JP2019160616A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP2019160616A
JP2019160616A JP2018046698A JP2018046698A JP2019160616A JP 2019160616 A JP2019160616 A JP 2019160616A JP 2018046698 A JP2018046698 A JP 2018046698A JP 2018046698 A JP2018046698 A JP 2018046698A JP 2019160616 A JP2019160616 A JP 2019160616A
Authority
JP
Japan
Prior art keywords
ion secondary
secondary battery
lithium ion
positive electrode
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018046698A
Other languages
Japanese (ja)
Inventor
長谷川 智彦
Tomohiko Hasegawa
智彦 長谷川
洋 苅宿
Hiroshi Kariyado
洋 苅宿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2018046698A priority Critical patent/JP2019160616A/en
Publication of JP2019160616A publication Critical patent/JP2019160616A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a lithium ion secondary battery which enables the improvement of a high-temperature storing characteristic.SOLUTION: A lithium ion secondary battery comprises: a positive electrode; a negative electrode; a separator located between the positive and negative electrodes; and an electrolyte solution. In the lithium ion secondary battery, the positive electrode contains a lithium nickel compound represented by LiNi(M)(M)O(where Mis at least one selected from Co and Mn and Mrepresents at least one kind selected from Al, Fe, Cr and Mg, and 0.9≤w≤1.3, 0.75≤x≤0.95, 0.01≤y≤0.25 and 0≤z≤0.25). The electrolyte solution contains ethylene carbonate and propylene carbonate. Supposing that a percentage that the ethylene carbonate accounts for in a total volume of the electrolyte solution is A vol.%, and a percentage that the propylene carbonate accounts for is B vol.%, 0.1≤A≤5 and 10≤A+B≤30. The electrolyte solution contains a first additive agent of at least one kind selected from monofluorophosphate and difluorophosphate.SELECTED DRAWING: None

Description

本発明は、リチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery.

近年、携帯電話やパソコン等の電子機器の小型化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高くなっている。また、このような状況下において、充放電容量が大きく、高エネルギー密度を有するリチウムイオン二次電池が注目されている。   In recent years, electronic devices such as mobile phones and personal computers have been rapidly reduced in size and cordless, and there is an increasing demand for secondary batteries having a small size, light weight, and high energy density as power sources for driving these devices. Under such circumstances, a lithium ion secondary battery having a large charge / discharge capacity and a high energy density has attracted attention.

リチウムイオン二次電池の高エネルギー密度化には高電位・高容量の正極活物質の開発が急務である。近年、電池電圧が4V前後を示すものが現れ、そのうちLiNiO、LiCoOなどのニッケルやコバルトを主体とするリチウム遷移金属複合酸化物が有望な材料の一つとして考えられている。この中でも、NCAやNCM811といったニッケル比率が高いリチウムニッケル化合物は放電容量が200mAh/gを超えるものも存在し、これを用いることでリチウムイオン二次電池のエネルギー密度が飛躍的に向上することが期待されている。 To increase the energy density of lithium ion secondary batteries, it is urgent to develop positive electrode active materials with high potential and high capacity. In recent years, a battery voltage of around 4 V has appeared, and lithium transition metal composite oxides mainly composed of nickel and cobalt such as LiNiO 2 and LiCoO 2 are considered as one of promising materials. Among these, lithium nickel compounds having a high nickel ratio such as NCA and NCM811 exist that have a discharge capacity exceeding 200 mAh / g, and it is expected that the energy density of the lithium ion secondary battery will be dramatically improved by using this. Has been.

しかしながら、上記リチウムニッケル化合物はその表面でLiOHやLiCO等のアルカリ化合物を生成しやすく、ガスが発生しやすいという問題が存在する。この問題は特に、ラミネート型電池のように変形しやすい外装体を用いた際に、外観や安全性を損ねるといった問題に繋がってしまう。 However, the lithium nickel compound has a problem that it easily generates an alkali compound such as LiOH or Li 2 CO 3 on its surface, and gas is easily generated. This problem particularly leads to a problem that the appearance and safety are impaired when an easily deformable exterior body such as a laminate type battery is used.

上記の問題を解決するため、正極活物質表面を酸化物被膜や炭素等でコートする方法が提唱されている。例えば、特許文献1では正極活物質の表面にタングステン酸化合物を主体とする皮膜を形成することで、電解液の分解が抑制されることが報告されている。   In order to solve the above problems, a method of coating the surface of the positive electrode active material with an oxide film or carbon has been proposed. For example, Patent Document 1 reports that the decomposition of the electrolytic solution is suppressed by forming a film mainly composed of a tungstic acid compound on the surface of the positive electrode active material.

特開2013−229303号JP 2013-229303 A

しかしながら、従来技術の方法では未だ諸特性は満足されず、特にラミネート電池の信頼性で重要となる、高温保存特性の改善が求められている。   However, the prior art methods still do not satisfy various characteristics, and there is a demand for improvement in high temperature storage characteristics, which is particularly important for the reliability of laminated batteries.

本発明は上記従来技術の有する課題に鑑みてなされたものであり、高温保存特性を改善することが可能なリチウムイオン二次電池を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide a lithium ion secondary battery capable of improving high-temperature storage characteristics.

上記課題を解決するため、本発明に係るリチウムイオン二次電池は、正極と、負極と、上記正極と上記負極の間に位置するセパレータと、電解液とを備えるリチウムイオン二次電池であって、前記正極がLiNi(M(M(ただし、MはCo、Mnから選ばれた少なくとも一種、MはAl、Fe、CrおよびMgから選ばれた少なくとも一種の元素を示す。また、0.9≦w≦1.3;0.75≦x≦0.95;0.01≦y≦0.25;0≦z≦0.25)で表されるリチウムニッケル化合物を含み、上記電解液がエチレンカーボネートおよびプロピレンカーボネートを含み、上記電解液の総体積に対する上記エチレンカーボネートが占める割合をA体積%、上記プロピレンカーボネートが占める割合をB体積%としたとき、0.1≦A≦5、かつ、10≦A+B≦30であり、上記電解液が、モノフルオロリン酸塩およびジフルオロリン酸塩から選択される少なくとも一種の第一の添加剤を含むことを特徴とする。 In order to solve the above problems, a lithium ion secondary battery according to the present invention is a lithium ion secondary battery comprising a positive electrode, a negative electrode, a separator positioned between the positive electrode and the negative electrode, and an electrolytic solution. The positive electrode is Li w Ni x (M 1 ) y (M 2 ) z O 2 (where M 1 is at least one selected from Co and Mn, and M 2 is selected from Al, Fe, Cr and Mg) At least one element, 0.9 ≦ w ≦ 1.3; 0.75 ≦ x ≦ 0.95; 0.01 ≦ y ≦ 0.25; 0 ≦ z ≦ 0.25) The volume ratio of the ethylene carbonate to the total volume of the electrolyte solution is A volume% and the ratio of the propylene carbonate to the total volume of the electrolyte solution. Is 0.1% A ≦ 5 and 10 ≦ A + B ≦ 30, and the electrolyte is at least one first selected from monofluorophosphate and difluorophosphate It is characterized by including the additive.

