軸3の1回転当たりで各第1連通路22と本体通路41bとが連通する軸心O周りの連通角度を単に連通角度と記載する。
導入通路44は第2付勢室43と連通しており、軸心O方向に延びて前面111に開口している。これにより、導入通路44は、第2付勢室43と第1付勢室37、ひいては、第2付勢室43と第2軸孔23とを連通させている。導入通路44は、絞り通路241よりも開口面積が大きく形成されている。なお、図1〜図4では、説明を容易にするため、絞り通路241及び導入通路44の形状を誇張して図示している。後述する図5についても同様である。
図1及び図2に示すように、制御弁13は、リヤハウジング19に設けられている。制御弁13は、第1制御通路13aによって斜板室31と接続している。また、制御弁13は、第2制御通路13bによって吐出室29と接続している。さらに、制御弁13は、第3制御通路13cによって制御圧室27と接続している。第1制御通路13aは、リヤハウジング19及びシリンダブロック21に形成されている。第2、3制御通路13b、13cは、リヤハウジング19に形成されている。制御弁13は、斜板室31内の冷媒ガスの圧力である吸入圧力を感知することで、弁開度が調整される。そして、制御弁13は、吐出室29内の冷媒ガスの一部を制御圧室27に流通させる。この際、制御弁13は、吐出室29内の冷媒ガスの圧力である吐出圧力を制御圧室27の冷媒ガスの圧力である制御圧力に制御する。また、制御圧室27は、図示しない抽気通路により、制御圧力を低減可能である。
吸入機構15は、接続路5aと、第1〜3通路30a〜30cと、第2連通路41と、各第1連通路22とで構成されている。吸入機構15は、斜板室31の冷媒ガスを各圧縮室45内に吸入させる。つまり、斜板室31の冷媒ガスは、接続路5a及び第1〜3通路30a〜30cを経て、第2連通路41の第1径路41aに至る。そして、第1径路41aに至った冷媒ガスは、本体通路41b及び各第1連通路22を通じて、各圧縮室45内に吸入される。
以上のように構成された圧縮機では、駆動軸3が回転することにより、斜板室31内で固定斜板5が回転する。これにより、各ピストン7が各シリンダボア21a内を上死点と下死点との間で往復動することで、各圧縮室45では、斜板室31から冷媒ガスを吸入する吸入行程と、吸入された冷媒ガスを圧縮する圧縮行程と、圧縮された冷媒ガスを吐出する吐出行程とが繰り返し行われることとなる。吐出行程において、冷媒ガスは弁形成プレート9によって吐出室29に吐出される。その後、吐出室29内の冷媒ガスは、吐出口29a及び逆止弁20を経て凝縮器103に吐出される。
そして、この圧縮機では、これらの吸入行程等が行われる間に回転体11を第2軸孔23内で軸心O方向に移動させることにより、駆動軸3の1回転当たりで各圧縮室45から吐出室29に吐出される冷媒ガスの流量を変更することができる。
具体的には、各圧縮室45から吐出室29に吐出される冷媒ガスの流量を増大させる場合、制御弁13が制御圧室27の制御圧力を増大させる。これにより、制御圧力と吸入圧力との差圧である可変差圧が大きくなる。
このため、回転体11の後面112及び突出部113に作用する制御圧力が大きくなることで、回転体11は、第1コイルばね47の付勢力に抗しつつ、図4に示す状態から第2軸孔23内を軸心O方向で前方に移動し始める。この際、第2コイルばね48の付勢力が回転体11の前方への移動を補助する。これにより、第2連通路41は、各第1連通路22に対して前方に相対移動する。これにより、本体通路41bは、外周面11aの周方向に小さく形成された部分において、各第1連通路22と連通する状態となる。このため、この圧縮機では、連通角度が徐々に小さくなる。
そして、可変差圧が最大となることにより、図3に示すように、回転体11は第2軸孔23内を最も前方に移動した状態となり、段部3dと当接する。これにより、本体通路41bでは、第1部位411において各第1連通路22と連通する状態となり、連通角度が最小となる。
このように、連通角度が最小となることにより、回転体11が回転することで、第2連通路41では、本体通路41bは、各圧縮室45内を各ピストン7が上死点から下死点に向って移動している間のみ各第1連通路22と連通する状態となる。これにより、各圧縮室45に吸入された冷媒ガスは、各圧縮室45が圧縮行程となった際に圧縮されることになる。こうして、この圧縮機では、各圧縮室45が吐出行程となった際に各圧縮室45から吐出室29へ吐出される冷媒ガスの流量が最大となる。
ここで、各圧縮室45から吐出室29に吐出される冷媒ガスの流量が最大である場合を含め、各圧縮室45から吐出室29に吐出される冷媒ガスの流量が増大することにより、吐出室29内の冷媒ガスの圧力が逆止弁20の設定圧力を超える。このため、逆止弁20が開弁し、吐出室29内の冷媒ガスは、凝縮器103に吐出されることになる。
反対に、この圧縮機において、各圧縮室45から吐出室29に吐出される冷媒ガスの流量を減少させる場合には、制御弁13が制御圧室27の制御圧力を減少させる。これにより、制御圧力と吸入圧力との差圧である可変差圧が小さくなる。