これによれば、ニッケル比率が高いリチウムニッケル化合物を用いると、モノフルオロリン酸塩またはジフルオロリン酸塩のアニオンがニッケルに強く配位し、ニッケルを取り込みながら正極上で緻密な皮膜を形成する。上記皮膜により、正極表面に存在するLiOHやLiCOが効果的にカバーされると共に、ガスの主原因となるエチレンカーボネートを含む電解液の組成を上記のように最適化することで、高温保存特性が改善する。 According to this, when a lithium nickel compound having a high nickel ratio is used, the anion of monofluorophosphate or difluorophosphate is strongly coordinated to nickel, and a dense film is formed on the positive electrode while taking in nickel. The coating effectively covers LiOH and Li 2 CO 3 present on the surface of the positive electrode, and optimizes the composition of the electrolytic solution containing ethylene carbonate, which is the main cause of gas, as described above. Storage characteristics are improved.

本発明に係るリチウムイオン二次電池はさらに、上記第一の添加剤が、電解液中に0.01〜1.0質量%含まれることが好ましい。   In the lithium ion secondary battery according to the present invention, the first additive is preferably contained in an amount of 0.01 to 1.0% by mass in the electrolytic solution.

これによれば、添加量として最適であり、高温保存特性が更に改善する。   According to this, the addition amount is optimum, and the high-temperature storage characteristics are further improved.

本発明に係るリチウムイオン二次電池はさらに、上記電解液が更に、炭素−炭素二重結合を有する第二の添加剤を含むことが好ましい。   In the lithium ion secondary battery according to the present invention, it is preferable that the electrolytic solution further includes a second additive having a carbon-carbon double bond.

これによれば、第一の添加剤が、炭素−炭素二重結合を有する第二の添加剤の分解を促進し、正極上でより緻密な皮膜が形成されて高温保存特性が更に改善する。上記反応のメカニズムは未だ明らかではないが、第一の添加剤によって、第二の添加剤がアニオン重合のような連鎖的な反応で分解していると推測される。 According to this, a 1st additive accelerates | stimulates decomposition | disassembly of the 2nd additive which has a carbon-carbon double bond, a denser film is formed on a positive electrode, and a high temperature storage characteristic further improves. The mechanism of the above reaction is not yet clear, but it is presumed that the second additive is decomposed by a chain reaction such as anionic polymerization by the first additive.

本発明に係るリチウムイオン二次電池はさらに、上記第二の添加剤が、ビニレンカーボネートまたはビニルエチレンカーボネートであることが好ましい。   In the lithium ion secondary battery according to the present invention, the second additive is preferably vinylene carbonate or vinyl ethylene carbonate.

これによれば、添加剤として好適であり、高温保存特性が更に改善する。   According to this, it is suitable as an additive, and the high-temperature storage characteristics are further improved.

本発明に係るリチウムイオン二次電池はさらに、上記第二の添加剤が、電解液中に0.1〜5.0質量%含まれることが好ましい。   In the lithium ion secondary battery according to the present invention, the second additive is preferably contained in an amount of 0.1 to 5.0% by mass in the electrolytic solution.

これによれば、添加量として最適であり、高温保存特性が更に改善する。   According to this, the addition amount is optimum, and the high-temperature storage characteristics are further improved.

本発明によれば、高温保存特性を改善することが可能なリチウムイオン二次電池が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the lithium ion secondary battery which can improve a high temperature storage characteristic is provided.

本実施形態のリチウムイオン二次電池の模式断面図である。It is a schematic cross section of the lithium ion secondary battery of this embodiment.

以下、図面を参照しながら本発明に係る好適な実施形態について説明する。なお、本発明は以下の実施形態に限定されるものではない。また以下に記載した構成要素には、当業者が容易に想到できるもの、実質的に同一のものが含まれる。さらに以下に記載した構成要素は、適宜組み合わせることができる。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments according to the invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment. The constituent elements described below include those that can be easily conceived by those skilled in the art and those that are substantially the same. Furthermore, the constituent elements described below can be appropriately combined.

<リチウムイオン二次電池>
図1に示すように、本実施形態に係るリチウムイオン二次電池100は、互いに対向する板状の負極20及び板状の正極10と、負極20と正極10との間に隣接して配置される板状のセパレータ18と、を備える積層体30と、リチウムイオンを含む電解質溶液と、これらを密閉した状態で収容するケース50と、負極20に一方の端部が電気的に接続されると共に他方の端部がケースの外部に突出されるリード62と、正極10に一方の端部が電気的に接続されると共に他方の端部がケースの外部に突出されるリード60とを備える。
<Lithium ion secondary battery>
As shown in FIG. 1, a lithium ion secondary battery 100 according to the present embodiment is disposed adjacent to each other between a plate-like negative electrode 20 and a plate-like positive electrode 10 facing each other, and the negative electrode 20 and the positive electrode 10. A plate-like separator 18, an electrolyte solution containing lithium ions, a case 50 containing these in a sealed state, and one end of the negative electrode 20 being electrically connected. A lead 62 whose other end protrudes outside the case and a lead 60 whose one end is electrically connected to the positive electrode 10 and whose other end protrudes outside the case are provided.

正極10は、正極集電体12と、正極集電体12上に形成された正極活物質層14と、を有する。また、負極20は、負極集電体22と、負極集電体22上に形成された負極活物質層24と、を有する。セパレータ18は、負極活物質層24と正極活物質層14との間に位置している。   The positive electrode 10 includes a positive electrode current collector 12 and a positive electrode active material layer 14 formed on the positive electrode current collector 12. The negative electrode 20 includes a negative electrode current collector 22 and a negative electrode active material layer 24 formed on the negative electrode current collector 22. The separator 18 is located between the negative electrode active material layer 24 and the positive electrode active material layer 14.