このため、回転体11の後面112及び突出部113に作用する制御圧力が小さくなることで、回転体11は、第1コイルばね47の付勢力によって、図3に示す状態から第2軸孔23内を軸心O方向で後方に移動し始める。この際、第2コイルばね48の付勢力が回転体11に作用するものの、第2コイルばね48の付勢力は、第1コイルばね47の付勢力に比べて小さい。このため、第2コイルばね48の付勢力は、回転体11の後方への移動を妨げ難い。こうして、回転体11が後方に移動することで、第2連通路41は、各第1連通路22に対して後方に相対移動する。これにより、本体通路41bは、外周面11aの周方向に大きく形成された部分において、各第1連通路22と連通する状態となる。このため、この圧縮機では、連通角度が徐々に大きくなる。
そして、可変差圧がより小さくなり、回転体11が第2軸孔23内をより後方に移動することで、本体通路41bでは、第2部位412の近傍で各第1連通路22と連通する状態となり、連通角度がより大きくなる。このように、連通角度が大きくなることにより、本体通路41bは、各圧縮室45内を各ピストン7が上死点から下死点に向って移動している間だけでなく、各ピストン7が下死点から上死点に向って一定程度移動している間も各第1連通路22と連通する状態となる。これにより、各ピストン7が上死点から下死点に向って移動している間に各圧縮室45内に吸入された冷媒ガスの一部は、各ピストン7が下死点から上死点に向って移動する際に、各第1連通路22及び第2連通路41を通じて、各圧縮室45の上流側、すなわち、各圧縮室45の外部に排出される。この結果、各圧縮室45が圧縮行程となった際に圧縮される冷媒ガスの流量が少なくなる。こうして、この圧縮機では、各圧縮室45が吐出行程となった際に各圧縮室45から吐出室29へ吐出される冷媒ガスの流量が最少近くまで減少する。
これにより、この圧縮機では、吐出室29内の冷媒ガスの圧力が逆止弁20の設定圧力を下回る。このため、逆止弁20が閉弁し、吐出室29内の冷媒ガスが凝縮器103に吐出されなくなる。こうして、この圧縮機ではOFF運転となる。
ここで、この圧縮機では、逆止弁20が閉弁した際、各圧縮室45内に残留する設定圧力を下回る冷媒ガス(以下、残留ガスという。)が第1付勢室37及び第2付勢室43内に導入される。具体的には、逆止弁20が閉弁することにより、残留ガスは、各第1連通路22及び第2連通路41の本体通路41bを経て、第1付勢室37に導入される。ここで、第1付勢室37は、絞り通路241を通じて斜板室31と連通しているとともに、導入通路44を通じて第2付勢室43と連通している。このため、図4の黒色矢印で示すように、残留ガスは、第1付勢室37から導入通路44を流通して第2付勢室43にも導入される。この際、導入通路44の開口面積は絞り通路241よりも大きいため、第1付勢室37に導入された残留ガスは、絞り通路241を流通するよりも導入通路44を流通し易く、ひいては、第2付勢室43に導入され易くなる。
このように第1、2付勢室37、43に導入される過程において、残留ガスは減圧されるものの、残留ガスの圧力は、各圧縮室45から吐出室29へ吐出される冷媒ガスの流量が最少近くまで減少した状態における制御圧室27内の制御圧力よりも高圧である。このため、第1、2付勢室37、43内は、制御圧室27内よりも高圧となる。これにより、図4の白色矢印で示すように、第1、2付勢室37、43は、残留ガスの圧力によって、第1コイルばね47とともに回転体11を圧縮機の後方側に付勢する。このため、回転体11は、突出部113が制御圧室27の壁面、すなわちリヤハウジング19に当接するまで、第2軸孔23内を後方に好適に移動することができる。そして、回転体11が第2軸孔23内を最も後方に移動し、突出部113がリヤハウジング19に当接することにより、本体通路41bでは、第2部位412において各第1連通路22と連通する状態となる。この結果、連通角度が最大となり、各圧縮室45から吐出室29に吐出される冷媒ガスの流量が最少となる。
このように、この圧縮機では、各圧縮室45から吐出室29に吐出される冷媒ガスの流量が最少となる位置まで回転体11を第2軸孔23内の後方に好適に移動させることができる。これにより、この圧縮機では、各圧縮室45から吐出室29に吐出される冷媒ガスの流量を最少まで好適に減少させることが可能となっている。そして、各圧縮室45から吐出室29に吐出される冷媒ガスの流量が最少となることで、吐出室29内の冷媒ガスの圧力は、逆止弁20の設定圧力を好適に下回る状態となる。このため、この圧縮機では、OFF運転の維持を含め、OFF運転を行い易くなっている。
こうして、この圧縮機では、第1コイルばね47の付勢力を過剰に大きくして、回転体11を圧縮機の後方側に付勢する必要がない。このため、各圧縮室45から吐出室29に吐出される冷媒ガスの流量を増大させる際に、第1コイルばね47の付勢力が抵抗となり難くなっている。また、残留ガスによる第1、2付勢室37、43の付勢力は、OFF運転の継続や圧縮機の作動停止によって圧縮機内が均圧化していくことで次第に小さくなる。これらのため、この圧縮機では、OFF運転や作動停止の状態から通常の運転状態に復帰するに当たり、各圧縮室45から吐出室29に吐出される冷媒ガスの流量を好適に増大させ易くなっている。
したがって、実施例1の圧縮機は、各圧縮室45から吐出室29に吐出される冷媒ガスの流量を好適に変化させることが可能であるとともに、OFF運転を行い易い。
また、この圧縮機では、制御圧室27内に第2コイルばね48が設けられており、第2コイルばね48は、回転体11を圧縮機の前方に付勢している。これにより、残留ガスの圧力によって第1、2付勢室37、43が第1コイルばね47とともに回転体11を圧縮機の後方側に付勢する状態にあっても、回転体11は、第2軸孔23内を前方側に移動し易くなっている。こうして、この圧縮機では、OFF運転にある場合を含め、各圧縮室45から吐出室29に吐出される冷媒ガスの流量が少ない状態から、冷媒ガスの流量を好適に増大させることが可能となっている。