<正極>
本実施形態に係る正極は、LiNi(M(M(ただし、MはCo、Mnから選ばれた少なくとも一種、MはAl、Fe、CrおよびMgから選ばれた少なくとも一種の元素を示す。また、0.9≦w≦1.3;0.75≦x≦0.95;0.01≦y≦0.25;0≦z≦0.25)で表されるリチウムニッケル化合物を含むものである。
(正極集電体)
正極集電体12は、導電性の板材であればよく、例えば、アルミニウム又はそれらの合金、ステンレス等の金属薄板(金属箔)を用いることができる。
<Positive electrode>
The positive electrode according to the present embodiment is Li w Ni x (M 1 ) y (M 2 ) z O 2 (where M 1 is at least one selected from Co and Mn, and M 2 is Al, Fe, Cr, and Mg) And at least one element selected from the group consisting of 0.9 ≦ w ≦ 1.3, 0.75 ≦ x ≦ 0.95, 0.01 ≦ y ≦ 0.25, and 0 ≦ z ≦ 0.25. The lithium nickel compound represented by this is included.
(Positive electrode current collector)
The positive electrode current collector 12 may be a conductive plate material, and for example, a metal thin plate (metal foil) such as aluminum, an alloy thereof, or stainless steel can be used.

(正極活物質層)
正極活物質層14は、正極活物質、正極用バインダー、および正極用導電助剤から主に構成されるものである。
(Positive electrode active material layer)
The positive electrode active material layer 14 is mainly composed of a positive electrode active material, a positive electrode binder, and a positive electrode conductive additive.

(正極活物質)
本実施形態に係る正極は、LiNi(M(M(ただし、MはCo、Mnから選ばれた少なくとも一種、MはAl、Fe、CrおよびMgから選ばれた少なくとも一種の元素を示す。また、0.9≦w≦1.3;0.75≦x≦0.95;0.01≦y≦0.25;0≦z≦0.25)で表されるリチウムニッケル化合物を含むものである。
(Positive electrode active material)
The positive electrode according to the present embodiment is Li w Ni x (M 1 ) y (M 2 ) z O 2 (where M 1 is at least one selected from Co and Mn, and M 2 is Al, Fe, Cr, and Mg) And at least one element selected from the group consisting of 0.9 ≦ w ≦ 1.3, 0.75 ≦ x ≦ 0.95, 0.01 ≦ y ≦ 0.25, and 0 ≦ z ≦ 0.25. The lithium nickel compound represented by this is included.

これによれば、正極にニッケル比率が高いリチウムニッケル化合物を用いると、モノフルオロリン酸塩またはジフルオロリン酸塩のアニオンがニッケルに強く配位し、ニッケルを取り込みながら正極上で緻密な皮膜を形成する。上記皮膜により、正極表面に存在するLiOHやLiCOが効果的にカバーされると共に、ガスの主原因となるエチレンカーボネートを含む電解液の組成を上記のように最適化することで、高温保存特性が改善する。 According to this, when a lithium nickel compound with a high nickel ratio is used for the positive electrode, the anion of monofluorophosphate or difluorophosphate is strongly coordinated to nickel, and a dense film is formed on the positive electrode while incorporating nickel. To do. The coating effectively covers LiOH and Li 2 CO 3 present on the surface of the positive electrode, and optimizes the composition of the electrolytic solution containing ethylene carbonate, which is the main cause of gas, as described above. Storage characteristics are improved.

(正極用バインダー)
正極用バインダーは正極活物質同士を結合すると共に、正極活物質層14と正極用集電体12とを結合している。バインダーは、上述の結合が可能なものであればよく、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂や、セルロース、スチレン・ブタジエンゴム、エチレン・プロピレンゴム、ポリイミド樹脂、ポリアミドイミド樹脂等を用いてもよい。また、バインダーとして電子伝導性の導電性高分子やイオン伝導性の導電性高分子を用いてもよい。電子伝導性の導電性高分子としては、例えば、ポリアセチレン、ポリチオフェン、ポリアニリン等が挙げられる。イオン伝導性の導電性高分子としては、例えば、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物と、LiClO、LiBF、LiPF等のリチウム塩とを複合化させたもの等が挙げられる。
(Binder for positive electrode)
The positive electrode binder bonds the positive electrode active materials to each other and bonds the positive electrode active material layer 14 and the positive electrode current collector 12. The binder is not particularly limited as long as it can be bonded as described above. For example, fluorine resin such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), cellulose, styrene / butadiene rubber, ethylene / propylene rubber, polyimide A resin, a polyamideimide resin, or the like may be used. Alternatively, an electron conductive conductive polymer or an ion conductive conductive polymer may be used as the binder. Examples of the electron conductive conductive polymer include polyacetylene, polythiophene, and polyaniline. Examples of the ion conductive conductive polymer include those obtained by combining a polyether polymer compound such as polyethylene oxide and polypropylene oxide and a lithium salt such as LiClO 4 , LiBF 4 , and LiPF 6. It is done.

正極活物質層14中のバインダーの含有量は特に限定されないが、添加する場合には正極活物質100質量部に対して0.5〜5.0質量部であることが好ましい。   Although content of the binder in the positive electrode active material layer 14 is not specifically limited, When adding, it is preferable that it is 0.5-5.0 mass parts with respect to 100 mass parts of positive electrode active materials.

(正極用導電助剤)
正極用導電助剤としては、正極活物質層14の導電性を良好にするものであれば特に限定されず、公知の導電助剤を使用できる。例えば、黒鉛、カーボンブラック等の炭素系材料や、銅、ニッケル、ステンレス、鉄等の金属微粉、ITO等の導電性酸化物が挙げられる。
(Conductive aid for positive electrode)
The conductive auxiliary agent for positive electrode is not particularly limited as long as it improves the conductivity of the positive electrode active material layer 14, and a known conductive auxiliary agent can be used. Examples thereof include carbon-based materials such as graphite and carbon black, metal fine powders such as copper, nickel, stainless steel, and iron, and conductive oxides such as ITO.

<負極>
(負極集電体)
負極集電体22は、導電性の板材であればよく、例えば、銅等の金属薄板(金属箔)を用いることができる。
<Negative electrode>
(Negative electrode current collector)
The negative electrode current collector 22 may be a conductive plate material, and for example, a metal thin plate (metal foil) such as copper can be used.

(負極活物質層)
負極活物質層24は、負極活物質、負極用バインダー、および負極用導電助剤から主に構成されるものである。
(Negative electrode active material layer)
The negative electrode active material layer 24 is mainly composed of a negative electrode active material, a negative electrode binder, and a negative electrode conductive additive.

(負極活物質)
負極活物質としては、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)を可逆的に進行させることが可能であれば特に限定されず、公知の電極活物質を使用できる。例えば、グラファイト、ハードカーボン等の炭素系材料、酸化シリコン(SiO)、金属シリコン(Si)等の珪素系材料、チタン酸リチウム(LTO)等の金属酸化物、リチウム、スズ、亜鉛等の金属材料が挙げられる。
(Negative electrode active material)
The negative electrode active material is not particularly limited as long as it can reversibly advance occlusion and release of lithium ions and desorption and insertion (intercalation) of lithium ions, and a known electrode active material can be used. . For example, carbon-based materials such as graphite and hard carbon, silicon-based materials such as silicon oxide (SiO x ) and metal silicon (Si), metal oxides such as lithium titanate (LTO), metals such as lithium, tin, and zinc Materials.

負極活物質として金属材料を用いない場合、負極活物質層24は更に、負極用バインダーおよび負極用導電助剤を含んでいてもよい。   When a metal material is not used as the negative electrode active material, the negative electrode active material layer 24 may further include a negative electrode binder and a negative electrode conductive additive.

(負極用バインダー)
負極用バインダーとしては特に限定は無く、上記で記載した正極用バインダーと同様のものを用いることができる。
(Binder for negative electrode)
There is no limitation in particular as a binder for negative electrodes, The thing similar to the binder for positive electrodes described above can be used.

(負極用導電助剤)
負極用導電助剤としては特に限定は無く、上記で記載した正極用導電助剤と同様のものを用いることができる。
(Conductive aid for negative electrode)
There is no limitation in particular as a conductive support agent for negative electrodes, The thing similar to the conductive support agent for positive electrodes described above can be used.

<電解液>
本実施形態に係る電解液は、エチレンカーボネートおよびプロピレンカーボネートを含み、上記電解液の総体積に対する上記エチレンカーボネートが占める割合をA体積%、上記プロピレンカーボネートが占める割合をB体積%としたとき、0.1≦A≦5、かつ、10≦A+B≦30であり、上記電解液が、モノフルオロリン酸塩およびジフルオロリン酸塩から選択される少なくとも一種の第一の添加剤を含むものである。
<Electrolyte>
The electrolytic solution according to the present embodiment includes ethylene carbonate and propylene carbonate. When the proportion of the ethylene carbonate to the total volume of the electrolytic solution is A volume% and the proportion of the propylene carbonate is B volume%, 0 .Ltoreq.1.ltoreq.A.ltoreq.5 and 10.ltoreq.A + B.ltoreq.30, and the electrolyte contains at least one first additive selected from monofluorophosphate and difluorophosphate.

これによれば、モノフルオロリン酸塩またはジフルオロリン酸塩のアニオンがニッケルに強く配位し、ニッケルを取り込みながら正極上で緻密な皮膜を形成する。上記皮膜により、正極表面に存在するLiOHやLiCOが効果的にカバーされると共に、ガスの主原因となるエチレンカーボネートを含む電解液の組成を上記のように最適化することで、高温保存特性が改善する。 According to this, the anion of monofluorophosphate or difluorophosphate is strongly coordinated to nickel, and a dense film is formed on the positive electrode while taking in nickel. The coating effectively covers LiOH and Li 2 CO 3 present on the surface of the positive electrode, and optimizes the composition of the electrolytic solution containing ethylene carbonate, which is the main cause of gas, as described above. Storage characteristics are improved.

本実施形態に係る電解液は更に、上記第一の添加剤が、電解液中に0.01〜1.0質量%含まれることが好ましい。   In the electrolytic solution according to this embodiment, the first additive is preferably contained in an amount of 0.01 to 1.0% by mass in the electrolytic solution.

これによれば、第一の添加剤の添加量として最適であり、高温保存特性が更に改善する。   According to this, it is optimal as the addition amount of the first additive, and the high-temperature storage characteristics are further improved.

本実施形態に係る電解液は更に、炭素−炭素二重結合を有する第二の添加剤を含むことが好ましい。   It is preferable that the electrolytic solution according to the present embodiment further includes a second additive having a carbon-carbon double bond.

これによれば、第一の添加剤が、炭素−炭素二重結合を有する第二の添加剤の分解を促進し、正極上でより緻密な皮膜が形成されて高温保存特性が更に改善する。上記反応のメカニズムは未だ明らかではないが、第一の添加剤によって、第二の添加剤がアニオン重合のような連鎖的な反応で分解していると推測される。   According to this, a 1st additive accelerates | stimulates decomposition | disassembly of the 2nd additive which has a carbon-carbon double bond, a denser film is formed on a positive electrode, and a high temperature storage characteristic further improves. The mechanism of the above reaction is not yet clear, but it is presumed that the second additive is decomposed by a chain reaction such as anionic polymerization by the first additive.

本実施形態に係る電解液は更に、上記第二の添加剤が、ビニレンカーボネートまたはビニルエチレンカーボネートであることが好ましい。   In the electrolytic solution according to this embodiment, the second additive is preferably vinylene carbonate or vinyl ethylene carbonate.

これによれば、第二の添加剤として好適であり、高温保存特性が更に改善する。   According to this, it is suitable as a second additive, and the high-temperature storage characteristics are further improved.

本実施形態に係る電解液は更に、上記第二の添加剤が、電解液中に0.1〜5.0質量%含まれることが好ましい。
これによれば、第二の添加剤の添加量として最適であり、高温保存特性が更に改善する。
In the electrolytic solution according to this embodiment, the second additive is preferably contained in an amount of 0.1 to 5.0% by mass in the electrolytic solution.
According to this, it is optimal as the addition amount of the second additive, and the high-temperature storage characteristics are further improved.

(溶媒)
電解液の溶媒としては、一般にリチウムイオン二次電池に用いられている溶媒であれば特に限定はなく、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)等の環状カーボネート化合物、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等の鎖状カーボネート化合物、γ−ブチロラクトン等の環状エステル化合物、プロピオン酸プロピル、プロピオン酸エチル、酢酸エチル等の鎖状エステル化合物、等を任意の割合で混合して用いることができる。
(solvent)
The solvent of the electrolytic solution is not particularly limited as long as it is a solvent generally used in lithium ion secondary batteries. For example, cyclic carbonate compounds such as ethylene carbonate (EC) and propylene carbonate (PC), diethyl carbonate (DEC) ), A chain carbonate compound such as ethyl methyl carbonate (EMC), a cyclic ester compound such as γ-butyrolactone, a chain ester compound such as propyl propionate, ethyl propionate, and ethyl acetate, etc. Can be used.