さらに、この圧縮機では、斜板室31が吸入室としても機能するため、ハウジング1に吸入室のためのスペースを確保する必要がなく、ハウジング1を小型化することが可能となっている。また、吸入機構15が接続路5aと、第1〜3通路30a〜30cと、第2連通路41と、各第1連通路22とで構成されていることにより、吸入機構15の構成を簡素化しつつ、斜板室31から各圧縮室45に冷媒ガスを好適に吸入させることが可能となっている。
(実施例2)
図5に示すように、実施例2の圧縮機では、回転体11において、凹部11bの底壁110に第1係止部110aが形成されている。また、封止部材33に第2係止部33aが形成されている。第1係止部110a及び第2係止部33aは、第2付勢室43内に突出しており、互いに対面している。なお、第1係止部110a及び第2係止部33aの形状は、適宜設計可能である。
そして、第2付勢室43内において、第1コイルばね47は、後方側が第1係止部110aを通じて底壁110に係止されており、前方側が第2係止部33aを通じて第2径部3c、すなわち駆動軸3に係止されている。
また、この圧縮機では、実施例1の圧縮機と異なり、制御圧室27内に第2コイルばね48が設けられていない。この圧縮機における他の構成は実施例1の圧縮機と同様であり、同一の構成については同一の符号を付して構成に関する詳細な説明を省略する。
この圧縮機では、回転体11が第2軸孔23内を最も後方まで移動し、各圧縮室45から吐出室29に吐出される冷媒ガスの流量が最少となることで、第1コイルばね47は、自由長を超えて伸張する状態となる。これにより、各圧縮室45から吐出室29に吐出される冷媒ガスの流量を増大させるに当たって、自由長に復帰しようとする第1コイルばね47の付勢力が回転体11に作用する。つまり、この際には、回転体11に対し、圧縮機の前方に付勢する付勢力が作用する。こうして、この圧縮機でも、各圧縮室45から吐出室29に吐出される冷媒ガスの流量を増大させるに当たって、回転体11が第2軸孔23内を前方側に移動し易くなっている。また、この圧縮機では、第2コイルばね48が不要となることから、部品点数を少なくすることができる。この圧縮機における他の作用は実施例1の圧縮機と同様である。
以上において、本発明を実施例1、2に即して説明したが、本発明は上記実施例1、2に制限されるものではなく、その趣旨を逸脱しない範囲で適宜変更して適用できることはいうまでもない。
例えば、実施例1、2の圧縮機を両頭ピストン式圧縮機として構成しても良い。
また、実施例1、2の圧縮機において、第1付勢室37内に第1コイルばね47を設けても良い。また、第2付勢室43を省略して圧縮機を構成しても良い。
さらに、実施例1、2の圧縮機では、導入通路44を回転体11に形成しているが、これに限らず、第2径部3cの外周面に導入通路44を形成しても良い。また、回転体11と第2径部3cの外周面とに、それぞれ導入通路44を形成しても良い。
また、実施例1、2の圧縮機において、第2連通路41を本体通路41bのみで構成するとともに、接続路5a及び第1〜3通路30a〜30cを形成しないことにより、第1付勢室37内の冷媒ガスを第2連通路41及び各第1連通路22を通じて各圧縮室45に吸入させる構成としても良い。
さらに、実施例1、2の圧縮機において、回転体11が第2軸孔23内を軸心O方向で後方に移動することにより、駆動軸3の1回転当たりで各圧縮室45から吐出室29に吐出される冷媒ガスの流量が増大する構成としても良い。
また、実施例1、2の圧縮機において、連通角度が大きくなることによって、駆動軸3の1回転当たりで各圧縮室45から吐出室29に吐出される冷媒ガスの流量が増大し、連通角度が小さくなることによって、駆動軸3の1回転当たりで各圧縮室45から吐出室29に吐出される冷媒ガスの流量が減少する構成としても良い。
さらに、実施例1、2の圧縮機において、各シュー8a、8bに換えて、固定斜板5の後面側にスラスト軸受を介して揺動板を支持するとともに、揺動板と各ピストン7とをコンロッドによって連接するワッブル型の変換機構を採用しても良い。
また、実施例1、2の圧縮機において、リヤハウジング19に吸入口174を形成するとともに、吸入口174と連通する吸入室を形成しても良い。この場合、吸入室と斜板室31とを連通させても良いし、吸入室と斜板室31とを非連通としても良い。
さらに、実施例1、2の圧縮機では、斜板室31と第2軸孔23とを絞り通路241によって連通させているが、これに限らず、斜板室31と第2軸孔23とを絞り通路241よりも開口面積が大きい通路によって連通させても良い。
本発明は車両の空調装置等に利用可能である。
1…ハウジング
3…駆動軸
5…固定斜板
7…ピストン
9…弁形成プレート(吐出弁)
11…回転体
13…制御弁
20…逆止弁
21a…シリンダボア
22…第1連通路
23…第2軸孔(軸孔)
27…制御圧室
29…吐出室
29a…吐出通路
30a…第1通路
30b…第2通路
30c…第3通路
31…斜板室(吸入室)
37…第1付勢室(付勢室)
41…第2連通路
43…第2付勢室(付勢室)
45…圧縮室
47…第1コイルばね(付勢部材)
48…第2コイルばね(補助付勢部材)
100…外部冷媒回路
173…第1軸孔(軸孔)
240…第3軸孔(軸孔)
O…軸心