(電解質)
電解質は、リチウムイオン二次電池の電解質として用いられるリチウム塩であれば特に限定は無く、例えば、LiPF、LiBF、リチウムビスオキサレートボラート等の無機酸陰イオン塩、LiCFSO、(CFSONLi、(FSONLi等の有機酸陰イオン塩等を用いることができる。
(Electrolytes)
The electrolyte is not particularly limited as long as it is a lithium salt used as an electrolyte of a lithium ion secondary battery. For example, inorganic acid anion salts such as LiPF 6 , LiBF 4 , lithium bisoxalate borate, LiCF 3 SO 3 , An organic acid anion salt such as (CF 3 SO 2 ) 2 NLi, (FSO 2 ) 2 NLi, or the like can be used.

以上、本発明に係る好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。   As mentioned above, although preferred embodiment which concerns on this invention was described, this invention is not limited to the said embodiment.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

[実施例1]
(正極の作製)
リチウムニッケル化合物としてLi(Ni0.80Co0.15Al0.05)O85質量部、カーボンブラック5質量部、PVDF10質量部をN−メチル−2−ピロリドン(NMP)に分散させ、正極活物質層形成用のスラリーを調整した。このスラリーを、厚さ20μmのアルミ金属箔の一面に、正極活物質の塗布量が9.0mg/cmとなるように塗布し、100℃で乾燥することで正極活物質層を形成した。その後、ローラープレスによって加圧成形し、正極を作製した。
[Example 1]
(Preparation of positive electrode)
As a lithium nickel compound, 85 parts by mass of Li (Ni 0.80 Co 0.15 Al 0.05 ) O 2 , 5 parts by mass of carbon black, and 10 parts by mass of PVDF are dispersed in N-methyl-2-pyrrolidone (NMP), and the positive electrode A slurry for forming an active material layer was prepared. This slurry was applied to one surface of an aluminum metal foil having a thickness of 20 μm so that the applied amount of the positive electrode active material was 9.0 mg / cm 2 and dried at 100 ° C. to form a positive electrode active material layer. Then, it pressure-molded with the roller press and produced the positive electrode.

(負極の作製)
天然黒鉛90質量部、カーボンブラック5質量部、PVDF5質量部をN−メチル−2−ピロリドン(NMP)に分散させ、負極活物質層形成用のスラリーを調整した。上記スラリーを、厚さ20μmの銅箔の一面に、負極活物質の塗布量が6.0mg/cmとなるように塗布し、100℃で乾燥することで負極活物質層を形成した。その後、ローラープレスによって加圧成形し、負極を作製した。
(Preparation of negative electrode)
90 parts by mass of natural graphite, 5 parts by mass of carbon black, and 5 parts by mass of PVDF were dispersed in N-methyl-2-pyrrolidone (NMP) to prepare a slurry for forming a negative electrode active material layer. The slurry was applied to one surface of a copper foil having a thickness of 20 μm so that the amount of the negative electrode active material applied was 6.0 mg / cm 2 and dried at 100 ° C. to form a negative electrode active material layer. Then, it pressure-molded with the roller press and produced the negative electrode.

(電解液の作製)
体積比でEC/PC/DEC=5/25/70となるように混合し、これに1.0mol/Lの濃度となるようにLiPFを溶解させた。その後、この溶液に対し、第一の添加剤としてジフルオロリン酸リチウム(LiPO)を0.10質量%、第二の添加剤としてビニレンカーボネートを1.0質量%の濃度となるように添加し、電解液を作製した。
(Preparation of electrolyte)
It was mixed so that EC / PC / DEC = 5/ 25/70 in volume ratio, and this dissolved LiPF 6 at a concentration of 1.0 mol / L. Thereafter, the concentration of lithium difluorophosphate (LiPO 2 F 2 ) is 0.10% by mass as the first additive and vinylene carbonate is 1.0% by mass as the second additive with respect to this solution. This was added to prepare an electrolytic solution.

(評価用リチウムイオン二次電池の作製)
上記で作製した正極および負極と、それらの間にポリエチレン微多孔膜からなるセパレータを挟んでアルミラミネートパックに入れた。このアルミラミネートパックに、上記で作製した電解液を注入した後、真空シールし、評価用リチウムイオン二次電池を作製した。
(Production of evaluation lithium-ion secondary battery)
The positive electrode and negative electrode produced above and a separator made of a polyethylene microporous film were sandwiched between them to be put in an aluminum laminate pack. After injecting the electrolytic solution prepared above into this aluminum laminate pack, vacuum sealing was performed to prepare a lithium ion secondary battery for evaluation.

(初回放電容量の測定)
上記で作製した評価用リチウムイオン二次電池を、充放電試験装置(北斗電工株式会社製)を用い、25℃の恒温槽(エスペック株式会社製)内で電流密度80μA/cmの定電流充電で電池電圧が4.2Vとなるまで充電を行った後、電流密度80μA/cmの定電流放電で電池電圧が2.8Vとなるまで放電を行った。得られた初回放電容量を表1に示す。
(Measurement of initial discharge capacity)
The lithium ion secondary battery for evaluation produced above was charged at a constant current of 80 μA / cm 2 in a constant temperature bath (manufactured by Espec Co., Ltd.) at 25 ° C. using a charge / discharge test device (manufactured by Hokuto Denko Co., Ltd.). Then, the battery was charged until the battery voltage reached 4.2 V, and then discharged with constant current discharge at a current density of 80 μA / cm 2 until the battery voltage reached 2.8 V. The obtained initial discharge capacity is shown in Table 1.

(高温保存試験時ガス量の測定)
上記で作製した評価用リチウムイオン二次電池について、二次電池充放電試験装置を用い、充電レート0.2Cの定電流充電で電池電圧が4.2Vとなるまで充電を行った。ここで、X(C)とは、25℃で定電流充電を行ったときに1/X時間で充電終了となる電流値を示す。充電終了後、アルミラミネートパックの一部に切れ込みを入れてガス抜きを行い、再び真空シールした。この電池の体積をアルキメデス法にて測定し、高温保存試験前の電池体積Vを求めた。
(Measurement of gas volume during high temperature storage test)
About the lithium ion secondary battery for evaluation produced above, it charged until the battery voltage became 4.2V by the constant current charge of the charge rate 0.2C using the secondary battery charging / discharging test apparatus. Here, X (C) indicates a current value at which charging is completed in 1 / X time when constant current charging is performed at 25 ° C. After completion of charging, a cut was made in a part of the aluminum laminate pack, the gas was vented, and vacuum sealing was performed again. The volume of the battery was measured by the Archimedes method, were determined cell volume V 1 of the previous high-temperature storage test.