Claims (4)

  1. 複数のシリンダボアが形成されたシリンダブロックを有し、吸入室と、吐出室と、制御圧室と、軸孔とが形成されたハウジングと、
    前記軸孔内に回転可能に支承された駆動軸と、
    前記駆動軸の回転によって前記ハウジング内で回転可能であり、前記駆動軸に垂直な平面に対する傾斜角度が一定である固定斜板と、
    前記各シリンダボア内に圧縮室を形成し、前記固定斜板に連結されるピストンと、
    前記圧縮室内の冷媒を前記吐出室に吐出させる吐出弁と、
    前記制御圧室内の制御圧力を制御可能な制御弁と、
    前記駆動軸に設けられ、前記駆動軸と一体回転するとともに、前記制御圧力と前記吸入室内の吸入圧力との差圧に基づいて前記駆動軸の軸心方向に前記駆動軸に対して移動可能である回転体とを備え、
    前記シリンダブロックには、前記シリンダボアに連通する第1連通路が形成され、
    前記回転体には、前記駆動軸の回転に伴い間欠的に前記第1連通路と連通する第2連通路が形成され、
    前記回転体の前記軸心方向の位置に応じて、前記駆動軸の1回転当たりで前記第1連通路と前記第2連通路とが連通する前記軸心周りの連通角度が変化することで、前記圧縮室から前記吐出室に吐出される冷媒の流量が変化するピストン式圧縮機であって、
    前記駆動軸と前記回転体とにより構成され、前記圧縮室から前記第1連通路及び前記第2連通路を介して前記圧縮室で圧縮された冷媒が導入され、前記圧縮室から前記吐出室に吐出される冷媒の流量が減少する方向に前記回転体を付勢する付勢室と、
    前記付勢室内に設けられ、前記圧縮室から前記吐出室に吐出される冷媒の流量が減少する方向に前記回転体を付勢する付勢部材と、
    前記吐出室と外部冷媒回路との間の吐出通路に設けられ、設定圧力を超える冷媒を前記吐出室から前記外部冷媒回路に吐出させる逆止弁とを備えていることを特徴とするピストン式圧縮機。
  2. 前記制御圧室内に設けられ、前記圧縮室から前記吐出室に吐出される冷媒の流量が増大する方向に前記回転体を付勢する補助付勢部材を備えている請求項1記載のピストン式圧縮機。
  3. 前記付勢部材は、前記軸心方向に延びるコイルばねであり、
    前記コイルばねは、一端側で前記回転体に係止され、他端側で前記駆動軸に係止されている請求項1記載のピストン式圧縮機。
  4. 前記駆動軸には、前記吸入室と連通する第1通路と、前記第2連通路と連通する第2通路と、前記第1通路と前記第2通路とを接続する第3通路とが形成されている請求項1乃至3のいずれか1項記載のピストン式圧縮機。
JP2018068580A 2018-03-30 2018-03-30 ピストン式圧縮機 Pending JP2019178647A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018068580A JP2019178647A (ja) 2018-03-30 2018-03-30 ピストン式圧縮機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018068580A JP2019178647A (ja) 2018-03-30 2018-03-30 ピストン式圧縮機

Publications (1)

Publication Number Publication Date
JP2019178647A true JP2019178647A (ja) 2019-10-17

Family

ID=68278144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018068580A Pending JP2019178647A (ja) 2018-03-30 2018-03-30 ピストン式圧縮機

Country Status (1)

Country Link
JP (1) JP2019178647A (ja)

Similar Documents

Publication Publication Date Title
JP6003547B2 (ja) 容量可変型斜板式圧縮機
JP5870902B2 (ja) 容量可変型斜板式圧縮機
US9518568B2 (en) Swash plate type variable displacement compressor
JP2014092107A (ja) 容量可変型斜板式圧縮機
EP2728183A2 (en) Swash plate type variable displacement compressor
US9556861B2 (en) Variable displacement swash plate compressor
US9709045B2 (en) Variable displacement swash plate compressor
US10815980B2 (en) Variable displacement swash plate type compressor
US9915252B2 (en) Variable displacement swash plate compressor having a fulcrum and an action point located on opposite sides of a drive shaft
JP2019178647A (ja) ピストン式圧縮機
US9903354B2 (en) Variable displacement swash plate compressor
US11047373B2 (en) Piston compressor including a suction throttle
JP7120103B2 (ja) ピストン式圧縮機
US11015587B2 (en) Piston compressor
US20160252084A1 (en) Variable displacement swash plate type compressor
JP2019183837A (ja) ピストン式圧縮機
WO2014157209A1 (ja) 容量可変型斜板式圧縮機
JP2019183836A (ja) ピストン式圧縮機
US9790936B2 (en) Variable displacement swash plate compressor
JP6032228B2 (ja) 容量可変型斜板式圧縮機
JP6115397B2 (ja) 容量可変型斜板式圧縮機
JP2015190434A (ja) 容量可変型斜板式圧縮機
JP2019178634A (ja) ピストン式圧縮機
JP2019183834A (ja) ピストン式圧縮機
US20150044068A1 (en) Swash plate type variable displacement compressor