上記で電池体積Vを求めた電池を、温度を85℃に設定した恒温槽(エスペック株式会社製)内で4時間静置させた。4時間後、電池を取り出して室温で15分間放熱させた後、再びアルキメデス法にて電池体積を測定し、高温保存試験後の電池体積Vを求めた。 The battery for which the battery volume V 1 was determined as described above was allowed to stand for 4 hours in a thermostatic chamber (manufactured by ESPEC Corporation) whose temperature was set to 85 ° C. After 4 hours, allowed to heat radiation for 15 minutes at room temperature, remove the battery to measure the battery volume again by the Archimedes method, were determined cell volume V 2 after high-temperature storage test.

上記で求めた高温保存試験前後の体積V、Vから、式(2)に従い、高温保存試験時のガス発生量Vを求めた。得られた結果を表1に示す。
V=V−V ・・・(2)
From the volumes V 1 and V 2 before and after the high temperature storage test determined above, the gas generation amount V during the high temperature storage test was determined according to the equation (2). The obtained results are shown in Table 1.
V = V 2 −V 1 (2)

[実施例2]
電解液の溶媒組成を、表1に示した通りに変更した以外は実施例1と同様として、実施例2の評価用リチウムイオン二次電池を作製した。
[Example 2]
A lithium ion secondary battery for evaluation of Example 2 was produced in the same manner as in Example 1 except that the solvent composition of the electrolytic solution was changed as shown in Table 1.

[実施例3]
電解液の溶媒組成を、表1に示した通りに変更した以外は実施例1と同様として、実施例3の評価用リチウムイオン二次電池を作製した。
[Example 3]
A lithium ion secondary battery for evaluation of Example 3 was produced in the same manner as in Example 1 except that the solvent composition of the electrolytic solution was changed as shown in Table 1.

[実施例4]
電解液の溶媒組成を、表1に示した通りに変更した以外は実施例1と同様として、実施例4の評価用リチウムイオン二次電池を作製した。
[Example 4]
A lithium ion secondary battery for evaluation of Example 4 was produced in the same manner as in Example 1 except that the solvent composition of the electrolytic solution was changed as shown in Table 1.

[実施例5]
電解液の溶媒組成を、表1に示した通りに変更した以外は実施例1と同様として、実施例5の評価用リチウムイオン二次電池を作製した。
[Example 5]
A lithium ion secondary battery for evaluation of Example 5 was produced in the same manner as in Example 1 except that the solvent composition of the electrolytic solution was changed as shown in Table 1.

[実施例6]
電解液の溶媒組成を、表1に示した通りに変更した以外は実施例1と同様として、実施例6の評価用リチウムイオン二次電池を作製した。
[Example 6]
A lithium ion secondary battery for evaluation of Example 6 was produced in the same manner as in Example 1 except that the solvent composition of the electrolytic solution was changed as shown in Table 1.

[実施例7]
電解液の溶媒組成を、表1に示した通りに変更した以外は実施例1と同様として、実施例7の評価用リチウムイオン二次電池を作製した。
[Example 7]
A lithium ion secondary battery for evaluation of Example 7 was produced in the same manner as Example 1 except that the solvent composition of the electrolytic solution was changed as shown in Table 1.

[実施例8]
電解液の作製で用いた第二の添加剤の添加量を、表1に示した通りに変更した以外は実施例1と同様として、実施例8の評価用リチウムイオン二次電池を作製した。
[Example 8]
A lithium ion secondary battery for evaluation of Example 8 was produced in the same manner as in Example 1 except that the amount of the second additive used in the production of the electrolytic solution was changed as shown in Table 1.

[実施例9]
電解液の作製で用いた第二の添加剤の添加量を、表1に示した通りに変更した以外は実施例1と同様として、実施例9の評価用リチウムイオン二次電池を作製した。
[Example 9]
A lithium ion secondary battery for evaluation of Example 9 was produced in the same manner as in Example 1 except that the amount of the second additive used in the production of the electrolytic solution was changed as shown in Table 1.

[実施例10]
電解液の作製で用いた第二の添加剤の添加量を、表1に示した通りに変更した以外は実施例1と同様として、実施例10の評価用リチウムイオン二次電池を作製した。
[Example 10]
A lithium ion secondary battery for evaluation of Example 10 was produced in the same manner as in Example 1 except that the amount of the second additive used in the production of the electrolytic solution was changed as shown in Table 1.

[実施例11]
電解液の作製で用いた第二の添加剤の添加量を、表1に示した通りに変更した以外は実施例1と同様として、実施例11の評価用リチウムイオン二次電池を作製した。
[Example 11]
A lithium ion secondary battery for evaluation of Example 11 was produced in the same manner as in Example 1 except that the amount of the second additive used in the production of the electrolytic solution was changed as shown in Table 1.

[実施例12]
電解液の作製で用いた第二の添加剤を、表1に示した通りに変更した以外は実施例1と同様として、実施例12の評価用リチウムイオン二次電池を作製した。
[Example 12]
A lithium ion secondary battery for evaluation of Example 12 was produced in the same manner as in Example 1 except that the second additive used in the production of the electrolytic solution was changed as shown in Table 1.

[実施例13]
電解液の溶媒組成を、表1に示した通りに変更した以外は実施例12と同様として、実施例13の評価用リチウムイオン二次電池を作製した。
[Example 13]
A lithium ion secondary battery for evaluation of Example 13 was produced in the same manner as Example 12 except that the solvent composition of the electrolytic solution was changed as shown in Table 1.

[実施例14]
電解液の作製で用いた第二の添加剤を、表1に示した通りに変更した以外は実施例1と同様として、実施例14の評価用リチウムイオン二次電池を作製した。
[Example 14]
A lithium ion secondary battery for evaluation of Example 14 was produced in the same manner as in Example 1 except that the second additive used in the production of the electrolytic solution was changed as shown in Table 1.

[実施例15]
電解液の溶媒組成を、表1に示した通りに変更した以外は実施例14と同様として、実施例15の評価用リチウムイオン二次電池を作製した。
[Example 15]
A lithium ion secondary battery for evaluation of Example 15 was produced in the same manner as Example 14 except that the solvent composition of the electrolytic solution was changed as shown in Table 1.

[実施例16]
電解液の作製で用いた第一の添加剤の添加量を、表1に示した通りに変更した以外は実施例1と同様として、実施例16の評価用リチウムイオン二次電池を作製した。
[Example 16]
A lithium ion secondary battery for evaluation of Example 16 was produced in the same manner as in Example 1 except that the amount of the first additive used in the production of the electrolytic solution was changed as shown in Table 1.

[実施例17]
電解液の作製で用いた第一の添加剤の添加量を、表1に示した通りに変更した以外は実施例1と同様として、実施例17の評価用リチウムイオン二次電池を作製した。
[Example 17]
A lithium ion secondary battery for evaluation of Example 17 was produced in the same manner as in Example 1 except that the amount of the first additive used in the production of the electrolytic solution was changed as shown in Table 1.

[実施例18]
電解液の作製で用いた第一の添加剤の添加量を、表1に示した通りに変更した以外は実施例1と同様として、実施例18の評価用リチウムイオン二次電池を作製した。
[Example 18]
A lithium ion secondary battery for evaluation of Example 18 was produced in the same manner as in Example 1 except that the amount of the first additive used in the production of the electrolytic solution was changed as shown in Table 1.

[実施例19]
電解液の作製において、第一の添加剤としてモノフルオロリン酸リチウム(LiPOF)を用いた以外は実施例1と同様として、実施例19の評価用リチウムイオン二次電池を作製した。
[Example 19]
A lithium ion secondary battery for evaluation of Example 19 was produced in the same manner as in Example 1 except that lithium monofluorophosphate (Li 2 PO 3 F) was used as the first additive in the production of the electrolytic solution. .

[実施例20]
電解液の作製において、第二の添加剤を用いなかったこと以外は実施例1と同様として、実施例20の評価用リチウムイオン二次電池を作製した。
[Example 20]
A lithium ion secondary battery for evaluation of Example 20 was produced in the same manner as in Example 1 except that the second additive was not used in the production of the electrolytic solution.

[実施例21]
正極の作製で用いたリチウムニッケル化合物を、表1に示した通りに変更した以外は実施例1と同様として、実施例21の評価用リチウムイオン二次電池を作製した。
[Example 21]
A lithium ion secondary battery for evaluation of Example 21 was produced in the same manner as in Example 1 except that the lithium nickel compound used in the production of the positive electrode was changed as shown in Table 1.

[実施例22]
正極の作製で用いたリチウムニッケル化合物を、表1に示した通りに変更した以外は実施例1と同様として、実施例22の評価用リチウムイオン二次電池を作製した。
[Example 22]
A lithium ion secondary battery for evaluation of Example 22 was produced in the same manner as in Example 1 except that the lithium nickel compound used in the production of the positive electrode was changed as shown in Table 1.

[比較例1]
電解液の溶媒組成を、表1に示した通りに変更した以外は実施例1と同様として、比較例1の評価用リチウムイオン二次電池を作製した。
[Comparative Example 1]
A lithium ion secondary battery for evaluation of Comparative Example 1 was produced in the same manner as in Example 1 except that the solvent composition of the electrolytic solution was changed as shown in Table 1.

[比較例2]
電解液の溶媒組成を、表1に示した通りに変更した以外は実施例1と同様として、比較例2の評価用リチウムイオン二次電池を作製した。
[Comparative Example 2]
A lithium ion secondary battery for evaluation of Comparative Example 2 was produced in the same manner as in Example 1 except that the solvent composition of the electrolytic solution was changed as shown in Table 1.

[比較例3]
電解液の溶媒組成を、表1に示した通りに変更した以外は実施例1と同様として、比較例3の評価用リチウムイオン二次電池を作製した。
[Comparative Example 3]
A lithium ion secondary battery for evaluation of Comparative Example 3 was produced in the same manner as in Example 1 except that the solvent composition of the electrolytic solution was changed as shown in Table 1.

[比較例4]
電解液の作製において、第一の添加剤を用いなかったこと以外は実施例1と同様として、比較例4の評価用リチウムイオン二次電池を作製した。
[Comparative Example 4]
In the production of the electrolytic solution, a lithium ion secondary battery for evaluation of Comparative Example 4 was produced in the same manner as in Example 1 except that the first additive was not used.

[比較例5]
正極の作製で用いたリチウムニッケル化合物を、表1に示した通りに変更した以外は実施例1と同様として、比較例5の評価用リチウムイオン二次電池を作製した。
[Comparative Example 5]
A lithium ion secondary battery for evaluation of Comparative Example 5 was produced in the same manner as in Example 1 except that the lithium nickel compound used in the production of the positive electrode was changed as shown in Table 1.

[比較例6]
正極の作製で用いたリチウムニッケル化合物を、表1に示した通りに変更した以外は実施例1と同様として、比較例6の評価用リチウムイオン二次電池を作製した。
[Comparative Example 6]
A lithium ion secondary battery for evaluation of Comparative Example 6 was produced in the same manner as in Example 1 except that the lithium nickel compound used in the production of the positive electrode was changed as shown in Table 1.

実施例2〜22、および比較例1〜6で作製した評価用リチウムイオン二次電池について、実施例1と同様に、初回放電容量および高温保存試験時ガス量の測定を行った。結果を表1に示す。   For the evaluation lithium ion secondary batteries produced in Examples 2 to 22 and Comparative Examples 1 to 6, the initial discharge capacity and the gas amount during the high temperature storage test were measured in the same manner as in Example 1. The results are shown in Table 1.

実施例1〜22はいずれも、環状カーボネート比率を最適化しなかった比較例1〜3に対し、高温保存試験時ガス量が減少しており、高温保存特性が改善した。   In each of Examples 1 to 22, the gas amount during the high-temperature storage test was reduced as compared with Comparative Examples 1 to 3 in which the cyclic carbonate ratio was not optimized, and the high-temperature storage characteristics were improved.

更に、実施例20の結果から、第二の添加剤を添加することで、高温保存特性がより改善することが確認された。また、実施例12〜15の結果から、第二の添加剤としてはビニレンカーボネートまたはビニルエチレンカーボネートであることがより好ましい。   Furthermore, from the results of Example 20, it was confirmed that the high temperature storage characteristics were further improved by adding the second additive. From the results of Examples 12 to 15, the second additive is more preferably vinylene carbonate or vinyl ethylene carbonate.

実施例21および22と、比較例6の結果から、所定のニッケル比率のリチウムニッケル化合物を使用することで、高温保存特性が改善することが確認された。   From the results of Examples 21 and 22 and Comparative Example 6, it was confirmed that the high temperature storage characteristics were improved by using a lithium nickel compound having a predetermined nickel ratio.

実施例1、21および22と、比較例5の結果から、高温保存特性の改善と高い初期放電容量の両立を達成することが確認された。



From the results of Examples 1, 21 and 22 and Comparative Example 5, it was confirmed that the improvement of the high temperature storage characteristics and the high initial discharge capacity were achieved at the same time.



Figure 2019160616
Figure 2019160616

本発明により、高温保存特性を改善することが可能なリチウムイオン二次電池が提供される。   The present invention provides a lithium ion secondary battery capable of improving high-temperature storage characteristics.

10…正極、12…正極集電体、14…正極活物質層、18…セパレータ、20…負極、22…負極集電体、24…負極活物質層、30…積層体、50…ケース、60,62…リード、100…リチウムイオン二次電池。   DESCRIPTION OF SYMBOLS 10 ... Positive electrode, 12 ... Positive electrode collector, 14 ... Positive electrode active material layer, 18 ... Separator, 20 ... Negative electrode, 22 ... Negative electrode collector, 24 ... Negative electrode active material layer, 30 ... Laminate, 50 ... Case, 60 62 ... Lead, 100 ... Lithium ion secondary battery.

Claims (5)

正極と、負極と、前記正極と前記負極の間に位置するセパレータと、電解液とを備えるリチウムイオン二次電池であって、
前記正極がLiNi(M(M(ただし、MはCo、Mnから選ばれた少なくとも一種、MはAl、Fe、CrおよびMgから選ばれた少なくとも一種の元素を示す。また、0.9≦w≦1.3;0.75≦x≦0.95;0.01≦y≦0.25;0≦z≦0.25)で表されるリチウムニッケル化合物を含み、
前記電解液がエチレンカーボネートおよびプロピレンカーボネートを含み、
前記電解液の総体積に対する前記エチレンカーボネートが占める割合をA体積%、前記プロピレンカーボネートが占める割合をB体積%としたとき、0.1≦A≦5、かつ、10≦A+B≦30であり、
前記電解液が、モノフルオロリン酸塩およびジフルオロリン酸塩から選択される少なくとも一種の第一の添加剤を含むことを特徴とするリチウムイオン二次電池。
A lithium ion secondary battery comprising a positive electrode, a negative electrode, a separator positioned between the positive electrode and the negative electrode, and an electrolyte solution,
The positive electrode is Li w Ni x (M 1 ) y (M 2 ) z O 2 (where M 1 is at least one selected from Co and Mn, M 2 is at least selected from Al, Fe, Cr and Mg) One element, 0.9 ≦ w ≦ 1.3; 0.75 ≦ x ≦ 0.95; 0.01 ≦ y ≦ 0.25; 0 ≦ z ≦ 0.25) Including lithium nickel compounds,
The electrolyte includes ethylene carbonate and propylene carbonate;
When the ratio of the ethylene carbonate to the total volume of the electrolytic solution is A volume% and the ratio of the propylene carbonate is B volume%, 0.1 ≦ A ≦ 5 and 10 ≦ A + B ≦ 30,
The lithium ion secondary battery, wherein the electrolytic solution includes at least one first additive selected from monofluorophosphate and difluorophosphate.
前記第一の添加剤が、電解液中に0.01〜1.0質量%含まれることを特徴とする請求項1に記載のリチウムイオン二次電池。   2. The lithium ion secondary battery according to claim 1, wherein the first additive is contained in an electrolytic solution in an amount of 0.01 to 1.0 mass%. 前記電解液が更に、炭素−炭素二重結合を有する第二の添加剤を含むことを特徴とする請求項1または2に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the electrolytic solution further contains a second additive having a carbon-carbon double bond. 前記第二の添加剤が、ビニレンカーボネートまたはビニルエチレンカーボネートであることを特徴とする請求項3に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 3, wherein the second additive is vinylene carbonate or vinyl ethylene carbonate. 前記第二の添加剤が、電解液中に0.1〜5.0質量%含まれることを特徴とする請求項3または4に記載のリチウムイオン二次電池。   5. The lithium ion secondary battery according to claim 3, wherein the second additive is contained in the electrolytic solution in an amount of 0.1 to 5.0 mass%.
JP2018046698A 2018-03-14 2018-03-14 Lithium ion secondary battery Pending JP2019160616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018046698A JP2019160616A (en) 2018-03-14 2018-03-14 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018046698A JP2019160616A (en) 2018-03-14 2018-03-14 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2019160616A true JP2019160616A (en) 2019-09-19

Family

ID=67992649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018046698A Pending JP2019160616A (en) 2018-03-14 2018-03-14 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2019160616A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021045072A1 (en) 2019-09-03 2021-03-11 凸版印刷株式会社 Coating agent for modifying heat seal base material, laminate, and method for producing same
CN113782725A (en) * 2021-09-09 2021-12-10 宁德新能源科技有限公司 Electrochemical device and electronic apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021045072A1 (en) 2019-09-03 2021-03-11 凸版印刷株式会社 Coating agent for modifying heat seal base material, laminate, and method for producing same
CN113782725A (en) * 2021-09-09 2021-12-10 宁德新能源科技有限公司 Electrochemical device and electronic apparatus
CN113782725B (en) * 2021-09-09 2022-08-16 宁德新能源科技有限公司 Electrochemical device and electronic apparatus

Similar Documents

Publication Publication Date Title
US11431025B2 (en) Composition for gel polymer electrolyte, gel polymer electrolyte prepared therefrom, and electrochemical device including the same
JP6052179B2 (en) Lithium ion secondary battery
JP2008097879A (en) Lithium ion secondary battery
JP2011049114A (en) Lithium-ion secondary battery
JP2013197012A (en) Anode for lithium ion secondary battery, lithium ion secondary battery, and vehicle
JPWO2015015883A1 (en) Lithium secondary battery and electrolyte for lithium secondary battery
JPWO2011162090A1 (en) Nonaqueous electrolyte secondary battery
JP6812827B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using it
US20220294037A1 (en) Method for manufacturing secondary battery
JP2019160616A (en) Lithium ion secondary battery
JP6933260B2 (en) Non-aqueous electrolyte solution for lithium ion secondary battery and lithium ion secondary battery using it
CN111052486B (en) Nonaqueous electrolyte secondary battery
JP6992362B2 (en) Lithium ion secondary battery
JP2019160617A (en) Lithium ion secondary battery
JP2018133284A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery using the same
JP2019160615A (en) Lithium ion secondary battery
JP6222389B1 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP2019061827A (en) Lithium ion secondary battery
JP2019061825A (en) Lithium ion secondary battery
WO2015037115A1 (en) Negative-electrode material for use in lithium-ion secondary batteries
JP2019145409A (en) Lithium ion secondary battery
JP2018160382A (en) Lithium ion secondary battery
JP2019175652A (en) Lithium ion secondary battery
JP2018133335A (en) Nonaqueous electrolyte battery
JP2018133282A (en) Lithium ion secondary battery